Online Indices for Predictive Top-k Entity and
Aggregate Queries on Knowledge Graphs

Yan Li
University of Massachusetts, Lowell
yan_lil@student.uml.edu

Abstract—Knowledge graphs have seen increasingly broad
applications. However, they are known to be incomplete.
We define the notion of a virtual knowledge graph which
extends a knowledge graph with predicted edges and their
probabilities. We focus on two important types of queries:
top-k entity queries and aggregate queries. To improve query
processing efficiency, we propose an incremental index on top
of low dimensional entity vectors transformed from network
embedding vectors. We also devise query processing algo-
rithms with the index. Moreover, we provide theoretical guar-
antees of accuracy, and conduct a systematic experimental
evaluation. The experiments show that our approach is very
efficient and effective. In particular, with the same or better
accuracy guarantees, it is one to two orders of magnitude
faster in query processing than the closest previous work
which can only handle one relationship type.

I. INTRODUCTION

A knowledge graph is a knowledge base represented as
a graph. It is a major abstraction for heterogeneous graph
representation of data with broad applications including web
data [1], user and product interactions and ratings [2], med-
ical knowledge and facts [3], and recommender systems [4],
[5]. Due to the enormous and constantly increasing amount
of information in such knowledge bases and the limited
resources in acquiring it, a knowledge graph is inherently
incomplete to a great extent [5].

Carol

Grocery store 1
Italian
[]

Mexican
®

-

Restaurant 3 Restaurant 1
N

~
Amy’ ~o

—~Restaurant 2
-
Bob
Fig. 1: Nllustrating a virtual knowledge graph.

We consider it as a virtual knowledge graph, i.e., a graph
complemented with probabilistic edges. The probabilistic
edges are virtual and predicted with an estimated proba-
bility, given by an algorithm A associated with the graph,
as formulated in Section II and discussed in Section V-B.
Figure 1 illustrates a virtual knowledge graph where we
have different vertex types including users (e.g., Amy, Bob),
restaurants, grocery stores, and styles of food (e.g., Italian,
Mexican). The graph also has different relationship types in

Tingjian Ge
University of Massachusetts, Lowell
ge@cs.uml.edu

Cindy Chen
University of Massachusetts, Lowell
cchen@cs.uml.edu

edges (illustrated with various colors) such as “rates high” (of
a restaurant), “frequents” (a grocery store), and “belongs to”
(a style of food). This knowledge graph is incomplete. For ex-
ample, it misses the information that Amy likes Restaurant 2
(i.e., would give a high rating) with a certain probability, and
she likes Restaurant 3 with a certain probability, illustrated
as red dashed edges in Figure 1.

We envision that one of the major uses of a virtual
knowledge graph is to answer entity information queries
given another entity and a relationship. For instance, in
Figure 1, a useful query may be (Q1) “What are the top-5
most likely restaurants Amy would rate high but has not
been to yet?”. Another query, which involves aggregation, is
(Q2) “What is the average age of all the people who would
like Restaurant 2?”.

A knowledge graph consists of triples (i.e., edges) in the
form of (h,,t), where h is the head entity, r is a relationship,
and ¢ is the tail entity. For example, (Carol, frequents, Grocery
store 1) is such a triple in the graph of Figure 1. Each of
the two example queries above is either, given h and 7, to
query information about ¢ (Q1), or, given ¢ and 7, to query
information about h (Q2).

Due to the potentially gigantic number of entities in a
large knowledge graph, it would be very slow and less than
desirable to process each entity on the fly and select the
top ones with the highest probabilities. Moreover, adding to
the difficulty, there can be thousands or more relationships
in a heterogeneous knowledge graph. Our experiments in
Section VI show that queries are over 3 orders of magnitude
faster with our index compared to no index—the larger the
knowledge graph, the greater the difference.

Then, how can one possibly index a virtual knowledge
graph which has potential edges not even materialized? We
propose to leverage, and build upon, the knowledge graph
embedding techniques [5] for this purpose. Informally, knowl-
edge graph embedding performs automatic feature extraction
and dimensionality reduction and produces a different vector
for each vertex and each relationship type of the graph. These
embedding vectors incorporate all relevant information in
the vertex types, relationship types, and the graph topology.
Many knowledge graph embedding algorithms produce vec-
tors that maintain a constraint within a triple (h, r, t) for each
relationship type r that holds between entities h and ¢ such as
h+r ~ t [6], where the boldface symbols h, r, and t represent

the embedding vectors of h, r, and ¢, respectively. Embedding
has been shown to be the state-of-the-art technique for link
prediction in knowledge graphs [5] .

The basic idea is that we perform spatial indexing of the
embedding vectors. Then for a query (Q1) that is given the
head entity h and a relationship type r and that requests
information on the tail entity ¢ (either top matches or
aggregate information), we first use the embedding vectors
h and r to calculate a new vector h + r, and then look up
the spatial index to find entities whose embedding vectors
are close to point h + r in the multidimensional space. It is
analogous for the other type of query (Q2) where we search
the neighborhood of point t — r for head entities.

One problem with the above basic approach is that
common spatial indices, including the R-tree variants, do
not work well for high dimensionalities such as tens and
hundreds for graph embedding vectors [7]. Operating in
high dimensionalities severely penalizes performance. Our
solution is to first use a Johnson-Lindenstrauss (JL) type
random projection [8] into a low dimension space (such as
3), and then build a spatial index in this low dimension space.
However, classical JL transform and its analysis require the
resulting dimensionality to be rather high, at least in the
hundreds. Thus, we perform a novel analysis of accuracy
guarantees for any low dimensions.

We observe that building such an index is still very time
and space consuming, and the search space is very uneven
given the space of queries. In other words, it is wasteful to
build a full index while most nodes will never be visited.
Thus, analogous to a cracking index of B+ tree [9], [10] in
a relational database, we propose a novel way to build a
cracking R tree index online as needed by queries. In addition
to adopting a greedy approach for this purpose, we devise
an algorithm that performs A" search with top-k best choices
in building the index. Finally, we propose query processing
algorithms using this index for both top-k and aggregate
queries, and give a novel proof of the accuracy guarantees
using the martingale theory and Azuma inequality [11].

To the best of our knowledge, this is the first work
that proposes an incremental index technique for answering
predictive queries with accuracy guarantees. The closest
related work, H2-ALSH, uses locality sensitive hashing (LSH)
for approximate nearest neighbor search [12], but can only
handle one relationship type. H2-ALSH uses collaborative
filtering and searches for entities of one type that are closest
to an entity of another type based on the inner product
distance metric—hence it can only handle relationship of
a single type, but not heterogeneous knowledge graphs.
Nevertheless, even for a homogeneous graph with a single
relationship type, our cracking index does not incur a long,
offline index-building time as H2-ALSH does, and our query
processing time is one order of magnitude faster than H2-
ALSH for a smaller dataset and two orders of magnitude
faster for a larger dataset. That is, our method scales better
due to our overall tree-structure index (unlike the flat buckets
of LSH) with a cost logarithmic of the data size. In summary,

our contributions are as follows:

o The notion of a virtual knowledge graph and its indexing
for top-k and aggregate predictive queries.

e Graph embedding transform with provable accuracy
guarantees (Section III) combined with an incremental
index technique (Section 1V).

e Query processing algorithms for top-k and aggregate
queries with a novel proof of accuracy (Section V).

e A comprehensive experimental study using real-world
knowledge graph datasets (Section VI).

II. PROBLEM FORMULATION

A knowledge graph G = (V, E) is a directed graph whose
vertices in V' are entities and edges in E are subject-property-
object triple facts. Each edge is of the form (head entity,
relationship, tail entity), denoted as (h,r,t), and indicates a
relationship 7 from entity h to entity t.

Definition 1. (Virtual Knowledge Graph) A virtual knowl-
edge graph G = (V, &) induced by a prediction algorithm A
over a knowledge graph G = (V, E) is a probabilistic graph
that has the same set of vertices (V) as G, but has edges
€ = E UE', where each e € E' is of the form (h,rt,p),
ie, a triple (h,r,t) extended with a probability p determined
by algorithm A. Accordingly, edges in E have a probability 1.

Remarks. Logically, a virtual knowledge graph G can be
considered as a complete graph, even though some edges may
have tiny or zero probabilities. However, we never materialize
all the edges—only the highest probability ones are retrieved
on demand. The algorithm A needs to return a probability for
aretrieved edge not in F. In this paper, we focus on two types
of queries over G, namely the top-k queries and aggregate
queries. A top-k query is that, given a head entity h (resp.
tail entity t) and a relationship r, we return the top k entities
t (resp. h) with the highest probabilities in E’. In the same
context, an aggregate query returns the expected aggregate
value (COUNT, SUM, AVG, MAX, or MIN as in SQL) of the
attributes of entities ¢ (resp. h) in E’. Q1 in Section I is an
example of a top-k query, while Q2 is an aggregate query.

Note that alternatively we could have the query semantics
for all the edges in ' U E’; however, we focus on E’ in
this paper as it contains previously unknown edges in the
graph and is of practical significance to applications such as
recommender systems. As part of the graph, for each entity
point, we know its set of neighbors as in E. Thus, for our
default semantics that only considers E’, if index access in
Section V retrieves an entity point that is a neighbor (in FE)
of the query entity, we simply skip it and continue to the
next entity (this is typically insignificant as real knowledge
graphs’ node-degrees follow the power law [13], and most
nodes have relatively low degrees in F).

Due to the large number of entities, a brute force way
of iterating over every entity would be slow and undesir-
able. Furthermore, materializing all edges in E’ would be
too costly, since knowledge graphs are known to be very
incomplete [5], and there can be many relationships (e.g., in

Freebase [14]). In this paper, we propose a novel and efficient
indexing method to solve this problem, based on a knowledge
graph embedding algorithm A, which has been shown to be
the state-of-the-art technique for link prediction [5].

III. TRANSFORM OF EMBEDDING VECTORS

A. Overall Approach

We first apply an existing knowledge graph embedding
scheme, such as TransE [6] or TransA [15], to get the embed-
ding vectors of each node and relationship type. This embed-
ding is the algorithm A that induces the virtual knowledge
graph. We aim to index these embedding vectors. However,
typically they are of tens or hundreds of dimensions, which
is too inefficient for commonly used spatial indices. Hence,
in this section, we apply the Johnson-Lindenstrauss (JL)
transform [8] to convert the embedding vectors into a low
dimension (such as 3) before indexing them.

B. Transforming to Space S

A knowledge graph embedding scheme results in vectors
of dimensionality d in the vicinity of tens or hundreds, in
an embedding space S;. There is one vector for each vertex
(entity) and for each relationship type. We then perform JL
transform on these vectors. However, a major technical chal-
lenge is how to provide accuracy guarantees, since classical
JL transform and its proof of distance preservation require
the resulting dimensionality to be typically rather high, at
least in the hundreds—while we need it to be a small number
a (e.g., 3). Let this a-dimensional space be So. Specifically,
the mapping of this transform is:

1

\/an

where the o X d matrix A has each of its entries chosen i.i.d.
from a standard Gaussian distribution N (0, 1), and d is the
dimensionality of S;. Intuitively, each of the « dimensions
in Sy is a random linear combination of the original d
dimensions in S;, with a scale factor ﬁ, so that the Lo-
norm of x is preserved.

Note that our proof of the following result, Theorem 1,
is inspired by, but differs significantly from that in [8]. In
particular, the analysis and proof in [8] only apply to the
case when the ¢ below is between 0 and 1 for the upper
bound; moreover, we obtain a tighter bound for a small
dimensionality « and a relaxed € range. For succinctness and
clarity, the proofs of all the theorems/lemmas in the paper
are in our technical report [16].

X —

Theorem 1. For two points u and v in the embedding space
Sy that are of Euclidean distance l1, their Euclidean distance lo
in space So after the transform has the following probabilistic
upper bound:
/71 e
Prila > V14e-11] < Ayule) = <+€> (1)

ec/2

for any € > 0, where « is the dimensionality of So. Similarly,
the probabilistic lower bound is

Prils <V1—e-l1] < Aile) = (\/1 75~e€/2>a (2)
forany 0 <e < 1.

To see an example of the upper bound, we set € = 3, and
suppose the JL transform has dimensionality o = 3, then
with confidence 91.2%, Iy < 2l;. For an example of lower
bound, by setting ¢ = % (again o = 3), we have that, with
confidence at least 94%, Iy > %.

IV. CRACKING AND UNEVEN INDICES FOR VIRTUAL
KNOWLEDGE GRAPHS

Once we transform all entity points into the low-
dimensional space Si, we perform indexing in order to
answer queries on the virtual knowledge graph. A simple
approach is to just use an off-the-shelf spatial index, such
as an R-tree [7]. However, we observe that this can be quite
wasteful, given that the number of entities is often huge, and
that the query regions (e.g., using h + r to search for top-k
tail entities with embedding t) are typically skewed and only
cover a small fraction of the whole space of entity points.

This motivates us to build a cracking and uneven R-tree
index (similar ideas work on other variants of index too).
The basic idea is that we bulk-load/build an R-tree index
in a top-down manner, and continue the “branching” on
demand—only as needed for queries. As a result, regions in
the embedding space S, that are more relevant to queries
(e.g., h + r) are indexed in finer granularities, while the
irrelevant regions stay at high levels of the tree. Thus, unlike
the traditional R-trees that are balanced, the index that we
build is imbalanced (uneven).

A. Preliminary: R-tree Bulk-Loading Algorithm

We first give some background on the top-down R-tree
bulk-loading [17], as shown in the algorithm BurkLoap-
CHUNK. Later in this section, we will devise our cracking
index algorithms on top of BuLkLoADCHUNK. We are index-
ing a set of rectangular objects D (for our problem, they are
actually just a set of points—a special case of rectangles—in
space S5). The basic idea of BULKLOADCHUNK is to first sort
D into a few sort orders DY, D@ . D) for example,
based on the 2a coordinates of the c-dimensional rectangles
(e.g. S = 2a). Note that each D is a sorted list of
rectangles.

Then BuLkLoADCHUNK performs a greedy top-down con-
struction of the R-tree. Due to dense packing, it is known
in advance how many data objects every node covers. Each
time, we perform a binary split of an existing minimum
bounding region (MBR) at a node based on one of the sort
orders and a cost model. A cost model penalizes a potential
split candidate that would cause a significant overlap between
the two MBRs after the split. The cost model (which we omit
in the pseudocode) is invoked in the cost function in line 4
of the BESTBINARYSPLIT function. This binary split is along

Algorithm 1: ButkLoADCHUNK (D, h)

Input: D: rectangles in a few sort orders D) ..., D(5)
(D is a list of rectangles in a particular sort
order)

h: the height of the R-tree to build

Output: the root of the R-tree built

1 if h =0 then
2 L return BurLbLearNope(D())

(1)
3Im 4+ |—DT-| //M 1is capacity of a nonleaf node;

m 1is # rectangles per child node’s subtree

4 {D1,...,Di} <ParTITION (D,m) //k=M unless in
the end

5 fori < 1tok do

6 n; + BULKLOADCHUNK(D;, h — 1) //Recursively
L bulk load lower levels of the R-tree.

7 return BUILDNONLEAFNODE(n,, ..., n)

Function ParTITION (D, m) //partition data into
k parts of size m
1 if |[DM)| < m then
2 L return D //one partition

3 L, H + BestBinarySpeLiT (D, m)
4 return concatenation of PArTrrion(L,m) and
ParriTion(H, m)

Function BEsTBINARYSPLIT (D, m) //find best
binary split of D
for s« 1t S do
F, B + CompuTEBoUNDINGBOxES(D(®), m)
fori«1toM —1do
L 1*,8* + 1 and s with the best cost(F;, B;)

[T I R

5 key < SorTKEY(DS, ., s*) //sort key of split
position
6 for s« 1t S do
//split each sorted list based on key of s*
L L) H() + SpLrtONKeY(D(®), 5*, key)

8 return L. H

one of the M — 1 boundaries if we are partitioning a node
into M child nodes (thus it requires M — 1 binary splits).
This choice is greedy.

Some functions are omitted for succinctness. For instance,
ComPUTEBOUNDINGBOXES takes as input a sorted list of
rectangles and the size m of each part to be partitioned,
and returns two lists of bounding rectangles F' (front) and
B (back), where F; and B; are the two resulting MBRs
if the binary split is at the ith (equally spaced) position
(1 £ i £ M —1). Lines 3-4 of BESTBINARYSPLIT get the
optimal split position with the least cost—position i* of sort
order s*, and line 5 retrieves the split key from that sort
order list. Based on this binary split, we maintain (i.e., split)
all the S sorted lists in lines 6-7, and return them.

B. Insights and Node-Splitting Cost Model

Instead of doing offline BuLKLOADCHUNK, we build a
cracking and partial index online upon the arrival of a se-
quence of queries. We start with some insights and informal
description of performing on-demand top-down bulk-load of
R-tree upon a query’s rectangle region Q. The BuLkLoAD-
CHUNK algorithm in general indexes rectangle objects. In our
case, we only index data points (i.e., entities). In the complete
R-tree BuLKLOADCHUNK, all nodes are fully partitioned top-
down until the leaves at the bottom, resulting in a balanced R-
tree. In our online incremental build, however, we only grow
the partitions of nodes that contain the data points in query
region Q; moreover, we do not need to break a partition if
it contains data points all in Q. Thus, we end up seeing an
R-tree that is imbalanced with some partitions unsplit yet. As
also demonstrated in our experiments (Section VI), the saving
is significant since the full balanced index is quite wide.

% leaf

Fig. 2: Tlustration of a contour in a cracking R-tree.

Definition 2. (Contour). The contour C of a cracking R-tree
is the set of current partitions (inside nodes) that do not have a
corresponding child node, together with any terminal leaf nodes.
We say that each such partition or leaf node is an element e
of the contour.

Figure 2 illustrates a contour that is shaded and has eight
elements, one of which is a leaf node (the number of data
points that it covers is small enough). We first have a basic
observation as stated below.

Lemma 1. Consider a contour of the R-tree at any time instant.
Each element of the contour contains a mutually exclusive set
of data points, and together they contain all the data points.

Definition 3. (Leaf Distance). At time t during the lifetime
of a cracking R-tree index, if two data points d1 and d are in
the same element of the contour (i.e., the same leaf node or the
same partition), then we say that their leaf distance at time t,
denoted as l;(dy,dy), is 0. Otherwise, their leaf distance is 1.

Thus, leaf distance is a time-variant binary random variable
that depends on the sequence of incoming queries. We next
have the following lemma (the proof follows directly from
the algorithm).

Lemma 2. Consider two data points di and dz in a partition.
After a binary split at time 7, if d1 and da are still in the
same partition, then in every sort order s, the positions of di
and dy can only be closer or stay the same due to the split. If
dy and dy are separated into two partitions due to the split,
then l;(d1,d2) = 1 for any t > 7.

From Lemma 1, we know that all the required data points
in the query region Q must be in the current contour C of
the index. Thus, our incremental index building algorithm
will locate each element e € C that overlaps with Q and
determine if we need to further split e for the query. At
this point, we need to revise the cost model to optimize the
access cost for the current query region Q, in addition to the
previous cost function that penalizes the MBR overlap due
to the split. Intuitively, after the split, the data points in Q
should be close to each other to fit in a minimum number of
pages (i.e., their leaf distance should be small). Based on the
principle of locality in database queries [18], this optimization
has a lasting benefit.

1) Node-Splitting Cost Model: The key idea is that we
extend the cost model into a two-component cost (cg, co),
where cg is the cost estimate for accessing query region Q,
while ¢ is the cost incurred by overlaps between partitions.
At a contour C of the index at any time instant, we define
cg to be the minimum number of leaf pages to accommodate
all the data points in Q, given the current configuration of
elements in C and any possible future node splits. Lemma 2
implies that after every split, the leaf distance between any
di,dy € Q still in the same partition is expected to either
get smaller or stay the same, while two separated points will
be in different leaf nodes. This leads to the following result.

Lemma 3. At a contour C of an index, a lower bound of the
number of leaf nodes that we need to access and process is
Zeec(l%cel], where Q N e is the set of data points in the
element e (of C) that are also in the query region Q, and N is
maximum number of data point entries that can fit in a leaf
node.

Note that for each leaf node accessed for O, we will need to
convert each data point in it to the original embedding space
S; and calculate the distance to the query center point (e.g.,
h+r, to be detailed in Section V). Hence, the number of leaf
nodes accessed and processed is a reasonable measure of the
first cost component cg. The second component of cost is co,
the cost for overlaps between partitions. We increment co by
B %(B > 1) at each binary split during the runs
of the algorithm, where O is the overlap region between two
resulting partitions L and H of the binary split, || - || denotes
the volume of a region, h is the height of the R-tree where
the split happens, and 8 > 1 is a constant indicating that an
overlap higher in the R-tree has more impact and is more
costly (as an R-tree search is top-down).

A remaining issue is that cg and cop are two types of cost
measured differently—making the whole node-splitting cost a
composite one. However, it is important to be able to compare
two node-splitting costs, as required by our index building
algorithms in Section IV-C. We observe that, for our problem,
the query region Q is derived from a ball around the center
point (e.g., h+r), and is hence continuous in space and should
not be too large (otherwise the links are too weak). Thus, it
is reasonable to attempt to achieve optimal cg as a higher
priority. As a query-workload optimized approach, we treat

co as the major order and co as the secondary order when
comparing two composite costs.

C. Incremental Partial Index Algorithms

Having developed the cost model, we are now ready to
present our online cracking index algorithms. The algorithms
incrementally build an index and use it to search at the same
time. The idea is that for the initial queries more building
of the index is done, while it is mainly used for search (and
little is changed to the index) for subsequent queries. Overall,
the cracking index only performs a very small fraction of
the binary splits performed by the full BuLKLOADCHUNK, as
verified in our experiments in Section VI

1) Main Algorithm: With the insights given in Section
IV-B, we describe our main cracking index algorithm, INCRE-
MENTALINDEXBUILD, based on the key functions given under
BuLkLOADCHUNK in Section IV-A. INCREMENTALINDEXBUILD
takes as input a query region Q and the current index 7 (with
contour C). Initially Z (and C) is just a root node containing
all the data points.

(1) Instead of a top-down complete bulk-load, upon a query
region Q, we perform an incremental partial top-down
build of index Z to the elements in the current contour
that overlap Q. We store a set of data points contained
in each element e of the current contour C in addition to
its MBR. A non-leaf element e contains the S sort orders
of the data points.

The incremental algorithm probes Z until it reaches an
element e in C that has data points contained in Q, and
calls PARTITION over e.

The PArTITION function simply returns its input D if it
satisfies the stopping condition, which is QNe = (or
f%l = f%] , where e is the current element of C
that has the D partition.

If a PArRTITION call returns from its line 2 (i.e., already
smallest partition at its level), we then call BuLkLoAD-
CHUNK over it (the same as line 6 of BULKLOADCHUNK).
The cost function in line 4 of BESTBINARYSPLIT is revised
as stated in Section IV-B.

In (3) above, the stopping condition of binary partition
over an element e in the current contour is either O Ne =
() indicating that e is irrelevant to Q, or f%] = f%}
indicating that almost all the data points in e are in Q. A
special case of the latter stop condition is when e is a single
leaf node that has data points in Q, although in general it
may stop at an element larger than a leaf without splitting
it. In (4) above, the top-down recursive algorithm proceeds
to the next lower level of the tree.

As part of this top-down probing process, the qualified
data points are found and returned. Note that we can start
processing the first query when the index only has a root
node. As more queries come, the index grows incrementally
and the node splits are optimized for the query usage
(via the cost functions in Section IV-B1). As shown in our
experiments in Section VI, only a very small fraction of the
splits are performed compared to BuLKLOADCHUNK, since the

()

space of queried embedding vectors is much smaller than that
of all data points. Thus, the amortized cost of incremental
index building is much smaller than bulk loading.

2) More Split Choices: Our main indexing algorithm makes
a greedy choice to select a locally optimal cost for each split,
as the original bulk loading algorithm does. However, we
observe that, since we are now only incrementally build the
index for each query, we may afford to explore more than
one single split choice. We will iterate over a small number
(e.g., k = 2 to 4) of split choices, with the goal of getting
a good global index tree. Furthermore, we will use A* style
aggressive pruning to cut down the search space for a query.

The key idea is to use a priority queue Q (a heap) to keep
track of “active” contours as change candidates. We do not
adopt a change candidate until it completely finishes its splits
for the current query and is determined to be the best plan
based on A* pruning. The sort order of the priority queue
is the two-component cost of a contour. The minimum cost
contour (i.e., change candidate) is popped out from Q, and
is expanded (with the top-k choices for the next split). The
algorithm is shown in ToP-KSPLITSINDEXBUILD.

Algorithm 2: Top-xSpLITSINDEXBUILD (Z, Q)
Input: Z: current index; Q: query region
Output: revised index
1 if Q does not exist yet then
2 create a priority queue Q
3 add into Q the initial contour C with only the root
| node of Z and cost e [224], 0) as weight
4 while Q is not empty do
5 C < pop head of Q
6 e < first element of C whose MBR overlaps Q
7 while OQNe=10 or f%} = [%W do

//stopping condition

8 e < next element of C whose MBR overlaps Q

9 if e = null then

10 L break

11 if e = null then

12 return the index with C //all e€C are
exhausted

13 process e as INCREMENTALINDEXBUILD does, except:

14 in BESTBINARYSPLIT, we get top-k best splits

15 for each of the k splits do

16 C' + C+ the split

7| | co = Coq - [IERAT+ 19T + 195 /e
is split into ¢ and e’

18 co < C.co + ﬁh . o]l

min([[LII,[HIT)
19 add C’ into Q with cost (cg, co) as weight

In lines 1-3, we create the priority queue Q for the very
first query. Initially, the index only has the root node, and
this contour is added into Q with the two-component cost
as discussed in Section IV-B (the overlap cost is 0). Line 5

pops out the head of the queue which has the least cost. The
stopping condition of processing an element e in line 7 is the
same as that in INCREMENTALINDEXBUILD.

Lines 6 and 8 are based on a certain traversal order such as
depth-first-search. If all elements of the top change candidate
(contour) satisfy the stopping condition, and hence the next
element is null (lines 9-12), this candidate must be the best
among all. Otherwise, in lines 13-19, we will continue to
process (split) this change candidate and expand it with the
top-k splits. We add these k& new candidates into Q with
updated costs as their weights.

V. ALGORITHMS TO ANSWER QUERIES

Let us now proceed to discussing the algorithms to answer
queries on a virtual knowledge graph, given the indexing
algorithms in Section IV. The accuracy guarantees are shown
in Theorems 2 and 4 below. The intuition is that the original
space S; typically has 50-100 dimensions but is very sparse.
The JL transform provably preserves pairwise point-distances
(Theorem 1), while top-k and statistical queries are based on
such point-distances.

A. Top-k Queries

We first consider queries that ask for top-k tail entities,
given a head entity h and a relationship r (note that an-
swering queries for top-k head entities given ¢ and r is
analogous and is omitted). We use boldface letters h and r
to represent the corresponding vectors in Sy. The basic idea
of our algorithm is to iteratively refine (reduce) the query
rectangle region, until the k£ data points nearest to h+r’s
corresponding vector in the original space S; are identified,
which correspond to the matches with top-k probabilities
based on the embedding algorithm. The algorithm is shown
in FINDTOP-KENTITIES.

Algorithm 3: FinpTor-kENTITIES (Z,h,7)

Input: 7: current index; h: head entity; r: relationship
Output: top-k entities most likely to have relationship
r with h
1 q < h+r
2 probe Z for the smallest node that contains q, and get %k
data points N,
rq < 1i(Ng) - (1 +¢)
Q < region of B(q,r,)
while data points in Q have not been all examined do
N, <top-k data points so far closest to q in S;
rg 11 (Ng) - (1+2)
Q < region of B(q,r4)

e N G W

=]

Top-kSPLITSINDEXBUILD (Z, Q)
10 return N,

In line 2, we probe the current index and locate the element
e (either a partition or a leaf) in its contour that contains q.
Recall that the data points in e are sorted in several orders;
we arbitrarily pick one sort order s, and traverse the data

points of e in increasing distance from q based on the linear
order in s, and get the first k£ data points. This is the set [V,
in line 2. In line 3, 7} (N,) denotes the kth smallest distance
to q’s corresponding vector in S; after mapping the data
points in N, to S;. Recall that our ultimate goal is to find
closest entities in S;. The ¢ in line 3 is based on the accuracy
guarantees in Theorem 1, and will be discussed in our next
two theorems. In line 4, we get the minimum bounding box
region of the ball in Sy centered at q with radius r,;. Then
the traversal order of data points in line 5 is exactly the same
as that described above for line 2.

Within the loop in lines 5-8, in line 6, we maintain the top-
k data points that are closest to q’s corresponding vector in
Si. Consequently, the 7, in line 7 must be non-increasing
over all the iterations, and so is the Q in line 8 (and hence
the @ in line 5 used for the next iteration). Note that lines 7-8
are identical to lines 3-4. Based on the final query region O,
line 9 updates the incremental index. Now we analyze our
top-k entity query processing algorithm. Theorem 2 below
provides data-dependent accuracy guarantees, while Theorem
3 addresses the performance of the algorithm.

Theorem 2. With probability at least [[,_, {1 — m},
FINDToP-KENTITIES does not miss any true top-k entities,
where m; = :—’:(1 + ¢), while the expected number of miss-
ing entities compared to the ground-truth top-k entities is

Yt oo
i=1 e(y(‘m,?—l)/Q .

Theorem 3. For the final query region Q in FINDTOP-
KENTITIES and 0 < €' < 1, the probability that a data point

with distance at least 1}, - 11;5, from q in S1 may get into Q

: r_e2
is no more than (1 —&')® - e®(&' =5,

B. Aggregate and Statistical Queries

Consider the following queries: What is the total number
of restaurants that Amy may like? What is the average
distance of the restaurants that Amy likes? These queries
involve statistical aggregation over the virtual knowledge
graph.

The relevant entities are within a ball with radius 7,
around the query center point such as h+r. The ball cor-
responds to a probability threshold of p, (e.g., a small value
0.05). To decide the probabilities, we let the entity closest to
the query center point have probability 1 for the relationship,
and other entities’ probabilities are inversely proportional to
their distances to the query center point. In general, for each
data point in the ball, we may need to access its record with
attribute information for aggregation and/or for evaluating
the predicates. When there are too many such data points,
we may use a sample of them to estimate the query result.

Note that in this ball, each data point only has a certain
probability to be relevant (in the relationship with the head
entity h), with probabilities in decreasing order from the
center to the sphere of the ball. Without knowledge of the
distribution of a relevant attribute in these data points, our

accessed sample is the a points closest to the center (i.e., with
top-a probabilities) among a total of b points in the ball.

COUNT, SUM, and AVG Queries. The estimations of
COUNT, SUM, and AVG query results are similar. Let us begin
with a SUM query. The expectation of a SUM query result is:

E[S] _ 2?21 Vi * Pi
= b
Z?:l pi/zz‘:l pi

where a is the number of accessed data points out of a total
of b data points in the ball, p1 > py > --- > pg, > -+ > pp
are the data point probabilities, and v; (1 < i < a) are
the retrieved attribute values to sum up. Note that we know
the number of entities in each element of an index contour,
and hence can estimate the b — a probabilities (based on
the average distance of an element to a query point). The
numerator in Equation (3) is the expected sum of the attribute
value in the retrieved sample. This needs to be scaled up by a
factor indicated in the denominator of Equation (3), the ratio
between the cardinality of the sample and the cardinality of
all data points.

We now give a novel analysis, based on the martingale
theory [11] in probability, to bound the probability that the
ground truth SUM result is at a certain distance away from
the expectation in Equation (3). Note that the analysis is
nontrivial since the entities/points are correlated w.r.t. their
memberships in relation r with entity h in question (as the
entities are connected by edges/paths in the graph).

©)

Theorem 4. In the algorithm for answering SUM queries, let
the expectation in Equation (3) be (. Then the ground truth
answer S to the query must satisfy the following:

Pr{|S — | > 8] < 2e-20°°] St vi+0-ay?,

where v, is the maximum attribute value being summed
among the b — a data points not accessed.

We can maintain minimum statistics on |v,,| at R-tree
nodes to facilitate accuracy estimates. Alternatively, we may
estimate |v;,| based on the known sample values |v;| (i < a),
without relying on any domain knowledge of the attribute.
This is the same as how we estimate the expected MAX value
discussed shortly.

Note that Theorem 4 is for our general algorithmic frame-
work. If the algorithm accesses all data points in the ball,
ie, a = b, the result in the theorem still holds. Moreover,
from Theorem 4, we can also get similar results for COUNT
and AVG queries. For COUNT queries, we simply replace v;
and vy, in the theorem by 1, as COUNT can be considered
as SUM(1). For AVG queries, the analysis result is essentially
the same as the bound in Theorem 4, as we need to divide
both p and the increment bound in the proof by the count.

MAX and MIN Queries. Such queries select the MAX or
MIN value of an attribute among the b data points in the
ball centered at the query point such as h+r. As before, we
may access a sample of a closest data points to estimate the

result. We only discuss MAX queries; the treatment for MIN
queries is analogous. Again, we estimate the expected value,
and then bound the probability that the true MAX is far away
from this expectation.

First let us estimate the expectation of MAX of the a
accessed data points. Without loss of generality, we rearrange
the index of the a data points so they are in non-increasing
value order {(u;,p;)}, where u; > > ug. Then the
expectation of sample MAX is:

EMs] = uipr +uz2(1—p1)pe+ - ue(1=p1)...(1 = pa—1)Pa

Next, given an n-value sample chosen uniformly at random
from a range [0,m], we can estimate the maximum value
m from the sample as (1 +)m, where m, is the sample
maximum value [19], which leads to the following result for
expected MAX based on the E[Mg]| above:

E[M] = (E[Ms] — 1I§nii£a ’Ui> (1 + z:?_llpa> + 11’§Ilii£la Uy

(4)
We can then use martingale theory to bound the probability
that the ground truth MAX result is far from the value in
Equation (4). This is similar to Theorem 4; hence we omit
the details-the main idea is that from data point ¢ — 1 to
point ¢, the change to the expected MAX value Y; — Y;_;
should be bounded in a small range [B;, B; + d;], where
d; = max(0,[v; — E[Mg]] - (1 + ﬁ)) for i < a and
d, = EMs]

i=1Fa

for i > a.

VI. EXPERIMENTS
A. Datasets and Setup

We use three real world knowledge graph datasets: (1)
Freebase data. Freebase [14] is a large collaborative knowl-
edge base, an online collection of structured data harvested
from many sources, including individual, user-submitted wiki
contributions. Google’s Knowledge Graph was powered in
part by Freebase. The dataset we use is a one-time dump
through March 2013. (2) Movie data. This is another popular
knowledge graph dataset, which describes 5-star rating and
free-text tagging activity from MovieLens, a movie recom-
mendation service [20]. Entities include users, movies, genres,
and tags. Ratings are made on a 5-star scale, with half-star
increments (0.5 stars to 5.0 stars). We create two relationships
for ratings: a user “likes” a movie if the the rating is at
least 4.0 (in the range between 0 and 5.0); a user “dislikes” a
movie if the rating is less than or equal to 2.0. There are also
relationships “has-genres” and “has-tags”. (3) Amazon data.
This dataset [2], [21] contains product reviews and metadata
from Amazon, including 142.8 million reviews spanning May
1996 to July 2014. The review rating scale ranges from 1 to
5, where 5 denotes the most positive rating. Nodes represent
users and products, and edges represent individual ratings.
We create relationships “likes” and “dislikes” in the same
way as movie data. In addition, the data contains “also
viewed” and “also bought” relationships. Some statistics of
the datasets are summarized in Table I

TABLE I: Statistics of the datasets.

Dataset Entities Relationship Edges
types
Freebase 17,902,536 2,355 25,423,694
Movie 312,710 4 17,356,412
Amazon 10,356,390 4 22,507,155

We implement all the algorithms in Java. We also use
the graph embedding code from the authors of [6], a high-
dimensional index PH-tree from the authors of [22], and the
H2-ALSH code from [12] for comparisons. The experiments
are performed on a MacBook Pro machine with OS X version
10.11.4, a 2.5 GHz Intel Core i7 processor, a 16 GB 1600 MHz
DDR3 memory, and a Macintosh hard disk.

B. Experimental Results

Queries. In order to systematically explore as much as
possible the space of queried embedding vectors (e.g., h +r)
in So, for each query we either (1) randomly choose a head
entity and a relationship and query the top-k tail entities,
or (2) randomly choose a tail entity and a relationship and
query the top-k head entities. We measure the execution time
and accuracy of a sequence of queries—to evaluate how the
response time evolves.

Freeebase (Top-k). In the first set of experiments, we use
the Freebase data to compare a few approaches. Two of these
approaches are our main cracking index method and the top-
k split-choice index build method. One baseline approach is
what one would do without our work—answering the top-
k entity queries without using an index by iterating over
all possible entities. The second baseline uses a state-of-the-
art high-dimensional index, called PH-tree [22], to index the
high-dimensional (50 or 100 dimensions) embedding vectors
directly, without transforming them to S,. Another baseline
approach goes a step further by using an R-tree index by
bulk-loading it, without our cracking index techniques. The
results are the average of at least ten runs.

Note that for general knowledge graphs, such as the
Freebase data, we cannot use the H2-ALSH scheme [12]
because it can only work with one relationship type—Hz2-
ALSH is basically a locality sensitive hashing mechanism
working with collaborative filtering. Later we will use other
datasets to compare against H2-ALSH.

In Figure 3, we examine the execution times of the ap-
proaches described above over the Freebase data. For the
top-k split-choice index build method, there is a parameter of
how many choices to take into account at each split. We show
the results when this parameter is 2 or 4, respectively (i.e.,
the last two groups of bars). Recall that our cracking index
methods do not have offline index building, but start to shape
the index when queries arrive online. Hence, we measure
the index building time (if any), as well as the execution
times of the 1st, 6th, 11th, and 16th queries to evaluate
how the response time evolves over the initial sequence of
queries. Among these approaches, only PH-tree and bulk-
loading have an offline index building time, which are quite

10° - B Index building . 1 108 ;
Qi [Index building [Top 2 query
CJas 0.98 at 0.99 I Top 5 query
108 [[[Top 10 query
o 0.96
[Average query 0.98
% 10t i 0.94 > [Average query
x x
E Sooe E 097
g 5 g g
=408 3 09 = 18096
3 o ° S
Q [Q o
2 L 088 2 g
S = 0.95
w10 0.86 [}
0.94
. 0.84
10
0.82 0.93
0 0 2
Noindex PH-tree Bulk Cracking 2 choices 4 choices Top 2 Top 5Top 10 No index PH-tree H2-ALSH Bulk a=3 Bulk a=6 Cracking 2 choices H2-ALSH a=3 a=6
Method Query Method Method

Fig 3 Method vs. elapsed time (Freebase) Fig 4 Accuracy (Freebase)

Fig 5 Method vs. elapsed time (movie) Fig 6 Accuracy (movie)

6 1] 6 3
10 —_T B Tone 0 g 10
[Index building B Top 5
) ETop 10 —8—8—8—8 8+
105 106 1 o995 £ 1
[~ [eth] —B— Bulk loading
[ate _ 10° —©— Cracking
[Average query —B— Bulk loading
10* E 0.99 102 —©~— Cracking

0.985

)
%
Precision@K

Elapsed time (ms)

=)
o

=)

3 0.975

=)
°

Noindex PH-tree H2-A:2 H2-A:10 Bulk:2 Bulk:10 Crack:2 Crack:10 2 choices
Method

H2-ALSH

Fig 7 Method vs elapsed time (Amazon)

significant due to the large amount of data. PH-tree also has
a high query cost. This is because it directly indexes the
embedding vectors of dimensionality at least 50, which makes
its search performance suffer significantly, almost as slow
as no index (but just a linear search). The advantage of the
bulk-loading approach is that the query response time is fast
and even over the sequence of queries that we examine. The
no-index approach has a significant overhead for each query,
which is the main motivation of our work. The cracking index
methods have no offline index building time, and the shape
of the partial index is based on the online queries. The first
query has a relatively high response time due to the initial
setup for creating the index nodes (yet it is still about 30
times faster than bulk-loading in the log plot). The execution
time sharply drops with more queries, and quickly flattens
to a value slightly smaller than the bulk-loaded index.

Note that one may fire off the first query before the real
online queries come, so that all online queries are fast. Thus,
in Figure 3, we also show the average per-query execution
time of 10,000 online queries after the first one issued offline.
The cracking index leads to slightly better query performance
than bulk-loading since it uses a different cost function in
the greedy algorithm for node splitting, which optimizes the
splits of data points based on the queries in the workload
(Section IV-B), while a bulk-loaded offline index has no
knowledge of the online queries. Although in both cases, the
performance lower bound is guaranteed by Theorems 2 and
3, there can still be variations in practice (while satisfying the

Fig 8 Accuracy (Amazon)

Index size (KB)

Index nodes split to
3
>
3

o/e,e,e—e—e-o

Our index 0 5 10 15
Number of queries

o—o—0—0—° 9
20 0 5 10 15 20
Number of queries

Method

Fig 9 #Nodes (Freebase) Fig 10 Index size (movie)

lower bound). In other words, the space of queried embedding
vectors (e.g., h+r) in Sy is skewed, and is much smaller than
that of all data points.

Among the 2-choice, 3-choice, and 4-choice node-split
methods, they have slightly increasing costs than the main
cracking index method with a single choice, but the query
processing cost is eventually less when the number of choices
is more. This is because a larger search space is examined
with more choices. In addition, since our optimization is only
with respect to one query, the exploration of extra search
space with the A* aggressive pruning is still affordable when
the number of choices is small. An example query with this
dataset is that given a tail entity corresponding to the name
“Rapper” and a relationship type “/people/person/profession”,
we search for top-k head entities not in the training data (or
removed before training), the result of which includes “Snoop
Dogg”, “Kanye West”, and “Lil Wayne”.

Since knowledge graphs are inherently incomplete with
most relations/edges absent [5], it is also the case with
the datasets that we use—even the latest snapshot of the
dataset will still have many edges missing. It is a challenge
to evaluate the accuracy of link prediction or recommender
systems [23]. One way is to mask some edges in the training
data for testing purpose, while another way is to use a crowd-
sourcing service like Amazon Mechanical Turk to provide
an interface for everyday users where they could specify
whether or not the recommendations are relevant [24].

While these methods may be helpful to some degree to

evaluate a link prediction method, they will not be effective
for the predictive top-k queries that we study, because it is not
true that the masked k edges must be the top-k most likely
edges, as there are a large number of edges (relations) missing
in the dataset. We randomly mask 5 edges from our datasets,
and find that they are typically in the top-10 list, but not
necessarily top-5. For example, there are many movies that
a user would really like to watch, but only a small fraction
of them are in the dataset, as the user may not have time to
watch them all, or she simply may not know all those movies
(which is why a recommender system is needed).

Since previous studies show that graph embedding is the
state-of-the-art method for link prediction [5], and since
evaluating the effectiveness of graph embedding for link
prediction is beyond the scope of this paper, we focus on
evaluating our major contribution, which is the incremental
R-tree indexing method to speed up predictive top-k and
aggregate queries. Thus, we need to compare the accuracy
loss with and without using our index. In Figure 4, we
examine the accuracy of our indexing methods with respect
to the no-index method. Since the no-index method is our
base, we study the accuracy loss from using an approximate
index (due to the transform from the embedding space S; to
S2). We use the precision@K metric, which is commonly used
in information retrieval [25]. In our context, precision@K
is the precision of the top-k result tuples using our index
compared to the top-k tuples under the no-index method.
From Figure 4 we can see that the precision@K of our
indexing methods is high on average (at least 0.97).

Movie (Top-k). We next move on to the movie data. Here
we query the top-k movies that a particular person likes or
dislikes (but these facts are not in the training data). We
note that, even with this dataset, the closest previous work,
H2-ALSH [12], still does not fully handle it, since H2-ALSH
can only take into account one relationship type (say, “like”)
when doing the collaborative filtering and building H2-ALSH.
However, other relationship types such as “dislike” has the
opposite semantic meaning and would help the prediction of
“like” too. Thus, our method is a more holistic approach for
virtual knowledge graphs. Nonetheless, we run H2-ALSH as
well for a single relationship type to observe its performance.

We show the execution time results in Figure 5, where
we also compare the two parameter choices of the dimen-
sionality of the S, (and hence the index), « = 3 versus
a = 6. We can see that the index building time of H2-
ALSH is slightly faster than bulk-loading R-trees when the
dimensionality a = 3. However, H2-ALSH’s query processing
time is much longer, partly due to the fact that it is not a
hierarchical structure, and each bucket could still be very
large. Furthermore, we see that, when the index dimension-
ality is higher such as o = 6, there are significant overheads
both in bulking loading (building) the index and in query
processing. This is because these indices have a harder time
with higher dimensionalities such as 6, as overlap regions
tend to be much higher. An example of query results is that
a particular person (with id “176299”)’s top-k “like” movie

list includes “152175, Ghosts (1997), Horror”, “156903, The
Waiting (2016), Thriller”, and “3457, Waking the Dead (2000),
Drama|Thriller”, where the first field is the movie ID, the
second field is the movie name (and year), and the third field
is the genre(s) of the movie. It seems that this person likes
the thriller/horror type of movies.

In Figure 6, we report the accuracy. The H2-ALSH numbers
are based on the report from running the code of the au-
thors [12], comparing to its no-index case. The precision@K
of all these approaches are quite high (at least 0.945), and
our cracking index methods are slightly more accurate. This
is partly due to the way our embedding space transform
preserves the distance. Moreover, when the dimensionality
is higher, a = 6, it is slightly more accurate than o = 3,
since higher dimensionality of the transform to So preserves
the distance better. Of course, this is associated with much
higher index operation costs, as shown in Figure 5.

Amazon (Top-k). In the next set of experiments, we use the
Amazon dataset. The performance result is shown in Figure
7. Here we also examine the overhead when we vary the
“k” parameter as in top-k results. In particular, we compare
two cases k = 2 (labeled “H2-ALSH: 2” in Figure 7) and
k = 10 (labeled “H2-ALSH: 10”). We see that increasing
k from 2 to 10 has a slight impact on the performance of
H2-ALSH, but has little or no impact on the performance
of our index approaches. This is because this change of
number of result tuples likely still has retrieved data points
within the same index node. One interesting and important
phenomenon when we compare Figure 7 with Figure 5 is that
as we increase the dataset size (in particular, the number of
entities)—as the case in going from movie dataset to Amazon
dataset, the increase in query processing overhead is much
higher for H2-ALSH than for our indexing approaches. Our
query processing time is one order of magnitude faster than
H2-ALSH for the movie dataset and two orders of magnitude
faster for the Amazon dataset. Our method scales better due
to its overall tree-structure index (unlike the flat buckets of
LSH) with a cost logarithmic of the data size. We measure
the accuracy in precision@K of these approaches in Figure
8. The comparison result is similar to those of other datasets.

Index Size. We now compare the number of index nodes split
into, as well as the index size, between a bulk loaded index
and our cracking index. The results are shown in Figure 9 for
the index-node counts with the Freebase dataset, and in Fig-
ures 10 and 11 for the index sizes with the movie dataset and
Amazon dataset, respectively (all three datasets show similar
trends). We examine the node numbers and index sizes after
different numbers of initial queries. For all three datasets, the
cracking and uneven index has a very small fraction of node-
count and index size than the full bulk-loaded index. This is
because the search space is highly uneven and the queried
space is only a small fraction. Furthermore, we observe that
the convergence of node number and index size is very fast—
typically after around 10 queries.

Aggregate Queries. We next study approximately answering

10° 1 1 1
—8—8—8—8—8a 0.95
0.95 o >‘0'95
104 —B— Bulk loading oy S 09 %)
& —©— Cracking g g ’ g 0.9
o Q Q
f g 0° § 085 ©
N3 5 s 5085
10 > > >
g 8 05 ¢ os g
° > > >
= &) 5 08
s =1 = 0.75 =1
10 g ¢} g
08 07 0.75
1 0.75 0.65 0.7
10 0 5 10 15 20 0 20 40 60 80 100 0 20 40 60 80 0 50 100 150
Number of queries Elapsed time (ms) Elapsed time (ms) Elapsed time (ms)
Fig 11 Index size (Amazon) Fig 12 COUNT queries (FB) Fig 13 AVG queries (movie) Fig 14 AVG queries (Amazon)
! ! base dataset, we add an attribute popularity to each entity
0.95 . ey . .
L0 - that is the number of related entities (i.e., in-degree plus
g g oo o oo .
09 2 o5 out-degree)—indicating how popular an entity is. We issue a
=} o . . .
0% = 0s query to return the maximum popularity of the target entity
g os €475 set. For the movie dataset, we issue a query which returns
gor g 07 the minimum year (i.e., the oldest age) of a movie among
07 065 all the ones that a particular user would like. The result of
0.6

I
=)
o

100 0 20 40 60 80
Elapsed time (ms)

0 20 40 60 80
Elapsed time (ms)

Fig 15 MAX queries (Freebase) Fig 16 MIN queries (movie)

aggregate queries. Recall that there is a tradeoff between
sample size (execution time) and query result accuracy. We
first examine COUNT queries using the Freebase dataset,
ie., the expected count of tail entities given the head and
relationship. The result is in Figure 12. The tradeoff between
execution time and accuracy (compared to accessing all data
points up to a probability threshold 0.01) is clearly seen
here. The accuracy is measured as 1— %‘i_””‘l, where
Ureturned and Vg are query returned aggregate value and
the ground truth aggregate value (from accessing all points
until a probability threshold is reached), respectively. Figure
13 shows the result of AVG queries using the movie dataset.
The attribute being aggregated is the year of the movie—
i.e., the query returns the average year of the movies that a
particular user likes. We see a similar tradeoff as in Figure 12.
When the execution time (hence the number of closest data
points visited) reaches a certain value, the accuracy stays at a
high level. This is because the data points are in a decreasing
order of probability; thus the entities that are visited later
have smaller probabilities and hence have lower weight in
query result. We then use the Amazon dataset and measure
the AVG queries. We add an attribute to each product entity
called “quality”, which is the average rating this product
has received (based on all existing ratings of the product).
Then we query the average quality of all the products that
a particular user likes. The result is shown in Figure 14.
Compared to the movie dataset, the Amazon dataset takes
slightly longer time to get to high accuracy due to the much
larger size of the Amazon data.

Finally, we examine the MAX/MIN queries. For the Free-

these two queries are displayed in Figure 15 and Figure 16,
respectively. We can see that MAX and MIN queries show
a similar tradeoff between performance and accuracy as we
have observed for other aggregate queries. These results also
verify our analysis in Section V-B.

Summary. The experiments show that our cracking index is
very effective in accomplishing our goal for answering two
types of important queries of virtual knowledge graphs—
top-k entity queries and aggregate queries. The cracking
index methods do not have offline index building time, and
it takes a little longer for first query (but still 30 to 40
times faster than bulk-loading), with the query processing
time slightly shorter than that of the bulk-loaded index. 2
or 3 choice node-split methods provide a tradeoff between a
slight increase of initial queries’ processing time and getting
better performance over the long run. The previous work H2-
ALSH cannot handle multiple relationships as in a knowledge
graph. Nonetheless when restricted to only one relationship
type, our cracking index methods have much smaller over-
head for query processing while providing similar or slightly
better accuracy; moreover, our methods scale better for larger
datasets. The cracking indices only split a tiny fraction of
nodes than a full bulk-loaded index, and is very compact
and efficient. Lastly, our approximate aggregation methods
can obtain high accuracy after a short processing time of the
initial data points closest to the query center. Our analysis
provides a theoretical guarantee.

VII. RELATED WORK

Graph embedding. Graph embedding represents a graph
in a low dimensional space that preserves as much graph
property as possible—an elegant method to accomplish auto-
matic feature extraction and dimensionality reduction. Early-
days graph embedding, e.g., [26], is based on matrix fac-
torization. It represents graph properties in a matrix and

factorizes this matrix to obtain node embedding. More re-
cently, researchers have proposed deep learning based graph
embedding methods such as using random walks [27] and
autoencoders [28]. Most knowledge graph embedding is
based on edge reconstruction based optimization, in partic-
ular minimizing margin-based ranking loss. Such embedding
methods include TransE [6], TransA [15], KGE-LDA [29],
TransD [30], SE [31], MTransE [32], puTransE [33], among
others. We have discussed TransE earlier, but our methods
can be adapted for most of the other knowledge graph
embedding methods, as they all minimize some loss function
on h, r, and t for all the edge triplets in the training graph.

Cracking B+ tree and spatial indexing. A cracking B+
tree index [9], [10] aims to amortize the index costs over
query processing and dynamically modifies a half-way built
B+ tree during query processing. Our proposed indexing
is fundamentally different. First, we work with a spatial
index R-tree with completely different techniques. Second,
our work has a different goal—we are not trying to reduce
index maintenance costs; our R-tree index cracking is to
avoid splitting R-tree nodes based on the query search space.
R-tree is typically the preferred method for indexing spatial
data. We use a bulk-loading algorithm of R-tree [7], which
is commonly used for efficiently loading data into the index.
Note that our method can be easily adapted for other variants
of R-tree index (e.g., R+ tree or R* tree) as well.

Dimensionality reduction & nearest neighbors. High
dimensionality is a great challenge for k-nearest neigh-
bors (k-NN) queries. Efficient dimensionality reduction in-
cludes random projection [34] and locality sensitive hashing
(LSH) [13]. We use a particular type of random projection,
JL transform [8], but modify it significantly to get a low
dimension and provide theoretical guarantees. Different LSH
schemes are based on different similarity metrics. The one
that is closest to our work is H2-ALSH [12]; we have
discussed it in detail and compared against it.

VIII. ConcLusioNs AND FUTURE WORK

We propose an incremental index to answer top-k entity
and aggregate queries over a virtual knowledge graph. Our
scheme is based on knowledge graph embedding and trans-
forms embedding vectors to a lower dimensional space for
indexing. We prove a tight bound on the accuracy guarantees.
Furthermore, we devise query processing algorithms and
novel analysis of result accuracy. Experiments show that our
index is very concise, and is efficient in answering queries
with accuracy guarantees. As future work, we would like
to consider dynamic knowledge graph updates. Intuitively,
when there are local updates, the embedding changes should
be local too, as most (h,r,t) soft constraints still hold. We
plan to do incremental updates on our partial index.

Acknowledgments. This work is supported in part by NSF
grant I1IS-1633271.
REFERENCES

[1] Google, “Google inside search,” https://www.google.com/intl/en us/
insidesearch/features/search/knowledge.html, 2018.

[13]
(14

[l

[15]

[16]

[17]
[18]

[19]
[20

[t

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]
[31]
[32]
[33]

[34]

Amazon data. Available at http://jmcauley.ucsd.edu/data/amazon/, 2019.
M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Sontag,
“Learning a health knowledge graph from electronic medical records,”
Scientific Reports, vol. 7, 2017.

Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowl-
edge base embeddings for explainable recommendation,” Algorithms,
vol. 11, 2018.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of
relational machine learning for knowledge graphs,” Proceedings of the
IEEE, vol. 104, 2016.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in NIPS,
2013.

S. Shekhar and S. Chawla, Spatial Databases: A Tour.
2003.

S. Dasgupta and A. Gupta, “An elementary proof of a theorem of
Johnson and Lindenstrauss,” Random Structures and Algorithms, vol. 22,
2003.

S.Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” in CIDR,
2007.

F. M. Schuhknecht, A. Jindal, and J. Dittrich, “The uncracked pieces in
database cracking,” in VLDB, 2013.

N. Alon and J. Spencer, The Probabilistic Method. New York: Wiley,
1992.

Q. Huang, G. Ma, J. Feng, Q. Fang, and A. K. H. Tung, “Accurate and
fast asymmetric locality-sensitive hashing scheme for maximum inner
product search,” in KDD, 2018.

A. Rajaraman and J. Ullman, Mining of Massive Datasets, 2010.
Freebase data. Available at https://developers.google.com/freebase/,
2013.

Y. Jia, Y. Wang, H. Lin, X. Jin, and X. Cheng, “Locally adaptive
translation for knowledge graph embedding,” in AAAIL 2016.

Y. Li, T. Ge, and C. Chen. Online indices for predictive top-k entity
and aggregate queries on knowledge graphs. Technical report at http://
www.cs.uml.edu/~ge/paper/index_ predictive_tech _report.pdf, 2019.
H. Alborzi and H. Samet, “Execution time analysis of a top-down r-tree
construction algorithm,” Information Processing Letters, vol. 101, 2007.
P. J. Denning, “The locality principle,” Communication Networks and
Computer Systems, 2006.

A. A. Borovkov, Mathematical Statistics. CRC Press, 1999.

Movielens data. Available at https://grouplens.org/datasets/movielens/
latest/, 2017.

R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in WWW, 2016.
T. Zaschke, C. Zimmerli, and M. C. Norrie, “The PH-tree: a space-
efficient storage structure and multi-dimensional index,” in SIGMOD,
2014.

H. Cheny, C. Chung, H. Huang, and W. Tsui, “Common pitfalls in train-
ing and evaluating recommender systems,” ACM SIGKDD Explorations
Newsletter, 2017.

T. Schnabel, P. N. Bennett, S. T. Dumais, and T. Joachims, “Short-term
satisfaction and long-term coverage: Understanding how users tolerate
algorithmic exploration,” in WSDM, 2018.

C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. Cambridge University Press, 2008.

B. Shaw and T. Jebara, “Structure preserving embedding,” in ICML,
2009.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014.

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural
networks for graphs,” in ICML, 2016.

L. Yao, Y. Zhang, B. Wei, Z. Jin, R. Zhang, Y. Zhang, and Q. Chen,
“Incorporating knowledge graph embeddings into topic modeling,” in
AAAL 2017.

G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in ACL, 2015.

A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured
embeddings of knowledge bases,” in AAAL 2011.

M. Y. C. Z. M. Chen and Y. Tian, “Multilingual knowledge graph
embeddings for cross-lingual knowledge alignment,” in I[JCAIL 2017.
Y. Zhao, Z. Liu, and M. Sun, “Representation learning for measuring
entity relatedness with rich information,” in IJCAL 2015.

E. Bingham and H. Mannila, “Random projection in dimensionality
reduction,” in KDD, 2001.

Prentice Hall,

