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Abstract: Accurate estimation of land use/land cover (LULC) areas is critical, especially over the
semi-arid environments of the southwestern United States where water shortage and loss of rangelands
and croplands are affecting the food production systems. This study was conducted within the
context of providing an improved understanding of New Mexico’s (NM’s) Food–Energy–Water
Systems (FEWS) at the county level. The main goal of this analysis was to evaluate the most important
LULC classes for NM’s FEWS by implementing standardized protocols of accuracy assessment and
providing bias-corrected area estimates of these classes. The LULC data used in the study was
based on National Land Cover Database (NLCD) legacy maps of 1992, 2001, 2006, 2011, and 2016.
The analysis was conducted using the cloud-based geospatial processing and modeling tools available
from System for Earth Observation Data Access, Processing, and Analysis for Land Monitoring
(SEPAL) of the Food and Agricultural Organization. Accuracy assessment, uncertainty analysis,
and bias-adjusted area estimates were evaluated by collecting a total of 11,428 reference samples using
the Open Foris Collect Earth tool that provided access to high spatial and temporal resolution images
available in Google Earth. The reference samples were allocated using a stratified random sampling
approach. The results showed an overall accuracy that ranged from 71%–100% in all six study counties.
The user’s and producer’s accuracy of most LULC classes were about or above 80%. The obtained
bias-adjusted area estimates were higher than those based on pixel counting. The bias-adjusted
area estimates simultaneously showed decreasing and increasing trends in grassland and shrubland,
respectively in four counties that include Curry, Roosevelt, Lea, and Eddy during the 1992–2016
period. Doña Ana county experienced increasing and decreasing trends in grassland and shrubland
areas, respectively. San Juan county experienced decreasing trends in both grassland and shrubland
areas. Cultivated cropland areas showed decreasing trends in three counties in southeast NM that
rely on groundwater resources including Curry, Roosevelt, and Lea. Similarly, cultivated cropland
areas showed increasing trends in the other three counties that rely on surface water or conjunctive
use of surface and groundwater resources including San Juan, Doña Ana, and Eddy. The use of
SEPAL allowed for efficient assessment and production of more accurate bias-adjusted area estimates
compared to using pixel counting. Providing such information can help in understanding the
behavior of NM’s food production systems including rangelands and croplands, better monitoring
and characterizing NM’s FEWS, and evaluating their behavior under changing environmental and
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climatic conditions. More effort is needed to evaluate the ability of the NLCD data and other similar
products to provide more accurate LULC area estimates at local scales.

Keywords: NLCD; LULC; SEPAL and Collect Earth; bias-adjusted area estimates; accuracy assessment
and uncertainties

1. Introduction

Natural ecosystems have pivotal roles in providing water, energy, land, and food for humans’
societal and economic development [1,2]. In other words, as complex systems, these natural ecosystems
are the epicenter of the Food, Energy, and Water systems (FEWS). Anthropogenic activities including
urbanization, industrial development, agriculture modernization, international and regional trade,
however, can modify natural ecosystems and impact the sustainability of FEW resources [3–6]. A recent
special report by the Intergovernmental Panel on Climate Change (IPCC) on climate change and land
indicated that humans modify more than 70% of the ice-free land surface [7]. In this regard, land use
activities, including those for food production, which use 1/4 to 1/3 of global land’s potential primary
production and the shifts in land management, constitute the main factors that change and transform
significant proportions of the Earth’s environment and also directly contribute to climate change [1,7].
Most of the natural ecosystems (i.e., forests, grasslands, and wetlands) conversions were associated
with shifts to agriculture and driven by the increase in human population and per capital consumption
of resources over the last three centuries [8–10]. In the contiguous United States (US), about 28% out of
the 3.1 million square miles of land have been profoundly changed over time for croplands and pasture
(22%) and settlement (6%) as indicated by in the US’s Fourth National Climate Assessment (NCA4) [1].
Understanding the role of these natural ecosystems spatially and temporally is important to assess
their ability to continue providing sustainable services to humans’ wellbeing and the environment [2].
Therefore, their robust mapping, assessment, and development of spatially descriptive information for
monitoring and policy implementation purposes are critical [10].

The currently available satellite data archives and advanced computational algorithms have
enabled efficient land use/land cover (LULC) mapping and monitoring at regional, continental,
and global scales. Moreover, the classification of land surface features based on satellite data into
LULC thematic maps has provided an improved understanding of the complex relationships between
human and biophysical systems, enhanced the ability to provide reasonable predictions of future
conditions, and allowed the development of mitigation and adaptation plans and practices [11–13].
Such information is critically needed, especially over regions that are heavily dependent on natural
cover resources for food production while also facing naturally and anthropogenically caused changes,
such as New Mexico (NM). The recent US NCA4 report and the World Resources Institute’s water
stress index suggested that the NM state is currently under, and will most likely continue facing,
extreme water stress, drought, heat waves, and wildfires conditions that can affect rangelands, cropland,
and livestock production that can appear at local scales [14,15].

According to [16], more than 90% of NM’s land is considered as rangeland used mainly for livestock
grazing. Arid rangelands including grassland ecosystems in the southwest US, particularly NM, have
been degraded and encroached by woody shrubs, consequently leading to a decline in grazing capacity,
water availability, and species diversity [17–20]. Thus, NM’s rangelands ecosystems significantly
contribute to the state’s food production systems, as represented mainly by the livestock industry,
and are socioeconomically important to New Mexican’s livelihood, cultural values, and generally to the
state’s economy. These natural ecosystems are one of the main constituents of strongly interconnected
FEWS in the state. The resiliency of NM’s FEWS is challenged when these natural systems are affected
by increased socioeconomic demands due to population growth and persistent drought events [21].
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Generally, Nexus of FEWS focuses on understanding the relationships between food, energy,
and water (FEW) resources with respect to their interconnected utilization, production, and security.
It should be noted that the objective of this analysis was not to present an implementation of a
FEW Nexus approach. Rather, it was more focused to generate LULC change analysis to support
and advance the understanding of these inherent interconnected relationships, qualitatively and
quantitatively. More details about the application of the FEW Nexus approach relevant to New Mexico
can be found in [18,20–23]. Changes in LULC classes due to natural and/or anthropogenic processes,
such as conversion to croplands, loss of grassland, and woody plant encroachment, can act as drivers
of the FEW Nexus behavior, for example, by quantitatively affecting food production, water use,
and energy consumption. Thus these changes in turn can introduce significant impacts on FEW Nexus
complexity, uncertainty, and synergy [24,25] that need to be evaluated with high level of confidence.
Therefore, accuracy assessment of LULC maps can support FEW Nexus studies by providing more
effective and efficient evaluation of potential associated changes in FEW Nexus behavior; providing a
baseline analysis; and support optimization of FEW resources at multiple spatial scales.

Some previous efforts have been made to account for some of the changes in these ecosystems in
the southwest US particularly in the Jornada Experiment Range (JER) [26–29] and Chihuahua Desert
Range (CDR) [27–29]. These studies used remote sensing and land survey tools to evaluate vegetation
response to changes in hydrological fluxes [29]; detection of vegetation dynamics; and monitoring
of long-term vegetation changes [17,26,27]. In one of the studies that was conducted in NM during
1858–1998, ecoregions were evaluated as basic spatial unit [27]. The study by [27] indicated that
dominant changes in South Central Semiarid Prairies were from agriculture to grassland and grassland
to Agriculture. Moreover, the most common conversion in the Chihuahua Desert ecoregion during
1973–2000 period was from grass/shrubland to mining, developed to agriculture, and agriculture to
grass/shrubland [26]. These studies, however, were either ecoregion based or restricted to research
area boundaries, which limited our understanding the effects of the LULC changes on FEWS resources
at county levels. Thus, consistent datasets and evaluations methods are needed to address such issues.

For a more consistent change evaluation, the remote sensing-based thematic mapping products
of the US—the National Land Cover Database (NLCD), can provide spatially explicit and reliable
information about LULC change over a period of time. The NLCD datasets, that were used in this
analysis, are further expected to be available to continue providing either the same or enhanced
products in the future at the national scale [30]. Existing land cover maps have some degree of
uncertainty and inconsistency in their classification as indicated in their reported user’s, producer’s,
and overall accuracies due to various sources of errors [31]. These accuracies are typically reported at
the national scale. Absence of accuracy reports and robust approach for accuracy and area estimation
at the county scales is the main roadblock to tap the advantage of these datasets. Therefore, the NLCD
maps need to be assessed for their accuracy at local scales to support related land management
decisions using appropriate sampling and assessment methods. Based on such assessment, the NLCD
maps can then be effectively utilized to provide relevant information needed (e.g., area estimates of
LULC changes) to monitor FEWS in semi-arid regions such as New Mexico.

Generally, the NLCD is a product provided by the Multi-Resolution Land Characteristics (MRLC)
Consortium—a group of US federal agencies. So far, the released legacy NLCD products included land
use and land cover change, land cover thematic maps, impervious surface and tree canopy for 1992,
2001, 2006, 2011, and 2016. A new generation of NLCD product was recently released with relatively
higher temporal resolution (at two- to three-year intervals) that cover the period between 2001 and
2016 [30]. Different classification methods have been utilized to develop these products with variable
levels of accuracy. For example, combined procedures of unsupervised classification, interpretation,
labeling and confusion reduction by the construction of logical or threshold models were used to
develop NLCD 1992 [32]. A decision and regression tree classification algorithm was used to develop
NLCD 2001 based on satellite images and ancillary layers [33]. The NLCD 2001 was the first product to
include percent of tree canopy and impervious areas. The NLCD of 2006 which included a land cover
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product and change between 2001 and 2006 was developed based on a Multi-Index Integrated Change
Analysis (MIICA) and it was the first in its kind to provide a wall-to-wall cover change database for
the conterminous US [34]. For the NLCD 2011, Comprehensive Change Detection Method (CCDM)
was used to provide products of land cover, impervious areas, and change for three time periods that
included 2001, 2006, and 2011 [35,36]. Decision tree classification, hierarchical theme post classification,
and biophysical parameters modeling were used to develop the NLCD of 2016 [30].

The accuracy assessment reports of the NLCD thematic maps emphasized the need for,
and provided, documentation of products’ quality and reliability at the national, zonal, and regional
levels [30,33,37–39]. Briefly, NLCD thematic maps exhibited overall accuracy (OA) of 40%–70%
(Anderson Level II) in eastern and western US [37,38], 70%–70.5% [40], 78% (Anderson Level II) [34],
88% [39], and 71%–97% [30] in year 1992, 2001, 2006, 2011, and 2016, respectively. The NLCD maps of
2001 and 2006 that were released in 2014 exhibited better OA of 89% compared with earlier releases [39].
These OA values showed consistent improvement over the years indicating the advancements made in
terms of efficient image processing algorithms to produce improved LULC mapping, classification,
and change detection. However, the provided reports of accuracy assessment lacked information
about area estimates, the corresponding uncertainties, and the OA at county levels. This lack of
information has resulted in a limited use of NLCD maps at these local scales. Consequently, land
cover products were not frequently used in monitoring FEWS components related to land cover types
(i.e., shrubland, grassland, and cultivated cropland) during production, conservation, utilization,
and management decisions at county level. Therefore, a more consistent accuracy assessment of LULC
maps is needed to provide information about their uncertainty and area estimates to support county
level applications.

To appropriately address these needs, this analysis highlighted the use and capabilities of a recently
developed LULC mapping and change analysis platform called the System for Earth Observation Data
Access, Processing, and Analysis for Land Monitoring (SEPAL) [41]. The use of the SEPAL platform
was driven by the fact that the multitemporal nature of LULC mapping and change detection require
using standardized and efficient methods and protocols of data entry, image interpretation, accuracy
assessment, and area estimation in order to provide a consistent accuracy assessment [38]. The SEPAL
platform, as it was developed by the Food and Agriculture Organization (FAO) of the United Nations,
uniquely provides the mean efficient standardized protocols with an enhanced cloud-based geospatial
infrastructure that enables quick accessing, querying, and processing of historical remote sensing
datasets that are available from multiple sensors. This includes, for example, Landsat and Sentinel-2 as
well as Light Detection and Ranging (LiDAR) data. SEPAL integrates Google Earth Engine (GEE) with
its cloud-based computations and storage capabilities, open source software—ORFEO Toolbox of the
National Center for Space Studies (CNES), Paris, France based on a project initiated in 2006 for remote
sensing images processing, R Studio Server, R Shiny Server, SNAP Toolkit, and Open Foris Geospatial
Toolkit [42] to provide a toolset dedicated for land monitoring for stratified sampling, response design,
and analysis for consistent accuracy assessment and uncertainty analysis [43]. This platform has more
than ten application modules from which the Stratified Area Estimator module with its Design and
Analysis submodules is implemented on the cloud for sampling and analysis of LULC maps following
the guidelines of [44]. SEPAL also has the capability to quickly and easily assess the accuracy and
evaluate the uncertainty of readily available thematic maps [43].

The main goal of this analysis was to evaluate the most important LULC classes from the
perspective of understanding FEWS by implementing standardized protocols of accuracy assessment
and providing bias-corrected area estimates of these classes. The analysis was performed on the NLCD
data using the SEPAL tools—a cloud computing platform. The quality of NLCD maps was assessed at
the county level to determine the uncertainties of LULC area estimates of the classes that are relatively
important to NM’s FEWS management decisions that include shrubland, grassland, and cultivated
cropland for the period 1992–2016. The specific objectives were to estimate the user’s, producer’s,
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and overall accuracies; bias-adjusted area estimates; and provide estimates of confidence intervals as a
measure of the related uncertainties over six study counties in New Mexico.

2. Study Area and Data

The study area consisted of six counties that were selected mainly based on the dominant
availability of food and energy resources in New Mexico. The counties included San Juan (14,344 km2),
Curry (3647 km2), Roosevelt (6358 km2), Lea (11,3881 km2), Eddy (10,872 km2), and Doña Ana
(9880 km2) (Figure 1). The selected counties cover an area of ~ 20% (56,481 km2) of NM’s total area
(314,918 km2). The natural biophysical properties of these counties including ground elevation and
vegetation cover vary throughout the study area. The ground elevation varies from 855 m above
mean sea level (amsl) in southern NM to 2862 m (amsl) in northcentral NM [45]. The predominant
vegetation cover in the study area consists of shortgrass prairie, pinyon juniper woodland, sagebrush
grassland, and deserts [25]. NM’s climate is characterized by high and low bi-annual precipitation
patterns during summer and winter, respectively, and have recently seen increased temperature trends
since 1970s [14,19,20].

Figure 1. Description of the study location showing the contiguous US, New Mexico, and the six
counties (i.e., San Juan, Doña Ana, Curry, Roosevelt, Lea, and Eddy) overlaid with the single-date
National Land Cover Database (NLCD) of 2016 map of New Mexico. LULC = land use/land cover.

Five different datasets have been used. The first dataset is the single-date NLCD thematic maps of
1992, 2011, 2006, 2011, and 2016 that were acquired from MRLC data repository [46]. The second dataset
comprised of the ancillary data related to NM’s agriculture and energy production that was used in
the selection of the study counties. Agricultural production related to beef cattle, milk, and alfalfa
production was obtained from the US Department of Agriculture National Agricultural Statistics
Service (USDA–NASS) [47]. Energy production related to crude oil and natural gas production
was obtained from the US Energy Information Administration (EIA) and Oil Conservation division
(OCD) [48,49]. The third dataset included remote sensing images and their derived indices. This
dataset was critical in assessing the NLCD (1992–2016) maps as it allowed the collection of accurate
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reference data. Medium to very high spatial resolution satellite images including those from Digital
Glob (IKONOS and QuickBird), SPOT, Copernicus Sentinel, and Landsat were facilitated from Google
Earth (GE), and Bing Maps using Collect Earth (CE) tool, which is one of the Open Foris open source
tools [50–52]. Aerial photos were also used from the GE archives. Additionally, CE tool also allows to
generate and access vegetation indices such as the Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI) and Normalized Difference Water Index (NDWI) from high temporal
resolution imagery from Landsat and MODIS archived in GEE. One of the advantages of accessing
these datasets from GEE and GE through the CE tool is that some of these data are freely available
while the others (especially those with high spatial resolution) require some fees. Thus, the CE tool
provides visual accessing and processing of all these datasets without the need to incur any fees or use
local resources to store and process the data. it should be noted that due to the limited availability of
high to very high spatial resolution data prior to year 2000, relatively lower resolution data (e.g., from
Landsat) have been minimally utilized to collect sample and identify LULC classes with additional
cautious. It is typical to experience some challenges in identifying surface features using relatively
lower spatial resolution data such as those from Landsat. The interpretation and, thus, the classification
of any reference samples collected from such datasets (especially over heterogeneous surfaces) can have
lower confidence, and eventually affect the accuracy assessment results. The fourth dataset describes
NM’s climate, which includes Palmer Drought Severity Index (PDSI), and temperature anomalies
for the period 1885–2019 were acquired from West Wide Drought Tracker [53]. Finally, the reference
dataset were collected to assess the multitemporal NLCD maps using the CE tool [52]. The CE tool
provides a semi-automated labeling and reference data collection technique.

3. Method

The methodology followed in this analysis to assess the accuracy of the LULC maps and provide
area estimates and the related uncertainties of the LULC classes consisted of (1) data preprocessing,
(2) reference data collection, and (3) assessment and area estimation (Figure 2). The data preprocessing
included the extraction of the NLCD maps for the six selected counties and their organization in
SEPAL platform. The reference data collection described the sampling technique including the process
of stratification, selection of sampling design, sampling unit, and sample size. Finally, an analysis
was performed to evaluate the agreement between reference data and map data using a confusion
matrix and to estimate LULC areas for the different cover types based on the accuracy results
(i.e., with the corresponding confidence interval (CI) as a measure of the uncertainty). The study then
further compared the observed trend in LULC with the occurrence of drought events and temperature
anomalies to highlight any potential relationships between them.

3.1. Data Preprocessing

The six counties that contributed the most to NM’s agriculture and energy production were listed
in Table 1. Based on annual agriculture production for year 2017 [47], food production represented
here by the number of all cattle and milk production as well as hay production (i.e., alfalfa and mixture)
were considered. Year 2017 data were used to capture counties that maintained reasonable food and
energy production following drought and price change [18]. The six counties that contributed the
most to beef cattle and milk included Curry, Roosevelt, Lea, Eddy, Doña Ana, and San Juan (Table 1).
All selected counties, except San Juan, accounted for ~ 65% of NM’s total milk production. About 30%
of NM’s hay production was accounted for by San Juan, Curry, Roosevelt, and Eddy counties. The NM
state accounted for 5% and 4% of the US total crude oil and natural gas production, respectively [34].
Eddy, Lea, and San Juan counties accounted for about 98% of NM’s crude oil production. Natural
gas was largely produced in San Juan (27%), Eddy (28%), and Lea (23%) [48,49]. Moreover, as these
selected counties were leading in livestock and energy production, they also significantly contribute to
NM’s economy (Figure 1). Based on this selection, the NLCD maps were then clipped by the county to
drive the analysis in SEPAL.
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Figure 2. A depiction of the cloud-based accuracy assessment and area estimation workflow: System
for Earth Observation Data Access, Processing, and Analysis for Land Monitoring (SEPAL) [41] was
used in each step of data preparation, sampling design, response design, and analysis. In step 1
(Data Precreation), the NLCD for each year for the study counties were archived in SEPAL. In step 2
(Sampling Design), the Stratified Area Estimator tool available in SEPAL was used to calculate area,
generate legends, determines expected users and producer’s accuracy, sampling size and preparation
of response design. In step 3 (Response design and Reference data collection), the Collect Earth (CE)
tool which integrates Google Earth and Google Earth Engine (GEE) was used for visual interpretation
and labeling of spatial assessment units and database archiving. In step 4 (Analysis), the Stratified
Area Estimator tool of SEPAL was used to estimate the overall, user’s, and producer’s accuracies as
well as area estimates along with their confidence interval (CI).

Table 1. Livestock, field crop, and energy production in New Mexico (2017).

County Livestock Field Crop Energy

All Beef Cattle
1000 (Head)

Milk
1000 (Kg)

Alfalfa
1000 (Kg)

Crude Oil
106 (L)

Natural Gas
106 (m3)

Curry (1.2) * 175 (17) ** 881,602 (24) 7,500 (1) - -
Roosevelt (2) 115 (8) 713,592 (19) 10,000 (1) 36 (0.18) 0.05

Lea (3.6) 90 (6) 343,188 (9) - 11,352 (56) 8.5 (23)
Doña Ana (3.1) 88 (6) 385,554 (10) - - -

Eddy (3.5) 56 (4) 91,399 (2) 137,000 (14) 8144 (40) 10.3 (28)
San Juan (4.6) 22 (2) - 152,000 (16) 608 (3) 20 (27)
New Mexico 1430 2,415,335 306,500 20,140 39

* percentage of county area relative to New Mexico’s (NM’s) total area, ** Percentages of cattle numbers, milk, hay,
or energy (crude oil or natural gas) production at the county level relative to NM’s total production in 2016.

3.2. Reference Data Collection

To perform an effective accuracy assessment and determine uncertainty of area estimates of
single-date NLCD thematic maps, high quality reference data was collected using recommended
sampling approach [44] which involved the selection of appropriate sampling design, sampling unit,
and sample size. In order to collect reference samples (referred to herein also as reference data),
stratified random and proportional sampling design was used for which the strata were defined by the
LULC classes. The process of stratification ensures a sufficient amount of reference samples even for
rare classes or small fraction change classes. Then, the reference samples were randomly distributed in
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each stratum within the cloud-computing platform (i.e., SEPAL) [44]. The total sample size (n) for each
county was calculated following [54] as described in Equation (1).

n =
(
∑

Wi Si)
2

[S(o)]2 +
(

1
N

)∑
WiSi2

≈

(
(
∑

wi Ssi)

Ss(o)

)2

(1)

where n = number of reference samples for each county, N is the number of pixels of the NLCD raster
subset (i.e., the Spatial unit), S(ô) the standard error of the estimated overall accuracy that the research
would like to achieve [44], Wi the mapped proportion area of class i, and Si the standard deviation of the
stratum i, Si=

√
Ui(1−Ui),where Ui is a conjectured value of user’s accuracy of a land cover class i [44].

The number of reference samples for each LULC class was selected based on area proportions of
mapped area and expected (i.e., conjectured) level of accuracy (user’s accuracy) from the perspective of
map users and ground-based knowledge. The sampling unit (i.e., spatial size of the reference samples)
was chosen by considering the minimum mapping unit (MMU) of the NLCD (0.45 ha) with a 3x3 pixels
block in which nine sample squares (5 × 5 m squares) were placed at a distance of 20 m from each
other leaving a 15 m margin from the outer edges (Figure 2).

The ratio of squares intersecting with a particular class to total sample squares were used as
percent to calculate the proportion of each LULC class. The sample size of each of the six counties was
selected based on the proportion of each LULC class determined by majority rule. Finally, the response
design was developed in SEPAL [44] using the above mentioned sampling technique to determine
the agreement between the map (i.e., NLCD) and the reference data [55]. The reference samples were
visually interpreted and labeled using Anderson classification II [56] scheme of NLCD maps. To ensure
sufficient number of samples for each LULC class, Deciduous Forest and Evergreen Forest subclasses
were aggregated to Forest class. As a result, NLCD map labels were cross walked or translated to label
the reference data with dominant LULC class.

The collection of reference data was performed by coupling the CE tool [57], Google Earth images,
and GEE platform which provided a long time series of NDVI images as well as the multispectral
Landsat images. The use of such robust reference datasets can be very effective for the future assessment
applications due to their well-maintained reference sample ID, NLCD code, reference code, and date
in the Collect Earth tool.

3.3. Assessment and Area Estimation

The assessment phase included the comparison of map data and reference data for generating the
error matrices representing the accuracy measures of each LULC class as well as area estimation and
associated uncertainties (i.e. expressed through confidence interval). The error matrix consisted of
the map class j (rows) and reference class i (column). The overall accuracy (OA) was calculated using
Equation (2) as described in [44] as it explains the proportion of area classified correctly, hence refers to
the probability that a randomly selected location on the map data was classified correctly [55]. In other
words, Equation (2) is a measure of the agreement between the map data and reference samples.
The user’s accuracy (or commission error) of a class refers to proportion of area mapped as class i and
labeled as class i in the reference samples (Equation (3)). On the other hand, the producer’s accuracy
(or omission error) refers to the proportion of area that is reference class j and class j in the map class
(Equation (4)). It is the probability that class j on the ground is mapped as the same class j (Table 2).

O =
∑i

j=1
p j j (2)

Ui =
Ppii

pi.
(3)

Pp j =
p j j

p. j
(4)
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where O is the overall accuracy, pjj the proportional area of LULC class classified as class j and reference
class j, Ui the is the user’s accuracy, pii the proportion of area for a land cover classes that has map class
i and reference class i, pi the total reference sample allocated in class i, pj the Producer’s accuracy, p.j

the total reference sample collected of each class j.

Table 2. An example of error matrix as depicted in [44] With p represent the cell entries of population
error matrix for land cover classes (i.e., 3 in this case) expressed as proportion of area

Reference

Class 1 Class 2 Class 3 Total

Map

Class 1 p11 p12 p13 p1.
Class 2 p21 p22 p23 p2.
Class 3 p31 p32 p33 p2.

Total p.1 p.2 p.3 1

The accuracy measures were used to derive the area and change area estimates by adjusting the
map bias. The bias-adjusted area estimates were obtained first by calculating area proportion (p̂i j)
using Equation (5).

p̂i j = Wi
ni j

ni.
(5)

where p̂i j is the estimated area proportion, Wi is the area proportion of map class i (i.e., fraction of map
area of class i divided by the total area of all classes in the county), nij is the sample count at cell (i, k) in
the error matrix, ni the total sample in map class i.

The output of the matrix from Equation (5) was translated to weighed proportional error matrix
(i.e. p̂i j multiplied by total area of a county). Then, the adjusted area was obtained by adding each
columns of the matrix using Equation (6).

p̂.k =
∑q

j=1
p̂ik (6)

where p̂.k is the sum of estimated area proportions of class k derived from the reference classification
and p̂ik is proportional area derived from reference sample (p.k).

The standard error of the bias-adjusted area estimates was calculated using stratified estimator
of proportional area following Equation (7) [44]. Finally, the area estimate of NLCD classes were
calculated by multiplying the total map area (A) of a class by the standard error (p̂.k). The standard
error of the estimated class area S (Âk) was calculated using Equation (8).

S(p̂.k ) =

√√√∑
i

W2
i

nik
ni

(
1− nik

ni

)
ni − 1

=

√√√∑
i

Wip̂.ik

.
−p̂.ik

2

ni
.
−1

(7)

where nik is the sample count at cell (i,k) in the error matrix.

S(Âk) = A ∗ S(p̂.k) (8)

where S (P̂k) is the standard error of proportional area.
The CI value, is a main measure of uncertainty and how well the area was estimated or adjusted.

A 95% confidence interval was calculated for the bias corrected area estimates. Moreover, the percentage
of CI was calculated by dividing the estimated 95% CI (in ha) by the bias corrected area estimates (AE).

3.4. SEPAL: A Cloud-Based Land Monitoring Platform

In SEPAL [41], the Stratified Area Estimator module allows to import the NLCD maps, determine
stratum area, and strata selection based on expected user’s and producer’s accuracy of LULC classes.
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The sample size over each county for a given analysis year can be determined following Equation (1) with
a standard error of expected overall accuracy (α = 0.01). During the sampling phase basic information
(i.e., raw data) about the study site such as the geographic location of map data (i.e., latitude and
longitude), map class information (i.e., LULC codes), elevation, slop, aspect, and county characteristics
can be acquired. SEPAL then organizes this information and generate a data package in the form
of Collect Earth Project files (i.e., CEP) that contains a number of important parameters (e.g., LULC
codes, CI, sampling design, and MMU) that can be used to configure a framework for reference data
collection form [50]. The CEP files can then be imported to the CE tool to assist in generating random
map samples with their corresponding information stored in Key Markup Language (KML) files
which can be accessed in GE [50]. The reference data was collected outside the SEPAL using the CE
tool, which provides access to high spatial resolution images that are available in GE. The collected
reference data can then be imported to SEPAL’s Stratified Area Estimator module, which allows to
conduct the LULC analysis and produces accuracy reports that include PA, UA, and OA as well as the
adjusted area estimates along with their associated uncertainties in the form of CI for each NLCD class.
In this analysis, except preprocessing of multitemporal NLCD data of the study counties, all the above
detailed steps were performed on the cloud, thus, allowing for an efficient and standardized LULC
analysis. In summary, the SEPAL platform allows for cloud-based sampling design, sample allocation,
analysis of map accuracy and area uncertainty estimation.

4. Results

4.1. Reference Data

Based on area proportional stratified random sampling design, a total of 11,428 reference samples
were collected to assess the accuracy of the NLCD map, estimate the bias-adjusted areas of the LULC
classes, and their corresponding uncertainties over the six counties. The reference data collected over
each LULC class of the NLCD maps are shown in Table 3. Columns 2 and 3 present the number of pixels
and expected (i.e., conjectured) level of accuracy based on ground knowledge of the interpreter for each
LULC class, respectively. The last two columns present the total number of samples collected over the
NLCD map and final number of reference samples, respectively, which were revisited and interpreted
independently with a high confidence over homogeneous areas. The reference samples that were
collected over shrubland, grassland, and cultivated cropland classes were about 16%, 10%, and 11% of
the total number of reference samples. Developed class (Anderson level I) had the highest number of
reference samples (21%) than any other class with a possible explanation for this observation can be in
part due to the number of independent reference data collected for developed subclasses and their
aggregation from Anderson level II (Open Space, Low, Medium, and High Intensity). A description of
the considered LULC classes is shown in Table A1 (Appendix A).

Table 3. A summary of the reference samples collected over each NLCD class over all six counties
during the study period 1992–2016.

Land Cover Class No. of Pixels
Conjectured

User’s Accuracy
(Ui)

SEPAL Generated
Samples on Map

i(ni)

Total Reference
Samples

Open Water 696,503 0.85 917 889
Developed 7,332,760 0.75 2490 2481
Barren land 3,801,347 0.75 1195 1177

Forest 7,469,450 0.85 1025 923
Shrubland 186,302,455 0.85 1911 1826
Grassland 85,725,854 0.75 1164 1138

Pasture 1,107,707 0.75 470 454
cultivated cropland 19,826,881 0.85 1295 1252

Woody Wetland 598,696 0.85 694 684
Emergent Herbaceous

Wetlands 433,596 0.75 623 606
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The total number of reference samples collected over each county and each single-date NLCD
map is shown in Table 4. The number of samples collected during each of the NLCD year varied to
achieve the expected level of accuracy. The largest number of reference samples collected over all six
counties was in year 2006 and the lowest was in year 2016.

Table 4. Summary of reference sample collected over each county and each year of the NLCD map.

County Reference Samples

1992 2001 2006 2011 2016

Curry (1.2) * 270 381 574 324 236
Roosevelt (2) 343 355 544 562 294

Lea (3.6) 399 886 478 576 392
Doña Ana (3.1) 372 313 305 343 247

Eddy (3.5) 218 250 310 324 246
San Juan (4.6) 324 374 370 397 421

Total 1926 2559 2581 2526 1836

* The numbers in parentheses represent the percent of county area relative to NM’s total area.

4.2. Accuracy Assessment

This section presents the results of the accuracy assessment of the NLCD maps over the six
counties which included estimates of three different accuracy measures (i.e., user’s accuracy, producer’s
accuracy, and overall accuracy) over each LULC class (mainly grassland, shrubland, and cultivated
cropland) along with their corresponding bias-corrected area estimates. It is important to account for
these accuracy assessment controls when evaluating historical land cover information [58]

4.2.1. User’s and Producer’s Accuracies

The user’s and producer’s accuracy of the main three LULC classes (i.e., grassland, shrubland,
and cultivated cropland) that mostly contribute to NM’s food production systems (i.e., mainly livestock
production) for the six study counties for the 1992–2016 period are presented in Table 5. The user’s
accuracy of the shrubland class in most of the counties achieved an estimated value of 100% except
over Lea County from 1992–2011. In the cultivated cropland class, the user’s accuracy showed a similar
behavior except over Curry County for the year 2001. However, the grassland class did not show such
high user’s accuracy estimates (i.e., 100%). In contrast, a low user’s accuracy of 39% was observed
over the grassland class in Doña Ana County in 1992.

Over the shrubland class, high producer’s accuracy values were observed only over Doña Ana
and Eddy counties in the year 2001 and 2011, respectively. Over the grassland class, high producer’s
accuracy values were common in all the counties from 1992 to 2016. However, in the cultivated cropland
class, high producer’s accuracy values were observed only over Doña Ana, Lea, and Roosevelt counties
for the year 2001 and 2016. In contrast, low producer’s accuracy value of 25% was observed over
the shrubland class in Roosevelt County in 1992. Over the cultivated cropland class, low producer’s
accuracy values of 16% and 22% were observed in San Juan and Eddy County, respectively. A summary
of the obtained user’s accuracy and producer’s accuracy over the rest of the LULC classes is provided
in Appendix B.

The error (confusion) matrix for Lea County which was expressed by proportional agreement and
disagreement weighted by the area of class in 2001 showed that nearly 11% of the pixels that were
classified as shrubland in the map, should have been classified as grassland (Table 6). Furthermore,
23% and 17% of the grassland and cultivated cropland pixels, respectively, were misclassified in the
NLCD map as they were classified as shrubland based on the reference data. Similarly, the results
indicated that some disagreement (misclassification) was also evident in the NLCD map of 2006
between grassland and shrubland, grassland and developed, and cultivated cropland and shrubland.
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For example, 22% of the grassland pixels were misclassified as shrubland as commission error in Lea
County in 2006 (Table A7–Appendix C). Additional examples for some of the obtained proportional
error (confusion) matrixes for some counties and NLCD years are shown in Appendix C.

Table 5. User and producer accuracies (%) of the main land cover classes important for New Mexico’s
Food Energy and Water systems (FEWS) over the study counties.

County Accuracy
measures

1992 2001 2006 2011 2016

SL GL CC SL GL CC SL GL CC SL GL CC SL GL CC

Curry UA 72 97 92 100 90 100 90 88 93 100 79 90 97 86 88
PA 97 93 98 99 100 96 99 98 91 56 100 99 98 93 94

Doña Ana
UA 65 39 84 98 89 78 100 69 89 83 5 2 82 71 83 83
PA 71 100 88 100 95 100 98 100 99 97 100 98 99 80 80

Eddy UA 90 58 95 90 89 81 63 89 81 59 91 86 89 91 81
PA 70 100 96 99 100 22 98 71 68 100 100 54 91 100 89

Lea
UA 77 75 68 89 75 83 94 70 83 93 60 80 90 76 88
PA 57 90 81 82 85 62 82 100 65 74 96 99 96 69 100

Roosevelt
UA 92 63 85 62 88 71 100 76 85 100 79 90 95 73 61
PA 25 100 66 95 94 81 49 100 99 55 100 99 92 84 100

San Juan UA 100 79 90 94 85 96 100 69 90 50 83 89 62 63 95
PA 94 100 16 97 100 96 90 99 98 99 51 50 94 64 56

* SL= shrubland, GL= grassland, CC= cultivated cropland, UA = user’s accuracy, and PA = producer’s accuracy

Table 6. Proportional error (confusion) matrix that represents the agreement and disagreement weighed
by area for Lea County in 2001.

NLCD 2001 Reference

M
ap

da
ta

(2
00

1)

Class Code 11 20 31 40 52 71 82 90 95 UA
(%)

11 100 00 0 0 0 0 0 0 0 100
20 0 78 3 1 13 4 2 0 0 78
31 6 22 63 0 9 0 0 0 0 63
52 0 0 0 0 89 11 0 0 0 90
71 0 0 0 0 23 75 3 0 0 75
83 0 0 0 0 17 0 83 0 0 83
90 0 0 0 5 5 0 0 89 0 90
95 0 0 11 0 21 0 0 16 53 53

WPA(%) 94 78 36 0 54 84 85 95 85
AE (ha) 1084 16,141 3168 20 656,006 427,872 33,155 92 174
SE (ha) 178 857 482 188 44,506 45,348 12,254 29 39

CI (95%) (ha) ±35 ±1,679 ±945 ±369 ±87,233 ±8,882 ±24,018 ±56 ±76

* SE = Standard Error, AE = Area Estimates, CI = Confidence Interval, WPA = Weighted Producer’s Accuracy,
UA = User’s Accuracy. Land cover classes codes: Open Water (11), Developed (20), Barren Land (31), Forest (40),
shrubland (52), grassland (71), cultivated cropland (82), Woody Wetland (90), and Emergent Herbaceous Wetland (95).

4.2.2. Overall Accuracy

The overall accuracy (OA) is one of the accuracy measures used in this analysis to present the
agreement between NLCD maps and reference samples. The estimated OA for the six study counties
from 1992 to 2016 is presented in Table 7. The OA of the six counties ranged from 71% to 100%.
The highest and lowest OA of 100% and 71% were estimated over Curry and Roosevelt counties in
2011 and 1992, respectively. An OA of > 80% was observed in most of the counties except for Roosevelt
(71%), Lea (73%), and Doña Ana (73%) counties in 1992; Lea (77%) and Roosevelt (78%) counties in
2001; and Eddy county (77%) in 2006. In most of the counties, the OA remained consistent throughout
the study period except in Curry, Doña Ana, and Eddy counties, where there was relatively high
variability in the estimated OA (e.g., from 81% to 100% and then 91% in Curry County; from 73% to
88% in Doña Ana County; and from 88% to 77% and then 85% in Eddy county). The average OA of the
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NLCD map ranged from 79% to 85% with the lowest value was observed in year 1992 followed by
consistent improved values since then (Table 7).

Table 7. A summary of the obtained overall accuracy (OA) based on SEPAL at the county level
compared to those reported with the NLCD maps at the national/regional level.

NLCD
Year

NLCD #

OA (%)
County OA (%)

Curry Doña Ana Eddy Lea Roosevelt San Juan Average/Total

1992 44* 90 73 85 73 71 80 79
2001 89 91 88 88 77 78 86 85
2006 89 81 81 77 80 83 85 81
2011 88 100 79 85 79 80 82 84
2016 89** 91 82 82 82 78 79 82

Reference Samples 1785
(16%)+

2098
(18%)

2731
(24%)

1580
(14%)

1348
(12%)

1886
(17%)

11,428
(100%)

* The OA (Anderson Level II) for the single-date NLCD maps for years 1992 (edition 2000), 2001–2011 (edition 2014),
and 2016 as obtained from [37,38], [39], and [15], respectively. + The relative number of reference samples in each
county compared to the total number of reference samples; * The OA of the NLCD 1992 based on South-central region,
** The OA of the NLCD of 2016 was based on the average value reported for the western US region (80%–97%).

4.3. Area Estimation

The area estimates of the shrubland class over San Juan County showed a 31% decline during
the 1992–2016 period (Figure 3). The total area of shrubland in San Juan county was the highest in
1992 with an estimated area of 1,018,761 ha and a Confidence Interval (CI) of ± 40,676 ha (or ±4%).
In 2001, the shrubland area was about 754,619 ha ±18% showing a 26% decline compared to that of
1992. In 2006, there was ~5% increase in shrubland area (796,041 ha ±17%) compared to that of 2001
but indicated ~22% decline when compared to that of 1992. In 2011, shrubland area showed a 54%
decline compared to that of 1992. In 2016, shrubland area was 704,024 ha ± 15% showed a 51% increase
compared to that of the 2011 but indicated a 31% decline compared to that of 1992.

Figure 3. Area estimates of shrubland of the study counties from the 1992–2016.

The shrubland area in Doña Ana showed an overall 10% net declining trend between 1992 and 2016.
However, there was an increase in shrubland area during 1992–2001 followed by a consistent declining
trend until 2016. The shrubland areas in Lea and Roosevelt counties showed a consistent increasing
trend since 1992. The shrubland areas in 2016 in Lea and Roosevelt were about 860,008 ha ± 10% and
467,598 ha ± 8% indicating about 113% and 267% increase, respectively, compared to those in 1992.
The shrubland area in Curry County was relatively very small (3367 ha ±2%) in 1992 and remained on
average around 3000 ha until 2011, but in 2016 it showed a significant increase of about 146,638 ha
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±7%. The shrubland area in Eddy county showed a 10% increase in 2016 (747,062 ha ±10%) compared
to that of 1992 (680,065 ha ± 15%).

The grassland areas (Figure 4) in three counties including San Juan, Roosevelt, and Curry showed
relatively similar behavior during the 1992–2016 period. The grassland areas in San Juan, Roosevelt,
and Curry counties in 1992 of 245,741 ha ±17%, 222,360 ha ±32%, and 152,802 ha ±1%, respectively,
showed 109%, 44%, and 43% increase between 1992 and 2011 followed by 64%, 84%, 72% decline
between 2011 and 2016, respectively. In overall, the three counties (i.e., San Juan, Roosevelt, and Curry)
showed declining trends of 25%, 77%, and 60% during the 1992–2016 period, respectively. On the
contrary, a decreasing trend in grassland area was detected in Doña Ana County between 1992 and
2011 with total areas of 113,986 ha ±43% and 25,913 ha ±34%, respectively, indicating a ~77% decline.
The overall behavior of grassland area in Doña Ana County indicated an increasing trend as the area
in 2016 increased by about 130% compared to that of 1992. On the other hand, both Lea and Eddy
counties showed consistent declining trends in grassland areas of about 73% and 23%, respectively,
during the 1992–2016 period.

Figure 4. Area estimates of grassland in the study counties from 1992 to 2016.

The cultivated cropland areas in Curry and Roosevelt counties in 1992 were the highest during
the 1992–2016 period with 193,182 ha ±1% and 185,995 ha ±31%, respectively. In 2016, the areas in
both counties dropped significantly by about 36% and 63%, respectively compared to those of 1992
(Figure 5). Similarly, in 2016, the cultivated cropland area in Lea County was about 29,082 ha ±14%,
indicating a 24% decline compared to that of 1992 of 38,025 ha ±37%. The cultivated cropland areas in
four counties including Lea, Eddy, San Juan, and Doña Ana were relatively lower (less than 50,000 ha
on average) than those of Curry and Roosevelt. Three counties including Eddy, San Juan, and Doña
Ana showed increasing trends during the 1992–2016 period. The cultivated cropland in Doña Ana
County was 38,725 ha ±28% in 2016 indicating 100% increase compared to that of 1992 of 18,536 ha
±14%. Similarly, the Cultivated Crop areas in Eddy and San Juan in 2016 were about 16,682 ha ±16%
and 45,754 ha ±86%, indicating about 180% and 300% increase compared to those of 1992, respectively.
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Figure 5. Area estimates of cultivated cropland in the study counties from 1992 to 2016.

5. Discussion

5.1. Accuracy Assessment

5.1.1. User’s Accuracy and Producer’s Accuracy

The results of user’s and producer’s accuracy of NLCD maps over the six counties showed a wide
range of values. The user’s accuracy of the three main classes (i.e., shrubland, grassland, and cultivated
cropland) were above 80%, 75%, and 80%, respectively when the NLCD maps from 1992 to 2016 were
assessed using high-quality reference data but with few exceptions. Generally, it should be noted
that there was no consensus on a specific accuracy threshold that can be considered as high or low.
Rather, the decision of a high or low accuracy estimate can depend on the distribution, proportion,
and size of the mapped classes [59]. Needless to say, the decision of categorizing an accuracy as high
or low can also depend on mapping objectives, area being mapped, and distribution of the LULC
classes. Therefore, based on the homogeneity and area proportions of the landscape and mapping
product, different threshold of high (≥ 70%) and low (≤ 35%) accuracy estimates have been used in
recent research findings [30]. Meaningful and useful accuracy estimates that can be achieved over
heterogeneous area are usually low and respectively high accuracy estimates can be achieved over
homogeneous regions when assessed with similar sampling designs [60]. In the assessment of NLCD
maps over the six counties from 1992 to 2016, some instances were observed with relatively low
accuracy (≤ 40%). For this analysis, a user’s or producer’s accuracy of ≥ 70% (≤ 40%) can be considered
relatively high (low). It was also noticed that the obtained user’s accuracy values were relatively
consistent compared to those of the producer’s accuracy.

The shrubland class showed some probability of occurrence of commission errors as depicted by
moderate user’s accuracy values that ranged from 50%–62% in Table 5. The obtained user’s accuracy
indicated that some pixels from other classes have been mapped or committed into the shrubland class
(e.g., Roosevelt and San Juan counties in years 2001, 2011, and 2016). On the other hand, grassland
class showed, in general, relatively low user’s accuracy that fell below 40%. For example, in Doña Ana
County, the grassland class showed a user’s accuracy of 39% for in year 1992 (Table 5), indicating that
there was more chance of occurrence of commission errors in grassland class compared to shrubland
as well as cultivated cropland classes. In mapping the grassland class in this study, it was expected to
obtain more commission errors or misclassification into this class generally due to spectral mixing
with other classes, which is typical in naturally managed heterogenous regions. The user’s accuracy of
cultivated cropland class did not fall below the lower threshold of 40% as observed in the other two
classes (shrubland and grassland). The cultivated cropland class showed relatively higher accuracy
than other classes because of its distribution and the homogeneity of this type of landscape in the study
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counties. Other studies also indicated that the misclassification of grassland and cultivated cropland
is common and can be due to a number of reasons that include most importantly the timing of the
Landsat images used to develop the most of the NLCD legacy maps [61]. The timing of some of the
datasets of Landsat images used in developing NLCD is during early spring period (i.e., “leaf-off”).
During such period (which may not be optimal to differentiate between some classes), there can be
significant spectral similarities between grassland and cultivated cropland. Other factors that can affect
and result in such misclassification include the way grasslands are managed (e.g., grazing practices),
the phenology of grass species, and soil moisture conditions [61,62]. The three classes can be arranged
from high to low in terms of chance of occurrence of commission errors or low to high user’s accuracy
as grassland, shrubland, and cultivated cropland.

Additionally, the producer’s accuracy of the three main land cover classes (i.e., shrubland,
grassland, and cultivated cropland) were above 70%, 80%, and 80%, respectively with few exceptions.
The shrubland class of the NLCD maps showed high probability of occurrence of omission errors
(i.e., omitted from shrubland to another class) with an estimated producer’s accuracy of 25% (Table 5)
over Roosevelt county for year 1992. High probability of occurrence of omission errors (i.e., low
producer’s accuracy with a range of 16%–22%) in cultivated cropland class was observed in San Juan
and Eddy counties in 1992 and 2001, respectively. However, the grassland class did not show any low
producer’s accuracy below 40% compared to those observed over shrubland and cultivated cropland
classes (Table 5). With respect to the probability of omission errors, the three LULC classes can be
arranged from high to low omission errors or from low to high producer’s accuracy as cultivated
cropland, shrubland, and grassland, respectively. The relatively low producer’s accuracy that was
observed over the cultivated cropland class can partly be attributed to small area proportion of this
class and the low proportion of reference samples that were correctly classified on the map.

5.1.2. Overall Accuracy

The estimated OA showed a consistent pattern during the 1992–2016 period in most of the counties
with few exceptions where a change in the accuracy can clearly be seen from one year to another over
few counties. For example, the OA achieved 81% over Curry County in 2006, 73% over Doña Ana
County in 1992, and 77% over Eddy County in 2006. The reason for this variability in the OA can
partly be attributed to the differences between the classification algorithms that were used to develop
the NLCD maps and the changes in the distribution and patterns of LULC classes in the respective
counties. The OA in 1992 over Roosevelt County was about 71%, indicating the lowest value achieved
across all counties during the1992–2016 period. Such low value can partly be attributed to the high
chance of misclassification due to the low area proportion and distribution of LULC classes in this
region, which can result in increased commission and omission errors. The highest OA of 100%, which
was achieved over Curry County in 2011, can partly be explained by the dominance of the cultivated
cropland class and the corresponding homogeneous nature of the land cover and the field sizes.

The estimated OA values over each county based on SEPAL were also compared with those of the
NLCD maps as they were reported at regional and national scales (Table 7). It should be noted that the
OA of the NLCD for 1992 was reported for six regions in the US that include the Pacific Northwest,
Southwest, Rocky Mountains, Midwest, South Central, and Great Lakes for Anderson Level I and
Level II. The South-central region included the state of New Mexico and therefore, the reported OA of
this region were used and compared with those achieved using more robust region-specific assessment
through the SEPAL tool. The OA values of the NLCD map of 1992 for the South Central region were
about 74% and 44% for Anderson Level I and Level II, respectively [37,38]. The accuracy of the NLCD
map of the South Central region reported for Anderson Level II was used to analyze the estimated OA
of the six study counties in the year 1992. It was found that the estimated OA using SEPAL for the year
1992, were higher than those of the NLCD at the regional scale over all counties, except Curry County.
The estimated OA for year 1992 based on SEPAL were more meaningful and representative at the
county level as compared to the reported OA of 44% of the NLCD map for the South Central region.
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Likewise, the estimated OA based on SEPAL was compared with the regional OA of the NLCD
map of the year 2016 which was reported for different US regions and ranged between 71% and
97% [30]. It was noted that the OA of NLCD for the western US region ranged from 80% to upper 90%.
An average value of 89% (based on the range of 80%–97%) was used in the analysis to be compared
with those based on SEPAL. The reported OA of the NLCD maps of 2001, 2006, and 2011, at Anderson
level II were 89%, 89% and 88%, respectively [39]. It was found that the estimated OA based on SEPAL
of all the counties (i.e., 86%, 85%, and 82%) for these three years (i.e., 2001, 2006, and 2011) were
relatively lower than the regional OA of the NLCD maps (Table 7).

The estimated OA in this study in each of the counties and years based on SEPAL showed
complementary value with reference to those of the NLCD 1992–2016. This observation indicated
that the related NLCD accuracies can be comparable over most of the study counties and may not
be degraded from the reported regional ones. At the same time, the estimated OA based on SEPAL
also provided more insights about the need to perform consistent assessment of the NLCD maps at
county level.

5.2. Area Estimation and Observed Trends

5.2.1. Bias-Adjusted and Pixel Counting Area Estimates

The methods of estimating areas of mapped classes have been discussed in a number of recent
studies (e.g., [63–66]). However, the estimation methods still have some degree of uncertainty (rather
a lack of identifying a common approach) when it comes to determine the true area proportions
on the ground. In order to account for the uncertainty in area estimation of mapped and change
classes, standard error or estimators can provide adjusted change area with confidence intervals.
A recent review by [66] provided an assessment of approaches used to estimate bias-adjusted areas
and associated accuracies of NLCD maps. Based on this review by [66], it appeared that out of the
57 publications identified in two remote sensing journals, only nine studies provided the accuracy
measures and the information needed to compute the bias-adjusted area estimates. It is evident that
even with high levels of accuracy area estimates obtained directly from a map (i.e., pixel counting),
which is common used, can provide biased area estimates due to classification errors that need to be
adjusted for as suggested by [66]. The findings from this analysis provided similar indications about
the differences (i.e., discrepancies) between the use of pixel counting and bias-adjusted area estimates
based on stratified area estimator (Figure 6).

Figure 6. Comparison between bias adjusted and NLCD map (pixel counting) area estimates over each
class over the study counties.



Remote Sens. 2020, 12, 1830 18 of 32

A comparison between the bias-adjusted and the NLCD map (i.e., pixel counting) area estimates
for all classes including those for grassland, shrubland, and cultivated cropland is shown in Figure 6.
The comparison showed mixed indications of discrepancies. However, it appeared that the majority
of bias-adjusted area estimates were lower than those obtained directly from the NLCD map area
(i.e., pixel counting). In other words, area estimates based on pixel counting overestimated the
bias-adjusted ones. This finding is relatively similar to that of [66] in which they obtained some mixed
indications of discrepancies when comparing area estimates based on pixel counting and a stratified
estimator. This comparison also showed that there was a variable degree of uncertainty across all LULC
classes as represented by the estimated margin of error as indicated by the 95% CI. It should be noted
that this margin of error can only be estimated for the bias-adjusted area estimates. The shrubland
class showed high uncertainty (a wide range of the 95% CI) in area estimation partly due to relatively
higher misclassification errors as compared to other classes. Generally, area estimates based on pixel
counting do not match with the true proportion areas of the ground.

Moreover, in this analysis, area estimates based on pixel counting were generated at spatial
resolution, temporal resolution, and/or classification schemes that are different from those that can
be obtained from other existing mapping products such as the GAP Analysis Program (GAP) and
Cropland Data Layer (CDL) [61,67]. Thus, limited the ability to provide reasonable comparisons [68,69]
that can be help in further evaluating the obtained area estimates. This study further highlighted the
need to provide accurate bias-adjusted area estimates compared to using pixel counting approach that
is commonly used in literature.

5.2.2. Class Specific Area Estimates Uncertainty

The estimated shrubland areas over some counties exhibited relatively high levels of uncertainty
as indicated by the corresponding CI values. These high uncertainties can mostly be attributed to
high commission errors. In some instances, the relatively high uncertainty (i.e., based on the obtained
95% CI) of grassland area estimates in Lea County (2006) was associated with commission error from
shrubland cover (22%), developed (2.2%), and cultivated cropland covers (2.2%) (Table A7). The CI
over Eddy County in 2011 showed uncertainty in shrubland class areas due to high commission error
from barren land (39%) and forest (10%) classes (Table A8). Likewise, over Doña Ana County in 1992,
5% of Developed class was classified as shrubland (Table A9). Similarly, 8% of barren land and 3% of
grassland classes in Curry County in (2006) were classified as shrubland (Table A10). The uncertainty
in grassland and shrubland class might be due to spectral mixing of these classes with the developed
class (e.g., oil and natural gas pads) and contribute to errors in the classification process.

Generally, the high uncertainty in grassland area estimates during 2011 can partly be attributed to
increased water stress conditions in NM’s rangelands due to frequent and persistent drought events
since 2000 as well as increased temperature anomalies since 1990 (Figure 7) [19]. These conditions can
result in reduced spectral signature differences (i.e., similar spectral features) between grassland and
other adjacent Earth’s features or classes (e.g., cultivated crops and shrubland). Such similarities can
consequently contribute to the omission of grassland pixels from true classification, and its commission
to the shrubland such as those observed in San Juan in 2011 (Table A11).

Moreover, cultivated cropland area estimates over Eddy County in year 2001 and 2011 showed
relatively high values of CI. Misclassification of shrubland (9%) pixels in the NLCD 2011 was detected in
Eddy County (Table A8). This can also be partly explained by the persistent and frequent drought events
during the study period, which can affect vegetation growth and result in spectral similarities between
land cover classes (i.e., particularly grassland and shrubland) and cultivated cropland. The study
showed that most of the uncertainty values of the area estimates appeared to be from misclassification
among shrubland, grassland, cultivated cropland, and forest pixels.
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Figure 7. (a) Temperature and (b) the Palmer Drought Severity Index (PDSI) anomalies over New
Mexico (1895–2019) [53] along with the single-date NLCD years (vertical dashed lines).

5.2.3. Observed Trends

This part of the analysis was aimed to present preliminary indications and highlight potential
connections between observed LULC area changes and climate variables over New Mexico that can
be used to guide ongoing and future analysis as part of modeling efforts of NM’s FEWS Nexus led
by authors as shown in [20,22,23]. A summary of the net area changes of grassland, shrubland,
and cultivated cropland between 1992 and 2016 over each county is shown in Figure 8. The observed
LULC change behavior suggested that shrubland experienced a net increasing trend in four counties
that all lie in southeast NM and net declining trends in Doña Ana (southcentral NM) and San Juan
(northwest NM) counties. Out of these four counties, the increase in shrubland areas over Lea and
Roosevelt counties was significant compared to those over Curry and Eddy counties. On the other hand,
grassland areas experienced a net decreasing trend in five counties and a net increasing trend in
Doña Ana County. A subtle decline in grassland areas was observed in Lea County, followed by
Roosevelt County, with a relatively similar declining trend in the rest of the counties (i.e., Curry, Eddy,
and San Juan). The observed trend in Doña Ana County indicated a decline in shrubland and an
increase in grassland. Similarly, the observed trend in San Juan County indicated declining trends in
both shrubland and grassland areas. Interestingly, the four counties that showed a net increasing trend
in shrubland areas (i.e., Curry Roosevelt, Lea, and Eddy) simultaneously showed almost relatively
similar declining trends (i.e., amount of area change) in grassland areas. A number of reasons can
partly explain this observation. The decrease in the extent of grassland can be partially attributed
to the encroachment of shrubland in the expense of the grassland, particularly where the counties
showed net increase in shrubland cover (Figure 8). However, it should be noted that this study was
focused on the changes in area estimates but not the dynamic nature of the changes. Thus, it was not
readily clear in this study if the reduction in grassland class areas was directly due to shift in land
cover to shrubland. Additional analysis will be conducted to evaluate dynamic LULC change.
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Figure 8. Area change of cultivated cropland,grassland, and shrubland from 1992 to 2016.

Some recent studies similarly suggested that the encroachment of shrubland was in the expense
of grassland, especially in the western US, including for example those by [19,70]. As the study
by [70] was conducted at the conterminous US (CONUS) scale during 2001–2016 using NLCD data,
it indicated that both grassland and shrubland increased in areas with regionally variable amounts of
change. The findings in [70] suggested the increase in shrubland areas was at the expense of forest
loss and grassland change to shrubland and the increase in grassland areas was at the expense of
forest and shrubland losses. Moreover, the study by [19] suggested there was an increased level of
encroachment of woody vegetation (in which shrubland can be considered as one of its subclasses) in
NM’s rangelands, which is dominantly covered by grasslands. The study by [19] was based on land
cover analysis using Landsat data for the period 1984–2017 as explained in the Rangeland Analysis
Platform (RAP) [71,72]. Woody plant encroachment was also suggested as one of the reasons of
declining grassland areas as indicated by [73] due to lack of precipitation, fire disturbances, over
grazing, and its association with rising level of CO2 in the atmosphere which can favor the growth of
C3 woody vegetation.

The declining trend in grassland areas was consistent with the increased temperature anomaly
over NM and was also associated with a decline in grassland productivity in the state as indicated
in [17]. This observation highlights the importance and need to assess the extent and quality of
rangelands components (i.e., grasslands and shrublands) as they play significant role in NM’s food
production systems [20,74]. The study by [6] also suggested that the loss of rangeland ecosystems was
due to crude oil and natural gas activities. However, the study by [6] didn’t provide a distinction
between grassland and shrubland classes to evaluate the effect of each land cover type on the other.

Only three counties showed significant area change in cultivated cropland that included Doña
Ana, Curry, and Roosevelt. The cultivated cropland area in Doña Ana County showed a significant
increasing trend during the 1992–2016 period. On the contrary, the cultivated cropland area Curry
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County consistently decreased in during 1992–2016, though there was an increase between 2011 and
2016. The cultivated cropland area consistently decreased over Roosevelt. In the rest of the counties
(i.e. Eddy, Lea, and San Juan), the cultivated cropland area estimates showed a net increase in Eddy
and San Juan counties and a net decrease over Lea County.

It was observed that the net decrease in the cultivated cropland areas in the study counties was
associated with an increasing temperature anomaly that started since the 1990s as well as frequent and
persistent drought events [19] (Figure 7). Moreover, the counties that experienced net declining trends
(i.e., Curry, Lea, Roosevelt) are located in areas (southeast New Mexico) with limited to no surface
water supplies—a condition that makes these counties rely heavily on groundwater resources (for
irrigation) that also showed a declining trend in water levels in recent years [75,76]. Another potential
reason for the net decreasing trend in cultivated cropland in the three counties in eastern NM can be
attributed to the expansion of Barren Land cover, mostly due to increased fragmentation of the land
due to crude oil and natural gas drilling activities (production pads). The recent finding by [6] that
was conducted during the period between 2000 and 2012 indicated that the loss of ecosystem services
including cropland in North America was directly associated crude oil and natural gas activities.
The net increasing trend in the other three counties, including Doña Ana, San Juan, and Eddy, can partly
be explained by the fact that most of the cropland areas in these counties are located in regions that
rely on surface water resources (near river corridors) or conjunctive use of surface and groundwater
sources, specifically the Lower Rio Grande, San Juan, and Pecos rivers, respectively.

6. LULC Change and FEWS: A Perspective

Most of the recent research findings of area estimation applications were based and performed
at regional and large scales and different scopes (mainly over cropland and forest covers). For
example, there were many applications related to land cover change (e.g., [44]), land use mapping and
monitoring (e.g., [77]), biomass estimation (e.g., [78]), forest disturbance and change in forest types [79],
and estimating cultivated cropland area and abandonment (e.g., [80,81]). However, there is a lack
of studies related to providing more accurate (bias-adjusted), consistent, and long time series area
estimates (e.g., compared to the single time estimates by [82]) that can be used to evaluate, quantify,
and manage FEWS land resources especially at county scale. Thus, this study was conducted partly to
highlight the importance of addressing this issue. The LULC bias-adjusted area estimates and their
uncertainties at county level can particularly be helpful in developing an improved characterization of
the interconnected FEWS components. Therefore, extending the usability of operational products, such
as the NLCD at such scale, allows for a more appropriate evaluation of FEWS behavior in responses to
(consistent and highly accurate estimates of) LULC area changes.

In this study, the focus was on land resources that support NM’s food production systems
including rangeland components (i.e. grassland and shrubland) and cultivated cropland classes
because of their environmental and socioeconomic importance for functionally sustainable NM’s
FEWS [19–22,74]. Generally, FEWS nexus decisions require addressing complex natural resource and
development challenges for an improved sustainability [22,23]. Thus, the knowledge about the extent
and land area change estimates consequently has great role in evaluating the behavior of FEWS that
can in turn reflect their response to changing environmental and climate conditions, such as rising
temperatures, heat waves, variable precipitation, and severe and persistent drought among others.
All these changes can directly affect rangeland and cropland availability and productivity as they
support livestock and crop production. In particular, as ~92% of NM’s land can be considered as
rangeland [16], recent studies from NM and southwest US suggested that rangeland carrying capacity
may have been reduced by as much as 30% due to climate change [17,19]. A summary of the observed
relative LULC area change over the six counties between 1992 and 2016 (Table 8) indicated reduced
grassland areas where it was needed the most, potentially due to encroachment from woody vegetation
(shrubs); increased shrubland area over the same counties that experienced decrease in grasslands;
and; and reduced cropland areas in region with increased reliance on groundwater for irrigation.
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Hence, this depiction of the changes in LULC highlighted the need for consistent and reliable land
resource information, which can help in accurately monitoring available natural resources and develop
an improved understating of the NM’s FEWS as well as sustainable management practices.

Table 8. Summary of LULC relative area change over the three classes (i.e. grassland, shrubland,
and cultivated cropland) over each study counties during 1992–2016.

County Relative LULC Area Change between 1992 and 2016 Period (%)

Grassland Shrubland Cultivated Cropland

Curry (−) 60 (+) 4255 * (−) 36
Roosevelt (−) 84 (+) 267 (−) 63

Lea (−) 73 (+) 113 (−) 24
Doña Ana (+) 130 (−) 10 (+) 109

Eddy (−) 23 (+) 10 (+) 187
San Juan (−) 25 (−) 31 (+) 318

The bias adjusted areas of the shrubland class over Curry County in 1992 and 2016 were 3367 ha (±2%) and 146638 ha
(±7%), respectively. The signs in parentheses represent the direction of the change.

7. Limitations and Future Work

As the study was aimed at providing more accurate estimates of LULC area over the main three
classes that include shrubland, grassland, and cultivate cropland that can be used to provide an
improved understanding and characterization of NM’s FEWS county level, the authors acknowledged
some limitations that need to be considered when using the obtained findings. Generally, the SEPAL
and the other tools used provided an effective means to conduct this analysis. However, the reference
data collection involved using automatically generated reference samples. These reference samples
were then labeled following a visual inspection of satellite imagery in Google Earth using the Collect
Earth tool. The reference samples that were labeled with a low confidence (e.g., located on the edges of
land cover classes) were expected to be manually dropped (removed) by the interpreter rather than
reallocating them to more well-defined surfaces. This process (i.e., dropping of samples) could result
in a lower sample size for each selected region. Considering the large number of reference samples
collected in this analysis the authors made sure to follow the guidelines related to minimum number
of sample as explained in [44]. Moreover, the bias-adjusted area estimates were only compared with
pixel counting estimates because of the limited data availability such as true area proportions of land
cover classes or high spatial resolution remote sensing thematic maps at county level.

To address some of these limitations the authors will compare the obtained area estimates with
other dataset that have similar characteristics as it becomes available. One of the datasets include
the Crop Data Layer [69], which currently has limited data over New Mexico that only go back
to 2006. Additionally, the authors are planning to make use of the new generation of NLCD [30]
that has relatively higher temporal resolution (every two years) for a more consistent bias-adjusted area
estimates. Dynamic LULC change will be conducted to evaluate how each LULC class is shifting and
affecting other classes. This can be helpful in determining for example the loss of natural ecosystems to
Developed and/or encroachment of woody vegetation (shrubland) in grassland. Moreover, additional
analysis will be conducted in the future to cover all NM’s counties in New Mexico.

8. Conclusions

The main goal of the study was to examine the usability of the single-date NLCD legacy maps
(i.e., 1992, 2001, 2006, 2011, and 2016) at the county level decisions to help in resource monitoring,
management, and conservation in New Mexico as well as other areas with similar semi-arid conditions.
This research highlighted some of the uncertainties related with the use of NLCD area estimates
over a few LULC classes (i.e., grassland, shrubland, and cultivated cropland) that mostly contribute
to NM’s FEWS in six counties that include San Juan, Curry, Roosevelt, Lea, Eddy, and Doña Ana.
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The cloud-based computation and analysis tools in SEPAL provided standardized and consistent sample
allocation, integrate appropriate response design, and analysis of area estimates and uncertainties.
These characteristics in SEPAL allowed for efficient application and evaluation of LULC change trends
at the county level. This is important, especially in southwest US region where it can be challenging to
obtain highly accurate estimates of LULC area change. The producer’s and user’s accuracies over some
of the three LULC classes showed wide ranges of accuracy levels. Based on SEPAL, the obtained OA of
the NLCD maps at the county level during the 1992–2016 period ranged from 71%–100%, and were
lower compared to those of the NLCD maps at the regional and national scales. The commission
errors mostly emanated from intermixing and spectral similarity between some of the LULC classes.
For example, the commission of pixels from one class to the other was evident between shrubland
and grassland; cultivated cropland and shrubland; and grassland and Forest. The shrubland cover
showed a net area increase in all the study counties except in Doña Ana and San Juan counties. On the
contrary, grassland showed a decreasing trend in all the study counties except in Doña Ana. Cultivated
cropland, in general, exhibited decreasing trends in three counties (i.e. Curry, Roosevelt, and Lea) and
increasing trends in the rest of the counties. The LULC area estimates obtained at the county level
based on SEPAL were generally lower than those obtained directly from NLCD maps (pixel counting).

In recent years, cloud computing approaches using different platforms, such as GEE, Amazon
Web Services (AWS), and Open Foris among others are emerging as powerful means to efficiently
process large datasets and reduce the need for massive local storage and computational requirements.
Likewise, the SEPAL platform, which is also publicly accessible, integrates a number of existing tools
to facilitate and specifically enhance land monitoring. Some of the main advantages of SEPAL include
its ability to:

1. Provide standardized, robust, and semi-automated protocols for LULC accuracy assessment,
and uncertainty analysis.

2. Allow the comparison of multitemporal land cover data of the same location at local and national
mapping scales by facilitating access to several remote sensing data sources

3. Conserves storage and computational resources needs by providing and integrating inbuilt access
to other cloud-based platforms as well as data sources.

4. Provide improved computational efficiency and it is easily adaptable, as it requires minimal local
computing capacities and human resources.

The findings of this study can help in developing an improved understanding about the behavior
of NM’s FEWS; assess their corresponding response to environmental and climatic changes; and
provide guidance to develop management practices to enhance the sustainability of NM’s natural
resources. However, further studies are still needed to provide a time series of area change estimates at
high spatial resolution. For example, by using the new generation of NLCD maps; detect the dynamic
changes of the ecosystem structure; and evaluate their relationship with essential climate variable
such as temperature and precipitation particularly over shrublands and grassland (i.e., rangeland
ecosystems) as they play a great role in NM’s food production systems. While this study was conducted
over New Mexico, its findings can be extended to other regions with similar conditions.
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Appendix A

A description of the LULC classes used for reference data collection, labeling, and area estimation.

Table A1. Description of LULC classes. The text and numbers in bold highlight the name and code of
THE LULC classes used in the study.

Level 1 Level II LULC Classes Description

Water Open Water (11)
Perennial Ice/Snow (12)

(11) Areas of open water, generally with less than 25% cover of
vegetation or soil. (12) Areas characterized by a perennial cover of ice

and/or snow, generally greater than 25% of total cover.

Developed

Open Space (21)
Low Intensity (22)

Medium Intensity (23)
High Intensity (24)

(21) Areas with a mixture of constructed materials, but mostly
vegetation in the form of lawn grasses with 20% impervious surfaces

(e.g., large-lot single-family housing units, parks, and golf courses). (22)
Areas with a mixture of constructed materials and vegetation.

Impervious surfaces account for 20% to 49% percent of total cover
(e.g., single-family housing units), (23) like (22) but with 50% to 79% of

impervious surfaces. (24) Highly developed areas (e.g., apartment
complexes, row houses, and commercial/industrial) with 80% to 100%

impervious surfaces.

Barren Barren Land (31) (Rock/Sand/Clay)

Areas of bedrock, desert pavement, scarps, talus, slides, volcanic
material, glacial debris, sand dunes, strip mines, gravel pits and other
accumulations of earthen material. Generally, vegetation accounts for

less than 15% of total cover.

Forest
Deciduous Forest (41)
Evergreen Forest (42)

Mixed Forest (43)

(41) Areas dominated by trees generally greater than 5 meters tall, and >
20% of total vegetation cover with more than 75% of the tree species

shed foliage simultaneously in response to seasonal change. (42) Areas
with more than 75% of the tree species maintain their leaves all year and
canopy never without green foliage. (43) Area with more than 75% of

the tree species maintain their leaves all year and neither deciduous nor
evergreen species are greater than 75% of total tree cover.

shrubland
Dwarf Scrub (51)
Shrub/Scrub (52)
[or shrubland]

(51) Areas dominated by shrubs; less than 5 meters tall with shrub
canopy typically greater than 20% of total vegetation. (52) This class

includes true shrubs, young trees in an early successional stage or trees
stunted from environmental conditions.

grassland

grassland/ Herbaceous (71)
Sedge/Herbaceous (72)

Lichens (73)
Moss (74)

(71) Areas dominated by graminoid or herbaceous vegetation, generally
greater than 80% of total vegetation. These areas are not subject to

intensive management, such as tilling but can be utilized for grazing.
(72), (73), and (74) are Alaska only classes.

Planted/ Cultivated
Pasture/ Hay (81)

Cultivated Crops (82)

(81) Areas of grasses, legumes, or grass-legume mixtures planted for
livestock grazing or the production of seed or hay crops, typically on a
perennial cycle. (82) Areas used to produce annual crops, such as corn,
soybeans, vegetables, tobacco, and cotton, and perennial woody crops
such as orchards and vineyards. This class also includes all land being

actively tilled

Wetlands
Woody Wetlands (90)
Emergent Herbaceous

Wetlands (95)

(90) Areas where forest or shrubland vegetation accounts for greater
than 20% of vegetative cover and the soil or substrate is periodically

saturated with or covered with water.
(95) Areas where perennial herbaceous vegetation accounts for greater

than 80% of vegetative cover and the soil or substrate is periodically
saturated with or covered with water.

Appendix B

A summary of the obtained user’s accuracy and producer’s accuracy over the rest of the
LULC classes.
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Table A2. User’s and producer’s accuracy for the rest of the LULC classes for the NLCD map of 1992.

County 1992

Accuracy WB DEV BRL FRL PSL WW EHW

Curry PA 57 30 52 100
UA 100 100 83 82

Doña
Ana

PA 81 100 20 20 72 0 97
UA 82 82 95 84 48 0 80

Eddy PA 100 45 35 98 16 100
UA 75 97 96 88 95 48

Lea
PA 99 11 98 100 74 100 100
UA 100 86 60 5 85 44 44

Roosevelt
PA 98 85 100 100
UA 71 52 14 83

San Juan PA 100 91 26 100 14 98
UA 91 86 85 64 32 52

WB = Water body, DEV = Developed, BRL= Barren land, FRL = Forest Land PSL= pasture/hay, WW= Woody
Wetland, and EHW= Emergent Herbaceous Wetlands.

Table A3. User’s and producer’s accuracy for the rest of the LULC classes for the NLCD map of 2001.

County 2001

Accuracy WB DEV BRL FRL PSL WW EHW

Curry PA 82 54 50 100
UA 88 99 87 100

Doña
Ana

PA 26 44 100 66 13 7 4
UA 77 91 83 92 75 100 85

Eddy PA 77 39 19 93 21 47
UA 92 96 73 93 80 70

Lea
PA 76 94 81 0 43 100
UA 100 78 63 0 89 53

Roosevelt
PA 95 20 8 0 9
UA 96 97 44 0 92

San Juan PA 95 30 37 88 96 100 26
UA 86 85 100 100 81 70 85

The description of the different columns and row is same as in Table A2.

Table A4. User’s and producer’s accuracy for the rest of the LULC classes for the NLCD map of 2006.

County 2006

Accuracy WB DEV BRL FRL PSL WW EHW

Curry PA 88 65 2 56 96 3
UA 76 86 95 67 72 89

Doña
Ana

PA 96 97 94 96 26 20 61
UA 85 87 97 92 75 81 20

Eddy PA 76 10 4 26 0 9 5
UA 71 90 64 61 55 96 53

Roosevelt
PA 88 100 4 100 100 97
UA 100 82 91 100 67 39

San Juan PA 92 90 100 62 87 99 100
UA 95 88 96 100 85 59 78

Lea
PA 59 26 57 0 47 100
UA 100 78 72 0 100 70

The description of the different columns and row is same as in Table A2.
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Table A5. User’s and producer’s accuracy for the rest of the LULC classes for the NLCD map of 2011.

County 2011

Accuracy WB DEV BRL FRL PSL WW EHW

Curry PA 3 49 1 11 1 62
UA 100 95 75 100 88 58

Doña Ana
PA 100 47 21 99 16 99 100
UA 88 84 100 84 66 76 50

Eddy PA 74 91 2 27 3 10 12
UA 88 90 88 99 73 92 77

Roosevelt
PA 100 47 80 100 59 87
UA 91 86 85 64 32 52

San Juan PA 15 15 47 100 17 18 50
UA 91 94 74 92 79 80 92

Lea
PA 63 40 75 100 72 16
UA 92 81 81 76 100 48

The description of the different columns and row is same as in Table A1.

Table A6. User’s and producer’s accuracy for the rest of the LULC classes for the NLCD map of 2016.

County 2016

Accuracy WB DEV BRL FRL PSL WW EHW

Curry PA 85 80 1 100 0 99
UA 88 96 84 100 100 82

Doña Ana
PA 99 21 50 24 0 1
UA 89 82 76 92 100 95

Eddy PA 96 96 21 33 43 96
UA 98 67 80 88 92 85

Roosevelt
PA 90 27 6 20 100 16
UA 96 93 83 80 48 63

San Juan PA 89 86 4 38 95 22 85
UA 97 82 93 93 83 88 37

Lea
PA 93 30 54 100 69 100
UA 88 78 72 100 84 72

The description of the different columns and row is same as in Table A2.

Appendix C

Some of the estimated error matrixes for select counties and years were shown here to support the
findings of this analysis. The reported errors were expressed as percent of area weighted by samples
in agreement or disagreements by the total samples. The Standard Error (SE) is stratified estimator of
proportion areas, the Area Estimates (AE) is adjusted area estimates which was obtained by subtracting the
area of commissioned area (ha) from area of map data (before adjustment) and adding omitted area (ha).

Table A7. Error matrix of Lea County (2006) expressed by Area Weighted Proportions (%).

Reference Data (2006)

Map 11 20 31 52 71 82 90 95 UA

M
ap

da
ta

(2
00

6)

11 96 0 0 0 0 0 0 0 100
20 0 3 3 33 21 4 0 0 78
31 9 6 56 6 0 0 0 0 72
52 0 5 0 83 0 0 0 0 94
71 0 2 0 22 62 2 0 0 70
82 0 3 3 10 0 80 0 0 82
90 0 0 0 0 0 0 100 0 100
95 0 0 0 0 15. 0 1.5 70 70

WPA (%) 59 26 57 82 99 65 45 100
AE (ha) 1272 64,313 5,476 692,112 338,707 35,258 98 242
SE (ha) 286 26,825 1,160 41,157 35,397 12,222 28 36
95% CI

(ha) 560 52,576 2,273 80,668 69,379 23,956 56 71

SE = Standard Error, CI = Confidence Interval, WPA = Weighted Producer’s Accuracy, UA = User’s Accuracy. Land
cover classes codes: Open Water (11), Developed (20), Barren Land (31), Forest (40), shrubland (52), grassland (71),
cultivated cropland (82), Woody Wetland (90), and Emergent Herbaceous Wetland (95).
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Table A8. Error matrix of Eddy county (2011) expressed by Area Weighted Proportions (%).

Reference Data (2011)

Map 11 20 31 40 52 71 81 82 UA

M
ap

da
ta

(2
01

1)

11 82 0 8 2 0 0 0 0 88
20 8 95 3 0 0 0 0 0 90
31 0 6 55 0 2 0 0 0 88
40 0 1 0 79 0 0 0 0 99
52 0 0 39 10 88 0 0 2 59
71 0 0 2 6 2 100 0 0 91
81 0 0 0 35 0 0 95 0 73
82 0 3 3 0 9 0 0 88 86

WPA
(%) 74 91 55 27 100 100 3 54

AE (ha) 5474 16,666 259,892 94,486 574,183 31,354 105 26,391
SE (ha) 464 836 50,197 28,915 56287 1403 101 13,342
95% CI

(ha) 910 1639 98,386 56,674 110,322 2750 199 26151

The description of the different columns and row is same as in Table A7.

Table A9. Error matrix of Doña Ana County (1992) expressed by Area Weighted Proportions (%).

Reference Data (1992)

Map 11 20 31 52 71 82 UA

M
ap

da
ta

(1
99

2) 11 96 0 0 0 0 0 100
20 0 3.4 29 33 20 4 78
31 9 6.3 56 6 0 0 72
52 0 5 0 82 0 0 94
71 0 2.2 0 22 62 2 70
82 0 33 3 10 0 80 83

WPA(%) 59 26 57 100 100 65
AE (ha) 1272 64,313 5476 692,112 33,8707 35,258
SE (ha) 286 26,825 11,560 41,157 35,397.2 12,222

95% CI (ha) 559.7 52,576.3 2272.5 80,668 69,379 23,956

The description of the different columns and row is same as in Table A7.

Table A10. Error matrix of Curry County (2006) expressed by Area Weighted Proportions (%).

Reference Data (2006)

Map 11 20 31 52 71 82 90 95 UA

M
ap

D
at

a
(2

00
6)

11 82 0 5 3 0 0 16 0 88
20 0 99 10 0 1 0 0 0 65
31 3 0 62 0 0 0 0 0 2
52 0 0 8 97 3 0 0 6 100
71 0 2 2 0 83 0 2 0 98
82 0 1 1 0 1 0 0 0 91
90 2 0 0 0 5 98 0 0 96
95 5 0 1 0 0 1 91 40 3

WPA (%) 88 65 62 56 100 98 91 40
AE (ha) 186 24,070 10,491 3,326 193,468 127,438 48 5618
SE (ha) 18 6179 6174 182 11,874 9032 4 5436
95% CI

(ha) 35 12,111 12,100 357 23,272 17,703 7 10,654

The description of the different columns and row is same as in Table A7.
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Table A11. Error matrix of San Juan county (2011) expressed by Area Weighted Proportions (%).

Reference (2011)

Map 11 20 31 40 52 71 81 82 UA

M
ap

D
at

a
(2

01
1)

11 15 0 1 0 0 0 0 0 91
20 0 15 0 0 0 0 0 0 94
31 2 9 47 0 2 2 2 0 74
40 0 3 0 100 3 0 0 0 92
52 3 24 3 0 99 54 6 3 50
71 3 0 0 0 0 51 8 0 83
81 0 0 0 0 0 0 17 4 79
82 0 2 0 0 0 0 0 50 89
90 0 1 0 0 0 0 1 0 80
95 0 2 0 0 0 0 2 0 92

WPA(%) 15 15 47 100 99 51 17 50
AE (ha) 32,403 139,012 26,832 97,464 465,505 512,881 82,270 34,637
SE (ha) 19,119 37,503 14,070 3295 57,366 56,532 29,188 14,128

95%CI (ha) 37,473 73,506 27,578 6458 112,438 110,802 57,209 27,691

The description of the different columns and row is same as in Table A7.
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