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Background: The development and validation of clinical outcome measures to detect early cognitive decline
associated with Alzheimer's disease (AD) biomarkers is imperative. Semantic intrusions on the Loewenstein
Acevedo Scales of Semantic Interference and Learning (LASSI-L) has outperformed widely used cognitive
measures as an early correlate of elevated brain amyloid in prodromal AD and has distinguished those with
amnestic mild cognitive impairment (aMCI) and high amyloid load from aMCI attributable to other non-AD

Amyloid St
Neu};‘oimaging conditions.
Intrusions Methods: Since intrusion errors on memory tasks vary widely, we employed a novel method that accounts for the

percentage of intrusion errors (PIE) in relation to total responses. Individuals with either high or low amyloid
load across the spectrum of aMCI and dementia and amyloid negative cognitively normal older adults (CN) were
studied.

Results: Mean PIE on indices sensitive to proactive semantic interference (PSI) and failure to recover from
proactive semantic interference (frPSI) could distinguish amyloid positive from amyloid negative aMCI and
dementia groups. Number of correct responses alone, while able to differentiate the different diagnostic groups,
did not differentiate amyloid positive aMCI from their counterparts without amyloid pathology.

Conclusions: PIE, a novel and sensitive index of early memory dysfunction, demonstrated high levels of sensi-
tivity and specificity in differentiating CN from amyloid positive persons with preclinical AD. Mean levels of PIE
are higher for amyloid positive aMCI and dementia participants relative to their amyloid negative counterparts.

1. Introduction pathology. In particular, the validation of in-vivo amyloid 3 (Ap) de-

position in living individuals using positron emission tomography (PET)

Emerging treatments for Alzheimer's disease (AD) will likely be
most effective in the earliest stages of illness, before significant multi-
system neurodegeneration has occurred. It is therefore critical to the
success of emerging AD clinical trials focusing on early disease states to
target specific individuals that are at high risk for the disorder. The
increased utility of AD biomarkers represents a major advancement in
efforts to identify the first manifestations of underlying brain

imaging (Landau et al., 2015) or in the cerebrospinal fluid (CSF) re-
presents a significant achievement for early identification of individuals
at high risk for developing clinical AD. In AD clinical trials, the use of
biomarkers in the CSF and by PET brain imaging presents an advantage
for selecting asymptomatic but at-risk participants based on the pre-
sence of underlying AD brain pathology; however, the reliance on AD
biomarkers of amyloidosis or neurodegeneration to increase confidence
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in diagnostic determination remains challenging for several reasons.
Beyond participants' reluctance to undergo a lumbar puncture, and PET
imaging being highly cost prohibitive, brain A} has not yet proven to be
an effective surrogate outcome measure. Further, brain A} burden has
not been well correlated with cognition and/or clinically meaningful
outcomes (Leung et al., 2012; Hedden et al., 2013; Posner et al., 2017),
which are necessary for drug approval from the Food and Drug Ad-
ministration (FDA).

Moreover, the relative insensitivity of clinical outcome measures to
capture early cognitive changes in AD imposes critical challenges to AD
clinical trials focusing on prevention. Thus, the field is recognizing the
need to develop and validate clinical outcome measures that are able to
detect early cognitive decline that is associated with underlying pre-
clinical AD biomarkers such as amyloid, and markers of early neuro-
degeneration including tau deposition, and volumetric loss/cortical
thinning in AD prone regions. One promising cognitive outcome mea-
sure, the Loewenstein Acevedo Scales of Semantic Interference and
Learning (LASSI-L), has been shown to be significantly more sensitive to
early cognitive impairment than traditional paradigms focused on im-
paired learning or increased rate of forgetting, which comprise the
more traditional clinical paradigms used to assess memory deficits
(Loewenstein et al., 2018; Matias-Guiu et al., 2017a). The LASSI-L has
outperformed other widely used memory measures in detecting pro-
dromal AD in both the United States and abroad (Matias-Guiu et al.,
2017a; Rosselli et al., 2019; Sanchez et al., 2017), and has revealed
early deficits that have been associated with prodromal and preclinical
AD. These include proactive semantic interference (PSI), the failure to
recover from the effects of proactive semantic interference (frPSI), and
retroactive semantic interference (RSI) (Loewenstein et al., 2017). In
addition to the number of correct targets recalled on trials susceptible
to PSI, frPSI and RSI, there is emerging evidence that semantic intrusion
errors may have specific utility in the assessment of prodromal AD.
Loewenstein and colleagues (2018) found that semantic intrusion errors
sensitive to PSI and frPSI on the LASSI-L could differentiate amyloid
positive aMCI groups from amyloid negative aMCI groups with non-AD
diagnoses. Moreover, these types of errors distinguished between in-
dividuals suspected to have prodromal Alzheimer's disease, even after
statistically adjusting for dominant language (English versus Spanish),
age, and total MMSE scores (Loewenstein et al., 2018). Torres and
colleagues (2019), found that semantic intrusion errors could also dis-
tinguish between aMCI and cognitively normal controls.

While it is recognized that intrusion errors represent early mani-
festations of neurodegenerative brain disease, a potential limitation of
previous approaches is that the number of intrusion errors are often
highly dependent on an individual's total responses on a particular trial.
Thus, even a seemingly modest number of intrusion errors may actually
represent an at-risk cognitive profile, depending on the total number of
responses that are correct. For example, an individual may make a
minimal number of intrusion errors on a given trial, which may appear
to be clinically insignificant. However, if the number of total responses
is low, even a modest number of intrusion errors may indicate impaired
inhibitory processes and underlying brain pathology.

The purpose of the current study was to further evaluate the utility
of semantic intrusion errors by expanding upon previous work. We
include older adults with normal cognition compared to those who have
aMCI and early dementia with high versus low amyloid load and em-
ploy a novel approach to evaluating intrusion errors as a function of
total responses on trials.

To our knowledge, no previous investigations have explored the
clinical utility of percentage of intrusion errors (PIE) in association to
AD biomarkers. This approach recognizes the importance of intrusion
errors, which Tropea and colleagues (2017) found to be predictive of
cognitive decline over time while also examining intrusions in context
of their relation to overall responses.
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2. Methods and materials
2.1. Participants

We recruited 124 older adults (47% predominant Spanish speakers)
from the 1Florida Alzheimer's Disease Research Center (ADRC) for this
IRB-approved investigation. An experienced clinician administered a
standard clinical assessment protocol, which included the Clinical
Dementia Rating Scale (CDR), and the Mini-Mental State Examination
(MMSE). Subsequently, a uniform neuropsychological battery com-
prising the tests described below was independently administered in
either Spanish or English dependent on the participant's dominant and
preferred language. Diagnostic groups were classified using the fol-
lowing criteria:

2.2. Amnestic MCI group (aMCD (n = 72)

Participants met Petersen's criteria (2014) for MCI and evidenced all
of the following: a) subjective cognitive complaints by the participant
and/or collateral informant; b) evidence by clinical evaluation or his-
tory of memory or other cognitive decline; c¢) Global Clinical Dementia
Rating scale of 0.5 (Morris, 1997); d) below expected performance on
delayed recall of the HVLT-R (Brandt, 1991) or delayed paragraph re-
call from the National Alzheimer's Coordinating Center -Unified Data
Set (NACC-UDS; Beekly et al., 2007) as measured by a score that is 1.5
SD or more below the mean using age, education, and language-related
norms.

2.3. Dementia group (n = 31)

Participants were diagnosed with dementia using criteria a and b as
described for the aMCI group and evidenced all of the following: a)
Global CDR score of 1.0; b) below expected performance on the
memory measures described above that scored 2.0 SD or more below
the mean using age, education, and language-related norms.

2.4. Cognitively normal group (n = 21)

Participants were diagnosed as cognitively normal if all of the fol-
lowing criteria were met: a) no subjective cognitive complaints made by
the participant and/or a collateral informant; b) no evidence by clinical
evaluation or history of memory or other cognitive decline after an
extensive interview with the participant and an informant; c) Global
CDR score of 0; d) all memory and non-memory measures (e.g.:
Category Fluency (Binetti et al., 1995), Trails A and B (Reitan, 1958)),
WAIS-IV Block Design subtest (Wechsler, 2008) were no lower than 1.0
SD below normal limits for age, education, and language group.

Spanish language evaluations were completed with equivalent
standardized neuropsychological tests and appropriate age, education,
and cultural/language normative data (Arango-Lasprilla et al., 2015a,
2015b; Benson et al., 2014; Ostrosky-Solis et al., 2000; Pena-Casanova
et al., 2009). Proficient bilingual (Spanish/English) psychometricians
performed testing.

2.5. Loewenstein- Acevedo Scales for Semantic Interference and Learning
(LASSI-L)

The LASSI-L was not used for diagnostic determination in this study.
This cognitive stress test represents a novel paradigm that employs both
controlled learning and cued recall to maximize storage of a list of to-
be-remembered target words representing three semantic categories
(Curiel et al., 2016). The LASSI-L subscales have shown adequate test-
retest reliabilities, as well as, high discriminative and concurrent va-
lidity (Crocco et al., 2014; Curiel et al., 2013; Matias-Guiu et al., 2017a;
Matias-Guiu et al., 2017b; Sanchez et al., 2017).

During the administration of the LASSI-L, the examinee is instructed
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to remember a list of 15 common words representing 3 semantic ca-
tegories (fruits, musical instruments, and articles of clothing) over two
trials with category cues provided for recall (List A). The cued recall
after the second presentation of List A is a measure of maximum storage
capacity (Trial A2). Then, List B with 15 words representing the same
semantic categories as List A is presented. Cued B Trial 1 recall is
subject to proactive semantic interference (PSI) while the second cued
recall trial of List B measures the failure to recover from PSI (frPSI). We
have previously found that semantic intrusions on Cued List B1 and
Cued List B2 represent deficits in source memory and response inhibi-
tion.

2.6. PIE ratio

The absolute number of semantic intrusions does not account for the
number of total correct responses on a particular trial. For example, a
modest number of intrusion errors on Cued Bl of the LASSI-L may be
more relevant in light of a limited number of total responses and may be
indicative of cognitive impairment and underlying brain pathology. As
a result, we developed a new ratio that accounts for intrusion errors as a
percentage of total responses on three LASSI-L subscales that have been
highly sensitive to early cognitive impairment. Specifically, the ratio is
denoted as follows: Total Intrusion Errors/(Total Intrusion
Errors + Total Correct Responses). These ratios can be calculated in-
dividually for LASSI-L Cued B1 (a measure of susceptibility to proactive
semantic interference) and LASSI-L Cued B2 recall (a measure of re-
covery from proactive semantic interference) and LASSI-L Cued A3
recall (a measure of susceptibility to retroactive semantic interference).

2.7. Amyloid PET imaging

PET Scan Imaging: A 3D Hoffmann brain phantom was used to es-
tablish a standardized acquisition and reconstruction method.
Participants were infused with [18-F] florbetaben 300 MBQ over a 3-
min period. Scanning commenced 70-90 min after the infusion for a
duration of 20 min on a Siemens Biograph 16 PET/CT scanner oper-
ating in 3D mode (55 slices/frame, 3 mm slice thickness 128 X128
matrix). The PET data were reconstructed into a 128 X 128 X 63
(axial) matrix with voxel dimensions of 0.21 x 0.21 X 0.24 cm. A
small number of participants had florbetapir as their amyloid tracer.
Reconstruction was performed using manufacturer-supplied software
and included corrections for attenuation, scatter, random coincidences,
and dead time. Images for regional analyses were processed using
Fourier analysis followed by direct Fourier reconstruction.

2.8. Visual ratings of amyloid PET scans

All AB-PET scans were analyzed by an experienced rater (RD) who
was blinded to the cognitive and clinical diagnosis, using a metho-
dology similar to that described by Seibly and colleagues (2016). Tracer
uptake was assessed in six cortical regions (orbitofrontal, frontal, par-
ietal, lateral temporal, occipital and precuneus/posterior cingulate
cortex, combining values from the left and right hemispheres) using the
regional cortical tracer uptake (RCTU) system (Bullich et al., 2017). A
final dichotomous (Amy + versus Amy-) diagnosis was rendered.
Loewenstein and colleagues (2018) found extremely high agreement
between our neurologist (RD) and an independent rater in interpreting
these scans. Among a group of community dwelling elders, the con-
cordance between RD and a neuroradiologist independently reviewing
the scans was 93.2% for Amy + scans and 100% for Amy— scans.
Visual ratings of amyloid load have been considered the “gold stan-
dard” in identifying amyloid plaques that are confirmed by histo-
pathological data upon autopsy (Clark et al., 2012; Lizarraga et al.,
2018; Salloway et al., 2017; Smith et al., 2004). For this study, amyloid
positivity was determined by the visual rating.
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2.9. Quantitative analyses of amyloid PET scans

The PET/CT scans, including the outline of the skull, were co-re-
gistered linearly (i.e., trilinear interpolation) with 12 degrees of
freedom, onto the volumetric MRI scan using a T1-weighted (MP-
RAGE) (Salloway et al., 2017; Smith et al., 2004). Region-of-interest
(ROI) boundaries were defined manually using the structural MRI for
anatomical reference, and criteria that have been proven to provide
highly reproducible outcomes (Desikan et al., 2006). This registration
process ensured that the florbetaben PET/CT image had the same ac-
curate segmentation and parcellation as in the MRI scan. The average
activity was calculated in the ROIs corresponding to cerebellar gray
matter and cerebral cortical regions. A composite SUVR was calculated
by the ratio of the mean volume-weighted SUVR of 5 cortical regions
(frontal, temporal, parietal, anterior and posterior cingulate cortex re-
gions, each region summed from left and right hemispheres) to whole
brain cerebellum (Rowe et al., 2008).

Over 75% of our sample had Florbetaben as their PET tracer while
the rest had Florbetapir. The Centiloid (CL) method has been widely
used to create a common metric by which total amyloid uptake can be
place on the same scale for different amyloid tracers (Jack et al., 2017;
Rowe et al., 2017). Using normalization to the whole brain cerebellum,
for Florbetaben, the Centiloid formula used was [(SUVR X 153.4)
-(154.9)] and for Florbetapir the Centiloid formula used was [(SUVR X
183) —177]. This created a Centiloid score for each participant that
could be used in subsequent analyses.

Because of two different amyloid tracers employed, we used the CL
method to determine amyloid positivity. It has been found that a CL as
low as 20 represents amyloid pathology (Rowe et al., 2018). In our
laboratory, a negative visual reading with CL of < 15 denotes minimal
amyloid deposition. To help ensure the optimal diagnostic integrity of
our groups, participants who were deemed amyloid negative were re-
quired to have both a negative visual amyloid read and a CL value of
less than 15. Conversely, those individuals with an amyloid positive
visual reads were required to have a CL value of 20 or greater (Rowe
et al., 2018).

2.10. Final diagnostic study groups

There were 36 aMCI individuals classified as amyloid positive (Amy
+) and 36 aMCI individuals classified as amyloid negative (Amy-) by
both visual reads and global CL scores as described above. Thirty-one
participants diagnosed with dementia were classified as amyloid posi-
tive. Additionally, a group of 21 cognitively normal amyloid negative
participants was included for specific comparisons.

2.11. Statistical analyses

For comparisons between diagnostic groups, a series of one-way
analyses of variance were employed for interval level variables.
Following a statistically significant result, post-hoc tests of means were
examined using the Tukey Honestly Significant (HSD) test.
Dichotomous variables were examined using Chi-square tests. The cri-
teria for statistical significance was p < .05.

The relationships between CL values, total hippocampal volumes,
and percentage of LASSI-L semantic intrusion errors as well as correct
responses was examined using Pearson Product Moment Correlation
Coefficients. In addition, the relation between CL values and LASSI-L
scores were examined controlling for total hippocampal volume. Two-
tailed tests of significance was set at p < .05.

3. Results
As depicted in Table 1, there was no statistically significant age,

education, sex, or language of testing difference between any of the
diagnostic groups. CN participants had the highest MMSE scores
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Table 1
Demographic and LASSI-L Differences Between Amy + and Amy-aMCI and Dementia Participants.
Cognitively Normal aMCI Amy-(n = 36) aMCI Amy+(n = 36) Mild Dementia F-Value or Chi- p-value
Amy-(n = 21) Amy+(n = 31) Square
Age(52-98 Years) 69.90(SD = 6.5) 72.61(SD = 8.2) 74.80(SD = 7.3) 71.87(SD = 9.2) 1.41 .24
Education(5-22-Years) 16.05(SD = 3.0) 14.60(SD = 3.6) 14.67(SD = 3.5) 13.77(SD = 3.7) 2.29 .08
Sex % Female 57.1% 47.2% 50.0% 64.5% 2.36 .50
Tested in Spanish 47.6% 47.2% 40.0% 45.2% .48 .92
MMSE (15-30) 29.14°(SD = 1.0) 27.61%°(SD = 2.6) 26.00°(SD = 2.4) 21.74%(SD = 3.6) 40.53 p < .001
Centiloid Value (—21.71 —2.17%SD = 7.4) .01%(SD = 8.8) 72.40°(SD = 25.4) 87.08°(SD = 36.6) 121.07 p < .001

-216.71)

followed by participants diagnosed with aMCI or dementia, who evi-
denced the lowest MMSE scores. There were no statistically significant
MMSE differences between Amy + and Amy-aMCI groups. As expected,
the lowest CL scores were observed in the Amy- CN and Amy-aMCI
groups while Amy + aMCI and Amy + dementia groups had the
highest average (and equivalent) CL scores.

Diagnostic groups were then compared on the PIE indices and cor-
rect responses made on subscales susceptible to PSI, frPSI and RSI, by
employing a series of one-way analyses of variance (ANOVA).
Following a statistically significant result, post-hoc tests of means were
examined by the Tukey HSD test. As depicted in Table 2, with regard to
the mean PIE on the Cued B1 subscale, susceptible to PSI, aMCI
Amy + participants evidenced a greater mean PIE (50.7%) compared to
their Amy-aMCI counterparts (34.4%). Participants diagnosed with
mild dementia who were amyloid positive had a greater mean PIE
(61.2%) compared to the other diagnostic groups. Similar findings were
observed with regards to performance on the Cued B2 subscale, sus-
ceptible to frPSI. Post hoc comparisons revealed that aMCI Amy + par-
ticipants had a greater mean PIE (34.1%) than aMCI Amy-participants
(19.2%). Participants diagnosed with mild dementia who were
Amy + had a greater mean percentage of intrusion errors compared to
the other diagnostic groups (48.6%). On a LASSI-L subscale that mea-
sures retroactive semantic interference (RSI), persons with aMCI who
were Amy + also had a greater mean PIE (47.8%) versus aMCI Amy-
groups (33.0%). On this subscale, participants diagnosed with mild
dementia had a greater mean PIE compared to the other diagnostic
groups (51.6%).

Interestingly, on measures of correct responses on LASSI-L. measures
susceptible to PSI, frPSI, and RSI, all groups were readily differentiated.
However, unlike the PIE ratios described above, Amy + aMCI could not
be differentiated from Amy-aMCI.

Table 3 depicts the relationship between global CL scores and total
hippocampal volumes with different PIEs and correct response rates for
all cognitively impaired participants. Even after adjusting for hippo-
campal volume, statistically significant correlations between PIE on
indices sensitive to PSI, frPSI and RSI and global centiloid scores ranged
fromr = —.32tor = —0.49. Only LASSI-L correct responses showed

Table 2
Performance of Different Diagnostic Groups on LASSI-L Measures.

statistically significant relationships between frPSI and global centiloid
scores.

4. Discussion

In this study, we showed that the percentage of intrusion errors
(PIE) made on LASSI-L indices were particularly sensitive to early
breakdowns in proactive semantic interference (PSI), failure to recover
from proactive semantic interference (frPSI) and retroactive inter-
ference (RSI). These PIE deficits were more pronounced in amyloid
positive versus amyloid negative aMCI. Virtually all intrusion errors
were target words from List A (the first list), or a semantically asso-
ciated word that was not a specific target on either of the two lists of the
LASSI-L, consistent with what has been previously observed
(Loewenstein et al., 2017; Torres et al., 2019). This highlights the im-
portance of paradigms that include semantic cues at both encoding and
retrieval.

It is noteworthy that PSI and frPSI deficits appear to be a defining
feature of early aMCI, particularly those cases in which AD is con-
sidered an underlying etiological cause of cerebral dysfunction
(Loewenstein et al., 2017). We have previously found that semantic
intrusion errors related to proactive semantic interference may re-
present specific deficits in source memory and inhibitory processes
(Loewenstein et al., 2018; Torres et al., 2019). In this investigation,
using the PIE index, RSI also appeared to be related to amyloid pa-
thology.

Merely accounting for the total number of intrusion errors, as done
in previous studies, may represent a limitation because more responses
are likely to yield a larger absolute number of intrusion errors. Further,
even a few intrusions errors may be consequential in the presence of a
modest number of correct responses. As such, we developed a novel
ratio of intrusion errors to total responses [Intrusion errors/(Intrusion
errors + correct responses)].

The current findings suggest correct responses on LASSI-L, measures
susceptible to PSI, frPSI and RSI could differentiate CN, aMCI and de-
mentia groups. However, only PIE could differentiate Amy+ from
Amy-groups. Indeed, the robust correlations seen in Table 3 indicate

LASSI-L Measure CN aMCI Amy- aMCI Amy + Dementia Amy +

LASSI-L Cued B1 Percentage Intrusions (PSI) 18.37% (SD = 16.3) 34.44°(SD = 21.7) 50.72° (SD = 20.1) 61.20° (SD = 30.7) 17.33 p < .001
(0.0 %-100%)

LASSI-L Cued B2 11.83%SD = 11.2) 19.54%(SD = 15.3) 34.06"(SD = 16.8) 48.61°(SD = 22.2%) 25.11 p < .001
Percentage Intrusions (frPSI)(0.0 %-85.71%)

LASSI-L Short Delay Cued A 21.21%(SD = 18.8) 33.03%(SD = 21.3) 47.75°(SD = 18.6) 51.07%(SD = 20.0) 12.63 p < .001
Percentage Intrusions (RSI)(0.0%-100.0%)

LASSI-L Cued B1 9.00%(SD = 2.2) 5.53°(SD = 2.6) 5.69°(SD = 2.1) 2.87°(SD = 2.2) 29.55 p < .001
Correct Responses (PSI)(0-14)

LASSI-L Cued B2 11.71%SD = 2.1) 8.86°(SD = 3.0) 8.42%SD = 2.0) 4.29(SD = 2.7) 39.42 p < .001
Correct Responses (frPSI)(1-15)

LASSI-L Short Delay Cued A 8.76%(SD = 3.1) 6.56"(SD = 3.0) 6.06 *(SD = 2.4) 4.55°(SD = 2.3) 10.29 p < .001

Correct Responses (RSI)(0-14)

Note: Means with different alphabetic superscripts are statistically significant by the Tukey's Honestly Significant Difference (HSD) Test.
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Table 3
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Association Between LASSI-L Percentage of Intrusion and Raw Scores and Centiloid Raw Scores Among Cognitively Impaired Participants.

Centiloid Score(n = 101)

Hippocampal Volume Score (n = 99)

Centiloid Score Corrected for Overall Hippocampal Volume (n = 91)

Cued B1 PIE (PSI) .29%*(p = .003) -.24**(p = .018)
Cued B2 PIE (frPSI) .49 ***(p < .001) -.20%*(p = .043)
Cued A3 PIE (RSI) .35%**(p < .001) -.26%*(p = .012)

Cued B1 Correct Responses -19(p = .062) .27**(p = .008)
Cued B2 Correct Responses -.39%**(p < .001) .36*%**(p < .001)
Cued A3 Correct Responses -.23%*(p = .024) .14(p = .160)

.35%+*(p < .001)
.49 ***(p < .001)

.32*%*(p = .002)
-17(p = .107)
-31%%(p = .002)
-.20(p = .053)

Note: **p < .05; ***p < .001.

that all PIE indices are associated with the severity of amyloid brain
pathology. The implementation of the PIE measure may prove espe-
cially beneficial in clinical and research settings. For example, in clin-
ical AD trials, PIE may enhance identification of at-risk individuals for
enrollment, potentially reducing costs associated with screening for
inclusion.

The focus on the percentage of intrusion errors in the current in-
vestigation differs in important ways from previous studies that have
focused on diagnosing memory impairment or predicting progression
by analyzing the total number of correct responses or focusing only on
the raw number of intrusion error responses. The present study ad-
dressed the limitations imposed by these previous methods and ana-
lyzed the ratio of intrusion errors to the total number of responses
provided. Thus, The PIE ratios derived from these analyses conveys
comprehensive information about potential breakdowns in the cogni-
tive system (Loewenstein et al., 2018; Tropea et al., 2017).

In our view, it is unlikely that the obtained findings reflect the direct
effects of amyloid load. Rather, it is much more likely that downstream
effects of amyloid load, such as synaptic disruption and the resulting
loss of inter-connectivity between brain regions are responsible for the
increase in intrusion errors that occurs well before actual neuronal loss
resulting in structural brain atrophy. Indeed, Sanchez and colleagues
(2017) demonstrated that among asymptomatic middle-aged offspring
of late-onset AD patients, there were strong associations between in-
trusion errors on the LASSI-L and loss of functional connectivity on
resting state fMRI. While these investigators did not examine the per-
centage of intrusion responses or amyloid load, their findings indicate
that functional connectivity may play a role in the breakdown of im-
portant cognitive processes that may affect percentage of intrusion
error responses. This is an area that deserves further research using
functional neuroimaging modalities such as fMRI.

The strengths of this study include a robust number of carefully
characterized participants, as well as visual and quantitative analyses of
amyloid load, and a novel method of expressing different types of in-
trusion errors as a function of total number of responses on a given trial.
Potential weaknesses include the lack of functional neuroimaging and
quantification of tau pathology. It might be argued that centiloid values
as low as 12 can be associated with very early amyloid deposition but it
should be noted that our CL cut-off < 15 with the requirement of an
amyloid negative visual read assured us that our Amy-participants had
minimal amyloid load. While study groups contained equivalent num-
bers of Hispanic and Non-Hispanic participants, studies with larger
numbers of diverse ethnic and cultural groups will be important to
examine the generalizability of the reported findings. Nonetheless, the
relationship between percentage of intrusion responses on tasks sus-
ceptible to PSI and frPSI and underlying dysfunction of brain circuitry is
worthy of further research.
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