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Abstract— Chest X-ray radiography is one of the earliest
medical imaging technologies and remains one of the most
widely-used for diagnosis, screening, and treatment follow
up of diseases related to lungs and heart. The literature
in this field of research reports many interesting studies
dealing with the challenging tasks of bone suppression and
organ segmentation but performed separately, limiting any
learning that comes with the consolidation of parameters
that could optimize both processes. This study, and for
the first time, introduces a multitask deep learning model
that generates simultaneously the bone-suppressed image
and the organ-segmented image, enhancing the accuracy
of tasks, minimizing the number of parameters needed
by the model and optimizing the processing time, all by
exploiting the interplay between the network parameters
to benefit the performance of both tasks. The architectural
design of this model, which relies on a conditional gener-
ative adversarial network, reveals the process on how the
well-established pix2pix network (image-to-image network)
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is modified to fit the need for multitasking and extending
it to the new image-to-images architecture. The developed
source code of this multitask model is shared publicly
on Github as the first attempt for providing the two-task
pix2pix extension, a supervised/paired/aligned/registered
image-to-images translation which would be useful in many
multitask applications. Dilated convolutions are also used
to improve the results through a more effective receptive
field assessment.The comparison with state-of-the-artalgo-
rithms along with ablation study and a demonstration video1

are provided to evaluate the efficacy and gauge the merits
of the proposed approach.

Index Terms— Bone suppression,chest X-Ray, CXR imag-
ing, image-to-image translation, image-to-images transla-
tion, multitask deep learning, organ segmentation, pix2pix.

I. INTRODUCTION

CHEST radiography, also called chest X-ray or CXR,
is one of the most affordable and widely used medical

imaging modality, which has significant practical implications
in the diagnosis and screening of the thorax region, the organs
and bone structure within it. Over 2 billion procedures per
year are performed using this technology for the purpose of
medical diagnosis of a variety of diseases, such as pneumonia,
tuberculosis, lung cancer, and heart failure. Moreover, chest
radiography remains the most prevalent screening test for
pulmonary disorders [1]–[5]. However, due to overlapping
organs, low resolution and subtle anatomical shape and size
variations, interpreting CXR images accurately remains chal-
lenging and requires a well-trained staff. On the other hand,
managing a large number of CXR images each day results in
high workloads for the radiography staff, yielding a tedious
process fraught with setbacks and errors in diagnosis and in
planning for adequate treatment follow up. It is reported that
almost 90 percent of mistakes in pulmonary tumor diagnosis
could be associated with the CXR screening of images [6].
Therefore, many efforts have been devoted to the development
of automated computer-based methods to improve accuracy in
diagnosis and in finding any abnormalities that may otherwise
be left undetected [7]–[10].

There is considerable literature focusing on CXR image
analysis. Among the more recent work on chest radiography,

1https://youtu.be/J8Uth26_7rQhttps://youtu.be/J8Uth26_7rQ
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a team from Stanford [11] proposed a convolutional neural
network called CheXNeXt as a deep learning algorithm to
concurrently detect the presence of 14 different pathologies
such as pneumonia, fibrosis, emphysema, and nodules in
frontal-view chest radiographs, among others. The CheXNeXt
algorithm achieved promising results in identifying abnormal-
ities at a performance level that was comparable with the
diagnostic accuracy of radiologist practitioners. Four different
deep learning based methods are investigated in [12] and
compared with radiology experts. In another study [6], Gozes
and Greespan proposed a method to improve the contrast of
lung structures in CXR images leading to better accuracy in
nodule(s) detection. Wang and Chia proposed a deep neural
network they named ChestNet [13] for enhanced diagnosis of
diseases on chest radiography. Moreover, Li et al. developed
an interesting multi-resolution convolutional network on chest
X-ray radiograph for lung nodule detection [14].

The aim of this work is to construct a multitask learning
framework using deep learning techniques that address in an
effective way the two challenging tasks of organ segmen-
tation and bone suppression simultaneously. Organ segmen-
tation is used for computer-aided detection and diagnosis,
while bone suppression enhances the visibility of the disease
effects, e.g. nodules particularly on the lungs. Although similar
architectures are reported to perform successfully each task
separately, e.g. U-net [15], [16], addressing the two tasks of
bone suppression and organ segmentation simultaneously seem
to reinforce the filters of the network to look for and learn
about the relevant features of both organs and bones. Multitask
learning could hence be applied to those problems where two
or more tasks are found to be inherently interrelated. Learning
the relationship between tasks and their respective feature
space could lead to a more unified feature learning process and
hence better prospects for multitasking and generalization [17].
In our case, the two tasks are spatially correlated. Indeed,
for the single task problem of bone suppression, the network
should distinguish rib bones located over the chest organs.
Similarly, for the single task problem of organ segmentation,
the network should learn those features that can represent the
chest organs as situated in context to the rib bones in that area.

In order to incorporate the multitask objective, a new image-
to-images translation machine is proposed based on the pix2pix
network which is known for its promising results in the
domain of image-to-image translation and segmentation [18].
For this reason, the pix2pix network and its implementation are
modified to fit the need for multitasking (pix2pix MT ). As far
as the authors know, the proposed network is a first attempt
at expanding the application of image-to-image network to
image-to-images with the ability to generate more than one
desired output at once. Furthermore, the dilated convolution
technique [19] is employed in specific layers of the generator,
which is shown to improve further the results. Hence, this
design is referred to as the pix2pix MTdG model given the
implication of multitask pix2pix and the inclusion of the dila-
tion property in the generator. More specifically, by feeding a
CXR image to the pix2pix MTdG network, the proposed model
will generate automatically two output images simultaneously,
which are the image of the bone suppressed lungs and the

image containing the segmentation masks of the heart and
lungs. Experimental results show that the MTdG network
yields comparable results to the state-of-the-art methods that
deal with these tasks individually. Results which are evaluated
with several metrics and verified using 5-fold cross-validation
along with the significance test exhibit promising outputs for
both tasks. Moreover, the conceptual design of the model can
be generalized to extend to other applications. To confirm this
assertion, two different applications are implemented involv-
ing 1) neuroimage modality conversion for cross-modality
generation of T2-flair and T1-inverse from the T1 input
image, and 2) low-dose Computed Tomography (LDCT) for
image enhancement and segmentation of kidneys. The results
obtained come in support of the merits of the proposed image-
to-images network in such critical applications where two
desired outputs can be obtained simultaneously with improved
accuracy and with better system efficiency.

The contributions of this work can be summarized as
follows: 1) Design and implementation of a multitask network
that for the first time augments the traditional image-to-image
translation model to an image-to-images translation model
while improving both accuracy and computational efficiency
of the multitask pix2pix model. 2) An architectural design of
the model that allows for two critical tasks of CXR image
analysis, namely bone suppression and organ segmentation,
to be performed simultaneously through the use of efficient
network parameters verified and augmented by an ablation
study. 3) A generalized construct of the model making it more
amenable to other application domains, where the results of
two more medical applications for brain MRI cross-modality
generation and low-dose CT image enhancement and segmen-
tation are provided. 4) All the software code for the different
variations of this work are publicly shared online including
multitask pix2pix for the research community to replicate such
work or extend its research potential to other applications. 2

The rest of this paper is organized as follows: Section II
reports the literature review of related work. Section III
explains the proposed method, specifies the material used in
conducting this study and provides the evaluation strategy used
to assess its merits. The experimental results are presented
and discussed in section IV which include a section on
method generalization and future work. Finally, the conclusion
section V provides a retrospective of what was accomplished
through this proposed novel approach.

II. RELATED WORK

A. Task 1: Organ Segmentation

Organ segmentation is one of the most difficult tasks in
medical imaging due in large part to the elusive thresholding
process and the ubiquitous presence of noise [20], [21],
but remains an essential task for delineating the anatomical
structures of organs and for detecting abnormalities such as
enlarged heart or collapsed lungs. Moreover, when performing
segmentation in chest radiography, there is need to contend

2https://github.com/mohaEs/image-to-images-translationhttps://github.com/
mohaEs/image-to-images-translation
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with the different shape variations in organs due to age, gender,
disease and other health-related issues.

Mansoor et al. [22] presented a comprehensive survey
discussing the challenges and accomplishments of the different
segmentation methods for lungs which are reported in the
literature. By considering the CXR as the imaging modality,
several deep learning models based on fully convolutional
networks have also been investigated. For instance, a network
called InvertedNet is proposed to segment the heart, left and
right clavicles, and lungs [15]. The well-established U-Net
architecture has been utilized for segmenting the chest region
yielding promising results [23]–[25]. A model called structure
correcting adversarial network (SCAN) was proposed as a
generative adversarial network that uses convolutional layers
for heart and lungs segmentation [26]. Another method which
incorporates two networks is proposed by [27] with one net-
work used for the initial segmentation process and the second
for fine-tuning and correcting the initial results. Moreover,
traditional feature extraction methods are widely used for CXR
imaging applications [22]. In [28], Ibragimov et al. proposed
an approach for lung segmentation and landmark detection
based on Haar-like features, a random forest classifier, and
spatial relationships among landmarks. A hierarchical lung
field segmentation based on the joint shape and appearance
sparse learning is proposed in [29], and an atlas-based method
is presented in [30].

B. Task 2: Bone and Rib Suppression

In chest X-ray images, the bone structure in the chest area is
usually visible, which makes it hard for a radiologist to exam-
ine thoroughly the organs and assess any effects of a given
disease accurately. Organs’ visibility is effective for pulmonary
abnormalities screening and detection [5]. Consequently, bone
suppression is an essential pre-processing step for suppressing
the appearance of bones in the chest X-ray images. One way to
tackle this problem is to utilize dual-energy subtraction (DES)
imaging [31]. The DES imaging technique captures two or
three radiography scans with two or three different energy
level of X-ray exposures. The captured images either highlight
the soft tissues or bones based on the energy levels. Thus,
the suppressed bone image will be estimated by combining the
acquired images which include both the soft tissue-selective
images and the bone-selective images [32]. Although effective
in delineating the bone structure in the chest area, the DES
imaging process has a number of shortcomings, among them
is its more invasive nature due to the higher radiation dose and
the presence of artifacts introduced in the acquisition process
due to the effect of heartbeats.

Because of these aforementioned reasons, suppressing the
bones in CXR images via traditional image processing tech-
niques is considered safer and is shown to be more effective
at overcoming the main challenges faced in CXR images [33].
Along this line of research, a cascaded convolutional neural
networks architecture (called CamsNet) [34] is proposed to
predict the bone gradients in CXR images progressively with
the ability of suppressing the bones as a consequence of
these determined gradients. Convolutional neural filters are

exploited in [35] and are shown to be effective for bone
suppression as well. Another recent method is developed by
Chen et al. [36] which anatomically compensates for the ribs
and clavicles by specific multiple massive-training artificial
neural networks (MTANNs) combined with total variation (TV)
minimization smoothing along with a post-processing by
histogram-matching. In another study, Gusarev et al. proposed
two deep learning architectures that perform bone suppression
and create a soft tissue image. Considering bones as a noise
level that is affecting these chest images [37], they tried to
minimize the presence of this noise (i.e., bone) while still
preserving the sharpness of the image for the eventual organ
segmentation. In [20], many of the noise suppressing methods
reviewed shared the objective of removing as much of the
noise as possible while preserving most of the relevant details
in the image. Another bone suppression method, based on deep
adversarial networks and 2D Haar wavelet decomposition, has
been proposed in [38]. Their method was mostly based on
the theory of pix2pix network [18], a well-known conditional
generative adversarial network. The pix2pix network is also
used as the cornerstone of our proposed multitask model,
which will be described in section III. Bone suppression is
also used as a pre-processing step, where bone suppressed
CXR images are then fed as input images to algorithms such
as CheXNet in order to enhance the segmentation process and
improve the results of the machine (automated) diagnosis [39].
The impact of bone suppression on machine diagnosis using
deep learning networks have been thoroughly investigated and
detailed in [40] and [41]. There are also some commercially
available computer-aided detection (CAD) systems such as
Phillips [42], ClearRead [43] and Caresteam [44].

C. Joint Tasks via Multitask Learning

In multitask learning, multiple tasks are solved at the same
time by exploiting commonalities and differences across them.
In contrast to training separate single task models, the multi-
task scheme can result in the following improvements [45]:
1) Coupling tasks makes the overall system achieve more
accurate results. For example, in [46], a multitask learning
approach based on deep convolutional networks is proposed
for facial landmark detection, with the auxiliary tasks of
head pose estimation, gender classification and facial visi-
bility, yielding more accurate results for each of the tasks.
2) Efficiency in learning optimizes the number of required
parameters, memory or storage requirements, computational
time and training convergence rate. Hence, fewer but optimal
parameters and lower memory requirements are desirable in
deploying such algorithms on conventional devices like mobile
phones and personal computers [47].

Aside from the improvement in learning efficiency by
exploiting the interplay between tasks, and the need for only
half the weights required of the multitask model in contrast to
the two tasks run separately, other benefits acquired through
the intrinsic functions of the multitasking model do not have
straightforward or intuitive reasons. However, an additional
function can be used to act as a regularization mechanism
in other machine learning problems and use the algorithm
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to find a solution on a smaller area of representations at
the intersection of all tasks. Also, the feature selection and
filter values can be reassessed and made more sufficient to
understand the nature of the inputs to the model. The overall
motivation here is to be able to perform the two tasks jointly
via one deep network with the ability for improving both
system efficiency and accuracy in the results.

D. Image-to-Image Translation:
Applications and Methods

In general, the image-to-image translation (I2I) is the
process of translating an input image X to a correspond-
ing output image Y , and this correspondence could mean
different things for the different context of the applica-
tion at hand. Such I2I techniques could involve transla-
tions such as low-resolution ⇔ high resolution, blurry ⇔
sharp, thermal or grayscale ⇔ color, synthetic ⇔ real,
low-dose rate (LDR) ⇔ high-dose rate (HDR), noisy ⇔
clean, image ⇔ painting, day ⇔ night, summer ⇔ winter,
bad weather ⇔ good, foggy ⇔ clear, semantic labeling
(segmentation) ⇔ realistic photo, aerial ⇔ map, edges and
sketch ⇔ photo and so on, in which symbol ⇔ shows the
bidirectionality between desired task and context [18], [48]. I2I
techniques are also used in medical imaging for segmentation,
denoising, super-resolution, modality conversion, CT and MRI
reconstruction, among others [48].

I2I has been studied for decades, and different approaches
are reported on the basis of filtering, optimization, dictio-
nary learning, deep learning, and more recently generative
adversarial network (GAN). While deep learning methods
omit the hand-crafted features and GAN methods omit the
hand-crafted objective functions, they both remain the most
promising methods in data science. GAN-based I2I research
in computer vision has yielded different learning models, with
a myriad of applications and promising outcomes. In general,
there are two categories of methods and applications based
on the relation between input and output images: 1) Unsuper-
vised/Unpaired/Unaligned/Unregistered such as style chang-
ing, photo to painting, hair/face and color-changing, weather
changing, and 2) Supervised/Paired/Aligned/Registered such
as supervised segmentation and labeling, denoising and super-
resolution.

The unpaired category is not relevant in the proposed
application of CXR image analysis since the problem at
hand is supervised with paired and aligned input/output
images. Until now, pix2pix [18], CRN [49], BicycleGAN [50],
SIMS [51], SPADE [52] and pix2pixHD [53] remain the most
important methods for the paired category. While pix2pix
and BicycleGAN are dealing with a family of applications,
others are just considering semantic labels to realistic photo
translation. BicycleGAN is an image-to-image translation with
potentially multiple outputs. For example, BicycleGAN is
able to analyze and translate a given night image to syn-
thesized day images with different types of lighting, sky,
and clouds. Each different possibility is generated by feed-
ing a random noise sampled from a known distribution
(e.g., a standard normal distribution) along with the input
image. Therefore, pix2pix is the only general method relevant

to our problem, with bone suppression and organ segmentation
being a paired/supervised/aligned/registered problem with no
randomized output possibilities. The pix2pix and its variation
are also used for image segmentation and landmark localiza-
tion in vocal tract area [54], [55].

III. MATERIALS & METHODS

A. Methodology

1) Background: In recent years, generative adversarial
networks (GANs) and conditional generative adversarial
networks (cGANs) have gained a lot of attention because of
their superior performance in generation, segmentation, and
translation empowered by an adversarial scheme [56]. The
GAN architecture consists of two ‘adversarial’ models trained
to work against each other: the generator aiming at generating
an output and deceiving the discriminator and a discriminator
component aiming at segregating the real output from the
fake ones. In conditional mode (cGAN), both generator and
discriminator are conditioned on ground truth labels or images.
For example, in this study, the segmented organs and the bone
suppressed images are the conditions and the generator is set
up to generate this type of images.

Generators of GANs are intended to learn the mapping from
a random noise vector z to an output image y, i.e., G : z ⇒ y
while cGANs are conditioned by an observed image x i.e.,
G : {x, z} ⇒ y. The generator G would learn to produce out-
puts, which could not be distinguished as “fake” images by an
adversarially trained discriminator, D. The objective of a GAN
and of a conditional GAN can be expressed through equa-
tions (1) and (2) respectively, where E is the Expectation over
the population. Generator G tries to minimize an objective
function against an adversarial D which tries to maximize it,
i.e., a minimax game as Ĝ = arg minG maxD LG AN and
similarly Ĝ = arg minG maxD LcG AN .

LG AN (G, D)

= E [logD(x, y)] + E [log(1 − D(G(x, z)))] (1)

LcG AN (G, D)

= E [logD(x, y)] + E [log(1 − D(x, G(x, z)))] (2)

2) Proposed Model: A conditional generative adversarial
network, called pix2pix, is selected as an image-to-image
translation network to use and modify to meet the intended
objectives of bone suppression and image segmentation [18].
The pix2pix is used in the proposed method, because
1) It is the main general image-to-image translation method;
2) It shows promising prospects for accurate organ segmenta-
tion [18], [57]–[59]; 3) It is intrinsically a collection of filters
and would be reasonable to perform bone and rib suppression
as an image-to-image translation task [38].

The generator of pix2pix contains an auto-encoding network
of convolutional layers with skip connections. The discrim-
inator is also a convolutional neural network (CNN) called
PatchGAN discriminator as introduced in [18], which attempts
to determine whether each patch with size n×n in an image is
real or fake, where n can be much smaller than the full size of
the image N . Specifically, PatchGAN discriminator is a CNN
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Fig. 1. Architecture of the presented image to images translation, multitask pix2pix. In this figure, X,Y1,Y2, Ŷ1, Ŷ1 are the images of input CXR,
targets of task 1 and task 2, output for task 1 and task 2, respectively. Notice that, all the images, input, output and target have three channels.

which produces a matrix of size k ×k ×1 from an input tensor
(or image) of size N×N×∗ where k = N/n and each element
in the output matrix indicates the status of the corresponding
receptive field on the input tensor (i.e. a k × k PatchGAN
classifies k × k patches of the input image/tensor as real or
fake). The input tensor for the PatchGAN discriminator is a
tensor built by concatenation of the input-target pair and the
input-output pair for the discriminator to produce an estimation
on how realistic they look [18].

Figure 1 shows our model aiming to convert the input CXR
image (X) into the desired output (Y ), which is the concatena-
tion of desired targets, Y1 as the organs’ segmentation masks
and Y2 as the bone suppressed CXR image, i.e., Y : Y1 ‖ Y2
where ‖ shows concatenation in the channel axis. The input
and output tensors of the generator network are X and Ŷ : Ŷ1 ‖
Ŷ2 where Ŷ2 is the output image corresponding to the bone
suppression task and Ŷ1 is the output image corresponding to
the organ segmentation task which include the masks for the
heart (colored red), left lung (colored blue), right lung (colored
green) and background (colored black). In fact, the generator
creates a tensor with 6 channels, which are the concatenation
of Ŷ1 and Ŷ2.

The discriminator network acts in a similar fashion to
PatchGAN in order to produce two output matrices, DR and
DF corresponding to the real and fake input tensors (R and F).
The fake input tensor (F) is a concatenation of CXR input
image and outputs (F : X ‖ Ŷ1 ‖ Ŷ2), and the real input
tensor (R) is the concatenation of the CXR input image and
targets (R : X ‖ Y1 ‖ Y2). If the discriminator is trained
perfectly, it will create DR matrix of 1 values and DF matrix
of 0 values. On the other hand, if the generator is successful in
fooling the discriminator, DF would be a matrix of 1 values.
The loss functions for training the generator and discriminator
are as expressed in equations (3) and (4) where | |1 defines the
L1 distance or norm. In the training phase of the networks,
for each batch feeding step: 1) The generator generates output
images, 2) The discriminator looks at the real pair tensor (R)

and the fake pair tensor (F) and produces an estimate on
how realistic they look (DR and DF ), 3) The weights of the
discriminator are then adjusted based on the LD , and 4) The
generator’s weights are then adjusted based on LG .

LG = E[−log(DF + ε)] + λ E[| Y − Ŷ |1] (3)

LD = E[−( log(DR + ε) + log(1 − DF + ε) )] (4)

Furthermore, in order to to produce more efficient receptive
fields, dilated convolutions [19] are utilized in some specific
layers of the generator. The encoder of the generator consists
of 8 layers and dilated convolutions are used with dilation
rate 2 in layers 2 through 7 in the proposed structure of the
MTdG network. The effects of using and not using the dilated
convolutional layers are contrasted in the results section.

B. Data

The Japanese Society of Radiological Technology (JSRT)
is the only publicly available database where both desired
tasks are available and hence most suitable for training and
evaluating the proposed model. This dataset consists of CXR
images collected by JSRT [60] and is publicly available
in [61]. Segmentation masks for lungs and the heart were
created later by [62] and are now available in [63]. The
JSRT dataset comprises 247 CXRs, including images with
and without lung nodules. All images have a resolution of
2048 × 2048 in gray scale with a color depth of 12 bits.
While there is no publicly available dataset for bone and rib
suppression based on DES, Juhasz et al. developed a method
for bone suppression [64]. Their results on the JSRT dataset
have become publicly available in [65]. This dataset is used
to accomplish the second task of bone suppression as well.

As noted in CheXNeXt and through other investiga-
tions, the 512 × 512 resolution is sufficient for classifying
lung-related diseases and for localizing nodule(s) [6], [11],
[66], [67]. This resizing of images helped to significantly
minimize the computational requirements and, as the results
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will prove, high accuracy is maintained. Moreover, we antic-
ipate that the resizing of images to 512 × 512 pixels could
help in their effective use towards the development of new
pre-processing methods for improving computer-aided diag-
nosis. The image intensities are set up with an 8-bit grayscale
resolution in the range from 0 to 255. In order to train the
machine learning and especially the deep learning networks,
it is essential to have enough number of samples that cover
the different variations [68], [69]. Therefore, the original
images along with their corresponding masks and suppressed
bone images were augmented by rotating them via 10 and
-5 degrees, along with translations of (30, 10) and (-20,-10)
pixels in reference to the (x,y) coordinates. Through this
process, the size of the dataset has been increased by 5 times,
to a total number of 1,235 images along with their correspond-
ing ground-truths for the two tasks.

Furthermore, in order to assess the effectiveness of multitask
image-to-images translation in terms of its generalization to
other applications, two additional experiments are included in
the Generalization and Future Work section. The dataset used
for the low-dose CT (LDCT) experiment is from “Multi-Atlas
labeling beyond the cranial vault” challenge containing CT
scans and corresponding segmentation labels of 13 abdominal
organs of 50 subjects [70]. In order to simulate the LDCT
scans from CT scans, the method based on additive Poisson
noise on sonograms of CT scans is used [71]. The dataset for
the neuroimaging experiment is MRBrainS18 challenge dataset
containing multi-modal MRI brain images (T1, T1-inverse and
T2-flair) with segmentation labels of gray matter, white matter,
cerebrospinal fluid, and other structures on 3T MRI scans of
the brain of seven subjects [72]. Augmentation with the same
configuration is also exploited for the LDCT and neuroimaging
experiments.

C. Implementation & Evaluation

The proposed model has been implemented and modified to
comply with the multitasking scenario based on the publicly
available pix2pix code [73]. For validation purposes, both the
extended code that supports all these different variations and
the video showing this process at work are made available
through the Internet to the research community. The intensity
channel of the input CXR image is replicated to support the
CNN 3-channel RGB input data expectations. The size of the
input/output images and kernel (or filter) are 512×512×3 and
4 × 4, respectively and 5-fold cross-validation are considered
as default. To make a fair comparison with the results of the
current state-of-art-techniques, the resolution of 256×256 and
3-fold cross-validation has been considered in this study as
well. The network has been implemented using Python and the
Tensorflow library. All computations for training the network
have been performed on a system equipped by NVIDIA
GPU Quadro M6000 with 24 GB memory. The parameter
λ in equation 3 is set to 10 and the learning rate of the
Adam optimizer is set to 0.0002. The training is stopped
when the L1 loss reaches almost 0.005. Because of a limited
number of subjects, leaving-one-subject-out cross-validation
scheme is used for the LDCT and neuroimaging experiments.

For comparative assessment of the results obtained with the
different methods, the average, standard deviation, box plots
including median, percentiles, and outliers along with the
t-test for statistical significance are considered regarding the
different metrics.

IV. RESULTS AND DISCUSSION

In this section, the experimental results for both tasks are
reported and compared with state-of-the-art methods in the
first two subsections. This is followed by a subsection which
provides the performance and qualitative analysis, investi-
gates the ablation study and demonstrates how this model is
amenable to other application domains (i.e. generalization of
the model) with preliminary results obtained on low-dose CT
image processing and on a neuroimage translation problem.
The generalization subsection shows the benefits of multitask-
ing in comparison with single tasking and the potential for
future work of pix2pix MTdG towards resolving other image-
to-images translation problems. Notice that, for simplification
in plotting the figures p2p notation is used instead of pix2pix.

A. Task 1: Organ Segmentation

The segmented regions of the heart, the left lung and right
lung generated by the model as output masks, are associated
with the same regions in the ground-truth by using standard
evaluation metrics in image processing, namely the Dice and
Jaccard scores, false-negative rate (FNR) and false-positive
rate (FPR). The Jaccard index is a metric that measures the
percent overlap between the target ground-truth mask (GT)
and our prediction mask (PM). The overlap area between GT
and PM would be the true positive area (TP). The area which
is predicted in PM but is not in PM is a false-positive (FP) and
inversely for false-negative (FN) defining the area which is in
GT but not in PM. Jaccard metric is closely related to the Dice
coefficient, which is not as easily described geometrically. The
false-positive rate indicates the area ratio of predicted mask
which had no associated ground truth mask, and similarly
false-negative indicates the area ratio of the ground truth
mask which had no associated predicted mask. These standard
evaluations metrics can be expressed mathematically as follow
where symbol ! defines the binary negation operator:

Dice = 2 × (P M ∩ GT )

P M + GT
= 2 × T P

T P + F P + T P + F N
(5)

Jaccard = P M ∩ GT

P M ∪ GT
= T P

T P + F P + F N
(6)

F N R = !P M ∩ GT

GT
= F N

T P + F N
(7)

F P R = P M∩!GT

GT
= F P

T P + F N
(8)

The well-known U-net method [74] is used as the
competitor due to its state-of-the-art performance in various
segmentation applications [75] as well as for the reported
CXR segmentation studies with promising results [23]–[25].
The average and standard deviation of the segmentation
results, by all metrics, are summarized in Table I. The best
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TABLE I
SEGMENTATION RESULTS OF DIFFERENT METHODS

WHILE THE BEST SCORES ARE COLORED BLUE

Fig. 2. The box plot of the segmentation accuracy achieved by u-net
and pix2pix MTdG. up) Dice Scores, Down) False Negative Rates.

achieved results, highlighted in blue, demonstrate that the
multitask pix2pix with an embedded dilation in the generator
(MTdG) surpasses the u-net method. For further statistical
investigation, figure 2 shows the box plots of the segmentation
scores evaluated using the Dice and false-negative rate of the
heart, left and right lung for the u-net and pix2pix MTdG.
The inner line, the bottom and top edges of the box indicate
median, the 25th, and 75th percentiles, respectively. While the
whiskers are extended to the most extreme not outlier data
points, while the outliers are plotted individually using the
‘+’ symbol. As an example, the segmentation result of the
pix2pix MTdG for the best and worst achieved Dice scores
are shown in Figure 3.

To the best of our knowledge, no multitask framework
has been found in the literature to benchmark the proposed
multitask network for our tasks. A comparison between u-net
(implemented by us) and pix2pix MTdG along with the
p-values of student’s t-test is provided in Table I which clearly
shows that the pix2pix MTdG method yields better results with

Fig. 3. Results by proposed method pix2pix MTdG regarding to the
best (top) and worst (bottom) Dice scores. Columns left to right are, input
image, segmentation result, segmentation target, bone suppression
result, and bone suppression target. Top) Best Dice: average of Dice,
Jaccard, FPR and FNR are 0.99, 0.99, 0.01 and 0.01. Bottom) Worst
Dice: average of Dice, Jaccard, FPR and FNR are 0.94, 0.90, 0.12 and
0.01.

a significant difference (p < 0.001). However, to contrast
these results with other methods in the literature, due to the
variations in utilizing different folding schemes and image
sizes, a fair comparison of the results is not a straightforward
process.

The results of different state-of-the-art algorithms on the
JSRT dataset are summarized in Table II. The settings reported
from each method are also provided in Table II with ‘−’ to
mean that the value is not reported. For a fair comparison,
the proposed method has also been tested using 256 × 256
image size, 3-fold cross-validation and without any augmen-
tation. As presented in the Table, while the scores are really
close to each other, the best-achieved results are the ones
provided by pix2pix MTdG in 512 × 512 image resolution.
In all these other settings, the pix2pix MTdG performance is
still reasonable and is comparable to the performance of other
techniques.

B. Task 2: Bone Suppression

The second task of the pix2pix MTdG network is bone
suppression. The results of this task are evaluated via the struc-
tural similarity index (SSIM) metric for similarity estimation,
and the root mean squared error (RMSE) metric to measure
the difference between predicted and actual values [77]. The
RMSE measure between two X and Y images is expressed
by Equation (9), where N in the total number of pixels in
image and i is the pixel index. SSIM is a reference-based
quality assessment metric, which compares the local patterns
of pixel intensities between the reference and output images.
The maximum value of 1 implies that the two images are
structurally similar, while a zero value indicates that there
is no structural similarity between them. Usually, the SSIM
index is calculated via windowing on the images with 8 × 8
window size and 1 pixel striding. At the end, the mean
of the computed values (M-SSIM) would be reported. The
M-SSIM measure between two images X and Y and the
default SSIM measure between two windows W X

i and W Y
i

are as defined by Equations (10) and (11) where μW X
i

, μW Y
i

,

σ 2
W Y

i
, σ 2

W X
i

, and σW X
i W Y

i
show the average of W X

i , the average

of W Y
i , the variance of W X

i , the variance of W Y
i and the

Covariance of W X
i and W Y

i , respectively. The default settings
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TABLE II
COMPARISON THE SEGMENTATION RESULTS OF DIFFERENT METHODS ON JSRT DATASET

Fig. 4. Bone suppression task showing boxplots of the results. Left)
M-SSIM similarity score. Right) RMSE difference.

of c1 = (0.01 L)2 and c2 = (0.03 L)2 are considered with L
being the dynamic range of the pixel-values (i.e. 255 in our
experiment).

RM SE(X, Y ) =
√√√√ 1

N

N∑
i=1

(xi − yi )2 (9)

M-SSI M = 1

N

N∑
i=1

SSI M(W X
i , W Y

i ) (10)

SSI M(W X
i , W Y

i ) =
(2μW X

i
μW Y

i
+ c1)(2σW X

i W Y
i

+ c2)

(μ2
W X

i
+ μ2

W Y
i

+ c1)(σ
2
W X

i
+ σ 2

W Y
i

+ c2)

(11)

While there is much literature about bone suppression in
CXR images and even with the availability of proprietary
software, there is no shared dataset available nor is there
any open source codes or models that are shared with the
research community. There is just one competitor study for
bone suppression with shared source code in which the authors
used an interesting AutoEncoder network architecture [37].
The box plots of the achieved M-SSIMs and RMSEs for
the pix2pix MTdG and AutoEncoder are shown in Figure 4
and Table III, proving the good performance of the proposed
pix2pix MTdG. The best and worst results with regards to the
RMSE measurement are shown in Figure 5.

TABLE III
RESULTS OF BONE SUPPRESSION TASK VIA DIFFERENT METHODS

Fig. 5. Results by proposed method pix2pix MTdG regarding to the
best (top) and worst RMSEs (bottom). Columns left to right: input image,
segmentation result, segmentation target, bone suppression result and
bone suppression target. Top) Best RMSE: SSIM: 0.99, RMSE: 2.66.
Bottom) Worst RMSE: SSIM: 0.94, RMSE: 10.55.

C. Discussion

As discussed earlier, the proposed pix2pix MTdG method
provides promising results in accomplishing both segmentation
and bone suppression tasks simultaneously. In this subsection,
other characteristics of the proposed method are discussed and
a summary of these results is provided in Table IV.
1) Performance Analysis: The performance of the proposed

method is assessed here with respect to the results obtained and
the network parameters that were considered. The following
remarks can be made:

a) As shown in Tables I and IV, the proposed multitask
pix2pix with dilation (pix2pix MTdG) achieves the best results
for both organs segmentation and bone suppression tasks.

b) Using multitask pix2pix without dilation was not as
effective for improving the results.

c) Another advantage of pix2pix MTdG is in the num-
ber of required parameters of the network, which is an
intrinsic requirement for the multitask pix2pix scheme. The
trainable parameters of pix2pix, u-net, and multitask pix2pix
are 57, 190, 084; 31, 084, 008 and 57, 199, 303, respectively.
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TABLE IV
SUMMARY OF THE PROPERTIES OF DIFFERENT METHODS

Fig. 6. The loss curves of the different schemes for a training session as a function of epochs. p2p: pix2pix, ST: single task, STdG: single task with
dilation in generator, MT: multitask, MTdG: Multitask with dilation in generator.

Note that the u-net architecture can only perform the seg-
mentation task. To employ two separate pix2pix networks
for the two tasks, a large number of training parameters
2 × 57, 190, 084 would be needed. In other words, the per-
formance of multitask pix2pix is reasonable in the number of
parameters used while it maintains comparable good results
to the state-of-the-art techniques.

d) Nonetheless, the multitask pix2pix framework has one
drawback, which is the number of required iteration/epochs
for the training phase. In the experiments conducted in this
study, pix2pix MTdG required almost 300 epochs while u-net
and single task pix2pix converged in only 50 and 250 epochs,
respectively, meaning that the multitask framework requires
more training time in comparison with other methods. It is
worth noting that the above concern is just for training and
since a pre-trained network is used to generate the output in the
testing phase, both methods perform similarly fast requiring
only 1.2 seconds.

2) Ablation Study: In order to investigate the effectiveness
of dilation and multitasking, the ablation study is considered.
For this reason, six processing schemes are addressed: two
single-task pix2pix (p2p ST ) for two tasks, two single-task
pix2pix with dilation (p2p STdG), a multitask pix2pix (p2p
MT ) and a multitask pix2pix with dilation (p2p MTdG).
Figure 6 shows the loss curves for the training session of
the schemes with respect to epochs. The loss GAN, loss
L1 and loss discriminator expressed as E[−log(F + ε)],
E[| Y − Ŷ |1] and E[−( log(R + ε) + log(1 − F + ε) )],
respectively, were included in the loss functions (3) and (4).
The training is stopped when the L1 loss reaches and stabilizes
at almost 0.005. As shown in Fig. 6, all of the schemes are
able to converge and make the generator the declared winner.

Furthermore, while the multitask schemes need more epochs
for reaching the desired L1 loss value, there is no significant
difference between the achieved final loss values.

In contrast to the almost similar final training loss values
of the different schemes, as shown in Table IV, there are
differences in the test sessions and in the outputs of the
schemes’ models. The best results are achieved by pix2pix
MTdG while the multitasking without dilation was not helpful.
This could be inferred as a hyper-parameter selection criterion,
as the dilation makes the receptive fields bigger to become
more suitable to the nature of the CXR input images and the
organs’ shapes and sizes. On the other hand, when dilation is
exploited in the network, multitasking (p2p MTdG) assumes
the benefits and generates better results than those obtained
from a single task with dilation (p2p STdG); this outcome is
achieved despite the fact that the multitask network has half
of the weights in comparison to two single-task networks.
Figures 7 and 8 demonstrate the results of segmentation
and bone suppression tasks for different schemes as can be
observed from the box-plots of Dice score, false negative rates,
RMSE and M-SSIM score in concurrence to the results shown
in table IV, especially when comparing for outliers, percentile
edges and median line.

3) Qualitative Analysis: Figure 9 presents the segmentation
results of the different methods for various subjects. From left
to right, the images shown are the input image, the target
image, single task pix2pix output, u-net output, pix2pix MT
output, and pix2pix MTdG output. In retrospect, the following
assessments can be made:

a) As presented in the first row, the pix2pix MTdG frame-
work delivered the best outcomes in comparison with the other
methods.
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Fig. 7. Segmentation task evaluation showing box-plots for different schemes. (Left) left lung, (Middle) heart, (Right) right lung. (pix2pix ST, pix2pix
STdG, pix2pix MT and pix2pix MTdG).

Fig. 8. Bone suppression task evaluation showing the box-plots for the
different schemes. (pix2pix ST, pix2pix STdG, pix2pix MT and pix2pix
MTdG).

Fig. 9. Segmentation results of different schemes for different subjects.
Top to bottom are subjects and left to right are input, target, pix2pix ST,
u-net, pix2pix MT and pix2pix MTdG.

b) However, the results of all the other methods in the sec-
ond row are almost the same.

c) The third row shows that the multitask pix2pix without
dilation achieved better results in contrast to the other methods.
This could be related to the fact that this dilation process
may not be as effective in some specific cases. We intend to

combine the layers with and without dilation in future work
to see if the accuracy could be improved further.

d) Moreover, as it is illustrated in the fourth row of Figure 9,
the pix2pix based methods suffer from false-positive segments
such as isolated islands. Although this is the case for the
u-net method as well, u-net demonstrates better results in
this case. This could be associated with the fact that the loss
function of u-net is addressing the segmentation constraints
while the loss function of pix2pix is constructed to perform
the pixel-wise comparison. This drawback could simply be
removed by employing post-processing techniques such as
connected components and considering the island area, which
is not the aim of this paper at this juncture, but could be
exploited in future work. Another approach to deal with this
drawback is to implement segmentation related loss functions
such as dice score to pix2pix loss function. While this tech-
nique was discussed by some authors in the literature, our
investigation did not prove its efficiency in delivering any
improvement to our case.

4) GeneralizationofMethod and FutureWork: The size of the
input CXR images considered in this study are 512×512. This
resolution chosen for the proposed method is also exploited in
the Stanford’s CheXNext network [11] with promising results.
Nonetheless, manufacturers of X-ray radiography continue to
improve its resolution and hence 512 × 512 could be limiting
in obtaining similar optimal results sought with a higher
resolution. Since more pixels mean more revealing information
that could enhance the prospects for more accurate diagnosis,
it is thus reasonable to extend the proposed network for dealing
with higher resolution images such as 2048 × 2048. It should
be noted that since the generator of the proposed method is
a holistic network (not locally and patch- or block-based),
it is expected to yield more promising results with higher
resolution images, but at the expense of more convolutional
layers and with a higher demand for more variables to contend
with, and hence more taxing computational requirements.

With these contending challenges in mind, and in order to
show the potential benefits of the image-to-images translation
and multitask pix2pix with respect to the generalization aspect
to other domains of application, even under the 512 × 512
resolution, this section provides preliminary results on two
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Fig. 10. Preliminary results of twomore applications ofmultitask pix2pix for joint tasks. Top row) LowdoseCT: imageenhancement and segmentation.
Mid row) MRI Neuroimage translation: T1 to T1-inverse and T2-flair. Bottom row) Magnification of the selected region (area inside yellow rectangle).
p2p: pix2pix, ST: single task, MTdG: Multitask with dilation in generator.

more experiments that were conducted. The first experiment
involves low dose CT image enhancement and segmentation
of kidneys. The second is a neuroimaging translation for
cross-modality generation of T2-flair and T1-inverse from the
T1 input image.

In the first experiment, Close attention is given in the
literature to LDCT imaging for of its use of a lower dose of
radiation, for being affordable, and for its faster scanning time,
making it most suitable for screening, diagnosis and follow
up visits [78]. While segmentation is an intrinsic problem in
imaging, likewise in LDCT, the image enhancement aspect
that could lead to better image quality is also a state-of-the-art
issue which is being addressed in the literature [79].

In the second experiment, while Cross-modality gener-
ation can serve as an auxiliary method in clinical diag-
nosis [80], it also has great potential for multimodal
registration [81]–[83], segmentation [81], [83], [84], super-
resolution [85] and structural information improvement [86]
(e.g. MRI 3T to 7T). For this second experiment, an MRI
T1 volume of the brain is translated into an MRI T1-inverse
and a T2-flair, in a slice by slice fashion.

Figure 10 shows the qualitative and quantitative results
(as seen in one slice) of single task and multitask pix2pix
using leave one subject out (LOSO) as a test evaluation
scheme. The network is trained using all of the 2D axial
slices from the training subjects and is tested on all of the
2D axial slices of the test subject not seen in the training
phase. For these studies, the hyper-parameters and networks,
which are the same as the aforementioned for CXR analysis,
are not optimized for these applications. For both appli-
cations, the multitask method outperforms the single task
methods while using only half of the network weights. It is
worth mentioning that there is a significant difference in
segmentation task for LDCT application and T2-flair task for
the neuroimaging application. The magnification area is shown
to emphasize the differences. These results clearly show the
potential benefits of using image-to-images translation to other

domains of application involving different imaging modalities
even when the proposed model as used for these additional
applications are implemented on the model solely based on
CXR images.

V. CONCLUSION

Of all the many existing medical imaging modalities, X-ray
imaging remains the most widely used modality as it is the
most cost effective and one of the easiest to administer.
Chest X-ray remains an essential imaging modality for the
diagnosis and follow up treatment of many diseases affecting
the lungs, heart and bone structure within the chest area.
In this study, a new deep learning based image-to-images
approach was proposed that simultaneously suppresses the
bones that hinder the visibility and scrutiny of organs and
nodules and segments the organs within the chest area.
Essentially, and for the first time, the architectural design of
this deep learning-based model exploits in the most effective
way the interplay of parameters in between the two tasks
to optimize the outcome for both tasks at once. In order to
perform these two essential tasks of bone suppression and
organs segmentation, the well-established pix2pix network is
extended to generate two output images simultaneously (an
image with bones suppressed, and a second image showing
the segmented organs), yielding the new image-to-images with
an automated end-to-end framework instead of the traditional
image-to-image approach that deals with each task separately.
The proposed method was trained via an end-to-end process
and is evaluated by cross validation and significance testing
with several standard metrics, resulting in highly accurate
results for both tasks. Through two additional empirical eval-
uations involving low-dose CT images and neuroimaging,
the proposed architectural design of the model is shown to
be amenable for generalization to other domains of applica-
tion, although developed around CXR imaging. In summary,
the contributions of this work can be summarized as follow:
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• This work is the first to try to extend the application
of image-to-image network to image-to-images network,
while optimizing the use of parameters and securing
computational efficiency.

• The network is improved through the inclusion of dilated
convolutions in some specific layers, which are shown to
improve the accuracy of the results significantly.

• The image-to-images network is used to accomplish
simultaneously the two common and most needed tasks of
bone suppression and organ segmentation in CXR images
while optimizing the outcomes for both.

• All of the developed code is shared publicly online
for validation purposes and for use by the research
community interested in the automated diagnosis and in
treatment follow up using chest X rays.
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