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A B S T R A C T

Predicting the progression of Alzheimer’s Disease (AD) has been held back for decades due to the lack of sufficient
longitudinal data required for the development of novel machine learning algorithms. This study proposes a novel
machine learning algorithm for predicting the progression of Alzheimer’s disease using a distributed multimodal,
multitask learning method. More specifically, each individual task is defined as a regression model, which predicts
cognitive scores at a single time point. Since the prediction tasks for multiple intervals are related to each other in
chronological order, multitask regression models have been developed to track the relationship between subse-
quent tasks. Furthermore, since subjects have various combinations of recording modalities together with other
genetic, neuropsychological and demographic risk factors, special attention is given to the fact that each modality
may experience a specific sparsity pattern. The model is hence generalized by exploiting multiple individual
multitask regression coefficient matrices for each modality. The outcome for each independent modality-specific
learner is then integrated with complementary information, known as risk factor parameters, revealing the most
prevalent trends of the multimodal data. This new feature space is then used as input to the gradient boosting
kernel in search for a more accurate prediction. This proposed model not only captures the complex relationships
between the different feature representations, but it also ignores any unrelated information which might skew the
regression coefficients. Comparative assessments are made between the performance of the proposed method with
several other well-established methods using different multimodal platforms. The results indicate that by
capturing the interrelatedness between the different modalities and extracting only relevant information in the
data, even in an incomplete longitudinal dataset, will yield minimized prediction errors.
1. Introduction

According to a March 2018 report from the Alzheimer’s Association
(AA), nearly 5.7 million US citizens, mostly elderly people, are affected
by AD, a statistic that is predicted to reach 13.8 million by 2050. This AA
report also indicates that an approximated amount of 277 billion dollars
was invested in 2018 in caretaking services for patients with AD and
dementia (Alzheimer Association, 2016).

Alzheimer’s Disease is a progressive and irreversible brain disorder
i).
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where subtle brain changes may have started decades prior to any
detectable symptoms. In its early stages, AD symptoms begin with mild
cognitive decline, which can then progressively lead to more severe
physical and functional impairments. Key indicators are associated with
severe brain atrophy, beta-amyloid deposition, and evidence of wide-
spread limbic and cortical neurofibrillary degeneration. In the study by
(Jedynak et al., 2012), an interesting computational neurodegenerative
disease progression score is proposed on the basis of the dynamics of the
different biomarkers in AD.
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Alzheimer’s Disease progression is generally assessed using bio-
markers including structural Magnetic Resonance Imaging (MRI), 18-Flu-
oro-DeoxyGlucose Positron Emission Tomography (FDG-PET) imaging,
cognitive examination, CerebroSpinal Fluid (CSF) and electroencepha-
lography (EEG) (Nimmy John et al., 2018; Poil et al., 2013; Loewenstein
et al., 2018). Commonly used MRI biomarkers for detecting the pro-
gression of AD include cortical thickness and regional brain volume
(Stonnington et al., 2010; Lao et al., 2004; Magnin et al., 2009; Sørensen
et al., 2016), whereas the most significant biomarkers of FDG-PET
include glucose hypometabolism in neocortical brain regions (Azmi
et al., 2017; Alexander et al., 2002; Landau et al., 2012; Cohen and Klunk,
2014). It has also been revealed that an increase in CSF t-tau or
Phospho-Tau is a potential biomarker of disease progression (Trushina
et al., 2013; Colijn and Grossberg, 2015; Shaw et al., 2009).

Along with neuroimaging modalities, there are other unconventional
measurements, known as risk factors, which are associated with Alz-
heimer’s, such as age, genetic information, years of education and
ethnicity (Michaelson, 2014; Rogers et al., 2012). As expected, this
complementary information shows that age plays a significant role in the
onset of AD (Chen et al., 2000; Mungas et al., 2001; Duara et al., 2019). It
is also well acknowledged that the most prominent genetic risk factor is
the Apolipoprotein E (APOE) gene. This gene and its major alleles (E2,
E3, and E4) are known to increase the risk of developing AD in in-
dividuals as young as 40 years of age (Farrer et al., 1997; Corder et al.,
2008).

While many studies in the literature mainly focus on disease predic-
tion, typically relying on a single modality (Bi et al., 2018; Frisoni et al.,
2007; Duchesne et al., 2009; Li et al., 2012; Buerger et al., 2002; Jack
et al., 2018), recent studies have shown that incorporating biomarkers
from different modalities may lead to a more accurate diagnosis (De Leon
et al., 2006; Tong et al., 2017; Ritter et al., 2015; Westman et al., 2012;
Zhang et al., 2011). New research directions have come to rely on
multimodal neuroimaging data with the inclusion of other biomarkers
such as CSF, genetics and neuropsychological tests. The main objectives
of these research endeavors are either to discriminate patients’ status via
classification methods or to predict different variables using regression
models. Cross-sectional and longitudinal data have been used to explore
correlations between clinical neuroimaging tests, neurological exams and
biochemical measurements to monitor changes in these important bio-
markers. Yet, despite much ongoing research, predicting the progression
of AD, especially for enabling early intervention, has remained chal-
lenging (Mendez, 2017; Pierce et al., 2017; Lawlor et al., 1994; Wolfe,
2016; Doody et al., 2010; Van Der Flier and Scheltens, 2009; Moradi
et al., 2015; Curiel et al., 2018; Lizarraga et al., 2018; C. Li et al., 2017;
Loewenstein et al., 2017; Sargolzaei et al., 2015; Duara et al., 2015;
Minhas et al., 2017).

In order to study the relative temporal changes in AD, there is need to
track pathophysiological changes in a large number of observations using
MRI, PET, Cognitive assessment tests (COG) and CSF. However,
acquiring all these tests within a large population is costly, time-
consuming and often difficult to consolidate given the dropout rate and
missed follow-up visits of elderly patients. Consequently, there are two
kinds of challenges in studying longitudinal dynamics and related pat-
terns in medical data. The first one is due to size irregularity because of
missing measurements from a specific modality. The second is due to
patients missing on follow-up visits or dropping out from the study.
Among the many verified assessments that can diagnose the presence of
AD and scale the severity of the progression, the Mini-Mental State Ex-
amination (MMSE) and the Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog) are the most common tests used in
regression-based models (Zhang and Shen, 2013; Wang et al., 2011). One
of the earliest work in this domain was done by Tierney et al., in 1996,
who used logistic regression to predict the possibility of AD progression
over a period of two years (Tierney et al., 1996). The study in (Zhang and
Shen, 2012) proposed a sparse linear regression model in conjunction
with a group regularization technique. The model was applied across
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different brain regions to select the most informative longitudinal fea-
tures and to predict future cognitive clinical scores among MCI subjects
over a period of 24-months. Similarly, Izquierdo et al. (2017) predicted
cognitive scores using stochastic gradient boosting of decision trees
among 1141 individuals for whom longitudinal clinical and imaging
studies were available in the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database. In another study (Tabarestani et al., 2019), two
different variations of recurrent neural networks (RNN), namely Long
Short-TermMemory (LSTM) and Gated Recurrent Units (GRU) have been
applied using 1458 multimodal records of subjects from the ADNI data-
base to predict AD progression. By leveraging the patients’ historical
records from previous three time points, the model could track disease
progression at three other subsequent time points with an accuracy that
outperforms methods that rely solely on baseline records.

Multitask learning, first proposed in 1997, is shown to improve per-
formance by extracting the relationships between multiple similar tasks
through the development of a statistical model (Caruana, 1997). It has
since attracted a lot of attention in a variety of machine learning algo-
rithms with application domains ranging from finance to bioinformatics
(Dong et al., 2015; Greenlaw et al., 2017). This new research trend has
delivered promising performance improvement in different categories,
including but not limited to multitask learning using kernel-methods
(Evgeniou et al., 2005), interpreting task relationship (Zhang and
Yeung, 2012; Widmer et al., 2012), developing probabilistic and statis-
tical models (Bi et al., 2008; Xue et al., 2007), selecting features (Yang
et al., 2010; Zhu et al., 2017), learning features (Zhang and Yeung, 2011;
Y. Li et al., 2017), feature hashing (Weinberger et al., 2009), and task
grouping (Kumar and Daume, 2012; Bakker and Heskes, 2003).

In recent years, multitask learning has been successfully applied to
longitudinal clinical data to predict the progression of neurodegenerative
diseases (Zhang and Shen, 2013; Emrani et al., 2017b; Nie et al., 2017;
Zhou et al., 2012b; Suk et al., 2017). Compared to single-task learning,
multitask learning uses a regressionmodel for predicting the future status
of patients at multiple time points. The basic assumption in these models
is that an inherent correlation exists among multiple records of infor-
mation, which are derived from the same subjects. These studies
demonstrated that capturing this inherent relatedness could improve the
generalization of the final prediction model. For example, Zhou et al. in
(Zhou et al., 2012b) developed convex and nonconvex fused group Lasso
formulation as the regularization term of the multitask learning kernel.
Their model could choose the most important sets of biomarkers from
different time points to model the progression of AD. Similarly, Emrani
et al. employed multitask learning to predict the progression of Parkin-
son’s disease over a period of 4.5 years (Emrani et al., 2017a), and Jie
et al. in (Jie et al., 2015) reported that manifold regularized multitask
feature learning could yield better classification performance and could
identify disease-related regions in the brain deemed important for dis-
ease diagnosis. A Sparse Group Lasso with shared Subspace Multitask
learning (SGLS-MTL) has been proposed by (Cao et al. 2017). Their
framework uses ℓ2;1 penalty, group ℓ2;1 penalty and subspace structure to
capture the correlation between the tasks, the sparse feature represen-
tation and the shared subspaces. They have presented a SGLS multitask
learning method to predict cognitive scores and to detect potential pre-
dictive MRI biomarkers. Wang et al. in (Wang et al., 2012.), proposed a
high-order multitask feature learning algorithm to model the longitudi-
nal trajectories of the cognitive measures of AD subjects based on neu-
roimaging biomarkers. They employed non-smooth structured
sparsity-inducing norm to utilize the correlation between the adjacent
tasks (prediction of cognitive measures at two subsequent time points)
and the interrelations between the cognitive measurements. To capture
the nonlinearity in the relationship between MRI neuroimaging features
and cognitive scores, Cao et al. in (Cao et al., 2018) used the ℓ2;1� l1
norm. By combining a joint sparsity regularization term with multitask
learning, the proposed model produced more accurate results. In (Jie
et al., 2017), Jie et al. introduced a group regularization term to the
sparse linear regression model. They have also added two smoothness
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regularization terms to the objective function to ensure that the model
keeps the differences between the weight vectors belonging to adjacent
time-points to be small. Their proposed model leverages the prediction
performance of the MMSE and ADAS-Cog scores from other existing
sparse learning based models.

The neuropathological symptoms of AD in its different stages are
complex, however, combining different modalities in an effective way
augments the prospects for a more accurate diagnosis. Although there are
many studies dealing with multimodal datasets, only a few discussed the
discrepancy in the different representations of feature domains (Yang
et al., 2010; Cheng et al., 2015). On the other hand, missing a screening
test on a given visit or dropping out of an entire follow-up visit results in
data scarcity in the multimodal database, a drawback experienced in
most longitudinal studies. Therefore, to make a reliable prediction of
MMSE changes over time, a distributed multimodal multitask framework
is proposed in this study to overcome these types of data scarcity prob-
lems. In multitask learning, the regularizing term presumes that an
equivalent degree of importance exists in the feature space. Therefore, if
a positive correlation between the features from different modalities is
not found, or if the features are not linearly correlated, the process may
fail to identify relevant patterns. In this case, constructing a unified
multitask learning model over the concatenated information may not be
the optimal approach. To address this issue, a multitask modality-specific
regression framework is proposed to predict the future MMSE scores for
up to 48 months while relying on measurements provided at baseline.
Separate multitask regression matrices are trained for each modality to
ensure that the coefficient matrices select the leading features extracted
from the same modality between consecutive tasks.

The objective function of each regression model uses the correlation
and sparsity pattern between all tasks within each modality to improve
the longitudinal prediction accuracy. In the second stage of the algo-
rithm, a gradient boosting method is implemented to take a concatenated
series of temporal predictions from different modalities and improve the
overall performance of the model by predicting a final score. This
segregation of modalities in multitask modality-specific regression offers
the following advantages:

� Resolves issues related to nonlinear or negative correlations between
different feature spaces, which could hinder the performance of
multitask learning.

� Provides an error propagation-free framework through a combination
of modality-specific multitask learning and gradient boosting. This
approach assumes that potential errors might exist in the measure-
ments of a specific modality that originated from capturing, pro-
cessing or extracting data. Concatenating data from different
modalities will thus increase the risk of spreading this error to the
fused feature space. Hence, by training separate models and per-
forming a majority vote for the distributed models, the source of error
can be detected and consequently prevented from propagating into
the fused feature space.

� Overcomes the missing data challenge by projecting a highly
dimensional and highly sparse input feature space into multiple low-
dimensional and less-sparse spaces. This ensures that the independent
coefficient matrices can collectively determine and order the most
important biomarkers in the whole dataset.

It is worth noting that the motivation of the model as envisioned is to
predict the trajectories of cognitive decline for subjects without any
preliminary diagnosis and without regard to the historical records. Thus,
the applicability of the proposed framework in terms of providing pre-
diction from baseline information makes it different from methods that
need at least a few historical records to be available. For example, Zhu
et al. in (Zhu et al., 2016b) proposed a method for early diagnosis of AD
by analyzing longitudinal MRI records and constructing a new feature
space from the mean and the difference between themeasurements of the
first and last visits. While involving historical records from patients into
3

the training phase may improve the prediction accuracy, it limits the
applicability of the model to only those patients with available medical
records.

The rest of the paper is organized as follows: Section 2 presents a brief
mathematical background of single task regression, multitask regression,
and the gradient boosting method. The methodology and implementa-
tion steps of the proposedmodel are described in Section 3. The proposed
model is formally introduced with the mathematical formulations that
guided this study and with a step-by-step implementation process
described in subsections 3.1 through 3.4. Section 4 begins with a dis-
cussion on the data considered in this study and provides a compre-
hensive assessment of the conducted experiments. Concluding remarks
and a retrospective on the obtained results are provided in Section 5.

2. Background

2.1. Problem description

The development of Alzheimer’s Disease takes place along a trajec-
tory spanning several years with transitions phases that vary from one
patient to another. Therefore, in longitudinal AD studies, individuals
repeat medical screening tests at multiple follow-up visits and their
MMSE scores are recorded and analyzed at each visit. MMSE, with a
range of 0–30, is the screening test most commonly used for memory and
cognitive evaluation. While it is not intended to replace neurological
diagnostic labels, it is used to validate the reliability of medical exami-
nations or to evaluate temporal cognitive decline in people suffering from
AD. Early intervention plans are effective only if the earliest manifesta-
tions of AD are identified at the onset of the disease. Therefore, pre-
dicting future trajectories of MMSE scores enables doctors to identify
future pathological levels of memory and cognitive impairment. Conse-
quently, the initial objective of this paper is to predict the MMSE scores
(b) of subjects, by finding the best model g, such that g : b ¼ Aw, wherew
is the regression coefficient and A is the baseline information of the
subjects. In support of the proposed approach introduced in Section 3, the
required mathematical background is introduced in sub-sections 2.2
through 2.4.

2.2. Single task regression

Let A 2 RN�P be a matrix consisting of N subjects with P features
describing each subject, with bt 2 RN�1; t ¼ 1;2; ::; T defining the
clinical scores of those N subjects at the tth time point. The problem of
predicting the clinical scores at multiple future time points could be
formulated as solving T different regression models as gt : A 2 RN�P →

bt 2 RN�1 ; t ¼ 1; 2; ::T.
In the simplest form, these T regression problems can be solved using

the following Ridge regression formula:

bw t ¼ argmin
€w
ks� ðbt � A €wÞk22 þ θk €wk22 (1)

where bwt 2 RP�1; t ¼ 1; 2;…; T are T independent coefficient vectors
calculated by solving the minimization problem in Eq. (1). The €w is used
as a variable under the arg min function to avoid any confusion with w
(the perfect target) and bw (the estimated target). In other words, at the
last iteration, €w that minimizes the arg min function is set as the best
estimate bw (i.e., bw ← €w). Symbol � defines the component-wise multi-
plier and vector s 2 RN�1 defines the missing target values; meaning that
sn ¼ 0 if the target value of the nth patient is missing at the tth time point,
and sn ¼ 1 if the target value of the nth patient is available at that same
time point. In Eq. (1), the k €wk22 is the squared ℓ2 norm of the coefficient
vector €w, which is controlled by tuning parameter θ. Recall that the p
norm of a vector x 2 RK�1 with x ¼ ½x1; x2; …; xK �’ is defined as:
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ℓp ¼kxk ¼
 XK jxk jp

!1 =

p

(2)
p k

the penalty term θk €wk22, controls the amount of coefficient shrinkage and
forces the variance to be close to zero in order to reduce the mean-
squared error. Another solution in finding g is to employ the Lasso
regression formulated as a constrained minimization problem as follows:

bwt ¼ argmin
€w
ks� ðbt � A €wÞk22 þ θk €wk1 (3)

In this formula, increasing θ forces the majority of coefficients in €w,
which are associated with features deemed not to be important, to be
close to zero and shrink the non-zero coefficients simultaneously. The
only difference between these two regression models is in squaring the ℓ2

norm in Ridge regression and using ℓ1 as the penalty terms in Lasso
regression, which increases the sparsity of the coefficients.
2.3. Multitask regression

Another way to tackle the problem of predicting cognitive scores at
multiple time points is to employ multitask learning. In the single-task
approach, each task is defined as predicting MMSE scores at a single
time point and several independent regression models are trained sepa-
rately to perform prediction for each time point. On the other hand, the
multitask approach utilizes the similarities between different tasks to find
a more accurate regression model that can carry out multiple prediction
tasks. This means that in multi-task learning all the MMSE scores
belonging to the T time points will be calculated simultaneously.

Multitask learning can be mathematically formulated as a predictor
G : A 2 RN�P → B 2 RN�T where B ¼ ½b1; b2; …; bT � is the target values
of N subjects at T time points. This multitask predictor G can be modeled
using a weight matrix W ¼ ½w1; w2; …; wT � where W 2 RP�T . In
computing the W matrix, one approach is to solve the convex optimiza-
tion problem as expressed in Eq. (4), also known as the convex fused
sparse group Lasso (cFSGL) (Zhou et al., 2012b).

cW¼ arg min
€w
kS� ðB� A €WÞk2F þ θk €Wk1 þ λk €Wk2;1 þ ηRk €W

0
k 1 (4)

where� , as defined earlier, is the component-wise multiplier and matrix
S 2 RN�T specifies the missing target values, in which Sn;t ¼ 0 if the
target value of the nth patient is missing at the tth time point, and Sn;t ¼ 1

if the target value is available. cW is the estimation of the W achieved by
solving the minimization problem. Terms θ, λ; and η are the hyper-
parameters that control the effect of each regularization term in the cost
function and are optimized during the training phase to improve the
performance of the algorithm. kWk1 is the Lasso penalty term and kWk2F
is the squared Frobenius norm and the k €Wk2;1 is known as the Group

Lasso penalty. Moreover, kRW’k1 is the Fused Group Lasso penalty, and R
is ðT �1Þ � T sparse matrix interpreted as a descriptor of the relatedness
between different tasks. Assuming each task as a node in a graph, a
relationship between every two tasks is represented by a connection
between their corresponding nodes. This penalty term controls the
transition between neighboring tasks and forces the transition within
successive tasks to remain small (a process also known as temporal
smoothness). In other words, Ri;j ¼ 0 indicates that the task assigned to
node i is not related to the task assigned to node j , while Ri;j ¼ α indicates
that task i and task j are associated with each other with a degree of α. In
the proposed model, this parameter restrains the variation of predicted
cognitive scores in neighboring time steps, meaning that trajectories of
MMSE scores at two consecutive time points cannot have spikes. In order
to solve Eq. (4), the accelerated gradient method (AGM) was used, which
is available in the MALSAR package (Zhou et al., 2012a).

Another approach for finding the weight matrix W is to use the non-
4

Convex Fused Sparse Group Lasso (nFSGL1) as formulated in (Zhou et al.,
2012b):

cW¼ argmin
€W
kS� ðB� A €WÞk2F þ ηkR €Wk0

1 þ θ
XP

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k €Wik1

q
(5)

where €wi is the ith row of €W. The convex and non-convex Fused Group
Lasso formulas allow for joint feature selection across all tasks while
selecting distinct feature sets for each task.

The joint selection of the coefficients in W could also be penalized in
the form of ℓ2;1-norm with least square loss. Thus, the finding of the
optimal W can be formulated as:

cW¼ argmin
€W

1
2

kS� ðB� A €WÞk2F þ λ1k €Wk2;1 þ λ2 k €Wk2F (6)

To incorporate global and local information in the feature set with a
sparse regression method, Zhu et al. in (Zhu et al., 2016a) reformulated
the objective function in equation (6) as follows:

cW¼ argmin
€W

1
2
k S� ðB� A €WÞk2F þ λ1trð €W’

A’LA €WÞ þ λ2k €Wk2;1 (7)

where λ1 and λ2 are the regularization parameters and tr (.) denotes the
trace operator. Here, with R being the adjacency matrix, the Laplacian
matrix L can be defined as:

L¼D – R (8)

whereD is the symmetric diagonal matrix in which the diagonal elements
Dii ¼ 1 and all the other non-diagonal entries are 0. Zhu et al. in (Zhu
et al., 2018) proposed an iterative method for finding the solution of
multitask problem, i.e.W, to reduce the number of hyperparameters that
must be learned in the multitask learning problem. The objective func-
tion in this proposed approach is to find the wtvalues through the
following formulation:

cW ¼ arg min
€wt ; w

XT

t
αt

���s� �bt � A €wt
���2

2
þ �� €wt � w

��
2;1

�
þ λ2k €Wk1

(9)

where w is the mean vector of €wtðt¼ 1; 2; …TÞ 2 W and αt are
calculated automatically with the following equation:

αt ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� kðbt � A €wtÞk22 þ k €wt � wk2;1

q (10)

Employing the centralized regularization in the objective function of
(9) balances the variances of the coefficients in wt by penalizing them
separately using αt .
2.4. Gradient boosting

Ensemble models have been shown to be effective in various pre-
diction tasks by grouping a set of weak learners to construct a more
powerful learner. Bagging and boosting are the two mainstream tech-
niques in ensemble learning methods. The former creates independent
and uncorrelated learners on subsets of data and generates the final result
by voting or averaging the outcomes of independent learners. On the
contrary, the latter generates a collection of weak learners, in which the
predictors are trained sequentially rather than separately. In boosting
methods, the goal is to utilize the error of the previous learners to
develop a more efficient model for the next learner. With training the
learners sequentially, subsets of data do not have the chance to concur-
rently affect all the learners. The algorithm invests a larger weight on the
samples that were classified inaccurately, forcing the hypothesis of the
next weak learners to precisely analyze those tough samples and even-
tually improve the performance of the model.
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An extension of the boosting methods is gradient boosting, which is a
supervised machine learning technique based on regression, classifica-
tion, and ranking. It uses the gradient descent optimization technique to
find the global or local minima of the cost function. Using a sequence of
weak learners, Gradient Boosting (GB) trains a machine to fit a model on
the input feature space such that each learner improves the prediction
accuracy of the previous ones. Through multiple iterations, gradient
boosting develops a single strong learner by combining multiple weak
learners (Friedman, 2001; Ogutu et al., 2011). In the proposed method,
GB constructs the final stage of the framework to improve the prediction
accuracy by successively fitting a more accurate model on the residuals of
the previous step. This procedure will continue until it achieves a highly
accurate model. Sub-sections 3.3 and 3.4 provides more details on the
role of GB in the context of the proposed framework.

3. Method

3.1. Notations and parameters

Through the rest of the paper, matrices are denoted as bold uppercase
letters and vectors are denoted as italic bold letters. Matrices Xt

m⊆ X and
Ωt

m⊆Ω are the feature space and patients’ roster ID associated with the
subjects who have been examined at time point t with modality test m.
For these subjects, ytwith t ¼ 1; 2; …; T are their respective cognitive
scores (independent from the source of the modality). Similarly, F is the
risk factor matrix consisting of age, gender, years of education and
APOE4 factors for all patients. It is noted that the (‘) notation denotes
transposition and should not be confused with t¼ 1, 2,…, T which define
the different time points in the longitudinal study, where T denotes the
48th month.
Fig. 1. Illustrative example of size discrepancy in a longitudinal multimodal
dataset. Available measurements extracted from each modality are shown with
colored boxes and the missing information are displayed in the blank sections.
3.2. Method overview

Tracking future MMSE scores reveals a subtle but progressive decline
in cognitive levels of individuals through the different stages of AD and
informs on the nature of the transition phases of the disease. However,
prognostication of AD progression, regardless of the label associated with
the subject at baseline, remains challenging, especially in a multimodal
platform. Certain modalities have shown a relatively higher impact on
the asymptomatic or symptomatic phases of AD. This promoted the use of
multimodal biomarkers to improve the accuracy of identifying neurobi-
ological and clinical symptoms of the disease. However, the interactions
and correlations between the biomarkers from complementary modal-
ities remain intricate. Furthermore, longitudinal datasets continue to
suffer from the missing data challenge.

Considering the data scarcity and the discrepancy in the correlation
matrix associated with the heterogeneous multimodal longitudinal
dataset, we propose to utilize the modality-specific multitask coefficient
matrix. These unique multitask coefficient matrices are trained over
different sets of biomarkers extracted from each modality to model the
temporal interaction between the baseline features and the transitions of
the cognitive scores at successive time points.

The strength and capability of different modalities in tracking the
progression of AD are still inconclusive. Therefore, granting equal
contribution (or equal weight) to the predictive biomarkers from
different modalities increases the chance of achieving better prediction
accuracy. This is accomplished by capturing the complex yet effective
correlation between important modality-exclusive features and elimi-
nating the effect of all other extraneous ones. Next, the initial outcomes
of these cooperative multitask learners are fused with risk factors, which
are assumed as time-invariant information. Finally, a gradient boosting
kernel is trained over this new collective data representation to leverage
the prediction accuracy through ensemble learning and looking into
sparse and interpretable solutions. In the next section, we will go through
the setup of our multimodal-multitask model.
5

3.3. Method formulation

Suppose that X 2 RN�P is the multimodal feature space and Y ¼ ½y1;
y2; …; yT � is representing the cognitive trajectories of these N subjects
through T time steps. For each interval t, Xt⊆ X is the set of subjects who
are chosen based on Ωt , the roster ID of population yt. It is worth noting
that some subjects may have not returned for the follow-up visit at tth

time point and therefore Ωt < Ω is possible. Considering M as the total
number of modality sources, Xt and yt are decomposed into M subgroups,
thus constructingT �M pairs of fðXt

m; ytmÞ; m ¼ 1; 2; …; M; t ¼ 1;
2; …; Tg, where each pair of ðXt

m; ytmÞ are the mth single-modality
measurements associated with the tth time point.

The single task regression method will be extended to the T �M
optimization problems to calculate wt

m by solving equations (11) and
(12).

bwt
m ¼ argmin

€w

���ytm � Xt
m €w
	��2

2
þ θk €wk22 (11)

bw t
m ¼ argmin

€w

���ytm � Xt
m €w
	��2

2
þ θk €wk1 (12)

where bwt
m 2 RPm�1 is the bwmestimate at the tth time point.

In the multitask learning approach, the objective function will be

extended to Gm : Xt
m → Ymwhere Ym 2 RN�T is the concatenated

matrix Ym ¼ ½y1m; y2m;…; yTm� with ytm being the extended versions of their
corresponding ytm, in which the unavailable test scores of the patients are
represented by zero values. The size discrepancy in ytm, which is a
consequence of missing modalities and dropout is illustrated in Fig. 1.

In this figure, patterns of missing values and arrangements of avail-
able information from four modalities are represented over a fixed time
period. Using a modality-specific approach, the objective function of
multitask learners will be reformulated to calculate M number of Wm 2
RPm�T where Wm ¼ ½w1

m; w
2
m;…; wT

m�. Thus, the cFSGL (convex Fused
Sparse Group Lasso) problem can be formulated as follows:

cWm ¼ argmin
€W

��S� �Y
m
� X1

m
€W
	��2

F
þθk €Wk1 þ λk €Wk2;1 þ ηRk €W

0
k1 (13)

And based on nFSGL1 (non-Convex Fused Sparse Group Lasso), the
objective function will be formulated as follows:

cWm ¼ argmin
€W

��S� �Y
m
� X1

m
€W
	��2

F
þ ηkR €W

0
k1 þ θ

XPm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k €W ik1

q
(14)

Using a similar approach, equations (6), (7), (9) and (10) will be
reformulated respectively as follows:

cWm ¼ argmin
€W

1
2

��S� �Y
m
� X1

m
€W
	��2

F
þ λ1k €Wk2;1 þ λ2 k €Wk2F (15)
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cWm ¼ argmin
€W

1
2

��S � ðYm � X1
m
€WÞ��2

F
þ λ1trð €W

0
X�1mLX

1
m
€WÞ
þ λ2k €Wk2;1 (16)

cWm ¼ arg min
€wt ; w

XT

t
αt
� ��s� �yt

m
� X1

m €wt
	��2

2
þk €wt � wk2;1

�
þ λ2k €Wk1 (17)

αt ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��s� �yt

m
� X1

m €wt	��2
2
þ k €wt � wk2;1

q (18)

The flowchart of the proposed method in the training stage is illus-
trated in Fig. 2. In this figure, step 1 represents the training process for
Fig. 2. (a) Flowchart of the proposed approach in the training phase,
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the modality-specific regression coefficient matricescWm. The input space
is constructed by T stack of modality-specific feature spaces, Xt

m , t¼ 1, 2,
…, T and the targets are their respective cognitive scores characterized asbytm. At the end of the training stage, step 1 generates M modality-specific

multitask learning regression coefficient matrices,cWm 2 RPm�T for m ¼
1; 2;…;M, which are comprised of bwt

m for t ¼ 1;…;T in the form ofcWm ¼
½bw1

m; bw2
m; …; bwT

m�. Consequently, using Xt
m as input measurements, the

initial prognostications at time point t are established as:

by tm ¼Xt
m � bw t

m (19)

for m ¼ 1; 2;…;M and t ¼ 1; 2;…;T.
Modality-wise multitask coefficient matrices capture the mutual
(b) Defining the dimensions in multitask formulation for step 1.



Table 1
Demographic characteristic of the studied subjects. valued are specified as
mean� standard deviation.

Category Subjects
(f/m)

Age Education
(year)

APOE
(0/1/
2)

MMSE

CN 206/209 74.77� 5.74 16.27� 2.73 300/
103/
11

29.07� 1.12

MCI 354/510 73.03� 7.60 15.91� 2.85 427/
340/
94

27.59� 1.81

AD 150/186 74.92� 7.81 15.17� 2.99 113/
156/
65

23.18� 2.05

MCI to
AD

2/3 78.50� 2.59 16.40� 2.61 1/4/0 26.00� 1.58
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relationships between the feature spaces and cognitive score trajectories.
This provides a powerful tool in obtaining the inter-modality correlations
and examining the predictive power of each modality exclusively. To
take advantage of the information provided from each source of mo-
dality, the outcomes of the multitask models along with risk factor pa-
rameters are combined together to form the input space for the gradient
boosting. It is worth noting that the risk factor parameters, do not carry
the unpredictable temporal pattern as in the other biomarkers. In order to
reduce unnecessary computational costs, risk factor parameters have not
been processed with multitask learning models and have been added to
the second stage of the model. Step 2 in Fig. 2 shows the preparation of
the data for the second stage of the method.

For the dataset used here, it is observed that if the PET measurements
are available for a group of subjects, the MRI measurements are also
available for that group, but the opposite is not necessarily true. There-
fore, five configurations of possible modality combinations are consid-
ered in this study: (1) MRI-PET, (2) MRI-PET-CSF, (3) MRI-PET-COG, (4)
PET-COG-CSF and (5) MRI-PET-COG-CSF.

The Ωt
m are the sets of roster IDs from subjects that have participated

in test m at the tth time point and Ωt is the intersection between all Ωt
m

with respect to their availability in the cth modality combination.
Considering c as an indicator of the modality combination, the GB ma-
chines are developed as GBt : Zt → yt for c ¼ 1;…; 5 and t ¼ 1;…;T
over the set of Ωt . In which Zt is the new feature space for the cth GB
machine and is constructed by concatenating bytm and F t , which are the
initial predictions and risk factors for the population of Ωt . This process
has been demonstrated in step 3 of Fig. 2.

For example, if the available modalities are MRI and PET, then c¼ 1.
Meaning that in stage 1, only the modality-specific regression coefficient

matrices of cW1 andcW2 can provide the initial predictions as byt1 and byt2.
Based on their respective roster IDs, Ωt , the input space Zt ¼ ½F t ; byt1;byt2�is constructed in step 2. Then the Zt and their corresponding sets of
cognitive scores, yt , will be used to train the corresponding GBtat step 3.

3.4. Test scenario

Suppose that we want to predict the MMSE score at time point t and
the patient has completed three modality tests. The available measure-
ments from this patient are thus (x1 2 R1�P1 ) extracted from MRI, (x2 2
R1�P2 ) extracted from PET, (x4 2 R1�P4 ) extracted from CSF test and a
vector r containing the risk factor parameters for this patient. In this
scenario, the COG modality which is x3 is not available.

In the first step of the proposed model, modality-wise coefficient
matrices will provide the most accurate predictions possible from the
measurements of one modality through multitask learning. By feeding x1;
x2; x4 to their respective modality-wise coefficient matrices, the initial
predictions can be calculated as byt

1 ¼ x1 � bwt
1, byt

2 ¼ x2 � bwt
2 and byt

4 ¼
x4 � bwt

4. Next, the initial predictions of byt
1; byt

2; byt
4 and risk factors (F )will

be concatenated to form the new feature vector cZt ¼ 
r; byt
1; byt

2; byt
4

�
where

c ¼ 2 indicates the mode for modality combination (i.e., MRI-PET-CSF).
Then in the second step, gradient boosting employs a boosting approach
to ensemble the outcomes from different modalities, determine the cor-
relation among them and reduce their prediction error. The final estima-
tion will be achieved by using the GBt machine as byt ¼ GBtðZtÞ. While
incomplete samples with missing intervals are taken care of through the
first step of the algorithm, the second step of the proposed method deals
with the missing modalities and the complex relationship between them.
The gradient boosting incorporates the predictive power of salient bio-
markers from each modality, models the intra-correlation between them,
and adjusts the prediction error to improve the final accuracy.

3.5. Data and code availability statement

The clinical data used in conducting this study were obtained from
7

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, and
all the details pertaining to the different image processing pipelines can
be found in (adni.loni.usc.edu). The code generated for this study can be
made available upon request to the corresponding author of this
manuscript.

4. Results and discussion

4.1. Data

The clinical data used in the preparation of this paper were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in 2003 as a public-private
partnership, directed by Principal Investigator Michael W. Weiner, MD.
The primary objective of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessments can
be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org. ADNI established the following Mini-Mental
Exam (MMSE) and Clinical Dementia Rating (CDR) cut off scores to
interpret the AD spectrum:

� MMSE of 30 and CDR of 0 is described as cognitively no dementia,
� MMSE of 29–26 and CDR of 0.5 is associated with questionable
dementia,

� MMSE of 25–21 and CDR of 1.0 is associated with mild dementia,
� MMSE of 20–11 and CDR of 2.0 is associated with moderate
dementia,

� MMSE of 10–0 and CDR of 3.0 is determined as severe dementia.

The experiments in this study usedmultimodal longitudinal data from
1620 subjects who were enrolled for up to 6 visits in a 4-year time span.
This population consists of 864 participants with mild cognitive
impairment (MCI), 415 cognitively normal subjects (CN), 336 in-
dividuals with dementia (AD) and 5 participants whose status changed
from mild cognitive impairment to dementia at baseline (MCI to AD
conversion). All samples used in this analysis are in the range of
54.4–90.3 years old, with 44% female and 56%male. The majority of the
93.24% of the population were identified as white, 3.95% as black and
the rest were recognized either as Asian, Indian/Alaskan or belonging to
more than one ethnicity. 76% reported their marital status as married,
12.61% as widowed, and the rest of the participants were represented as
either never married or their status of marriage was recorded as un-
known. Table 1 summarizes the demographic characteristics of the ADNI
cohort used in this study based on the category of the disease. For the
APOE column, the (0, 1, 2) values refer to the number of ε4 alleles in the
APOE genotype.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
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4.2. importance of data modality and structure of the experimental set-up

In preparing the data, subjects were partitioned into four categories:
individuals who had completed the MRI scanning, individuals with PET
scans, individuals with CSF analysis, and individuals with cognitive
screening tests. The features extracted from each screening test, and the
number of subjects in different time periods, are summarized in Table 2.
In relation to time t, t¼ 1 means time point at baseline or T1, t¼ 2 refers
to time point at the 6th month or T6, t¼ 3 refers to time point at the 12th
month or T12, t¼ 4 refers to the time point at 24th month or T24, t¼ 5
for the time point at 36th month or T36 and finally for t¼ T, for the last
time point at the 48th month or T48. The importance of each data mo-
dality in the proposed multitask multimodal approach is reflected in the
features that were selected for each modality as shown in Table 2.
Observe the decreasing number of observations made at subsequent time
points in this ADNI longitudinal study, which highlights the missing data
challenge. For this study, through the MRI imaging modality, the main
features considered as the most important MRI biomarkers are extracted
from seven brain regions to include Ventricular volume, Hippocampus
volume, Whole Brain volume, Entorhinal Cortical thickness, Fusiform,
Middle temporal gyrus and intracranial volume (ICV). Fig. 3 illustrates
these brain regions in the brain template. The PET features are single
measurements of the Pittsburgh compound B (PIB), the Florbetapir (AV-
Table 2
Summary of ADNI dataset, the number of observations in each follow-up visit and th

Sourcea Number of observations Features

T1 T6 T12 T24 T36 T48

MRI 1465 1333 1191 987 617 451 Ventricular volume, Hipp
temporal gyrus, and intra

PET 1127 1009 892 714 429 335 FDG, Pittsburgh Compou

Cognitive
Testb

1525 1357 1207 997 627 456 Rey Auditory Verbal Lea
Forgetting), Functional A
EcogPtLang, EcogPtVissp
EcogSPVisspat, EcogSPPl

CSF 1014 914 806 662 404 305 Amyloid Beta (ABETA), P

Risk factors 1737 Age, gender, years of edu

a In this table MRI refers to Magnetic Resonance Imaging, PET refers to Positron Em
Cerebrospinal Fluid test.

b The Mini-Mental State Examination (MMSE) and Clinical Dementia Rating Sum o
Disease Assessment Score (ADAS11, ADAS13) and the Montreal Cognitive Assessment
the training and testing phases of the proposed prediction model.

Fig. 3. Selected MRI brain regions for tracking the progression of Alzheimer’s dise
Entorhinal, fusiform, and middle temporal regions, respectively (Top). The volumetri
white-matter, and the purple and blue regions representing the hippocampus and ve
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45), and the fluorodeoxyglucose (FDG) for cerebral glucose metabolism,
all used as agents to image and gauge the extent of amyloid plaques at the
different stages of the disease. As we are constrained to the multimodal
features presented in Table 2 for this longitudinal study, future studies
could involve the use of PET regional standardized uptake value ratio
(SUVRs) as quantitative measures of the radiotracer uptake in regions of
interest with respect to a reference region to assess how such measures,
especially in disease-prone areas, relate to the MMSE score as used for
prediction purposes in this study.

In terms of the cerebrospinal fluid (CSF) biomarkers (Anoop et al.,
2010; Hanger et al., 2009; Noble et al., 2013), this study considers Am-
yloid Beta (ABETA), phosphorylated tau protein (PTAU), and Total tau
protein (TAU) as means to assess the extent of amyloid plaques in be-
tween neurons and the neurofibrillary tangles made up of tau protein
within the neurons themselves, both considered to contribute to the
degradation of neurons in Alzheimer’s disease and other tauopathies.
The other risk factors considered in this study include age, gender, level
of education and Apolipoprotein E (APOE) gene. As indicated earlier,
APOE with the E4 allele apolipoprotein is considered a major genetic risk
factor for AD (Bussy et al., 2019). As for age and gender, it is common
knowledge that age is a major risk factor in AD (since only about 5%
develop symptoms of AD before the age of 65) and it is estimated that
two-thirds of the 5.5 million Americans living with AD are women.
e features extracted from each modality.

ocampus volume, Whole Brain volume, Entorhinal Cortical thickness, Fusiform, Middle
cranial volume (ICV)

nd-B (PIB), AV45

rning Test (RAVLT Immediate, RAVLT Learning, RAVLT Forgetting, RAVLT Perc
ctivities Questionnaires (FAQ), Everyday Cognition (Ecog) scales: (EcogPtMem,
at, EcogPtPlan, EcogPtOrgan, EcogPtDivatt, EcogPtTotal, EcogSPMem, EcogSPLang,
an, EcogSPOrgan, EcogSPDivatt, and EcogSPTotal)

hosphorylated Tau Protein (PTAU), and Total Tau Protein (TAU)

cation, and APOE4

ission Tomography, COG refers to Cognitive assessment tests and CSF refers to

f Boxes (CDRSB) scores (since initially used for labelling subjects) and Alzheimer’s
(MoCA) (since highly correlated with MMSE) were excluded from the feature set in

ase. 3D mesh surface map, with purple, green, and yellow areas representing
c segmentation, in which the yellow line depicts the interface between grey and
ntricles, respectively (Bottom).
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Although women tend to live longer than men, we still could not
conclude with certainty that this discrepancy in the larger number of
women with AD is only due to longevity and experts remain uncertain on
other factors that could explain this difference. As for the level of edu-
cation, there is an understanding and some studies confirm that the
higher is the level of education the lower is the risk for dementia, and that
cognitive reserve serves as a strength to overcome some the symptoms of
AD (Stern, 2012; Buckner, 2004).

In the preprocessing step, ADAS11, ADAS13, MoCA, the Diagnosis
labels (DX) and CDR were removed from the feature set since it is known
that they have a high correlation with the MMSE score. We further
excluded non-stable CN participants (CN to MCI or CN to AD) and sub-
jects who are facing a reverse-phase in the progression stage (MCI to CN,
AD to MCI).

Given the number of subjects considered for this study (1620), to
compensate for the small sample size, nested cross-validation has been
applied to our data set. From the whole dataset, 70% were randomly
selected as the training set and 30% were set aside as the testing set. This
process of randomly splitting the data has been repeated 10 times to
avoid any bias in the evaluation of data. For hyperparameter selection, in
each of those data splits, 5-fold inner cross-validation along with
exhaustive search is used to select the optimal hyperparameters for each
method. For regression methods, the regularization parameters were
selected in a range of {10�3 to 103}. As for the XGBoost method, the
number of estimators is searched between {1 and 500}, learning rate has
Fig. 4. Performance comparison of different regression methods o
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been searched between {10�3 and 1}, the number of columns used by
each tree (colsample_bytree) has been searched between {0.1 to 1} and
max depth has been searched between {1 and 15}.

Through the rest of the paper, reported values are the mean and
standard deviation of the experiments in these10 different random train
and test split. It is important to mention that, feature space from every
observation in both the training set and the testing set were normalized
separately using the Z-score (i.e., dividing the difference between each
value and the mean by the standard deviation).
4.3. Selecting modality-specific multitask models

The first stage of the model is focused on developing modality-
specific multitask coefficient matrices. The motivation is to not confuse
the multitask regression coefficients with modeling the relationship be-
tween different modalities and to preserve the maximum learning ca-
pacity to be devoted to learning the trajectories of cognitive decline. The
following state-of-the-art algorithms are selected as the competing
methods in the investigation of predicting clinical decline at multiple
time points.

� Ridge regression
� Elastic Lasso
� Temporal Group Lasso (TGL)
� Convex Fused Sparse Group Lasso (cFSGL)
n longitudinal prediction of MMSE using different modalities.



Table 3
Hyper parameters used for tuning of Gradient Boosting.

Modality
Combination (C)

max_depth Learning
rate

Colsample_bytree n_estimators

MRI_PET 2 0.07 0.98 90
MRI_PET_CSF 3 0.05 1.00 120
MRI_PET_COG 3 0.07 1.00 90
PET_COG_CSF 3 0.07 0.98 80
MRI_PET_COG_CSF 3 0.10 0.50 50
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� Non-convex Fused Sparse Group Lasso (nFSGL)
� Subspace Regularized Sparse multitask learning (Zhu et al., 2016a)
� Parameter-free least Lasso ( Zhu et al., 2018)

For single task learners, six separate regression models have been
trained to predict cognitive scores for each time point. However, in
multitask learning, the regression coefficients for all time points are
trained together. This approach improves the efficiency of the final
model by identifying and capturing the correlation between the transi-
tions of cognitive scores at successive time points. To benchmark the
performance of different methods, RootMean Square Error (RMSE) and R
correlation coefficient (denoted as Corr in Tables and figures that follow)
are selected as the main evaluation metrics through this study. Fig. 4
demonstrates the comparison of prediction accuracy of regressionmodels
using different sets of biomarkers. Several important empirical observa-
tions can be made from analyzing the results given in Fig. 4.

First, single-task models yield a competitive performance at earlier
time points but multitask learners significantly surpassed them at sub-
sequent time points. This analysis found clear evidence for the superi-
ority of multitask learners over single task learners.

Second, the sparsity and temporal sample size of each modality-
specific feature space differ from each other. For each modality, the
regression model which yields the highest winning rate is selected as the
best predictor. The winning rate is defined here as the number of times a
specific method achieves the best performance in term of lowest error
across all intervals and highest correlation in comparison to all the other
methods. It is important to emphasize that the winning models are
selected during the training phase without seeing the test data. It can be
observed that cFSGL proved to be the best method for PET and CSF, just
as the method in (Zhu et al., 2018) yielded the best overall performance
results for COG measurements, and the coefficient matrix in (Zhu et al.,
2016a) achieved the best prediction accuracy for MRI measurements.
The ℓ2 norm regularization penalty term in W. Since the feature spaces
for PET and CSF are low dimensional and less sparse, using ℓ2 norm will
help determine and keep the best predictive biomarkers. The COG mo-
dality was found to have a higher dimensionality and the pattern of
Fig. 5. Scatter plot of predicted MMSE scores versus actual values in six time point
achieved by the winning coefficient matrix and the black dashed line is the referenc
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features is highly sparse, which enabled the coefficient matrix in (Zhu
et al., 2018) to achieve better generalization than other methods.

Third, the cognitive modality achieved the smallest error in com-
parison to all other modalities in predicting the cognitive decline.
However, it must be pointed out that ADAS11, ADAS13, MoCA, CDR, and
diagnosis labels were removed from the cognitive feature space to ensure
that variables with a strong correlation with the MMSE label are not
biasing the prediction. The scatter plot for cognitive assessment modality
is shown in Fig. 5.
4.4. Final results and discussion

In order to model the complex relationship between different mo-
dalities, the outcomes of the winning predictors from Fig. 4 are combined
with the risk factor measurements, as non-temporal biomarkers. These
new sets of features have been utilized as the input for the gradient
boosting (GB) machines. The GB machines have been trained over five
combinations of modalities. Grid search has been adopted to estimate the
hyperparameters of gradient boosting for different combinations of mo-
dalities. The optimal hyperparameter values for each modality have been
reported in Table 3. The experimental results, in terms of RMSE, are
shown in Table 4.

For all methods reported in Table 4, the training and testing sets are
identical, except for the fact that the competing methods are using the
conventional approach in which all features from different modalities are
concatenated together. For the statistical test, the correlation coefficient
s using the cognitive assessment modality. The green line is the regression line
e for perfect correlation.



Table 4
Comparison of the results from our proposed method with other existing methods on longitudinal multi modal data. The error has been reported using RMSE metric in
six different future time points.

Method Modality Time Points

T1 T6 T12 T24 T36 T48

Ridge MRI, PET, COG, CSF 1.90� 0.47 2.33� 0.68 2.43� 0.74 3.17� 0.73 3.20� 0.83 4.05� 0.90
Lasso MRI, PET, COG, CSF 1.83� 0.37 2.34� 0.64 2.45� 0.53 3.11� 0.70 3.15� 0.74 4.00� 0.76
TGL MRI, PET, COG, CSF 1.93� 0.43 2.32� 0.45 2.42� 0.55 3.22� 0.67 3.10� 0.82 3.87� 0.93
nCFGL1 MRI, PET, COG, CSF 1.81� 0.55 2.31� 0.58 2.41� 0.67 3.28� 0.46 3.49� 0.59 4.06� 0.70
cFSGL MRI, PET, COG, CSF 1.88� 0.85 2.33� 0.64 2.40� 0.73 3.20� 0.68 3.03� 0.86 3.61� 0.78
ℓ2;1-norm MRI, PET, COG, CSF 1.89� 0.75 2.34� 0.52 2.38� 0.76 3.24� 0.59 3.08� 0.67 3.64� 0.69
Zhu et al., 2016a MRI, PET, COG, CSF 1.87� 0.52 2.31� 0.66 2.32� 0.50 3.27� 0.62 2.98� 0.96 3.56� 0.87
Zhu et al., 2018 MRI, PET, COG, CSF 1.86� 0.53 2.27� 0.61 2.38� 0.64 3.23� 0.57 3.02� 0.84 3.42� 0.64

Proposed MRI, PET 2.02� 0.26 2.30� 0.32 2.88� 0.36 3.06� 0.35 2.51� 0.31 2.60� 0.32
MRI, PET, CSF 1.95� 0.39 2.22� 0.31 2.81� 0.30 2.92� 0.33 2.51� 0.37 2.72� 0.30
MRI, PET, COG 1.60� 0.27 1.79� 0.23 2.30� 0.23 2.41� 0.35 2.53� 0.32 2.20� 0.30
PET, COG, CSF 1.63� 0.20 1.80� 0.28 2.25� 0.20 2.38� 0.25 2.41� 0.26 2.38� 0.29
MRI, PET, COG, CSF 1.62� 0.24 1.78� 0.22 2.24� 0.24 2.38� 0.21 2.28� 0.22 2.19� 0.15
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between the observed and predicted values is calculated on 100 boot-
strapped samples, generated from the original sample size. By testing the
null hypothesis of no correlation, the significance of the correlation, p-
value, is calculated for each time point.

The proposed model achieved a correlation coefficient of 0.82
(p¼ 6.20e-47) at T1, 0.86 (p¼ 4.18e-62) at T6, 0.80 (p¼ 1.18e-41) at
T12, 0.81 (p¼ 1.82e-38) at T24, 0.79 (p¼ 6.11e-20) at T36 and 0.76
(p¼ 1.44e-15) at T48 on the test data. Coefficient of determination is
another statistical metric to evaluate the accuracy of regression models.
This parameter presents the percentage of the variation in the dependent
variable (predicted value) that can be described by the independent
variable (target value). The coefficient of determination for the proposed
model is 0.67 at T1, 0.73 at T6, 0.64 at T12, 0.66 at T24, 0.62 at T36 and
0.58 at T48. Fig. 6 shows the scatter plots of predicted MMSE scores
versus the actual scores with correlation value reported within each
scatter plot. Colors are representing groups of subjects belonging to
different stages of AD. The progressive nature of AD results in a steady,
Fig. 6. Scatter plot of predicted MMSE scores versus actual values at six different time
and the dashed black line is the perfect correlation. Red squares (□) are the CN grou
group and green plus signs (þ) are the AD group.
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though uncertain slope in terms of cognitive decline. Patients who are
diagnosed with late stages of AD at baseline have a higher chance to
encounter a steep descent to severe cognitive decline within the
following 48 months. Therefore, at the time points with an unbalanced
population, in terms of the cognitive score distribution, individuals with
a severely low MMSE score are detected as outliers. For example, ac-
cording to Fig. 6, there are very few subjects with a cognitive score of less
than ten, which makes it difficult for the system to keep track of all
values. It should be pointed out that considering a weighting scheme of
the distributions at the different stages of the disease and at different time
points could help in improving the prediction accuracy of the trajectories
in cognitive decline (Sugiyama et al., 2007).

Since the focus of this paper is in predicting the trajectories of MMSE
scores, the longitudinal distributions of predicted versus actual target
MMSE scores for each group are provided in Fig. 7.

To further evaluate the superiority of the proposed model, following
the approach described in (Jie et al., 2017), paired t-test has been
points. The blue line is the fitted regression line achieved by the proposed model
p, blue plus signs (þ) are the MCI group, red asterisks (*) are the MCI converter



Fig. 7. Longitudinal trajectories of MMSE scores through 6 time points for each category of disease. In each figure, boxplots in blue are used for the distribution of
predicted MMSE scores and black boxplots are used for the distribution of target MMSE scores.

Table 5
Comparison of p-values obtained from residuals of the proposed method and the competing methods using the combination of modalities of MRI, PET, COG, CSF.

Ridge Lasso TGL nCFGL1 cFSGL ℓ2;1norm Zhu et al., 2016a Zhu et al., 2018

T1 0.063 0.083 0.386 0.386 0.501 0.086 0.029 0.032
T6 0.007 0.011 0.003 0.001 <0.001 <0.001 0.024 0.013
T12 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001
T24 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
T36 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.010 0.012
T48 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.013 0.010

S. Tabarestani et al. NeuroImage 206 (2020) 116317
performed on the residuals of the proposed method and each of the
competing method. The results summarized in Table 5 show that except
for the baseline, the proposed method for all other five future time points
demonstrates statistical significance, with all p-values less than 0.05,
proving its effectiveness.

Since independent models are separately trained over each feature
space, our model brings the following advantages: (1) feature scarcity
from one particular modality would not be an issue for the other
regression models; (2) any error within the data of one modality could be
prevented from propagating through other modalities; (3) the model
could be easily extended to include other modality sources with little
adjustments and to consider sparsity patterns of the measurements; (4)
the proposed model is applicable to a wide variety of subjects with any
combination of modality sources, without being restricted to their
baseline diagnosis or to their historical records; and (5) the robustness
and flexibility of the presented framework in handling missing data
12
preserves enough information to monitor and predict MMSE trajectories
with a relatively high accuracy.

5. Conclusion

Predicting MMSE over time, through multimodal longitudinal data,
could augment our prospects for analyzing the interplay between the
different multimodal features used in the input space in relation to the
predicted MMSE scores. Such a prediction model could also be used to
ascertain the effectiveness of treatment or therapeutic protocol by
comparing actually taken MMSE tests against predicted scores by the
model, allowing at the same time to observe the conversion rate in the
different stages of individuals who are at risk of developing AD. A novel
distributed multitask multimodal framework is introduced for predicting
cognitive measures in the progression of Alzheimer’s disease even when
burdened with the missing data challenge. The model is capable of
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handling size discrepancy between the number of observations belonging
to different time points and assuming different recording modalities. The
proposed approach also has the potential to directly consider the
inherent temporal sparsity patterns of different modalities and their
relative correlation strength. This provides flexibility in utilizing com-
plementary information from multimodal data. Furthermore, the model
has the ability to terminate the propagation of potential error from one
modality to another which may have originated from corrupted data.

It is important to emphasize that in designing the proposed prediction
model, the Mini-Mental State Examination (MMSE) and Clinical De-
mentia Rating Sum of Boxes (CDRSB) scores (since initially used for
labelling subjects) and Alzheimer’s Disease Assessment Score (ADAS11,
ADAS13) and the Montreal Cognitive Assessment (MoCA) (since highly
correlated with MMSE) were excluded from the feature set or input space
in the training and testing phases of the proposed prediction model. The
longitudinal MMSE scores were instead used as labels to be predicted by
the model on the basis of the multimodal feature set considered for the
different time points as listed in Table 2. The experimental results proved
that this method can effectively predict the progression of Alzheimer’s
disease over a period of four years in terms of the predicted MMSE scores
on the basis of neuroimaging features (MRI and PET), cognitive tests not
used initially for labelling the subjects or found to be highly correlated
with MMSE to avoid any bias, cerebrospinal fluid (CSF) and other risk
factors associated with age, gender, years of education, and the APOE
gene. While the proposed approach mitigates the consequence of the
negative correlation between various modalities, there could still be
unrelated information between different tasks within a single modality.
Future studies using longitudinal data may be able to improve the per-
formance of these prediction algorithms. The general approach described
for predicting progression used in this study, as expressed in Fig. 2, could
be extended not only to other longitudinal studies involving other
neurological disorders, but could also be used for the prediction of other
cognitive scores such as ADAS11 and RAVLT to assess the singular merits
of such cognitive scores and how related and correlated they may be to
the MMSE test.
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