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1. Introduction

Majorization is a fundamental tool introduced by Hardy, Littlewood, and Pólya [13]
that finds application in various fields [19]. Among the different motivations for majoriza-
tion, the core idea is a notion of “disorder”. For example, a probability distribution is 
majorized by another if it is less deviated from the uniform distribution. Recently, Gour, 
Jennings, Buscemi, Duan, and Marvian in [10] use the concept of “quantum majoriza-
tion” as a particular partial ordering of states and processes in quantum mechanical 
systems.

Let H be a finite dimensional Hilbert space and B(H) be the space of bounded 
operators acting on H. A density operator ρ ∈ B(H) (called a state on the quantum 
system H in the quantum information theory literature) is positive and has trace 1. The 
dynamics between quantum systems is modeled by completely positive trace preserving 
maps (also called quantum channels) which map density operators to density operators. 
For two bipartite density operators ρ and σ on the tensor product Hilbert space HA⊗HB , 
σ is said to be quantum majorized by ρ if there exists a linear completely positive trace 
preserving (CPTP) map Φ : B(HB) → B(HB) such that σ = id⊗Φ(ρ). This concept has 
been studied in different contexts under various guises [23,4,3,2,16]. Intuitively, quantum 
majorization describes the disorder observed from the B system. This can be witnessed 
from the data processing inequality of conditional entropy H(A|B),

H(A|B)ρ ≤ H(A|B)id⊗Φ(ρ) = H(A|B)σ .

For a bipartite density operator ρ ∈ B(HA⊗HB), its conditional entropy is H(A|B)ρ :=
H(ρ) − H(tr⊗id(ρ)), where tr is the matrix trace and H(ρ) = − tr(ρ log ρ) is the von 
Neumann entropy. The conditional entropy H(A|B)ρ describes the uncertainty of the bi-
partite density operator ρ given its information on the B system [15]. The data processing 
inequality says such uncertainty is monotone non-decreasing under quantum majoriza-
tion. As a converse to the data processing inequality, Gour and his coauthors [10] proved 
the following characterization of quantum majorization using conditional min-entropy 
Hmin(A|B), defined as

Hmin(A|B)ρ = − log inf{tr(ω)|ρ ≤ 1 ⊗ ω for some positive ω ∈ B(HB)}. (1.1)

Theorem ([10]). Let HA, HB be finite dimensional Hilbert spaces. For two bipartite 
density operators ρ and σ, σ is quantum majorized by ρ if and only if for all finite 
dimensional H ′

A and all CPTP maps Ψ : B(HA) → B(HA′),

Hmin(A′|B)Ψ⊗id(ρ) ≤ Hmin(A′|B)Ψ⊗id(σ). (1.2)

Hmin(A|B) is the analogue of H(A|B) as the Rényi p-version at p = ∞ [20] and it 
connects to H(A|B) by the quantum version of asymptotic equipartition property [26]. 
The “only if” direction in the above theorem follows from the data processing inequality 
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of Hmin, which is indeed self-evident from its definition (1.1). The other direction states 
that quantum majorization is actually determined by the data processing inequality of 
Hmin. In [10], the above theorem has been used to characterize quantum dynamics under 
group symmetry and thermodynamic condition. It has further extensions from bipartite 
states to bipartite quantum channels [11].

In this work, we revisit Gour et al.’s theorem from a functional analytic perspective. 
Our starting point is the observation that the conditional min-entropy corresponds to 
the operator space tensor norm

Hmin(A|B)ρ = − log ‖ρ‖S1(HB)⊗̂B(HA) (1.3)

where S1(HB) is the set of trace class operators on HB and S1(HB)⊗̂B(HA) is the op-
erator space projective tensor product. This correspondence is based on an factorization 
expression for the norm of S1(HB)⊗̂B(HA) that Pisier used in [21] to define noncommu-
tative vector-valued Lp spaces. On the other hand, it is known [7,1] that the dual space of 
S1(HB)⊗̂B(HA) is the completely bounded maps CB(B(HA), B(HB)), where quantum 
channels correspond to unital completely positive maps by taking adjoints. From this 
perspective, Hmin is the dual of CB norm with respect to quantum channels and Gour 
et al.’s theorem is essentially a Hahn-Banach separation theorem. Using this approach, 
we prove the following characterization of quantum majorization using the projective 
tensor norm which extends Gour et al.’s results to the setting of tracial von Neumann 
algebras. We consider two semi-finite von Neumann algebras M and N equipped with 
normal faithful semi-finite traces τM (resp. τN ). We denote L1(M) (resp. L1(N )) as the 
space of 1-integrable operators with respect to τM (resp. τN ). Our main theorem is

Theorem 1.1 (cf. Theorem 3.8). Let M and N be two semi-finite von Neumann algebras. 
Suppose M is injective. Then for two density operators ρ, σ ∈ L1(M⊗N ), there exists a 
CPTP map Φ : L1(M) → L1(M) such that Φ ⊗id(ρ) = σ if and only if for any projection 
e ∈ M with τM(e) < ∞ and for any CPTP map Ψ : L1(N ) → L1(eMeop) ∩ eMeop,

‖ id⊗Ψ(ρ)‖L1(M)⊗̂eMeop≥‖ id⊗Ψ(σ)‖L1(M)⊗̂eMeop .

Here the L1(M)⊗̂N -norm gives the analogue of Hmin as in (1.3). We note that the 
assumption on injectivity is in this connection. Indeed, we show that for semi-finite 
von Neumann algebras, the conditional min-entropy Hmin coincides with the projective 
tensor norm L1(M)⊗̂N if and only if M is injective. This can be viewed as a predual form 
of Haagerup’s characterization of injectivity via decomposability [12]. Beyond injectivity, 
the information-theoretic meaning of the projective tensor norm is not clear.

The above theorem admits several variants. By taking N = l∞, the commutative von 
Neumann algebra of bounded sequences, Theorem 1.1 concerns the quantum interpola-
tion problem of converting an infinite family of density operators into another family of 
density operators using a CPTP map. On the other hand, the dual form of Theorem 1.1
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provides a characterization for the factorization of CPTP maps (also known as channel 
factorization). A CPTP map S is quantum majorized by T if S admits a factorization 
S = Φ ◦T for some CPTP map Φ. Note that in finite dimensions, quantum majorization 
applies to CPTP maps via their Choi matrices. However, in infinite dimensions, the Choi 
matrix of a CPTP map is never trace class and our dual consideration is needed. In-
spired by Jenčová’s work [16] on statistical deficiency for CPTP maps, we also consider 
the approximate case when the error id ⊗ Φ(ρ) − σ is small but non-zero.

Our approach also has applications to the tracial Hahn-Banach theorem in [14]. The 
tracial Hahn-Banach theorem is a dual form of Effros-Wrinkler’s separation theorem for 
matrix convex sets. We find that the duality behind the tracial Hahn-Banach theorem 
is the same duality as that between the operator space projective tensor product and 
completely bounded maps. Using an idea similar to that used in the characterization of 
quantum majorization, we give a tracial Hahn-Banach theorem on L1(M)⊗̂E for a semi-
finite injective von Neumann algebra M and an arbitrary operator space E. If we replace 
L1(M) by an abstract operator space, our method gives some analogous results under the 
assumptions of 1-locally reflexivity and completely contractive approximation property. 
Our work in spirit connects to recent work [6] on LOCC-convertibility in semifinite von 
Neumann algebras.

The rest of paper is organized as follows. Section 2 reviews some basic operator space 
theory needed for the remainder of the paper. In Section 3, we first discuss the relation 
between Hmin and the projective tensor norm and the connection to injectivity of von 
Neumann algebras. After that, we prove our main theorem and its variants with respect 
to channel factorization and the approximate case. In particular, all the results in this 
section apply to B(H) with H being infinite dimensional. As this is arguably the case of 
most interest in quantum information theory, we summarize the implications for B(H) in 
Section 3.5. Section 4 is devoted to the tracial Hahn-Banach theorem and the connection 
to noncommutative vector-valued L1 space. Section 5 discusses the parallel results on 
the projective tensor product of abstract operator spaces.

2. Operator space preliminaries

In this section we briefly recall some operator space basics that are needed in our 
discussion. We refer to the books [22,7] for more information on operator space theory. We 
denote by B(H) the bounded operator on a complex Hilbert space H and Mn := Mn(C)
the algebra of n × n complex-valued matrices. A (concrete) operator space E is a closed 
subspace of some B(H). We denote by Mn(E) the set of n × n matrices with entries 
from E and similarly Mn,m(E) for n ×m rectangular matrices. The space Mn(B(H)) is 
naturally isomorphic to B(H(n)), where H(n) = �n2 (H) is the Hilbert space direct sum 
of n copies of H. For all n ≥ 1, the inclusion Mn(E) ⊂ Mn(B(H)) ∼= B(H(n)) induces 
a norm on the matrix level space Mn(E) which we denote by ‖ · ‖Mn(E). The operator 
space structure of E is given by the norm sequence ‖· ‖Mn(E), n ≥ 1.
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Given a linear map u : E → F between two operator spaces E and F , u is completely 
bounded (or CB) if its completely bounded norm (CB-norm)

‖u‖cb:= sup
n≥1

‖ idn ⊗u : Mn(E) → Mn(F )‖op

is finite. Here idn is the identity map on Mn. We say u is a complete isometry if for 
each n, idn ⊗ u is an isometry. We denote by CB(E, F ) the Banach space of all com-
pletely bounded maps E → F equipped with the CB-norm. Moreover, CB(E, F ) is 
again an operator space with the operator space structure given by Mn(CB(E, F )) =
CB(E, Mn(F )). In particular, the operator space dual is defined as

E∗ = CB(E,C) .

Throughout the paper, we will use ⊗ for algebraic tensor product. Given two operator 
spaces E ⊂ B(HA) and F ⊂ B(HB), the operator space injective tensor product E⊗min

F is defined by the (completely) isometric embedding

E ⊗min F ⊂ B(HA ⊗2 HB) (2.1)

where HA ⊗2 HB is the Hilbert space tensor product. Namely, E ⊗min F is the norm 
completion of E ⊗ F for the inclusion E ⊗ F ⊂ B(HA ⊗2 HB). Via injectivity of ⊗min, 
one has the (completely) isometric embedding [21, Chapter 0]

E∗ ⊗min F ⊂ CB(E,F ) . (2.2)

Another important tensor product is the projective tensor product. We denote by 
‖· ‖HS the Hilbert-Schmidt norm. The operator space projective tensor product E⊗̂F is 
defined as the completion of E ⊗ F with respect to the following norm,

‖z ‖E⊗̂F= inf ‖a‖HS‖x‖Ml(E)‖y‖Mm(F )‖b‖HS

where the infimum runs over all factorizations of rectangular matrices a, b, and x =
(xi,j)li,j=1 ∈ Ml(E), y = (yp,q)mp,q=1 ∈ Mm(F ) such that

z = a(x⊗ y)b =
l∑

i,j=1

m∑
p,q=1

ai,pxi,j ⊗ yp,qbj,q . (2.3)

For z = (zr,s)nr,s=1 ∈ Mn(E ⊗ F ), we consider the following factorization

zr,s =
l∑

i,j=1

m∑
p,q=1

ar,ipxi,j ⊗ yp,qbjq,s , (2.4)
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where a ∈ Mn,ml, b ∈ Mml,n and x ∈ Ml(E), y ∈ Mm(F ). The operator space structure 
of E⊗̂F is defined as

‖z ‖Mn(E⊗̂F )= inf ‖a‖Mn,ml
‖x‖Ml(E)‖y‖Mm(F )‖b‖Mml,n

where the infimum runs over all factorizations in (2.4). An equivalent characterization 
is the following duality [7,1]

(E⊗̂F )∗ ∼= CB(E,F ∗) . (2.5)

For x ∈ E, y ∈ F and Φ ∈ CB(E, F ∗). The dual pairing is

〈x⊗ y,Φ〉 = 〈Φ(x), y〉(F∗,F ) .

Let us mention some basic examples related to our discussion. Let K(H) denote the 
space of compact operators on H and S1(H) the space of trace class operators. We have 
the operator space dual relations

S1(H)∗ = B(H) , K(H)∗ = S1(H) , (2.6)

where both dual pairings are given by the trace

〈b, a〉(B(H),S1(H)) = tr(bta) , 〈a, c〉(S1(H),K(H)) = tr(atc)

where at is the transpose of a with respect to a (fixed) orthonormal basis. For two Hilbert 
spaces HA and HB, by (2.1) and (2.2) we have the isometric embedding

B(HA) ⊗min B(HB) ⊂ B(HA ⊗2 HB) , B(HA) ⊗min B(HB) ⊂ CB(S1(HA), B(HB)).

Indeed, one has the equality

B(HA ⊗2 HB) ∼= CB(S1(HA), B(HB)). (2.7)

Note that by (2.5) and (2.6),

CB(S1(HA), B(HB)) =
(
S1(HA)⊗̂S1(HB)

)∗
, B(HA ⊗2 HB) = S1(HA ⊗2 HB)∗ .

For preduals, S1(HA)⊗̂S1(HB) ∼= S1(HA ⊗2 HB).
Another example related to our discussion is the space S1(HB)⊗̂B(HA). Let S2(H)

denote the Hilbert-Schmidt operators on H. The operator space projective tensor norm 
on S1(HB)⊗̂B(HA) admits the following expression (cf. [21]) for x ∈ S1(HB) ⊗B(HA)

‖x‖S1(HB)⊗̂B(HA)= inf ‖a‖S2(HB)‖b‖S2(HB)‖y‖B(HB)⊗minB(HA)

x=(a⊗1)y(1⊗b)
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where the infimum is taken over all possible factorizations of x = (a ⊗ 1A)y(b ⊗ 1A) with 
a, b ∈ S2(HB) and 1A denotes the identity operator on HA. For positive x, it suffices to 
choose a = b∗ and, by rescaling ‖a ‖2= 1, we obtain

‖x‖S1(HB)⊗̂B(HA) = inf{‖y‖B(HB)⊗minB(HA) |x = (a⊗ 1)y(a∗ ⊗ 1)

for some ‖a‖S2(HB)= 1}
= inf{λ |x ≤ λσ ⊗ I for some density operator σ ∈ S1(HB)} .

Therefore, this norm on S1(HB)⊗̂B(HA) corresponds to the conditional min entropy 
Hmin in (1.1). That is, for a bipartite density operator ρ,

Hmin(A|B)ρ = − log ‖ρ‖S1(HB)⊗̂B(HA) .

At the dual level, by (2.5) we have

(S1(HB)⊗̂B(HA))∗ = CB(B(HA), B(HB)) . (2.8)

Note that a CPTP map Φ : S1(HB) → S1(HA) is completely positive trace preserving, 
and hence

Φ ∈ CB(S1(HB), S1(HA)) ⊂ CB(B(HA), B(HB))

where CB(S1(HB), S1(HA)) ⊂ CB(B(HA), B(HB)) as normal CB maps by taking ad-
joints. Therefore, the S1(HB)⊗̂B(HA) norm or equivalently Hmin, is the dual of CB-norm 
with respect to quantum channels. This duality is implicitly used in Gour et al.’s argu-
ments in [10]. In quantum information literature, the CB-norm of CB(S1(HB), S1(HA))
is also called the diamond norm. The diamond norm and its dual norm have been used 
by Jenčová in studying Le Cam’s deficiency for quantum channels [16].

3. Quantum majorization on von Neumann algebras

3.1. Hmin and injectivity of von Neumann algebras

We first discuss the connection between the conditional min entropy Hmin and the 
projective tensor product in the setting of tracial von Neumann algebras. Throughout 
this paper, we assume that (M, τM) and (N , τN ) are semi-finite von Neumann algebras 
with normal faithful semi-finite traces τM (resp. τN ). We introduce the notation

M0 := ∪eeMe ,

where the union runs over all projections with τM(e) < ∞ which forms a lattice. For 
1 ≤ p < ∞, the space Lp(M) is the completion of M0 with respect to the Lp-norm



8 P. Ganesan et al. / Journal of Functional Analysis 279 (2020) 108650
‖a‖Lp(M)= τM(|a|p)1/p , a ∈ M0 .

We will often use the shorthand notation ‖· ‖p for the p-norm and ‖· ‖∞ for the operator 
norm in M. Let Mop = {aop|a ∈ M} be the opposite algebra equipped with reversed 
multiplication aop · bop = (ba)op and trace τMop(aop) = τM(a). The predual of M can 
be identified with M∗ = L1(Mop), via the pairing 〈aop, b〉 = τM(ab) for a ∈ L1(M) and 
b ∈ M.

We will often use the normal part and the singular part of a continuous linear map 
between von Neumann algebras. We say a completely bounded map Φ : M → N is 
normal if it is weak∗- to weak∗-topology continuous. A normal Φ admits a pre-adjoint 
map Ψ : N∗ → M∗ such that its adjoint Ψ† = Φ. In general, a completely bounded map 
Φ : M → N admits the decomposition Φ = Φn + Φs as a normal part Φn and a singular 
part Φs. Indeed, let e0 be the support projection of M ⊂ M∗∗ in the bidual M∗∗. Then

Φn(x) = (Φ†|N∗)†(e0x) ,Φs(x) = (Φ†|N∗)†((1 − e0)x)

where Φ†|N∗ : N∗ → M∗ is the restriction of the adjoint Φ† : N ∗ → M∗ on N∗ and 
(Φ†|N∗)† : M∗∗ → N is the adjoint of Φ†|N∗ . In particular, for a positive linear functional 
φ : M → C, we have φ = φn + φs, where φn ∈ M∗ is the normal part of φ (that is, 
φn is weak∗-continuous) and φs ∈ M∗ is singular (that is, there does not exist a non-
zero weak∗-continuous positive linear functional ψ on M such that ψ ≤ φs). The dual 
space M∗ is then decomposed as M∗ = M∗ ⊕ M⊥

∗ here M∗ is the normal part and 
M⊥

∗ = M∗(1 − e0) is the singular part. (See [25, Chapter 3, p. 127] for further details.)
Let M ⊆ B(H) (resp. N ⊆ B(K)) be a faithful representation of M (resp. N ). The 

von Neumann algebra tensor product M⊗N is the weak∗-closure of M ⊗min N inside 
B(H ⊗2 K), and M⊗N is independent of the faithful representations M ⊆ B(H) and 
N ⊆ B(K). The Effros-Ruan isomorphism [7] gives a complete isometry

N⊗M ∼= CB(N∗,M) ∼= CB(L1(N op),M) . (3.1)

This isomorphism is order preserving. Indeed, a positive operator x ∈ N⊗M corresponds 
to a completely positive map Tx ∈ CB(L1(N op), M) given by

Tx(ρop) = τN ⊗ idM((ρ⊗ 1)x).

As for the predual of (3.1), we have

L1(M)⊗̂L1(N ) = L1(M⊗N ) = (Mop⊗N op)∗ .

The conditional min entropy Hmin is related to the vector-valued L1-spaces introduced 
in [21]. We use the shorthand notation that for a, b ∈ M, y ∈ M⊗N ,

a · y · b := (a⊗ 1N )y(b⊗ 1N ).
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We define the L1(M, L∞(N )) norm for x ∈ M0 ⊗N as follows,

‖x‖L1(M,L∞(N ))= inf{‖a‖L2(M)‖y‖M⊗N ‖b‖L2(M) |x = a·y·b , a, b ∈ M0, y ∈ M⊗N},

where the infimum is over all factorizations x = a · y · b. Then L1(M, L∞(N )) is defined 
as the completion of M0 ⊗ N under the above norm. The triangle inequality for this 
norm is verified in [21, Lemma 3.5]. We will also use the shorthand notation

M⊗N0 = ∪qM⊗qN q ⊂ M⊗N ,

where the union runs over all projections q ∈ N with τN (q) < ∞. For x ∈ M⊗N0, we 
define the L∞(M, L1(N )) norm as

‖x‖L∞(M,L1(N ))= sup{‖a · x · b‖L1(M⊗N ) | ‖a‖L2(M)=‖b‖L2(M)= 1 } .

This norm clearly satisfies the triangle inequality. The space L∞(M, L1(N )) is defined as 
the norm completion of M⊗N0. Both spaces contain the corresponding algebraic tensor 
products

L1(M) ⊗N ⊂ L1(M, L∞(N )) , M⊗ L1(N ) ⊂ L∞(M, L1(N )).

Indeed, for a ⊗ b with a ∈ L1(M) and b ∈ N , let en be the spectral projection of |a| for 
the interval [1/n, n]. Then enaen ⊗ b converges in L1(M, L∞(N )) and the limit can be 
identified with a ⊗ b. It is clear from the definitions that

i) a complete contraction T : L∞(N1) → L∞(N2) extends to a contraction

idM ⊗T : L1(M, L∞(N1)) → L1(M, L∞(N2)) .

ii) a complete contraction S : L1(N1) → L1(N2) extends to a contraction

idM ⊗S : L∞(M, L1(N1)) → L∞(M, L1(N2)) .

For the trivial case N = C, we have L1(M, C) = L1(M) and L∞(M, C) = L∞(M). In 

general, L∞(M, L1(N )) is a subspace of 
(
L1(M, L∞(N ))

)∗
. Indeed,

‖x‖L∞(M,L1(N ))= sup{ ‖a · x · b‖1 | ‖a‖2=‖b‖2= 1, a, b ∈ M0}
= sup{ |τ

(
y(a · x · b)

)
| | ‖a‖2=‖b‖2= 1, a, b ∈ M0, ‖y‖M⊗N= 1}

= sup{ |τ
(
(b · y · a)x

)
| | ‖a‖2=‖b‖2= 1, a, b ∈ M0, ‖y‖M⊗N= 1}

= sup{ |τ(zx)| | ‖z ‖L1(M,L∞(N ))= 1, z ∈ M0 ⊗N} .

Here and in the following we will use τ := τM ⊗ τN for the product trace.
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Lemma 3.1. i) For any self-adjoint x ∈ M0 ⊗N ,

‖x‖L1(M,L∞(N ))= inf{‖a‖L2(M)‖y‖M⊗N ‖a∗ ‖L2(M) |
x = a · y · a∗, a ∈ M0, y self-adjoint}.

In particular, if x ∈ eMe ⊗N for some finite projection e with τM(e) < ∞,

‖x‖L1(M,L∞(N ))= inf
σ

‖(σ− 1
2 ⊗ 1)x(σ− 1

2 ⊗ 1)‖∞

where the infimum is over all density operators σ invertible in eMe.
ii) For any positive x ∈ M⊗N0,

‖x‖L∞(M,L1(N ))= sup{τ(a · x · a∗)| ‖a‖L2(M)= 1 }.

Proof. For ii), Hölder’s inequality gives,

‖x‖L∞(M,L1(N ))= sup
‖ a ‖2=‖ b ‖2=1

‖(a⊗ 1)x(b⊗ 1)‖1

≤ sup
‖ a ‖2=1

‖(a⊗ 1)x 1
2 ‖2 sup

‖ b ‖2=1
‖x 1

2 (b⊗ 1)‖2

= sup
‖ a ‖2=1

‖(a⊗ 1)x(a∗ ⊗ 1)‖
1
2
1 sup

‖ b ‖2=1
‖(b∗ ⊗ 1)x(b⊗ 1)‖

1
2
1

= sup
‖ a ‖2=1

‖(a⊗ 1)x(a∗ ⊗ 1)‖1= sup
‖ a ‖2=1

τ(a · x · a∗).

For i), choose x = (a ⊗ 1)y(b ⊗ 1) such that a, b ∈ eMe and

‖a‖L2(M)=‖b‖L2(M)= 1, ‖y‖M⊗N<‖x‖L1(M,L∞(N )) +ε.

Take d = (aa∗ + b∗b + δe) 1
2 . Then d > 0 is invertible in eMe and ‖d ‖2= (2 + δτ(e)) 1

2 . 
Note that x = x∗ implies that

x = 1
2

(
a · y · b + b∗ · y∗ · a

)
= 1

2d ·
(
d−1a · y · bd−1 + d−1b∗ · y∗ · ad−1

)
· d

= d · ỹ · d,

where

ỹ = 1
2

(
d−1a · y · bd−1 + d−1b∗ · y∗ · ad−1

)
= 1

2

[
d−1a d−1b∗

]
·
[

0 y

y∗ 0

]
·
[
a∗d−1

bd−1

]
.
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Since 

∥∥∥∥∥
[

0 y

y∗ 0

]∥∥∥∥∥
M2(M)

=‖y‖M, ‖
[
d−1a d−1b∗

]
‖M1,2(M)=‖d−1(aa∗ + b∗b)d−1 ‖M≤ 1

and similarly 

∥∥∥∥∥
[
a∗d−1

bd−1

]∥∥∥∥∥
M2,1(M)

≤ 1, it follows that

‖ ỹ‖∞≤ 1
2 ‖

[
d−1a d−1b∗

]
‖
∥∥∥∥∥
[

0 y

y∗ 0

]∥∥∥∥∥
∥∥∥∥∥
[
a∗d−1

bd−1

]∥∥∥∥∥ ≤ 1
2 ‖y‖∞ .

Thus we have x = d · ỹ · d with

‖d‖2
2≤ 2 + δτ(e) , ‖ ỹ‖∞≤ 1

2 ‖y‖∞ .

Since δ is arbitrarily small we prove the first expression in i). For the second expression, 
we choose

σ = 1
‖d‖2

2
d2 , (σ− 1

2 ⊗ 1)x(σ− 1
2 ⊗ 1) =‖d‖2

2 ỹ .

Then

‖(σ− 1
2 ⊗ 1)x(σ− 1

2 ⊗ 1)‖∞≤ ‖d‖2
2‖ ỹ‖∞≤ (1 + δ

2τ(e)) ‖y‖∞

≤(1 + δ

2τ(e))(‖x‖L1(M,L∞(N )) +ε) .

Since δ and ε are arbitrarily small, we prove the second expression in i). �
We define positivity and self-adjointness on L1(M, L∞(N )) and L1(M, L∞(N )) as 

follows. We say ρ ∈ L1(M, L∞(N )) is positive (resp. self-adjoint) if there exists a positive 
(resp. self-adjoint) sequence ρn ∈ M0⊗N such that ρn → ρ in norm. For two self-adjoint 
operators ρ and σ, we say ρ ≤ σ if σ−ρ is positive. The positivity and self-adjointness in 
L∞(M, L1(N )) are defined similarly as limits of sequences in M⊗N0. The next lemma 
shows that the L1(M, L∞(N )) norm for positive elements correspond to the conditional 
min entropy Hmin. Recall that ρ ∈ L1(M) is a density operator if ρ ≥ 0 and τM(ρ) = 1.

Lemma 3.2. Let x ∈ L1(M, L∞(N )) be self-adjoint. Define

λ(x) = inf{λ | x ≤ λσ ⊗ 1 for some density operator σ ∈ L1(M)} .

Then

i) λ(x) ≤‖x ‖L1(M,L∞(N )),
ii) λ(x) =‖x ‖L1(M,L∞(N )) if x is positive.
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Proof. We first discuss the case x ∈ M0 ⊗ N . Suppose x = (a ⊗ 1)y(a∗ ⊗ 1) for some 
self-adjoint y ∈ M ⊗ N and ‖ a ‖2= 1 with a ∈ M0. Then x ≤‖ y ‖∞ aa∗ ⊗ 1, where 
aa∗ ∈ M0. Then by Lemma 3.1, we have

λ(x) ≤‖x‖L1(M,L∞(N ))

for x ∈ M0 ⊗N . Note that if x1 ≤ λ1σ1 ⊗ 1 and x2 ≤ λ2σ2 ⊗ 1, then

x1 + x2 ≤ (λ1σ1 + λ2σ2) ⊗ 1 = (λ1 + λ2)(
λ1

λ1 + λ2
σ1 + λ2

λ1 + λ2
σ2) ⊗ 1 . (3.2)

This implies

λ(x1 + x2) ≤ λ(x1) + λ(x2) , |λ(x1) − λ(x2)| ≤ max{λ(x1 − x2) , λ(x2 − x1)}

For general x and ε > 0, we can find a self-adjoint sequence xn ∈ M0 ⊗ N such that 
x =

∑∞
n=1 xn converges absolutely and∑

n

‖xn ‖L1(M,L∞(N ))≤‖x‖L1(M,L∞(N )) +ε .

By the same argument of (3.2), we have λ is also countably sub-additive. Indeed, given 
δ > 0, we choose for each n a density operator σn such that xn ≤ (λn + 2−nδ)σn ⊗ 1. 
Then

x =
∑
n=1

xn ≤
∑
n=1

(2−nδ + λn)σn ⊗ 1 = (δ +
∑
n=1

λn)(
∑
n=1

2−nδ + λn

δ +
∑

n=1 λn
σn) ⊗ 1

which implies λ(x) ≤
∑

n λ(xn) because 
∑

n=1
2−nδ+λn

δ+
∑

n λn
σn is a density operator and δ is 

arbitrary. Therefore

λ(x) ≤
∑
n

λ(xn) ≤
∑
n

‖xn ‖L1(M,L∞(N ))≤‖x‖L1(M,L∞(N )) +ε.

Since ε is arbitrary, this proves i). To prove ii), first let x ∈ eMe ⊗ N be positive. If 
x ≤ λσ ⊗ 1 for some density operator σ ∈ M0, we can choose σ̃ = σ + δe invertible in 
eMe with τM(σ̃) ≤ 1 + ε. Then, we have

0 ≤ y = σ̃− 1
2 · x · σ̃− 1

2 ≤ λ1 , x = σ̃
1
2 · y · σ̃ 1

2 .

Hence, we obtain

‖x‖L1(M,L∞(N ))≤ inf{λ | x ≤ λσ ⊗ 1 , σ ∈ M0 density operator}. (3.3)



P. Ganesan et al. / Journal of Functional Analysis 279 (2020) 108650 13
Then it suffices to show that λ(x) equals the right hand side. Suppose x ≤ λσ ⊗ 1 for 
some density operator σ ∈ L1(M). Without losing generality, we can assume that σ is 
invertible and supported on eMe. By definition, for any positive y ∈ M⊗N0,

λτ((σ ⊗ 1)y) ≥ τ(xy) .

This implies ‖(σ− 1
2 ⊗ 1)x(σ− 1

2 ⊗ 1) ‖≤ λ + ε. We modify σ to a density operator σ̃ ∈ M
such that σ̃ = σe[0,k) +ke[k,∞) where e[0,k] is the spectral projection of σ for the interval 
[0, k]. Note that for any z ≥ 0,

(min{z, k})−1 − z−1 = (z − min{z, k})/z(min{z, k}) =
{

0, if z ≤ k
z−k
zk , if z > k.

Then by functional calculus, ‖ σ̃−1 − σ−1 ‖∞≤ 1
k . Therefore,

‖(σ̃− 1
2 ⊗ 1)x(σ̃− 1

2 ⊗ 1)‖=‖x 1
2 (σ̃−1 ⊗ 1)x 1

2 ‖

= ‖x 1
2 (σ−1 ⊗ 1)x 1

2 ‖ + ‖x 1
2 (σ̃−1 ⊗ 1 − σ−1 ⊗ 1)x 1

2 ‖≤ (λ + ε) + 1
k
‖x‖∞ .

By choosing k large enough, we have

x ≤ (λ + 2ε)σ̃ ⊗ 1

where ‖ σ̃ ‖∞≤ k hence belongs to M0. This proves ii) for positive x ∈ M0 ⊗N . For a 
general positive element x ∈ L1(M, L∞(N )), let xn be a sequence of positive operators 
in M0 ⊗N such that ‖xn − x ‖L1(M,L∞(N ))→ 0. Then by i), we know

λ(x) = lim
n

λ(xn) = lim
n

‖xn ‖L1(M,L∞(N ))=‖x‖L1(M,L∞(N )) ,

which completes the proof. �
The above lemma generalizes the definition of Hmin entropy to semi-finite von Neu-

mann algebras. For a bipartite density operator ρ ∈ L1(M⊗N ), the Hmin entropy of ρ
conditional on M can be defined as

Hmin(N|M)ρ :=
{
− log ‖ρ‖L1(M,L∞(N )), if ρ ∈ L1(M, L∞(N ))
−∞, otherwise.

The next lemma shows that λ(x) is attained by the duality

L∞(M, L1(N )) ⊂
(
L1(M, L∞(N ))

)∗
.
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Lemma 3.3. Let ρ ∈ L1(M, L∞(N )) be self-adjoint. Then

λ(ρ) = sup{ τ(xρ) | x ∈ M⊗N0, x ≥ 0, ‖x‖L∞(M,L1(N ))= 1}.

In particular, if ρ ∈ L1(M, L∞(N )) is positive, then

‖ρ‖L1(M,L∞(N ))= sup{ τ(xρ) | x ∈ M⊗N0, x ≥ 0, ‖x‖L∞(M,L1(N ))= 1}.

Proof. In the proof of Lemma 3.2, we have shown |λ(ρ1) −λ(ρ2)| ≤‖ρ1−ρ2 ‖L1(M,L∞(N )). 
Then by density argument, it suffices to consider ρ ∈ M0 ⊗ N . Let ρ ∈ eMe ⊗ N for 
some τM(e) < ∞. We can assume M is finite by restricting to eMe. Let us first consider 
the case that N is finite. We use a standard Grothendieck-Pietsch separation argument. 
Let λ be a positive number such that λ < λ(ρ). We know from (3.3) that for any density 
operator σ ∈ M0, λ(σ ⊗ 1) − ρ is not positive and hence has nontrivial negative part. 
Then there exists a positive x ∈ L∞(M⊗N ) such that ‖x ‖∞= 1 and

τ(ρx) − λτ((σ ⊗ 1)x) > 0.

Consider the weak∗-compact subset

B = {x ∈ M⊗N| ‖x‖∞≤ 1, x ≥ 0}.

For each positive operator σ ∈ M0 with τM(σ) ≤ 1, we define the function fσ : B → R

as follows (we suppress the dependence on ρ since ρ is fixed)

fσ(x) = τ(ρx) − λτ((σ ⊗ 1)x) , x ∈ B.

These fσ are continuous with respect to weak∗-topology on B because N is finite and 
both σ ⊗ 1 and ρ are in L1(M⊗N ). Denote C(B, R) as the space w∗-continuous real 
function on B. We define two subsets

F = {fσ ∈ C(B,R) | σ ∈ M0, σ ≥ 0, τM(σ) ≤ 1 }
F− = {f ∈ C(B,R) | sup f < 0}.

Both F and F− are convex sets and F− is open. Moreover, F and F− are disjoint 
because for each fσ ∈ F , supx fσ(x) > 0. Then by the Hahn-Banach Theorem, there 
exists a norm-one linear function ψ : C(B, R) → R and a real number r such that for 
any f− ∈ F− and fσ ∈ F ,

φ(f−) < r ≤ φ(fσ) .

Because F− is a cone, r ≥ 0. Similarly, r ≤ 0 because for any 0 < δ < 1, δF ⊂ F . 
Then r = 0 and φ is a positive linear functional because φ(f−) < 0 for any f− ∈ F−. By 
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the Riesz Representation Theorem, φ is given by a Borel probability measure μ on B. 
Namely,

φ(f) =
∫
B

f(x)dμ(x) .

Denote x0 =
∫
B
xdμ(x). We have for any positive operator σ ∈ M0 with τM(σ) ≤ 1, 

that

φ(fσ) =
∫
B

fσ(x)dμ(x) =
∫
B

τ(ρx) − λτ((σ ⊗ 1)x)dμ(x) = τ(ρx0) − λτ((σ ⊗ 1)x0) ≥ 0.

By Lemma 3.1,

τ(ρx0) ≥ λ sup{τ((σ ⊗ 1)x0) |σ ∈ M0, τM(σ0) ≤ 1, σ ≥ 0} = λ ‖x0 ‖L∞(M,L1(N )) .

Normalizing x̃0 =‖ x0 ‖−1
L∞(M,L1(N )) x0, we have τ(ρx̃0) ≥ λ. This proves the case for 

finite N . For semi-finite N , we define for each projection p ∈ N with τN (p) < ∞,

λp = inf{ λ | (1 ⊗ p)ρ(1 ⊗ p) ≤ λσ ⊗ p for some density operator σ ∈ M0} .

For two projections p1 ≤ p2, we have λp1 ≤ λp2 . Thus λp is monotone non-decreasing 
over p for the natural ordering. Since each λp is attainable based on the finite case, it 
suffices to show that limp λp ≥ λ(ρ). Write λ1 = limp λp. Given ε > 0, for each projection 
p we choose a density operator σp ∈ M such that

(1 ⊗ p)ρ(1 ⊗ p) ≤ (λp + ε)σp ⊗ p ≤ (λ1 + ε)σp ⊗ p ,

where both (1 ⊗ p)ρ(1 ⊗ p) and σp⊗ p belongs to M ⊗ pNp. We denote ψp : M⊗N → C

as the normal linear functional ψp(x) = τ((1 ⊗ p)ρ(1 ⊗ p)x) and ξp : M → C as the 
normal state ξp(y) = τM(σpy). Let ξ be a weak∗-limit point of ξp in M∗. Denote τpNp as 
the induced finite trace on pNp. For any positive M ⊗ pNp and finite projection q ≥ p,

ψp(x) = ψq(x) ≤ (λ1 + ε)ξq ⊗ τqNq(x) = (λ1 + ε)ξq ⊗ τpNp(x) .

Taking the limit over q, we have

ψp(x) ≤ (λ1 + ε) lim
q

ξq ⊗ τpNp(x) = (λ1 + ε)ξ ⊗ τpNp(x) . (3.4)

Note that ξ is a state on M and it decomposes into a normal part and a singular part 
ξ = ξn + ξs. Then from (3.4) we have

ψp − (λ1 + ε)ξn ⊗ τpNp ≤ (λ1 + ε)ξs ⊗ τpNp .
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Note that the right hand side ξs ⊗ τpNp is a singular positive linear functional (which 
is clear from [25, Corollary 3.11]). By normality, ψp ≤ (λ1 + ε)ξn ⊗ τpNp as self-adjoint 
linear functionals for each p. Namely, for any positive x ∈ M ⊗ pNp,

τ((1 ⊗ p)ρ(1 ⊗ p)x) ≤ (λ1 + ε)τ((σ ⊗ 1)x) .

Now we apply the same trick in Lemma 3.2 to modify σ to be an invertible density 
operator M with bounded inverse σ−1 ∈ M. First, since M is finite, σ can be replaced 
by an invertible density σ1 = 1

τM(σ)+δτM(1) (σ+ δ1). By choosing δ > 0 small enough, we 
have

τ((1 ⊗ p)ρ(1 ⊗ p)x) ≤ (λ1 + ε)τ((σ ⊗ 1)x) ≤ (τM(σ) + δτM(1))(λ1 + ε)τ((σ1 ⊗ 1)x)

≤ (λ1 + 2ε)τ((σ1 ⊗ 1)x) .

Then by choosing x = (σ− 1
2

1 ⊗ p)y(σ− 1
2

1 ⊗ p) for positive y ∈ M⊗pNp, we have

τ((σ− 1
2

1 ⊗ p)ρ((σ− 1
2

1 ⊗ p)y) ≤ (λ1 + 2ε)τ((σ1 ⊗ 1)(σ− 1
2

1 ⊗ p)y(σ− 1
2

1 ⊗ p)) = (λ1 + 2ε)τ(y) ,

which implies (σ− 1
2

1 ⊗ p)ρ(σ− 1
2

1 ⊗ p) ≤ (λ1 + 2ε)1. Take σ2 = gk(σ1) as the functional 
calculus of gk(x) = min{x, k}. We have ‖σ− 1

2
1 − σ

− 1
2

2 ‖∞≤ k−
1
2 and

‖(σ− 1
2

1 ⊗ p)ρ(σ− 1
2

1 ⊗ p) − (σ− 1
2

2 ⊗ p)ρ(σ− 1
2

2 ⊗ p)‖

≤ ‖(σ− 1
2

1 ⊗ p)ρ(σ− 1
2

1 ⊗ p) − (σ− 1
2

1 ⊗ p)ρ(σ− 1
2

2 ⊗ p)‖

+ ‖(σ− 1
2

1 ⊗ p)ρ(σ− 1
2

2 ⊗ p) − ((σ− 1
2

2 ⊗ p)ρ(σ− 1
2

2 ⊗ p)‖

≤k−
1
2 ‖ρ‖∞‖σ− 1

2
1 ‖∞ +k−

1
2 ‖ρ‖∞‖σ− 1

2
2 ‖∞

≤2k− 1
2 (δ−1 − 1) ‖ρ‖∞ .

By choosing k large enough (depending on ε, δ and ‖ρ ‖∞), we have

(σ− 1
2

2 ⊗ p)ρ(σ− 1
2

2 ⊗ p)

=(σ− 1
2

1 ⊗ p)ρ(σ− 1
2

1 ⊗ p) +
(
(σ− 1

2
2 ⊗ p)ρ(σ− 1

2
2 ⊗ p) − (σ− 1

2
1 ⊗ p)ρ(σ− 1

2
1 ⊗ p)

)
≤(λ1 + 2ε)1+ ‖(σ− 1

2
2 ⊗ p)ρ(σ− 1

2
2 ⊗ p) − (σ− 1

2
1 ⊗ p)ρ(σ− 1

2
1 ⊗ p)‖ 1

≤(λ1 + 2ε)1 + 2k− 1
2 (δ−1 − 1) ‖ρ‖∞ 1 ≤ (λ1 + 3ε)1.

This implies that for each finite projection p ∈ N ,

(1 ⊗ p)ρ(1 ⊗ p) ≤ (λ1 + 3ε)σ2 ⊗ p ≤ (λ1 + 3ε)σ2 ⊗ 1 ,
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as self-adjoint operators in M ⊗N . Then for each p and positive x ∈ L1(M⊗pNp),

τ(ρx) = τ(ρ(1 ⊗ p)x(1 ⊗ p)) = τ((1 ⊗ p)ρ(1 ⊗ p)x) ≤ (λ1 + 3ε)τ((σ2 ⊗ 1)x) .

Because ∪pL1(M⊗pNp) is dense in L1(M⊗N ), we obtain that ρ ≤ (λ1 + 3ε)σ2 ⊗ 1
as self-adjoint operators, which implies λ(ρ) ≤ λ1 as ε is arbitrary. That completes the 
proof. �

This next lemma is an analogue of the Choi matrix.

Lemma 3.4. There is a contraction

L∞(M, L1(N )) −→ CB(L1(Mop), L1(N )) ,

x �→ Tx ∈ CB(L1(Mop), L1(N )) , Tx(ρop) = τM ⊗ idN ((ρ⊗ 1)x).

Moreover,

i) for any positive x, ‖x ‖L∞(M,L1(N ))=‖Tx ‖cb.
ii) Tx is completely positive if and only if x is positive.
iii) Tx is trace preserving if and only if id⊗τN (x) = 1M.
iv) for S ∈ CB(L1(N ), L1(N )), S ◦ Tx = Tid⊗S(x).
v) for any finite rank T : L1(Mop) → L1(N ), T = Tx for some x ∈ M ⊗ L1(N ).

Proof. By a density argument, it suffices to discuss x ∈ M⊗pNp with τN (p) < ∞. 
Given ρ ∈ L1(M), (ρ ⊗ 1N )x = (ρ ⊗ p)x ∈ L1(M⊗pNp) hence the map Tx(ρop) =
τM ⊗ idN ((ρ ⊗ 1N )x) ∈ L1(N ) is well defined. For ‖ ρop ‖L1(Mop)= 1, we have ρ = ba

for some ‖a‖2=‖b‖2= 1. Note that τM⊗ idN ((ba ⊗ 1N )x) = τM ⊗ idN ((a ⊗ 1)x(b ⊗ 1)). 
Then

‖Tx(ρop)‖L1(N )≤‖a · x · b‖L1(M⊗N )≤‖x‖L∞(M,L1(N )) .

Let ei,j be the matrix units in Mn and Sn
2 be the Schatten 2-class. For the completely 

bounded norm, we first note that idMn
⊗Tx = Tφ⊗x : L1(Mn(M)op) → L1(Mn(N ))

where φ =
∑

i,j ei,j ⊗ ei,j ∈ Mn ⊗ Mn and φ ⊗ x ∈ L∞(Mn(M), L1(Mn(N ))). Here 
φ is the Choi matrix for id : Mn → Mn. Given ‖ a ‖Sn

2 (L2(M))=‖ b ‖Sn
2 (L2(M))= 1, we 

can write a =
∑

k ωk ⊗ ak such that ωk (resp. ak) orthogonal in Sn
2 (resp. L2(M)) and 

‖ak ‖2= 1, 
∑

k ‖ωk ‖2
2= 1 and similarly for b =

∑
l σl ⊗ bl. Then, by 

∑
k ‖ωk ‖2

2=
∑

l ‖
σl ‖2

2= 1,

idMn
⊗Tx(ab) = Tφ⊗x(ab) =

∑
k,l

(
tr⊗ idMn

((ωkσl ⊗ 1)φ)
)
⊗
(
τM ⊗ idN ((akbl ⊗ 1)x)

)
=

∑(
tr⊗ idMn

(ωk · φ · σl)
)
⊗

(
τM ⊗ idN (ak · x · bl)

)

k,l
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= tr⊗idMn
⊗ τM ⊗ idN

(∑
k,l

(ωk · φ · σl) ⊗ (ak · x · bl)
)
.

Using bracket notation,

φ = |h〉〈h| , |h〉 =
∑
i=1

|i〉|i〉

where {|i〉} is the standard basis in ln2 . We have

‖ωk · φ · σl ‖1=‖ωk ⊗ 1|h〉‖l2‖σ∗
l ⊗ 1|h〉‖l2=‖ωk ‖2‖σl ‖2 .

Here ‖· ‖l2 is the vector norm and

‖ωk ⊗ 1|h〉‖2
l2= 〈h|ω∗

kωk ⊗ 1|h〉 = tr(ω∗
kωk) =‖ωk ‖2 .

Therefore,

‖
∑
k,l

(ωk · φ · σl) ⊗ (ak · x · bl)‖1 ≤
∑
k,l

‖ωk · φ · σl ‖1‖ak · x · bl ‖1

≤
∑
k,l

‖ωk ‖2‖σl ‖2‖x‖L∞(M,L1(N ))≤‖x‖L∞(M,L1(N )) .

By ‖ idMn
⊗Tx(ab) ‖1≤‖

∑
k,l(ωk · φ · σl) ⊗ (ak · x · bl) ‖1, this implies

‖ idMn
⊗Tx : L1(Mn(M)op) → L1(Mn(N ))‖≤‖x‖L∞(M,L1(N )) .

Then by L1(Mn(M)op, tr⊗τM) ∼= Sn
1 (L1(Mop)) and [21, Lemma 1.2], we obtain

‖Tx : L1(Mop) → L1(N )‖cb= sup
n

‖ idn ⊗Tx : Sn
1 (L1(Mop)) → Sn

1 (L1(N ))‖

= sup
n

‖ idMn
⊗Tx : L1(Mn(M)op) → L1(Mn(N ))‖=‖x‖L∞(M,L1(N )) .

Now suppose x is positive. For a density operator ρ ∈ L1(Mop),

Tx(ρop) = τM ⊗ idN ((ρ⊗ 1)x) = τM ⊗ idN (ρ 1
2 · x · ρ 1

2 ) ≥ 0

Applying the same argument for φ ⊗ x, we know Tx is completely positive. Then taking 
the supremum over all density operators ρ,

sup
ρ

‖Tx(ρop)‖1= sup
ρ

τM ⊗ τN (ρ 1
2 · x · ρ 1

2 ) =‖x‖L∞(M,L1(N )) .

Thus for positive x, we find ‖Tx ‖cb≤‖x ‖L∞(M,L1(N ))=‖Tx ‖≤‖Tx ‖cb, which proves i). 
For ii), we note that the “if” statement follows by the construction of Tx. To prove the 
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“only if” statement, we conversely suppose x is not positive and we show that Tx is not 
completely positive. There exists a vector h =

∑n
j=1 aj ⊗ bj ∈ L2(M) ⊗2 L2(N ) such 

that aj ∈ M0, bj ∈ N0, 〈h, xh〉 � 0 (that is, the inner product is either not real or is 
negative). This means

〈h, xh〉 =
n∑

i,j=1
τM ⊗ τN ((a∗i ⊗ b∗i )x(aj ⊗ bj))

= τN
( n∑

i,j=1
b∗i τM ⊗ idN

(
(a∗i ⊗ 1)x(aj ⊗ 1)

)
bj

)
� 0 .

Thus, 
(
τM ⊗ idN

(
(a∗i ⊗ 1)x(aj ⊗ 1)

))n

i,j=1
is not positive in Sn

1 (L1(N )). Note that 

ωop =
∑n

i,j=1 ei,j ⊗ (a∗i )op(aj)op =
∑n

i,j=1 ei,j ⊗ (aja∗i )op is positive in Sn
1 (L1(Mop)). 

Then Tx is not completely positive because

idn ⊗ Tx(ωop) =
n∑

i,j=1
ei,j ⊗

(
τM ⊗ idN ((aja∗i ⊗ 1)x)

)
=
∑
i,j

ei,j ⊗
(
τM ⊗ idN ((a∗i ⊗ 1)x(aj ⊗ 1))

)
� 0 .

This proves ii). For any ρ ∈ L1(M), by Fubini’s theorem,

τN (Tx(ρop)) =τN
(
τM ⊗ idN ((ρ⊗ 1)x)

)
= τM

(
ρ idM ⊗τN (x)

)
.

Thus Tx is trace preserving if and only if idM ⊗τN (x) = 1. This verifies iii). For iv), let 
S ∈ CB(L1(N ), L1(N )). For ρ ∈ L1(M),

S ◦ Tx(ρop) =S
(
τM ⊗ idN ((ρ⊗ 1)x)

)
= τM ⊗ idN

(
(ρ⊗ 1) id⊗S(x)

)
= Tid⊗S(x)(ρop) .

Finally, for v), let T be a finite rank map from L1(Mop) to L1(N ). Then there exists 
finite yj ∈ M and zj ∈ L1(N ) such that T (ρop) =

∑n
j=1 τM(ρyj)zj . Then T = Tx for 

x =
∑n

j=1 yj ⊗ zj which belongs to M ⊗ L1(N ). That completes the proof. �
The above lemma gives a contraction

L∞(M, L1(N )) → CB(L1(Mop), L1(N )) ⊂ CB(N op,M) .

Note that CB(N op, M)∗ = L1(Mop)⊗̂L∞(N op). The pairings for an algebraic tensor 
ρop =

∑n
j=1 y

op
j ⊗zopj ∈ L1(M)op⊗N op to L∞(M, L1(N )) and to CB(N op, M) coincide,
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〈x, ρop〉(L∞(M,L1(N )),L1(Mop,L∞(Nop)) =τM ⊗ τN (x
n∑

j=1
yj ⊗ zj)

=τN
(∑

j

zjτM ⊗ id((yj ⊗ 1)x)
)

=τN
(∑

j

zjTx(yj)
)

= τN
(∑

j

T †
x(zj)yj

)
=〈Tx, ρ

op〉(CB(Nop,M),L1(Mop)⊗̂L∞(Nop)).

Then, for an algebraic tensor x =
∑n

j=1 yj ⊗ zj ∈ L1(M) ⊗N , we have

‖x‖L1(M,L∞(N ))≤‖x‖L1(M)⊗̂N .

It was proved in [21, Theorem 3.4] that for hyperfinite M (i.e. M = (∪αMα)w∗ , where 
the union is of an increasing net of finite-dimensional subalgebras Mα), we have the 
isometric isomorphism

L1(M, L∞(N )) ∼= L1(M)⊗̂N . (3.5)

We shall show that this isomorphism is characterized by the injectivity of M. Recall that 
a von Neumann algebra M is injective if there exists an embedding M ⊂ B(H) and a 
completely positive projection P : B(H) → M with ‖P ‖= 1. An equivalent condition is 
the weak∗ completely positive approximation property (weak∗-CPAP). A von Neumann 
algebra M has weak∗-CPAP if there exists a net of normal finite rank completely positive 
maps Φα such that for any x ∈ M, Φα(x) → x in the weak∗ topology. In general, 
hyperfinite implies injective. The converse (say, when M ⊂ B(H) on a separable Hilbert 
space H) is a celebrated result of Connes [5]. We refer to [22] for more information about 
these properties.

The next theorem is a dual form of Haagerup’s characterization of injectivity by de-
composability [12]. It suggests that the conditional min entropy connects to the projective 
tensor norm if and only if M is injective.

Theorem 3.5. Let M, N be semi-finite von Neumann algebras. Suppose N is infinite 
dimensional. The following are equivalent

i) M is injective
ii) L1(M, L∞(N )) ∼= L1(M)⊗̂N isomorphically
iii) L1(M, L∞(N )) ∼= L1(M)⊗̂N isometrically

In particular, L1(M, L∞(Mop)) ∼= L1(M)⊗̂Mop if and only if M is injective.
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Proof. We first prove i) ⇒ iii). Suppose L1(M, L∞(N )) �= L1(M)⊗̂N isometrically. 
Because both spaces are norm completions of the algebraic tensor product L1(M) ⊗N , 
there exists ρ =

∑n
j=1 yj ⊗ zj such that

‖ρ‖L1(M,L∞(N ))< 1 =‖ρ‖L1(M)⊗̂N .

Then by the duality (L1(M)⊗̂N )∗ = CB(N , Mop), there exists a CB map S ∈
CB(N , Mop) with ‖S ‖cb= 1 such that

1 = 〈S, ρ〉 = 〈id, idM ⊗S(ρ)〉 .

Here we have

‖ idM ⊗S(ρ)‖L1(M,L∞(N ))≤‖S ‖cb‖ρ‖L1(M,L∞(N ))< 1 .

If M is injective, then there exists a net of finite-rank, normal, unital, completely pos-
itive maps Φα approximating the identity map idM in the point-weak∗ topology. By 
Lemma 3.4, Φα = Txα

for some xα ∈ Mop ⊗ L1(N op) with

‖xα ‖L∞(Mop,L1(Nop))=‖Φα ‖cb= 1 .

This leads to a contradiction:

1 = 〈id, idM ⊗S(ρ)〉 = lim
α
〈Txα

, idM ⊗S(ρ)〉

= lim
α
〈xα, idM ⊗S(ρ)〉

≤ lim
α

‖xα ‖L∞(Mop,L1(Nop))‖ idM ⊗S(ρ)‖L1(M,L∞(N ))

≤ ‖ idM ⊗S(ρ)‖L1(M,L∞(N ))< 1.

For ii)⇒ i), we first reduce the semi-finite M to the finite case. We have the decomposi-
tion M = ⊕i∈i(Mi⊗B(Hi)) (see [25, Chapter 5, Proposition ]) where Mi are finite von 
Neumann algebras and Hi are Hilbert spaces. For each Mi, there exists a trace preserv-
ing embedding ι : Mi → M and a projection P : M → eiMei for some projection ei
such that P ◦ ι = idMi

. This induces the isometric embedding

L1(Mi, L∞(N )) ⊂ L1(M, L∞(N )) , L1(Mi)⊗̂N ⊂ L1(M)⊗̂N .

Suppose L1(M, L∞(N )) ∼= L1(M)⊗̂N isometrically. We have for each i, L1(Mi,

L∞(N )) ∼= L1(Mi)⊗̂N isometrically. It suffices to show that this implies Mi is injective.
We now assume M = Mi finite. Let ln∞ be the n-dimensional commutative C∗-

algebra. Because N is infinite dimensional, for any n there exists completely positive 
and contractive maps (see [12, Lemma 2.7])
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Q : ln∞ → N , R : N → ln∞

such that R ◦Q = idln∞ . Both idM ⊗R and idM ⊗Q extend to complete contractions

L1(M)⊗̂ln∞
idM⊗R−→ L1(M)⊗̂N idM⊗Q−→ L1(M)⊗̂ln∞ ,

L1(M, ln∞) idM⊗R−→ L1(M, L∞(N )) idM⊗Q−→ L1(M, ln∞) .

Thus we have the isometric imbeddings

L1(M, ln∞) ⊂ L1(M, L∞(N )) and L1(M)⊗̂ln∞ ⊂ L1(M)⊗̂N .

Suppose L1(M, L∞(N )) ∼= L1(M)⊗̂N isomorphically. Then we have L1(M, ln∞) ∼=
L1(M)⊗̂ln∞ for each n, and moreover a uniform constant c such that for all n,

c ‖ρ‖L1(M)⊗̂ln∞
≤‖ρ‖L1(M,ln∞)≤‖ρ‖L1(M)⊗̂ln∞

.

At the dual level, for each T : ln∞ → Mop,

‖T ‖cb=‖Tx ‖cb≤‖x‖L∞(Mop,ln1 )≤ c−1 ‖Tx ‖cb . (3.6)

Here T = Tx as in Lemma 3.4, for x =
∑n

j=1 T (ej) ⊗ ej ∈ Mop ⊗ ln1 with ej ∈ ln1 being 
the dual standard basis of ln∞. We shall suppress the “op” notation since it is equivalent 
to consider M and Mop here. For any n unitaries uj and a central projection q in M, 
we consider xu = q

∑n
j=1 uj ⊗ ej . We have

‖xu ‖L∞(M,ln1 ) = sup{‖q
n∑

j=1
aujb⊗ ej ‖L1(M,l∞1 ) | ‖a‖L2(M)=‖b‖L2(M)= 1}

= sup{
∑
j

‖qaujb‖L1(M) | ‖a‖L2(M)=‖b‖L2(M)= 1}

≥
∑
j

τM(q)−1 ‖quj ‖L1(M)

=
n∑

j=1
1 = n.

Here we have chosen a = b = τM(q)−1/2q. Then by (3.6), we have

‖Tu ‖cb≥ c ‖xu ‖L∞(M,ln1 )= cn , where Tu : ln∞ → M , Tu((cj)j) = q

n∑
j=1

cjuj .

Then it follows from [12, Lemma 2.3 & Lemma 2.5] that M is injective. Since iii)⇒ ii) 
is trivial, this completes the proof. �
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3.2. Quantum majorization

We now discuss quantum majorization for semi-finite von Neumann algebras. We will 
focus on the case where M is injective, because by Theorem 3.5, beyond injectivity we 
lose the connection between Hmin entropy and projection tensor norm.

We say T : L1(M) → L1(M) is completely positive trace preserving (resp. trace non-
increasing) if its adjoint T † : Mop → Mop is normal completely positive and unital (resp. 
sub-unital). We will use the abbreviation CPTP for completely positive trace preserv-
ing, CPTNI for completely positive trace non-increasing and UCP for unital completely 
positive. The next proposition is a consequence of Lemma 3.3 and Theorem 3.5. All the 
assumptions of injectivity in later theorems is to ensure the following proposition holds.

Proposition 3.6. Let M be an injective semi-finite von Neumann algebra.

i) For a self-adjoint x ∈ L1(M)⊗̂N ,

λ(x) = sup{ 〈Φ, x〉 | Φ : L1(M) → L1(N op) CPTNI }.

ii) Define the real part of x ∈ L1(M)⊗̂N as Re x = (x + x∗)/2. Then

λ(Re x) = sup{ Re 〈Φ, x〉 | Φ : L1(M) → L1(N op) CPTNI }.

iii) For positive ρ,

‖ρ‖L1(M)⊗̂N=sup{ 〈Φ, ρ〉 | Φ : L1(M) → L1(N op) CPTNI }

=sup{ 〈Φ, ρ〉 | Φ : L1(M) → L1(N op) CPTP }.

Proof. We first show that 〈T, y〉 ≥ 0 for a positive y ∈ L1(M)⊗̂N and CP T : N → Mop. 
By a density argument, it suffices to consider y ∈ M0 ⊗ N . Suppose y = (

∑n
j=1 aj ⊗

bj)∗(
∑n

j=1 aj ⊗ bj) for some aj ∈ eMe and bj ∈ N . We have 
∑n

i,j=1 ei,j ⊗ T (b∗i bj) =
idn ⊗T (

∑n
i,j=1 ei,j ⊗ b∗i bj) is positive in Mn(Mop). Therefore,

〈T, y〉 = τM(
n∑

i,j=1
(a∗i aj)opT (b∗i bj)) =

n∑
i,j=1

τMop((aopi )∗T (b∗i bj)a
op
j )

=
n∑

i,j=1
〈aopi |T (b∗i bj)|aopj 〉 ≥ 0,

where |aopj 〉 ∈ L2(Mop, τM) is the vector of aopj in the GNS representation. Thus, 〈T, y〉 ≥
0 for CP T : N → Mop and also CP T : L1(M) → L1(N op) as normal maps. Then for 
x ≤ λσ ⊗ I and T : L1(M) → L1(N op) CPTNI, we have

〈T, x〉 ≤ λ〈T, 1 ⊗ σ〉 = λτN (T (σ)) ≤ λ ,
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which implies 〈T, ρ〉 ≤ λ(ρ). On the other hand, by Theorem 3.5 and Lemma 3.3,

λ(x) = sup{ τ(xy) | y ∈ M⊗N0, y ≥ 0, ‖y‖L∞(M,L1(N ))= 1 }
= sup{ 〈Ty, x〉 | y ∈ M⊗N0, y ≥ 0, ‖y‖L∞(M,L1(N ))= 1 }
≤ sup{ 〈T, x〉 | T : L1(M) → L1(N ) CPTNI }
≤ λ(x) .

This proves i). ii) follows from the fact that for any CP T , Re〈T, x〉 = 〈T, Re x〉. For iii), 
given a CPTNI map T , one can always find a CPTP T̃ such that T̃ −T is CP. Therefore,

‖ρ‖L1(M)⊗̂N= λ(ρ) = sup
T CPTNI

〈T, ρ〉 ≤ sup
T CPTP

〈T, ρ〉 ≤ λ(ρ) . �
Lemma 3.7. Let ρ be a bipartite density operator in L1(M⊗N ). The set

C(ρ) = {Φ ⊗ id(ρ) | Φ : L1(M) → L1(M) CPTP}

is a closed set in L1(M⊗N ) with respect to the topology induced by

Mop ⊗min N op ⊂ Mop⊗N op = L1(M⊗N )∗.

In particular, C(ρ) is a norm closed set in L1(M⊗N ).

Proof. Let σ ∈ L1(M⊗N ) and Φα be a net of CPTP maps such that Φα ⊗ id(ρ) → σ

with respect to Mop ⊗min N op. That is, for any x ∈ M ⊗N

lim
α

τ(xΦα ⊗ id(ρ)) = τ(xσ) . (3.7)

Taking x = 1M ⊗ 1N , this implies τ(σ) = limα τ(Φα ⊗ id(ρ)) = 1. Note that the

CB(L1(M), L1(M)) ⊂ CB(Mop,Mop) = (L1(M)⊗̂Mop)∗ .

By weak∗-compactness, there exists a sub-net Φβ such that their corresponding subnet 
of adjoints Φ†

β : Mop → Mop converges to some Φ† : Mop → Mop in the point-weak∗

topology. That is, for x ∈ L1(M), yop ∈ Mop, we have

lim
β

τM
(
xΦ†

β(yop)
)

= τM
(
xΦ†(yop)

)
.

Then it is clear that Φ† is UCP. Note that (Mop)∗ = L1(M) ⊕ L1(M)⊥ decomposes 
into a normal part and a singular part. Let Φ : L1(M) → (Mop)∗ be the restriction of 
the double adjoint map Φ†† : (Mop)∗ → (Mop)∗. Then Φβ ⊗ id(ρ) → Φ ⊗ id(ρ) in the 
sense that for any x ∈ M ⊗N
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τ(xΦβ ⊗ id(ρ)) = τ(Φ†
β ⊗ id(x)ρ) → Φ ⊗ id(ρ)(x) ,

where Φ ⊗ id(ρ) ∈ (Mop)∗⊗̂L1(N ). Then by (3.7), for any x ∈ M ⊗N ,

Φ ⊗ id(ρ)(x) = τ(σx) := σ(x)

where the density operator σ is viewed as a normal state. Decompose the map Φ = Φn +
Φs where Φn ∈ CB(L1(M), L1(M)) is the normal part and Φs ∈ CB(L1(M), L1(M)⊥)
is the singular map. Then for any x ∈ M ⊗N ,(

σ − Φn ⊗ id(ρ)
)
(x) = Φs ⊗ id(ρ)(x) (3.8)

where σ − Φn ⊗ id(ρ) ∈ L1(M)⊗̂L1(N ) and Φs ⊗ id(ρ) ∈ (Mop)∗⊗̂L1(N ). Let ω1, ω2 :
M → C be the linear functionals defined by

ω1(y) :=
(
σ − Φn ⊗ id(ρ)

)
(y ⊗ 1) , ω2(y) := Φs ⊗ id(ρ)(y ⊗ 1) , y ∈ M.

Then ω1 is normal and ω2 is singular. By (3.8), ω1 = ω2 which implies ω1 = ω2 = 0. 
Therefore,

Φs ⊗ id(ρ)(1 ⊗ 1) = ω2(1) = 0 .

Hence Φs⊗ id(ρ) = 0. We have σ = Φn⊗ id(ρ) for Φn : L1(M) → L1(M) CPTNI. Define 
Φ0(x) = τ(Φn(x) − x)ω for any density operator ω ∈ L1(M). Then Φ̃ = Φn + Φ0 is a 
CPTP map and Φ̃ ⊗ id(ρ) = σ. This completes the proof. �

We say a CPTP map Φ : L1(M) → L1(N ) is entanglement-breaking if Φ(ρ) =∑∞
j=1 τ(xjρ)ωj for some set of xj , j = 1, 2, . . . , satisfying 

∑∞
j=1 xj = 1 and xj ≥ 0

(such a set {xj} is called a measurement in quantum mechanics) and density operators 
ωj . Such a CPTP map is a quantum channel that admits a factorization through l∞1 , 
which is the state space of a classical system. We note that a CP map T : M → N is au-
tomatically CB by Stinespring’s theorem ‖T ‖=‖T ‖cb=‖T (1) ‖ (cf. [25, Theorem 3.6]). 
This also holds for a CP map Φ : L1(N ) → L1(M) as a pre-adjoint of normal maps, but 
is not necessarily true for a completely positive map Φ : L1(N ) → M (for example, the 
identity map id : S1(H) → B(H) is CP but not CB). We now prove our main theorem 
with respect to quantum majorization for injective semi-finite von Neumanna algebra.

Theorem 3.8. Let M and N be two semi-finite von Neumann algebras and let M be 
injective. Let ρ, σ be two density operators in L1(M⊗N ). The following are equivalent:

i) there exists a CPTP map Φ : L1(M) → L1(M) such that Φ ⊗ id(ρ) = σ

ii) for any CP and CB map Ψ : L1(N ) → Mop,

‖ id⊗Ψ(ρ)‖L (M)⊗̂Mop≥‖ id⊗Ψ(σ)‖L (M)⊗̂Mop
1 1
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iii) for any projection e ∈ M with τM(e) < ∞ and for any entanglement-breaking CPTP 
map Ψ : L1(N ) → L1(eMeop) with range Ran(Ψ) ⊂ eMeop,

‖ id⊗Ψ(ρ)‖L1(M)⊗̂eMeop≥‖ id⊗Ψ(σ)‖L1(M)⊗̂eMeop

Proof. The direction i)⇒ ii) and iii) follows from the factorization id⊗Ψ(σ) = Φ ⊗
id
(

id⊗Ψ(ρ)
)

and

‖Φ ⊗ id : L1(M)⊗̂Mop → L1(M)⊗̂Mop ‖≤‖Φ : L1(M) → L1(M)‖cb= 1 .

Let C(ρ) be the convex set from Lemma 3.7

C(ρ) = { Φ ⊗ id(ρ) |Φ : L1(M) → L1(M) CPTP}

for some bipartite density operator ρ. Suppose by way of contradiction that σ /∈ C(ρ). 
Because C(ρ) is closed with respect to the weak topology induced by Mop⊗minN op, by 
the Hahn-Banach theorem there exists x1 ∈ M ⊗min N such that

Re τ(σx1) > Re sup
Φ

τ(Φ ⊗ id(ρ)x1) .

We can replace x1 with a finite tensor x2 =
∑

j aj ⊗bj ∈ M ⊗N such that ‖x1−x2 ‖< ε

is small enough and

Re τ(σx2) > sup
Φ

Re τ(id⊗Φ(ρ)x2).

Take x3 = (x2 + x∗
2)/2 be the real part of x2:

x3 =1
2(x2 + x∗

2) = 1
2
∑
j

(aj ⊗ bj + a∗j ⊗ b∗j )

=1
4

(∑
j

(aj + a∗j ) ⊗ (bj + b∗j ) +
∑
j

i(aj − a∗j ) ⊗ (−i)(bj − b∗j )
)
, (3.9)

which is a finite sum of tensor products of self-adjoint elements. Since σ and Φ ⊗ id(ρ)
are positive,

τ(σx3) = Re tr(σx2) > sup
Φ

Re τ(id⊗Φ(ρ)x2) = sup
Φ

τ(id⊗Φ(ρ)x3).

For each j,

aj ⊗ bj+ ‖aj ‖‖bj ‖ 1 ⊗ 1

=1
2

(
(aj+ ‖aj ‖ 1) ⊗ (bj+ ‖bj ‖ 1) + (‖aj ‖ (1 − aj)) ⊗ (‖bj ‖ (1 − bj))

)
,
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is a sum of tensor products of positive elements. Take K =
∑

j ‖ aj ‖‖ bj ‖. Then 
x4 = x3 + K1 ⊗ 1 ∈ M ⊗ N is a sum of tensor products of positive elements. Since 
τ(id⊗Φ(ρ)) = τ(σ) = 1, we have

τ(σx4) = τ(σx3) + K > sup
Φ

τ(id⊗Φ(ρ)x3) + K ≥ sup
Φ

τ(id⊗Φ(ρ)x4) . (3.10)

The opposite element xop
4 ∈ Mop⊗N op corresponds to a CP map T ∈ CB(L1(N ), Mop). 

Note that id ⊗ T (σ) and id ⊗ T (ρ) ∈ L1(M)⊗̂Mop. Since M is injective, we have by 
Proposition 3.6

τ(x4σ) = 〈T, σ〉 = 〈idM, id ⊗ T (σ)〉 ≤‖ id ⊗ T (σ)‖L1(M)⊗̂Mop ,

sup
Φ CPTP

τ(x4Φ ⊗ id(ρ)) = sup
Φ

〈T,Φ ⊗ id(ρ)〉 = sup
Φ

〈Φ, id ⊗ T (ρ)〉

=‖ id ⊗ T (ρ)‖L1(M)⊗̂Mop .

Here the bracket is the pairing for (L1(M)⊗̂Mop)∗ ∼= CB(Mop, Mop) and Φ : L1(M) →
L1(M) is a normal map in CB(Mop, Mop). Then the inequality (3.10) implies that

‖ id ⊗ T (σ)‖L1(M)⊗̂Mop>‖ id ⊗ T (ρ)‖L1(M)⊗̂Mop

which violates ii). This proves the direction ii)⇒ i). For the direction iii)⇒ i), we shall 
further modify T to get a CPTP map. Given ε > 0, there exists a projection e ∈ M such 
that τM(e) < ∞ and ‖(e ⊗ 1)σ(e ⊗ 1) − σ‖1< ε. Then for small enough ε we have

tr(σ(e⊗ 1)x4(e⊗ 1)) > tr(σx4) − ε > sup
Φ

tr(id⊗Φ(ρ)x4) . (3.11)

Take x5 := (e ⊗ 1)x4(e ⊗ 1) =
∑n

j=1 cj ⊗ dj ∈ eMe ⊗ N as a finite sum of tensor 
product of positive operators. Then xop

5 ∈ eMeop ⊗ N op corresponds to the CP map 
T1 : L1(N ) → eMeop given by

T1(ω) =
n∑

j=1
τN (djω)cj .

By (3.11), we have

tr(σx5) > sup
Φ CPTP

tr(id⊗Φ(ρ)x4) = sup
Φ CPTP

〈Φ, id ⊗ T (ρ)〉 =‖ id ⊗ T (ρ)‖L1(M)⊗̂Mop .

Take the map T1(·) = eT (·)e. Because the map y �→ eye is a complete contraction from 
Mop to eMeop, we have

‖ id⊗T (ρ)‖L (M)⊗̂Mop≥‖(1⊗e)id⊗T (ρ)(1⊗e)‖L (M)⊗̂Mop=‖ id⊗T1(ρ)‖L (M)⊗̂eMeop .

1 1 1
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On the other hand,

tr(σx5) = 〈idM, id ⊗ T1(σ)〉 ≤‖ id ⊗ T1(σ)‖L1(M)⊗̂eMeop .

Thus T1 : L1(M) → eMeop is a CP map and

‖ id ⊗ T1(σ)‖L1(M)⊗̂eMeop>‖ id ⊗ T1(ρ)‖L1(M)⊗̂eMeop . (3.12)

Note that eMeop ⊂ L1(eMeop) because τM(e) < ∞. Since T1 is CP and finite rank, we 
have

‖T1 : L1(N ) → L1(eMeop)‖cb=‖T1 : L1(N ) → L1(eMeop)‖< ∞ .

Then T2 =‖ T1 : L1(N ) → L1(eMeop) ‖−1 T1 is CPTNI and satisfies the inequality 
(3.12).

Finally, we modify T2 to be trace preserving. Denote by ρM = id ⊗ τN (ρ) and ρN =
τM ⊗ id(ρ) the reduced density operator of ρ and similarly for σ. For the case ρN = σN , 
we define T3 = T2 + T0 where T0(x) =

(
tr(x) − tr(T2(x))

)
e

τM(e) . Then T3 : L1(M) →
L1(eMeop) is CPTP. We have

id ⊗ T3(ρ) = id ⊗ T2(ρ) + λ1

τM(e)ρM ⊗ e ,

id ⊗ T3(σ) = id ⊗ T2(σ) + λ2

τM(e)σM ⊗ e ,

where λ1 = tr(ρN ) − tr(T2(ρN )) is equal to λ2 = tr(σN ) − tr(T2(σN )). Note that for any 
density operator ω ∈ L1(M) and λ > 0

id⊗T3(ρ) = id⊗T2(ρ)+
λ1

τM(e)ρM⊗e ≤ λω⊗e ⇐⇒ id⊗T2(ρ) ≤ (λω− λ1

τM(e)ρM)⊗e .

Therefore we have

‖ id ⊗ T3(ρ)‖L1(M)⊗̂eMeop

=‖ id ⊗ T2(ρ)‖L1(M)⊗̂eMeop + λ1

τM(e)

<‖ id ⊗ T2(σ)‖L1(M)⊗̂eMeop + λ1

τM(e) =‖ id ⊗ T3(σ)‖L1(M)⊗̂eMeop .

Thus T3 is a CPTP map that violates the condition iii). For the case ρN �= σN , we 
denote q1 ∈ N to be projection onto the support of (σN − ρN )+ and q2 = 1 − q1. Since 
N �= C1 is not the trivial algebra (otherwise ρN = σN ), we can choose two different 
projections e0, e ∈ N such that e0 < e and τN (e0) < τN (e). We define the CPTP map 
T4 : L1(N ) → Mop as
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T4(x) = trN (q1x) e0

τM(e0)
+ trN (q2x) e

τM(e) .

Denote σM,j = id⊗ trN
(
(1 ⊗ qj)σ

)
and ρM,j = id⊗ trN

(
(1 ⊗ qj)σ

)
with j = 1, 2. Note 

that

trM(σM,1) + trM(σM,2) = trM(σM) = 1 , trM(ρM,1) + trM(ρM,2) = trM(ρM) = 1 ,

and

trM(σM,1) − trM(ρM,1) = τ
(
(1 ⊗ q1)(σ − ρ)

)
= trN

(
(σN − ρN )q1

)
> 0.

Since τN (e0) < τN (e),

‖ id⊗T4(σ)‖L1(M)⊗̂eMeop =‖σM,1 ⊗
e0

τM(e0)
+ σM,2 ⊗

e

τM(e) ‖L1(M)⊗̂eMeop

= trM(σM,1)
τM(e0)

+ trM(σM,2)
τM(e)

>
trM(ρM,1)
τM(e0)

+ trM(ρM,2)
τM(e) =‖ id⊗T4(ρ)‖L1(M)⊗̂eMeop .

Note that both T3 and T4 are entanglement-breaking. Then in both cases, we reach a 
contradiction to condition iii). This proves iii)⇒i). �
Remark 3.9. In the proof above, the assumption of the injectivity of M is only used to 
ensure the equivalence between L1(M, L∞(N )) and L1(M)⊗̂N . In fact, Theorem 3.8
holds for any von Neumann algebras M for which Proposition 3.6 iii) holds. It is possible 
to further extend Theorem 3.8 to general M by using L1(M, L∞(N )) norm instead 
of L1(M)⊗̂N -norm (even for non-tracial M, see [17] for the case of L1(M, l∞) for 
general M). However, that requires further investigation of L1(M, L∞(N ))-space for 
non-injective M, which is beyond the scope of this paper. The same remark applies to 
all other theorems in this section.

We shall now discuss the special case of N = l∞. Let {ρi} and {σi} be two families of 
density operators in L1(M). Consider the bipartite density operator ρ, σ ∈ L1(M)⊗̂l1 ∼=
l1(L1(M)) given by

ρ = (λiρi)i , σ = (λiσi)i ,

where λi > 0, 
∑∞

i=1 λi = 1 is a probability distribution. Then there exists a CPTP 
map such that σ = Φ ⊗ idl1(ρ) if and only if there exists a CPTP map Φ such that 
σi = Φ(ρi) for each i. The latter statement, called the quantum interpolation problem in 
[14], concerns the convertibility from one family of density operators to another using a 
quantum process (CPTP map). For finite families of finite dimensional density operators, 
it was shown in [14] that the quantum interpolation problem is solvable by semi-definite 
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programming (SDP). The Hmin characterization of quantum interpolation problem was 
used in [10] as a key lemma to prove the bipartite matrix case and has applications in 
the study of quantum thermal processes. A similar theorem for finite families of self-
adjoint operators is obtained in [14, Theorem 7.6], which will be discussed in Section 4. 
The following theorem is an extension in two ways: it addresses infinite sequences and 
density operators on von Neumann algebras.

Theorem 3.10. Let M be an injective semi-finite von Neumann algebra. Let {ρi}i∈N and 
{σi}i∈N be two countable families of density operators in L1(M). TFAE

i) there exists a CPTP map such that Φ(ρi) = σi for all i ∈ N

ii) for any finitely supported probability distribution (λi)i∈N and any set of density op-
erators {ωi} ∈ L1(Mop) ∩Mop

‖
∑
i

λiρi ⊗ ωi ‖L1(M)⊗̂Mop≥‖
∑
i

λiσi ⊗ ωi ‖L1(M)⊗̂Mop .

Proof. Choose a probability distribution (μi)i∈N such that μi > 0 for each i ∈ N. Let 
ρ = (μiρi) and σ = (μiσi) be density operators in L1(M)⊗̂l1 ∼= l1(L1(M)). Then i)⇒
ii) again follows from the factorization Φ ⊗ id(ρ) = σ and

‖Φ ⊗ id : L1(M)⊗̂Mop → L1(M)⊗̂Mop ‖≤‖Φ : L1(M) → L1(M)‖cb≤ 1 .

Assume that such Φ does not exist. Then by Theorem 3.8 there exists a CPTP map 
Ψ : l∞1 → L1(eMope) ∩ eMope for some finite projection e such that

‖ id⊗Ψ(σ)‖L1(M)⊗̂eMope>‖ id⊗Ψ(ρ)‖L1(M)⊗̂eMope .

We can omit the projection e here because L1(eMope) ⊂ L1(Mop) and eMope ⊂ Mop

as subspaces. Note that the map Ψ constructed in Theorem 3.8 is also CB from l∞1
to Mop. Given ε > 0, we can choose N large enough such that 

∑
i>N μi < ε. Write 

ρN = (ρi)i≤N ⊕0 and σN = (σi)i≤N ⊕0 as the corresponding truncated sequences. Then

‖ id⊗Ψ(σ) − id⊗Ψ(σN )‖L1(M)⊗̂Mop≤‖σ − σN ‖L1(M)⊗̂l1
≤

∑
i>N

μi < ε .

Thus,

‖ id⊗Ψ(σN )‖L1(M)⊗̂Mop≥ ‖ id⊗Ψ(σ)‖L1(M)⊗̂Mop −ε

> ‖ id⊗Ψ(ρ)‖L1(M)⊗̂Mop −ε

≥ ‖ id⊗Ψ(ρN )‖L1(M)⊗̂Mop .

Write ωi = Ψ(ei) where ei is the standard basis of l1. We have
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id⊗Ψ(σN ) =
∑

1≤i≤N

μiσi ⊗ ωi , id⊗Ψ(ρN ) =
∑

1≤i≤N

μiρi ⊗ ωi .

Renormalizing the coefficient λi = μi(
∑N

i=1 μi)−1, we have a violation of ii). This com-
pletes the proof. �

Note that the condition ii) above only concerns finite subsets of {ρi} and {σi}. This 
leads to the following “compactness” result. It says that to ask whether there is a CPTP 
map that sends an infinite family of density operators to another infinite family of density 
operators, it suffices to check the convertibility for every finite subfamily of the two 
infinite families.

Corollary 3.11. Let M be an injective semi-finite von Neumann algebra. Let {ρi}i∈N and 
{σi}i∈N be two infinite families of density operators in L1(M). There exists a CPTP 
map Φ such that Φ(ρi) = σi for all i ∈ N if and only if for any finite subset I ⊂ N, 
there exists a CPTP map ΦI(ρi) = σi for all i ∈ I.

3.3. Channel factorization

The dual picture of quantum majorization is channel factorization: given two CPTP 
maps T and S, determine if there exists a third CPTP Φ such that Φ ◦ T = S. Such a 
factorization relation for two CPTP maps has many implications in quantum information 
theory. In particular, the channel T has larger capacity than S for various communication 
tasks. For a finite dimensional CPTP map Φ : Mn → Mm, its Choi matrix is

χΦ =
n∑

i,j=1
ei,j ⊗ Φ(ei,j)

where ei,j are the matrix units in Mn. As noted in [10], for two CPTP map S, T : Mn →
Mm, there exists a CPTP Φ such that Φ ◦ T = S if and only if there exists a CPTP Φ
such that id ⊗Φ(χT ) = χS . So in finite dimensions channel factorization corresponds to 
quantum majorization of Choi matrices. However, in the infinite dimensional case, such a 
correspondence fails because the Choi matrix of a CPTP map is never a density operator 
(since its trace is unbounded). We shall use again the duality CB(L1(M), L1(M)) ⊂
(L1(M)⊗̂Mop)∗ to give a characterization of channel factorization on preduals of von 
Neumann algebras. We start with a lemma.

Lemma 3.12. Let T : L1(N ) → L1(M) be a CPTP map. Define the set of CPTP maps

Cpost(T ) = {Φ ◦ T | Φ : L1(M) → L1(M) CPTP } ,

Cpre(T ) = {T ◦ Φ | Φ : L1(N ) → L1(N ) CPTP } .
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Then both Cpost(T ) and Cpre(T ) are relatively closed in CB(L1(N ), L1(M)) ⊂
CB(Mop, N op) for the weak∗-topology induced by CB(L1(N ), L1(M)) ⊂ CB(Mop,

N op) = (L1(N )⊗̂Mop)∗. Namely, both sets are closed in the point-weak topology on 
CB(L1(N ), L1(M)).

Proof. We first argue for Cpost(T ). Let (Φα) be a net such that Φα ◦ T → S in the 
weak∗-topology. That is, for any x ∈ L1(N ), y ∈ M

lim
α

τM(yΦα ◦ T (x)) = τM(yS(x)) . (3.13)

Let (Φβ) be a sub-net such that Φβ → Φ for some Φ : L1(M) → (Mop)∗ in the weak∗-
topology CB(L1(N ), (Mop)∗) ∼= (L1(N )⊗̂Mop)∗. Note that

CB(L1(N ), (Mop)∗) ∼= CB(Mop,N op)

by taking adjoint. The map Φ† is UCP because for any positive x ∈ L1(N )

τM(xΦ†(1)) = lim
β

τM(xΦ†
β(1)) = lim

β
τM(Φβ(x)) = τN (x)

We have Φβ ◦ T → Φ ◦ T because for any x ∈ L1(N ), y ∈ M

lim
β

τM(yΦβ ◦ T (x)) = lim
β

τM(Φ†
β(y)T (x)) = τM(Φ†(y)T (x)) = Φ ◦ T (x)(yop)

where Φ ◦ T (x) ∈ (Mop)∗. Then by (3.13), Φ ◦ T (x) = S(x) ∈ L1(M). This implies 
Φn ◦ T = S for Φn : L1(M) → L1(M) being the normal part of Φ. Since Φ†

n is normal 
CP and sub-unital, Φn is CPTNI. Define Φ0(ρ) = τM(Φn(ρ) − ρ)σ where σ is some 
density operator. Then Φ̃ = Φn +Φ0 is CPTP. Moreover, Φ0 ◦T = 0 because both Φ̃ ◦T
and Φn ◦ T = S are CPTP. Thus, we obtain Φ̃ ◦ T = Φn ◦ T = S.

For Cpre(T ), let Ψα be a net such that T ◦Ψα → S in the weak∗-topology. Let Ψβ be a 
sub-net of Ψα such that Ψβ → Ψ for some Ψ ∈ CB(L1(N ), (Mop)∗). For any x ∈ L1(N )
and y ∈ M,

lim
β

τ(yT ◦ Ψβ(x)) = lim
β

τ(T †(y)Ψβ(x)) = Ψ(x)(T †(y)) = T †† ◦ Ψ(x)(y)

This means T ◦Ψβ → T †† ◦Ψ in the weak∗-topology of CB(L1(N ), (Mop)∗). Let Ψn be 
the normal part of Ψ. Since T ††|L1(M) = T , we have

S = T †† ◦ Ψn = T ††|L1(M) ◦ Ψn = T ◦ Ψn .

The argument to modify Φn to be CPTP is similar. �
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We say a bipartite density operator ρ ∈ L1(M⊗N ) is separable if ρ can be written 
as ρ =

∑∞
j=1 λjωj ⊗ σj , for some λj ≥ 0, 

∑∞
j=1 λj = 1 and ωj ∈ L1(M), σj ∈ L1(N ) are 

density operators.

Theorem 3.13. Assume that M is an injective semi-finite von Neumann algebra. Let 
T, S : L1(N ) → L1(M) be two CPTP maps. TFAE

i) there exists a CPTP Φ : L1(M) → L1(M) such that Φ ◦ T = S

ii) for any projection e ∈ M with τ(e) < ∞ and any separable density operator ρ ∈
L1(N ) ⊗ eMeop,

‖T ⊗ id(ρ)‖L1(M)⊗̂eMeop≥‖S ⊗ id(ρ)‖L1(M)⊗̂eMeop

Proof. i)⇒ ii) follows from (Φ ◦ T ) ⊗ id(ρ) = S ⊗ id(ρ) and that the map Φ ⊗ id is 
contractive on L1(M)⊗̂eMeop. For ii) ⇒ i), we again argue by contradiction. Suppose 
S /∈ Cpost(T ) = {Φ ◦T | Φ CPTP}. Then by Lemma 3.12, there exists x1 ∈ L1(N )⊗̂Mop

such that

Re〈S, x1〉 > Re sup
Φ CPTP

〈Φ ◦ T, x1〉 .

We can replace x1 by a finite tensor sum x2 =
∑n

j=1 aj ⊗ bj with ‖x1 − x2 ‖L1(N )⊗̂Mop

small enough. Moreover, following the same argument in (3.9), aj ∈ L1(N ) and bj ∈ Mop

can be self-adjoint. Note that for any ω ∈ L1(N ),

〈S, ω ⊗ 1〉 = trM(S(ω)) = trN (ω) = trM(Φ ◦ T (ω)) = 〈Φ ◦ T, ω ⊗ 1〉

because S and Φ ◦ T are trace preserving. Then we can replace x2 by

x3 =
∑
j

aj ⊗ bj+ ‖bj ‖ (|aj | ⊗ 1) =
∑
j

(aj)+ ⊗ (‖bj ‖ 1 + bj) + (aj)− ⊗ (‖bj ‖ 1 − bj)

which is a finite sum of positive elements. Let e ∈ M be a projection with finite trace 
such that ∣∣∣∣∣∣

∑
j

τM(bopj S(aj)) −
∑
j

τM(ebopj eS(aj))

∣∣∣∣∣∣ < ε .

Take x4 = (1 ⊗ e)x3(1 ⊗ e). We have for small ε

〈S, x4〉 > 〈S, x3〉 − ε > sup
Φ

〈Φ ◦ T, x3〉. (3.14)

Since M is injective, we reinterpret the duality pairing and applying Proposition 3.6,
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〈S, x4〉 =〈id, S ⊗ id(x4)〉 ≤‖S ⊗ id(x4)‖L1(M)⊗̂eMeop .

sup
Φ CPTP

〈Φ ◦ T, x3〉 = sup
Φ CPTP

〈Φ, T ⊗ id(x3)〉 =‖T ⊗ id(x3)‖L1(M)⊗̂eMeop

≥ ‖T ⊗ id(x4)‖L1(M)⊗̂Mop .

Here the last inequality uses the fact that ρ �→ eρe is a complete contraction from M to 
eMe. Thus we have a violation of ii),

‖S ⊗ id(x4)‖L1(M)⊗̂eMeop>‖T ⊗ id(x4)‖L1(M)⊗̂eMeop .

Here x4 ∈ L1(M)⊗̂eMeop is a finite tensor of positive element with finite trace. Replac-
ing x4 by its normalization, we get a separable density operator. That completes the 
proof. �

The above theorem gives the characterization for “post”-factorization. Similarly, we 
consider the “pre”-factorization, which is equivalent to the “post”-factorization of normal 
UCP maps.

Theorem 3.14. Assume that M is injective. Let T, S : L1(M) → L1(N ) be two CPTP 
maps. TFAE

i) there exists a CPTP Φ : L1(M) → L1(M) such that T ◦ Φ = S,
ii) for any positive x ∈ N op ⊗M,

‖T † ⊗ id(x)‖Mop⊗M≤‖S† ⊗ id(x)‖Mop⊗M

Proof. By taking the adjoint, Φ† ◦ T † = S† as normal UCP maps. Then i)⇒ ii) follows 
from

‖S† ⊗ id(x)‖∞=‖Φ† ◦ T † ⊗ id(x)‖∞≤‖T † ⊗ id(x)‖∞ .

For ii) ⇒ i), suppose S /∈ Cpre(T ) := {T ◦ Φ | Φ CPTP}. By the same argument as for 
Theorem 3.13, there exists a finite tensor x2 =

∑
j aj ⊗ bj ∈ L1(M)⊗̂N op with aj , bj

positive such that

〈S, x2〉 > sup
Φ CPTP

〈T ◦ Φ, x2〉 .

Then we choose a finite trace projection e ∈ M such that eaje ∈ M are bounded and 
for x3 = (e ⊗ 1)x2(e ⊗ 1) =

∑
j eaje ⊗ bj ,

〈S, x3〉 > 〈S, x2〉 − ε > sup
Φ CPTP

〈T ◦ Φ, x2〉 (3.15)
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Since M is injective, we apply Proposition 3.6,

〈S, x3〉 = 〈id, id ⊗ S†(x3)〉 ≤‖ id ⊗ S†(x3)‖L1(M)⊗̂Mop ,

〈T ◦ Φ, x2〉 = sup
Φ CPTP

〈Φ, id ⊗ T †(x2)〉 =‖ id ⊗ T †(x2)‖L1(M)⊗̂Mop

≥ ‖ id ⊗ T †(x3)‖L1(M)⊗̂Mop .

This implies

‖ id ⊗ S†(x3)‖L1(M)⊗̂Mop>‖ id ⊗ T †(x2)‖L1(M)⊗̂Mop≥‖ id ⊗ T †(x3)‖L1(M)⊗̂Mop .

Because id⊗T †(x3) is a positive operator in eMe ⊗Mop, by Lemma 3.1 we have

‖ id⊗T †(x3)‖L1(eMe)⊗̂Mop= inf
σ

‖(σ− 1
2 ⊗ 1) id⊗T †(x3)(σ− 1

2 ⊗ 1)‖∞

where the infimum is over all invertible density operators σ ∈ eMe. Thus we choose an 
invertible density operator σ ∈ eMe such that

‖(σ− 1
2 ⊗ 1) id⊗T †(x3)(σ− 1

2 ⊗ 1)‖eMe⊗M< ‖ id⊗T †(x3)‖L1(eMe)⊗̂Mop +ε

< ‖ id⊗S†(x3)‖L1(eMe)⊗̂Mop

≤ ‖(σ− 1
2 ⊗ 1) id⊗S†(x3)(σ− 1

2 ⊗ 1)‖eMe⊗M .

Then x4 = (σ− 1
2 ⊗ 1)x3(σ− 1

2 ⊗ 1) is positive in M ⊗N op, and we have

‖ id⊗T †(x4)‖M⊗Mop<‖ id⊗S†(x4)‖M⊗Mop ,

which is a violation to condition ii). This proves ii)⇒ i). �
3.4. Approximate case

In [16], Jenčová gives a characterization for the approximate post-channel factorization 
in finite dimensions that

inf
Φ CPTP

‖S − Φ ◦ T ‖cb< δ

is small but nonzero. Inspired by Jenčová’s work, we consider the approximate case of 
quantum majorization. The following lemma is an analogue of [16, Proposition 1].

Lemma 3.15. Let M be a semi-finite von Neumann algebra.
i) For two density operators ρ, σ in L1(M),

1 ‖ρ− σ‖1= sup{ τ(x(ρ− σ)) | x ≥ 0, ‖x‖∞≤ 1} .
2



36 P. Ganesan et al. / Journal of Functional Analysis 279 (2020) 108650
ii) Let M be injective. For two CPTP maps T, S : L1(M) → L1(M),

1
2 ‖T − S ‖cb= sup{ 〈T − S, ρ〉 | ρ ≥ 0, ‖ρ‖L1(M,L∞(Mop))≤ 1} .

Proof. For i), note that

x = x∗, ‖x‖≤ 1 ⇐⇒ x + 1 ≥ 0, ‖x + 1‖≤ 2.

Since τ(ρ − σ) = 0,

‖ρ− σ‖1= sup{Re τ(x(ρ− σ))| ‖x‖∞≤ 1}

= sup{τ(x(ρ− σ))| ‖x‖∞≤ 1, x self-adjoint}

= sup{τ((x + 1)(ρ− σ))| ‖x‖∞≤ 1, x self-adjoint}

= sup{τ(y(ρ− σ))| ‖y‖∞≤ 2, y ≥ 0}

=2 sup{τ(y(ρ− σ))| ‖y‖∞≤ 1, y ≥ 0}.

For ii), let x be self-adjoint and satisfy ‖x ‖L1(M,L∞(Mop))< 1. Apply Lemma 3.2 to x
and −x, we have density operators σ1, σ2 ∈ L1(M) such that x ≥ σ1⊗1 and −x ≤ x2⊗1. 
Then

0 ≤ x + σ2 ⊗ 1 ≥ (σ1 + σ2) ⊗ 1, ‖x + σ2 ⊗ 1‖L1(M,L∞(Mop))≤ 2 .

Conversely, let y ≥ 0, ‖ y ‖L1(M,L∞(Mop))< 2. Then there exists a density operator 
σ ∈ L1(M) such that 0 ≤ y ≤ 2σ ⊗ 1. Then

−σ ⊗ 1 ≤ y − σ ⊗ 1 ≤ σ ⊗ 1 , ‖y − σ ⊗ 1‖L1(M,L∞(Mop))≤ 1.

Thus we have

x = x∗, ‖x‖L1(M,L∞(Mop))≤ 1

⇐⇒ x + 1 ⊗ σ ≥ 0, ‖x + 1 ⊗ σ‖L1(M,L∞(Mop))≤ 2 for some density σ ∈ L1(M) .

Since M is injective, we have L1(M, L∞(Mop)) ∼= L1(M)⊗̂Mop. Then using the fact 
that 〈T − S, σ ⊗ 1〉 = τ(T (σ)) − τ(S(σ)) = 0, we have

‖T − S ‖cb=sup{Re 〈T − S, x〉| ‖x‖L1(M,L∞(Mop))< 1}

=sup{〈T − S, x〉| ‖x‖L1(M,L∞(Mop))< 1, x = x∗}

=sup{〈T − S, x〉| ‖x‖L1(M,L∞(Mop))< 2, x ≥ 0}

=2 sup{〈T − S, x〉| ‖x‖L1(M,L∞(Mop))< 1, x ≥ 0}. �
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Theorem 3.16. Let M, N be semi-finite von Neumanna algebras and M be injective 
and τM(1) = +∞. Suppose ρ and σ are two density operators in L1(M⊗N ) such that 
τM ⊗ id(ρ) = τM ⊗ id(σ). TFAE

i) inf{‖σ − Φ ⊗ id(ρ) ‖1 | Φ : L1(M) → L1(M)CPTP} ≤ δ.
ii) for any CPTP map Ψ : L1(N ) → L1(Mop) and ran(Ψ) ⊂ Mop, we have

‖ id ⊗ Ψ(σ)‖L1(M)⊗̂Mop≤‖ id ⊗ Ψ(ρ)‖L1(M)⊗̂Mop +δ

2 ‖Ψ : L1(N ) → Mop ‖cb

Proof. For a CPTP Ψ, we can choose R : L1(M) → L1(M) CPTP such that

〈R, id ⊗ Ψ(σ)〉 ≥‖ id ⊗ Ψ(σ)‖L1(M)⊗̂Mop −ε .

Then

‖ id ⊗ Ψ(σ)‖L1(M)⊗̂Mop≤ ε + 〈R, id ⊗ Ψ(σ)〉

≤ε + 〈R,Φ ⊗ Ψ(ρ)〉 + 〈R, id ⊗ Ψ(σ) − Φ ⊗ Ψ(ρ)〉

≤ε + 〈R ◦ Φ, id ⊗ Ψ(ρ)〉 + 〈R† ◦ Ψ, σ − Φ ⊗ id(ρ)〉

≤ε+ ‖ id ⊗ Ψ(ρ)‖L1(M)⊗̂Mop +1
2 ‖R† ◦ Ψ : L1(N ) → Mop ‖cb‖σ − Φ ⊗ id(ρ)‖1

≤ε+ ‖ id ⊗ Ψ(ρ)‖L1(M)⊗̂Mop +1
2 ‖Ψ : L1(N ) → Mop ‖cb‖σ − Φ ⊗ id(ρ)‖1

Here in the second last inequality we apply Lemma 3.15 i) to

〈R† ◦ Ψ, σ − id ⊗ Φ(ρ)〉 = τ
(
xR†◦Ψ(σ − Φ ⊗ id(ρ))

)
where xR†◦Ψ ∈ N⊗M is the operator corresponding to the map R† ◦ Ψ via the Effros-
Ruan isomorphism

CB(L1(N ),Mop) ∼= N op⊗Mop . (3.16)

Then i)⇒ ii) follows from taking the infimum over all CPTP Φ and ε → 0. Conversely, 
suppose inf

Φ CPTP
‖σ − Φ ⊗ id(ρ) ‖1> δ. By Lemma 3.15 i), we have for x ∈ N⊗M,

〈T, σ − id ⊗ Φ(ρ)〉 = τ
(
x(σ − Φ ⊗ id(ρ))

)
≤ 1

2 ‖T : L1(N ) → Mop ‖cb‖σ − Φ ⊗ id(ρ)‖1 ,

where T is the map corresponding to xop via the isomorphism (3.16). Because the above 
pairing is linear for both T and Φ, we have by Sion’s minimax theorem [24],
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δ < inf
Φ CPTP

‖σ − Φ ⊗ id(ρ)‖1

=2 inf
Φ CPTP

sup
T CP,‖T‖cb≤1

〈T, σ − Φ ⊗ id(ρ)〉

=2 sup
T CP,‖T‖cb≤1

inf
Φ CPTP

〈T, σ − Φ ⊗ id(ρ)〉

=2 sup
T CP,‖T‖cb≤1

〈T, σ〉 − sup
Φ CPTP

〈T,Φ ⊗ id(ρ)〉

Rescaling the above inequality, there exists a CP T : L1(N ) → Mop such that

〈T, σ〉 − sup
Φ CPTP

〈T,Φ ⊗ id(ρ)〉 > δ

2 ‖T : L1(N ) → Mop ‖cb .

For a projection e ∈ M, denote the map Te(·) = eT (·)e. There exists e with τM(e) < ∞
such that |〈T, (e ⊗ 1)σ(e ⊗ 1) − σ〉| is small enough that

〈Te, σ〉 = 〈T, (e⊗ 1)σ(e⊗ 1)〉

> sup
Φ CPTP

〈T,Φ ⊗ id(ρ)〉 + δ

2 ‖T : L1(N ) → Mop ‖cb

=‖ id ⊗ T (ρ)‖L1(M)⊗̂Mop +δ

2 ‖T : L1(N ) → Mop ‖cb

≥‖ id ⊗ Te(ρ)‖L1(M)⊗̂eMeop +δ

2 ‖Te : L1(N ) → eMeop ‖cb .

Here we use Proposition 3.6 by the assumption M is injective

sup
Φ CPTP

〈T,Φ ⊗ id(ρ)〉 = sup
Φ CPTP

〈Φ, id ⊗ T (ρ)〉 =‖ id ⊗ T (ρ)‖L1(M)⊗̂Mop

and that ‖Te : L1(N ) → eMeop ‖cb≤‖Te : L1(N ) → M ‖cb. Also, we have

〈Te, σ〉 = 〈id, id ⊗ Te(σ)〉 ≤‖ id ⊗ Te(σ)‖L1(M)⊗̂eMeop .

Therefore, we have a violation of ii) for Te : L1(N ) → eMeop is CP,

‖ id ⊗ Te(σ)‖L1(M)⊗̂eMeop>‖ id ⊗ Te(ρ)‖L1(M)⊗̂eMeop +δ

2 ‖Te : L1(N ) → eMeop ‖cb
(3.17)

By linearity, we can assume Te is CPTNI. Denote ρN = τM⊗id(ρ) and σN = τM⊗id(σ). 
Because ρN = σN , we follow the argument in Theorem 3.8 to replace Te by

T̃ = Te + T0 , T0(x) = τM(x− Te(x))
e .
τM(e)
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Note that ‖ T0 : L1(N ) → eMeop ‖cb= 1
τM(e) . Then we can always choose τM(e) large 

enough such that ‖ T̃ ‖cb − ‖Te ‖cb is small and (3.17) is satisfied for T̃ . �
Remark 3.17. If, in addition, inf{ τM(e0) | e0 nonzero projection } = 0, we do not need 
the assumption ρN = σN in Theorem 3.16. In the case of ρN �= σN , by the corresponding 
discussion in Theorem 3.8, we have a CPTP map T1 such that

‖ id ⊗ T1(σ)‖L1(M)⊗̂eMeop − ‖ id ⊗ T1(ρ)‖L1(M)⊗̂eMeop

>( 1
τM(e0)

− 1
τM(e) )τN

(
(ρN − σN )−

)
where e0 ≤ e is a sub-projection. This difference can be arbitrarily large if inf

e0 �=0
τM(e0) =

0.

The following is a generalization of [16, Theorem 1].

Theorem 3.18. Let M, N be semi-finite von Neumanna algebras and let M be injective. 
Let S, T : L1(N ) → L1(M) be two CPTP maps. TFAE

i) inf{‖S − Φ ◦ T ‖cb | Φ : L1(M) → L1(M)CPTP} ≤ δ;
ii) for any density operator ρ ∈ L1(N⊗Mop), we have

‖S ⊗ id(ρ)‖L1(M)⊗̂Mop≤‖T ⊗ id(ρ)‖L1(M)⊗̂Mop +δ

2 ‖ρ‖L1(M)⊗̂Mop .

Proof. Let ρ ∈ L1(N⊗Mop) be a density operator. By Proposition 3.6, for any ε > 0 we 
can choose R : L1(M) → L1(M) CPTP such that

〈R,S ⊗ id(ρ)〉 ≥‖S ⊗ id(ρ)‖L1(M)⊗̂Mop −ε .

Then

‖S ⊗ id(ρ)‖L1(M)⊗̂Mop≤ ε + 〈R,S ⊗ id(ρ)〉

≤ε + 〈R,Φ ◦ T ⊗ id(ρ)〉 + 〈R, (S − Φ ◦ T ) ⊗ id(ρ)〉
≤ε+ ‖Φ ◦ T ⊗ id(ρ)‖L1(M)⊗̂Mop +〈S − Φ ◦ T, id ⊗R†(ρ)〉

≤ε+ ‖Φ ◦ T ⊗ id(ρ)‖L1(M)⊗̂Mop +1
2 ‖S − Φ ◦ T ‖cb‖ id ⊗R†(ρ)‖L1(M)⊗̂Mop

≤ε+ ‖Φ ◦ T ⊗ id(ρ)‖L1(M)⊗̂Mop +1
2 ‖S − Φ ◦ T ‖cb‖ρ‖L1(M)⊗̂Mop

where in the second last inequality we used Lemma 3.15 ii) for the 1/2 factor. Then i)⇒
ii) follows from taking the infimum over all CPTP Φ and ε → 0. For ii) ⇒ i), suppose 
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inf
Φ CPTP

‖S − Φ ◦ T ‖cb> δ. Let us use the shorthand notation ‖ · ‖1,∞=‖ · ‖L1(M)⊗̂Mop . 
Using the minimax theorem [24],

δ < inf
Φ CPTP

‖S − Φ ◦ T ‖cb

=2 inf
Φ CPTP

sup
ρ≥0,‖ρ‖1,∞≤1

〈S − Φ ◦ T, ρ〉

=2 sup
ρ≥0,‖ρ‖1,∞≤1

inf
ΦCPTP

〈S − Φ ◦ T, ρ〉

=2 sup
ρ≥0,‖ρ‖1,∞≤1

〈id, S ⊗ id(ρ)〉 − sup
ΦCPTP

〈Φ, T ⊗ id(ρ)〉

≤2 sup
ρ≥0,‖ρ‖1,∞≤1

sup
ΦCPTP

〈Φ, S ⊗ id(ρ)〉 − sup
ΦCPTP

〈Φ, T ⊗ id(ρ)〉

=2 sup
ρ≥0,‖ρ‖1,∞≤1

‖S ⊗ id(ρ)‖L1(M)⊗̂Mop − ‖T ⊗ id(ρ)‖L1(M)⊗̂Mop ,

where in the last equality we used Proposition 3.6 because M is injective. Thus there 
exists a positive ρ ∈ L1(M)⊗̂Mop violating the inequality in ii). One can then replace 
ρ by a bipartite density operator ρ̃ in L1(M⊗Mop) as in Theorem 3.13. �
Remark 3.19. In Theorem 3.16 & 3.18, we cannot reduce condition ii) to entanglement-
breaking CPTP maps and respectively separable density operator as in the case for δ = 0. 
This is because Lemma 3.15 fails when we restrict the pairing to entanglement-breaking 
or separable elements.

3.5. Results in the type I setting

The results of the previous subsections subsume the case of B(H) where H is infi-
nite dimensional. However, since this is the case most relevant to quantum information 
theory, we briefly restate some of our results for B(H) in terms of the conditional min 
entropy Hmin. Hmin(A|B) is the sandwiched Rényi p-version of H(A|B) at p = ∞ and 
the smooth version of Hmin(A|B) connects to H(A|B) by quantum asymptotic equipar-
tition property [26]. While the operational meaning of H(A|B) is in i.i.d. asymptotic 
regime, Hmin(A|B) has many applications in the one shot setting ([27] and reference 
therein). The following theorem summarizes the results on quantum majorization, state 
convertibility and channel factorization.

Theorem 3.20. Let HA, HB be two infinite-dimensional Hilbert spaces. The following 
statements hold.

i) For two bipartite density operators ρAB, σAB ∈ S1(HA⊗2HB), there exists a quantum 
channel Φ : S1(HB) → S1(HB) such that idA ⊗Φ(ρ) = σ if and only if for any 
entanglement-breaking channel Ψ : S1(HA) → S1(HA)
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Hmin(A|B)Ψ⊗id(ρ) ≤ Hmin(A|B)Ψ⊗id(σ) .

ii) For two families of density operators {ρi}i∈N and {σi}i∈N in B(HB), there exists a 
quantum channel such that Φ(ρi) = σi for all i ∈ N if and only if for any finitely 
supported probability distribution λi on N and any set of density operators {ωi} ∈
B(HA)

Hmin(A|B)(∑i λiωi⊗ρi) ≤ Hmin(A|B)(∑i λiωi⊗σi) .

iii) For two quantum channels T, S : S1(HA) → S1(HB), there exists a quantum channel 
Φ such that Φ ◦T = S if and only if for any separable density operator ρ ∈ S1(HA⊗2
HB),

Hmin(A|B)id⊗T (ρ) ≤ Hmin(A|B)id⊗S(ρ).

The above theorem make sense even when Hmin equals “−∞”. We know by Theo-
rem 3.10 and 3.13 that it suffices to consider all finite dimensional HA in the equiv-
alence ii) and iii). Similarly, for the equivalence i) it suffices to consider channels 
Ψ : S1(HA) → S1(HA′) into a finite dimensional H ′

A. In these situations, Hmin will 
always take finite values. In general, Hmin(A|B) can be “−∞”, where the inequalities in 
the above theorem are trivially satisfied.

4. Tracial convex sets in vector-valued noncommutative L1-space

In this section, we discuss the analogue of quantum majorization in vector-valued 
noncommutative L1-spaces and the connection to the tracial Hahn-Banach Theorem. 
Let (M, τ) be a semi-finite von Neumann algebra equipped with a normal faithful semi-
finite trace τ . Let E be an operator space. The E-valued noncommutative L1-spaces 
were introduced by Pisier in [21]. For x ∈ M0 ⊗E in the algebraic tensor, we define the 
L1(M, E) norm as follows,

‖x‖L1(M,E)= inf{‖a‖L2(M)‖b‖L2(M)‖y‖M⊗minE | x = a · y · b}, (4.1)

where the infimum runs over all factorizations x = a · y · b := (a ⊗ 1E)y(b ⊗ 1E) with 
a, b ∈ M0 and y ∈ M ⊗ E. The space L1(M, E) is defined as the norm completion of 
M0 ⊗ E. The L1(M, L∞(N )) space we discussed in the previous section is the special 
case of E being a von Neumann algebra N . Recall that a von Neumann algebra M is 
hyperfinite if M = ∪Mα is the w∗-closure of the union of an increasing net of finite 
dimensional von Nuemann algebras Mα. It was proved in [21, Theorem 3.4] that for 
hyperfinite M,

L1(M, E) ∼= L1(M)⊗̂E (4.2)
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isometrically. Namely, for hyperfinite M, the vector-valued noncommutative L1 space 
is identified with projective tensor product. Following that, we introduce the following 
definition of a tracial set in L1(M)⊗̂E.

Definition 4.1. A subset V ⊂ L1(M)⊗̂E is called a contractively tracial set if for any 
CPTNI map Φ : L1(M) → L1(M), Φ ⊗ idE(V ) ⊂ V .

The matrix tracial sets are discussed in [14, Section 6.2] as the dual concept of matrix 
convex set. We refer to their definition as matrix tracial set.

Definition 4.2. A matrix contractively tracial set (Vn)n is a sequence of subsets Vn ⊂
Mn(E) such that for any CPTNI map Φ : Mn → Mm, Φ ⊗ id(Vn) ⊂ Vm.

This definition was considered in [14] for finite dimensional E. Indeed, for dimE = m, 
each element in Vn ⊂ Mn(E) ∼= Mm

n can be identified with a finite sequence (xj) ∈
(Mn)m. We discuss the relations of these two definitions in the following proposition.

Proposition 4.3. Let H be a separable Hilbert space and (en)n be a sequence of projections 
such that dim(enH) = n and en → 1 weakly. Identify Mn

∼= S1(enH) as subspace of 
S1(H).

i) Given a contractively tracial set V ⊂ S1(H)⊗̂E, the set

V [n] = en · V · en

forms a matrix contractively tracial set such that ∪nV [n] = V ‖ · ‖ .
ii) Given a matrix contractively tracial set (Vn) ⊂ Mn(E), the set

V = (∪nVn)‖ · ‖ ⊂ S1(H)⊗̂E

is a closed contractively tracial set such that V [n] = Vn.

Proof. i) Let e ∈ B(H) be a projection. Because the map ρ �→ eρe is CPTNI on S1(H), 
x ∈ V implies that e · x · e ∈ V . Then for any Φ : Mn → Mm CPTNI, Φ ⊗ id(en ·
x · en) ∈ V [m] ⊂ V . Thus (V [n])n is a matrix contractively tracial set. Moreover, for 
x ∈ S1(H)⊗̂E, lim

n→∞
‖en ·x · en−x ‖S1(H)⊗̂E= 0. Then V ‖ · ‖ ⊂ ∪nV [n]‖ · ‖ and the other 

inclusion follows from V [n] ⊂ V .
ii) Let x ∈ Vn. For Φ : S1(H) → S1(H) CPTNI, we find that

em · Φ ⊗ id(x) · em ∈ Vm

because ρ �→ emΦ(ρ)em can be viewed as a CPTNI map from Mn to Mm. By lim
k→∞

em ·
Φ ⊗ id(x) · em →= Φ ⊗ id(x), this shows that Φ(x) ∈ V for x ∈ Vn. Let xk ∈ Vn(k) be a 
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sequence such that xk → x in S1(H)⊗̂E. Then Φ ⊗ id(xk) → Φ ⊗ id(x), which implies 
Φ ⊗ id(x) ∈ V . This verifies that V is contractively tracial. In particular, the fact that 
en · xk · en converges to en · x · en implies that V [n] ⊂ Vn. �

The above proposition shows that Definition 4.1 and Definition 4.2 are closely related 
for the case M = B(H). In particular, they coincide for closed sets. It is easy to see that 
the convex hull of a contractively tracial set is again contractively tracial. In general, 
contractively tracial sets are not necessary convex.

The next theorem is the tracial Hahn-Banach separation theorem for convex con-
tractively tracial sets. For matrix contractively tracial sets with dimE < ∞, this was 
obtained in [14, Theorem 7.6]. Using the projective tensor product, we can now consider 
semi-finite injective M and a general operator space E.

Theorem 4.4. Let M be an injective semi-finite von Neumann algebra. Let V be a closed 
convex contractively tracial set in L1(M)⊗̂E and x ∈ L1(M)⊗̂E. Then x /∈ V if and 
only if there exists a CB map T : E → Mop such that for each y ∈ V , there exists a 
density operator ωy ∈ L1(M) depending on y such that

Re id⊗T (y) ≤ ωy ⊗ 1

and for any density operator ω,

Re id⊗T (x) � ω ⊗ 1.

Proof. The “if” direction is trivial. For the other direction, suppose x /∈ V . Using the 
duality L1(M)⊗̂E∗ = CB(E, Mop), there exists a CB map T : E → Mop

Re 〈T, x〉 > sup
ρ∈V

Re 〈T, y〉.

Reinterpreting the dual pairing,

Re 〈T, x〉 = Re 〈idM, id⊗T (x)〉 ≤ sup
Φ CPTNI

Re 〈Φ, id⊗T (x)〉

= inf{τ(ω)|Re id⊗T (x) ≤ ω ⊗ 1, ω ≥ 0} .

Here we used Proposition 3.6 by the assumption that M is injective. On the other hand, 
because V is contractively tracial,

sup
y∈V

Re 〈T, y〉 ≥ sup
y∈V,Φ CPTNI

Re 〈T,Φ ⊗ id(y)〉

= sup
y∈V

inf{τ(ω) | Re T ⊗ id(y) ≤ ω ⊗ 1 , ω ≥ 0}.

Take λ such that Re 〈T, x〉 > λ > supy∈V Re 〈T, y〉. Then for the map T̃ = 1T ,
λ
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sup
y∈V

inf{τ(ω) | Re T̃⊗id(y) ≤ ω⊗1 , ω ≥ 0} < 1 < inf{τ(ω)|Re T̃⊗id(x) ≤ ω⊗1 , ω ≥ 0}

which completes the proof. �
Using similar idea, we obtain a variant of Effros-Winkler’s separation theorem [9]. 

Recall a CP map Φ is sub-unital if Φ(1) ≤ 1.

Theorem 4.5. Let E be a operator space. Let V ⊂ Mn(E) be a closed convex set such 
Φ ⊗ id(V ) ⊂ V for any CP sub-unital Φ : Mn → Mn. Then x /∈ V if and only if there 
exists a map T : E → Mn such that for each y ∈ V , there exists a density operator 
ωy ∈ Mn depending on y such that

Re id⊗T (y) ≤ 1 ⊗ ωy ,

and for any density operator ω,

Re id⊗T (x) � 1 ⊗ ω .

Proof. Suppose x /∈ V . Because Mn is finite dimensional, we have Mn(E)∗ = Sn
1 ⊗̂E∗. 

Then there exists an element T ∈ E∗⊗̂Sn
1 such that

Re 〈T, x〉 > sup
y∈V

Re 〈T, y〉 . (4.3)

We identify T ∈ E∗⊗̂Sn
1 with a map T : E → Sn

1 . Then the pairing on the left hand side 
of (4.3) can be rewritten as

Re 〈T, x〉 = Re〈idMn
, id⊗T (x)〉 ≤ inf{τ(ω)|Re id⊗T (x) ≤ 1 ⊗ ω , ω ≥ 0} .

Here the second pairing is between CB(Mn, Mn) = (Mn⊗̂Sn
1 )∗. For the right hand side 

of (4.3),

sup
y∈V

Re 〈T, y〉 = sup
y∈V

sup
Φ CP sub-unital

Re 〈T,Φ ⊗ id(y)〉 = sup
y∈V

sup
Φ

Re〈Φ, id⊗T (y)〉

≤ sup
y∈V

inf{τ(ω)|Re id⊗T (y) ≤ 1 ⊗ ω , ω ≥ 0} .

Then the assertion follows from the inequality (4.3). �
Recall that a contractively matrix convex set is a sequence (Vn) ⊂ Mn(E) such 

that i) for any CP sub-unital Φ : Mm → Mn, Φ ⊗ id(Vm) ⊂ Vn; and ii) for any 
a ∈ Vm, b ∈ Vn, a ⊕ b ∈ Vn+m. Effros-Winkler’s theorem stated for matrix convex 
set admits a stronger separation: there exists a density operator ω uniform for all y such 
that Re id⊗T (y) ≤ 1 ⊗ ω. A similar lemma for tracial sets was given in [14, Lemma 
7.4]. The above Theorem 4.5 leads to a weaker separation because we consider convex 
sets closed under CP sub-unital maps but not necessarily satisfies ii).
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5. Norm separations on projective tensor product

In this section, we discuss the analogue of quantum majorization on projective tensor 
product. Recall that a operator space G is 1-locally reflexive if for any finite dimensional 
operator space E, we have the complete isometry

CB(E,G∗∗) ∼= CB(E,G)∗∗ .

It is clear from the definition that G = G∗∗ is reflexive implies that G is 1-locally re-
flexive. It was proved by Effros, Junge, and Ruan [8] that the predual of von Neumann 
algebras are 1-locally reflexive. Another property needed in our discussion is the com-
pletely contractive approximation property (CCAP). A operator space E has the CCAP
if there exists a net of finite rank completely contractive maps Φα : E → E such that 
for any x, Φα(x) → x in norm. In the setting of operator spaces, this is an analog of 
w∗-CPAP.

The following lemma shows that these two properties combined give the desired norm 
attaining property similar to Proposition 3.6. Throughout this section, we write CB for 
completely bounded and CC for completely contractive.

Lemma 5.1. Let E be an operator space with the CCAP. Then CB(E, G) ⊂ CB(E, G∗∗)
is w∗-dense in the sense of CB(E, G∗∗) = (E⊗̂G∗)∗. If, in addition, G is 1-locally 
reflexive, then

‖ρ‖E⊗̂G∗= sup{Re 〈Ψ, ρ〉 | Ψ : E → G CC}.

Proof. Let Φα : E → E be a net of CC maps such that Φα(x) → x in norm for any x ∈ E. 
For ρ ∈ E⊗̂G∗ with ‖ρ ‖E⊗̂G∗= 1, we can choose a finite tensor sum ρ0 =

∑n
j=1 xj ⊗ yj

such that ‖ ρ − ρ0 ‖E⊗̂G∗≤ ε. Then for T : E → G∗∗ with ‖T ‖cb= 1, there exists an α
such that

|〈T ◦ Φα − T, ρ〉| ≤ |〈T ◦ Φα − T, ρ− ρ0〉| + |〈T ◦ Φα − T, ρ0〉|
≤ |〈T ◦ Φα − T, ρ− ρ0〉| + |〈T,Φα ⊗ id(ρ0) − ρ0〉| ≤ 2ε + ε .

Let Eα be the range of Φα as a finite dimensional subspace of E and T |Eα
∈ CB(Eα, G∗∗)

be the restriction of T to Eα. There exists Tα ∈ CB(Eα, G) such that

|〈Tα − T,Φα ⊗ id(ρ0)〉| = |〈(Tα − T ) ◦ Φα, ρ0〉| ≤ ε .

Therefore Tα ◦ Φα : E → G is CB and

|〈Tα ◦ Φα − T, ρ〉| ≤|〈T ◦ Φα − T, ρ〉| + |〈(Tα − T ) ◦ Φα, ρ− ρ0〉| + |〈(Tα − T ) ◦ Φα, ρ0〉|
≤3ε + 2ε + ε = 6ε
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which proves the w∗-density of CB(E, G) ⊂ CB(E, G∗∗). If G is 1-locally reflexive, Tα

and Tα ◦Φα can be CC because we can of the isometry CB(Eα, G∗) ∼= CB(Eα, G)∗. �
The following theorem is the analog of quantum majorization and channel factoriza-

tion in the abstract operator space setting.

Theorem 5.2. Let E, F, G be operator spaces. Suppose one of the following conditions 
holds:

a) G is reflexive;
b) G is 1-locally reflective and F has the CCAP

Then the following two statements hold:

i) For ρ ∈ E⊗̂F and σ ∈ E⊗̂G, there exists a sequence of CC maps un : F → G such 
that id⊗un(ρ) → σ in the norm of E⊗̂G if and only if for any CB map v : E → G∗,

‖v ⊗ id(ρ)‖G∗⊗̂F≥‖v ⊗ id(σ)‖G∗⊗̂G .

ii) For T ∈ CB(E, F ) and S ∈ CB(E, G), there exists a net of CC uα : F → G such 
that uα ◦ T → S in the point-weak topology if and only if for any x ∈ E ⊗G∗,

‖T ⊗ id(x)‖F ⊗̂G∗≥‖S ⊗ id(x)‖G⊗̂G∗ .

Proof. i) The “only if” direction is easy. For the “if” part, consider the norm-closed 
convex set

C(ρ) = {id⊗u(ρ)|u : F → G,CC} ⊂ E⊗̂G.

If σ /∈ C(ρ), there exists v ∈ CB(E, G∗) = (E⊗̂G)∗ such that

Re 〈v, σ〉 > sup
u

Re 〈v, id⊗u(ρ)〉 .

Let ιG : G → G∗∗ be the embedding. Note that

Re 〈v, σ〉 = Re 〈ιG, v ⊗ id(σ)〉 ≤‖v ⊗ id(σ)‖G∗⊗̂G ,

sup
u

Re 〈v, id⊗u(ρ)〉 = sup
u

Re 〈u, v ⊗ id(ρ)〉 =‖v ⊗ id(ρ)‖G∗⊗̂F

where the last equality follows Lemma 5.1.
ii) Suppose uα is a net of CC maps such that uα ◦T → S in the point-weak topology. 

Then for any R ∈ CB(G∗, G∗) = (G⊗̂G∗)∗ and x ∈ E ⊗G∗

lim〈R, uα ◦ T ⊗ id(x)〉 = lim〈uα ◦ T, id⊗R(x)〉 = 〈S, id⊗R(x)〉 = 〈R,S ⊗ id(x)〉

α α
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which implies ‖ T ⊗ id(x) ‖F ⊗̂G∗≥‖ S ⊗ id(x) ‖G⊗̂G∗ . For the converse, consider the 
w∗-closure of convex set

C(T ) = {u ◦ T |u : F → G,CC}w ⊂ CB(E,G∗∗) = (E⊗̂G∗)∗.

If S /∈ C(T ), there exists a ρ ∈ E⊗̂G∗ such that

Re 〈S, ρ〉 > sup
u

Re 〈u ◦ T, ρ〉 .

By a density argument, we can further assume ρ ∈ E⊗G∗ in the algebraic tensor product. 
Note that

Re 〈S, ρ〉 = Re 〈ι, S ⊗ id(ρ)〉 ≤‖S ⊗ id(ρ)‖G⊗̂G∗ ,

sup
u

Re 〈u ◦ T, ρ〉 = sup
u

Re 〈u, T ⊗ id(ρ)〉 =‖T ⊗ id(ρ)‖F ⊗̂G∗

where again the last equality uses Lemma 5.1. �
The following proposition discusses the case when the limits in above theorem can be 

replaced by equality.

Proposition 5.3. Let E, F, G be operator spaces. Let T ∈ CB(E, F ) and ρ ∈ E⊗̂F . 
Suppose G = (G∗)∗ is a dual space. Then {u ◦ T | u : F → G, CC} is w∗-closed in 
CB(E, G). If, in addition, E has the CCAP or G is reflexive, {id⊗u(ρ) | u : F →
G, CC} is norm-closed in E⊗̂G.

Proof. To prove the first statement, let uα : F → G be a net of CC maps such that 
limα uα ◦ T = S in the w∗-topology of CB(E, G) = (E⊗̂G∗)∗. Because CB(F, G) =
(F ⊗̂G∗)∗, we choose u as w∗-limit of (uα) such that the subnet uβ → u. Then uβ ◦ T →
u ◦ T in the point w∗-topology hence S = u ◦ T . For the second statement, we assume 
E has the CCAP or G is reflexive. Let uk : F → G be a sequence of CC such that 
id⊗uk(ρ) → σ in the norm of E⊗̂G. Choose a subsequence uki

→ u in the w∗-topology 
for some CC u. For any T ∈ CB(E, G∗),

lim
i
〈T, id⊗uki

(ρ)〉 = lim
i
〈uki

, T ⊗ id(ρ)〉 = 〈u, T ⊗ id(ρ)〉 = 〈T, u⊗ id(ρ)〉.

Thus id⊗uki
(ρ) → id⊗u(ρ) in E⊗̂G with the topology induced by CB(E, G∗) ⊂

CB(E, G∗). Note that by Lemma 5.1, this topology is separating. Hence we have 
σ = lim

i
id⊗uki

(ρ) = id⊗u(ρ). �
Theorem 5.2 also holds for Banach space tensor products. We can replace the opera-

tor space concepts with their Banach space counterparts: replace “operator spaces” by 
“Banach spaces”, “CB (resp. CC)” by “bounded (resp. contractive)” and “CCAP” by 
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“metric approximation property (or 1-AP)”. Moreover, all Banach spaces have 1-local 
reflexivity. We refer to the book [18] for definitions of the above mentioned Banach space 
concepts. Here we state the result analogous to Theorem 5.2. Let ⊗π denote the Banach 
space projective tensor product and B(E, F ) be the set of bounded maps from Banach 
space E to F .

Theorem 5.4. Let E, F, G be Banach spaces. Suppose one of the following conditions 
holds:

a) G is reflexive;
b) F has the metric approximation property.

Then the following two statements hold:

i) for ρ ∈ E ⊗π F and σ ∈ E ⊗π G, there exists a sequence of contractive maps 
un : F → G such that id⊗un(ρ) → σ in the norm of E ⊗π G if and only if for any 
bounded map v : E → G∗,

‖v ⊗ id(ρ)‖G∗⊗πF≥‖v ⊗ id(σ)‖G∗⊗πG .

ii) for T ∈ B(E, F ) and S ∈ B(E, G), there exists a net of contractions uα : F → G

such that uα ◦ T → S in the point-weak topology if and only if for any x ∈ E ⊗G∗,

‖T ⊗ id(x)‖F⊗πG∗≥‖S ⊗ id(x)‖G⊗πG∗ .

The proof is identical to Theorem 5.2 and the details are left to the reader.
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