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1. Introduction

Majorization is a fundamental tool introduced by Hardy, Littlewood, and Pélya [13]
that finds application in various fields [19]. Among the different motivations for majoriza-
tion, the core idea is a notion of “disorder”. For example, a probability distribution is
majorized by another if it is less deviated from the uniform distribution. Recently, Gour,
Jennings, Buscemi, Duan, and Marvian in [10] use the concept of “quantum majoriza-
tion” as a particular partial ordering of states and processes in quantum mechanical
systems.

Let H be a finite dimensional Hilbert space and B(H) be the space of bounded
operators acting on H. A density operator p € B(H) (called a state on the quantum
system H in the quantum information theory literature) is positive and has trace 1. The
dynamics between quantum systems is modeled by completely positive trace preserving
maps (also called quantum channels) which map density operators to density operators.
For two bipartite density operators p and ¢ on the tensor product Hilbert space H4® Hp,
o is said to be quantum majorized by p if there exists a linear completely positive trace
preserving (CPTP) map ® : B(Hp) — B(Hp) such that ¢ = id ®®(p). This concept has
been studied in different contexts under various guises [23,4,3,2,16]. Intuitively, quantum
majorization describes the disorder observed from the B system. This can be witnessed
from the data processing inequality of conditional entropy H(A|B),

H(A|B), < H(A|B)iaga(p) = H(A|B), .

For a bipartite density operator p € B(H 4 ® Hp), its conditional entropy is H(A|B), :=
H(p) — H(tr ®id(p)), where tr is the matrix trace and H(p) = —tr(plogp) is the von
Neumann entropy. The conditional entropy H(A|B), describes the uncertainty of the bi-
partite density operator p given its information on the B system [15]. The data processing
inequality says such uncertainty is monotone non-decreasing under quantum majoriza-
tion. As a converse to the data processing inequality, Gour and his coauthors [10] proved
the following characterization of quantum majorization using conditional min-entropy
H,in(A|B), defined as

H,in(A|B), = — log inf{tr(w)|p < 1 ® w for some positive w € B(Hg)}. (1.1)

Theorem ([10]). Let H,Hp be finite dimensional Hilbert spaces. For two bipartite
density operators p and o, o is quantum majorized by p if and only if for all finite
dimensional H'y and all CPTP maps ¥ : B(Ha) — B(Ha/),

Hpin(A'|B)ygid(p) < Hmin(A'|B)wgid(o)- (1.2)

H,in(A|B) is the analogue of H(A|B) as the Rényi p-version at p = oo [20] and it
connects to H(A|B) by the quantum version of asymptotic equipartition property [26].
The “only if” direction in the above theorem follows from the data processing inequality
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of H,nin, which is indeed self-evident from its definition (1.1). The other direction states
that quantum majorization is actually determined by the data processing inequality of
Hppin- In [10], the above theorem has been used to characterize quantum dynamics under
group symmetry and thermodynamic condition. It has further extensions from bipartite
states to bipartite quantum channels [11].

In this work, we revisit Gour et al.’s theorem from a functional analytic perspective.
Our starting point is the observation that the conditional min-entropy corresponds to
the operator space tensor norm

Humin(A|B), = —log ||PHsl(HB)®B(HA) (1.3)

where S1(Hp) is the set of trace class operators on Hp and Sy (Hp)®B(H,) is the op-
erator space projective tensor product. This correspondence is based on an factorization
expression for the norm of S1(Hp)®B(H 1) that Pisier used in [21] to define noncommu-
tative vector-valued L, spaces. On the other hand, it is known [7,1] that the dual space of
Sy (Hg)®B(H 4) is the completely bounded maps CB(B(Ha), B(Hp)), where quantum
channels correspond to unital completely positive maps by taking adjoints. From this
perspective, H,,;, is the dual of CB norm with respect to quantum channels and Gour
et al.’s theorem is essentially a Hahn-Banach separation theorem. Using this approach,
we prove the following characterization of quantum majorization using the projective
tensor norm which extends Gour et al.’s results to the setting of tracial von Neumann
algebras. We consider two semi-finite von Neumann algebras M and AN equipped with
normal faithful semi-finite traces 7oq (resp. Tor). We denote L1(M) (resp. L1 (N)) as the
space of 1-integrable operators with respect to Toq (resp. 7ar). Our main theorem is

Theorem 1.1 (¢f. Theorem 3.8). Let M and N be two semi-finite von Neumann algebras.
Suppose M is injective. Then for two density operators p,o € L1 (M®QN), there erists a
CPTP map ® : L1 (M) — L1(M) such that 2Rid(p) = o if and only if for any projection
e € M with Tpm(e) < oo and for any CPTP map V : L1(N) — Li(eMe°P) N eMe?,

[id @V (p) ”Ll(M)@eMeDPZ” id@¥(o) HLl(M)QA@@MeOP ’

Here the L1(M)®N—norm gives the analogue of H,,;, as in (1.3). We note that the
assumption on injectivity is in this connection. Indeed, we show that for semi-finite
von Neumann algebras, the conditional min-entropy H,,;, coincides with the projective
tensor norm L; (M)®N if and only if M is injective. This can be viewed as a predual form
of Haagerup’s characterization of injectivity via decomposability [12]. Beyond injectivity,
the information-theoretic meaning of the projective tensor norm is not clear.

The above theorem admits several variants. By taking N = I, the commutative von
Neumann algebra of bounded sequences, Theorem 1.1 concerns the quantum interpola-
tion problem of converting an infinite family of density operators into another family of
density operators using a CPTP map. On the other hand, the dual form of Theorem 1.1
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provides a characterization for the factorization of CPTP maps (also known as channel
factorization). A CPTP map S is quantum majorized by 7T if S admits a factorization
S = ®oT for some CPTP map ®. Note that in finite dimensions, quantum majorization
applies to CPTP maps via their Choi matrices. However, in infinite dimensions, the Choi
matrix of a CPTP map is never trace class and our dual consideration is needed. In-
spired by Jencova’s work [16] on statistical deficiency for CPTP maps, we also consider
the approximate case when the error id ® ®(p) — o is small but non-zero.

Our approach also has applications to the tracial Hahn-Banach theorem in [14]. The
tracial Hahn-Banach theorem is a dual form of Effros-Wrinkler’s separation theorem for
matrix convex sets. We find that the duality behind the tracial Hahn-Banach theorem
is the same duality as that between the operator space projective tensor product and
completely bounded maps. Using an idea similar to that used in the characterization of
quantum majorization, we give a tracial Hahn-Banach theorem on L; (M)@E for a semi-
finite injective von Neumann algebra M and an arbitrary operator space E. If we replace
L1 (M) by an abstract operator space, our method gives some analogous results under the
assumptions of 1-locally reflexivity and completely contractive approximation property.
Our work in spirit connects to recent work [6] on LOCC-convertibility in semifinite von
Neumann algebras.

The rest of paper is organized as follows. Section 2 reviews some basic operator space
theory needed for the remainder of the paper. In Section 3, we first discuss the relation
between H,,;, and the projective tensor norm and the connection to injectivity of von
Neumann algebras. After that, we prove our main theorem and its variants with respect
to channel factorization and the approximate case. In particular, all the results in this
section apply to B(H) with H being infinite dimensional. As this is arguably the case of
most interest in quantum information theory, we summarize the implications for B(H) in
Section 3.5. Section 4 is devoted to the tracial Hahn-Banach theorem and the connection
to noncommutative vector-valued L; space. Section 5 discusses the parallel results on
the projective tensor product of abstract operator spaces.

2. Operator space preliminaries

In this section we briefly recall some operator space basics that are needed in our
discussion. We refer to the books [22,7] for more information on operator space theory. We
denote by B(H) the bounded operator on a complex Hilbert space H and M,, := M,,(C)
the algebra of n x n complex-valued matrices. A (concrete) operator space E is a closed
subspace of some B(H). We denote by M, (F) the set of n x n matrices with entries
from E and similarly M, ,,(E) for n x m rectangular matrices. The space M, (B(H)) is
naturally isomorphic to B(H™), where H™ = (3(H) is the Hilbert space direct sum
of n copies of H. For all n > 1, the inclusion M, (E) C M, (B(H)) = B(H™) induces
a norm on the matrix level space M, (E) which we denote by || - ||, (z). The operator
space structure of E is given by the norm sequence ||- ||, (g),n > 1.
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Given a linear map u : E — F between two operator spaces E and F, u is completely
bounded (or C'B) if its completely bounded norm (CB-norm)

[l llco:= Sgp [lidn ®@u : Mp(E) — My (F)|op
n>1

is finite. Here id,, is the identity map on M,,. We say w is a complete isometry if for
each n, id,, ® u is an isometry. We denote by CB(FE, F') the Banach space of all com-
pletely bounded maps F — F equipped with the C'B-norm. Moreover, CB(FE, F) is
again an operator space with the operator space structure given by M, (CB(E, F)) =
CB(E, M, (F)). In particular, the operator space dual is defined as

E* = CB(E,C).

Throughout the paper, we will use ® for algebraic tensor product. Given two operator
spaces E C B(H4) and F C B(Hp), the operator space injective tensor product F ®pin,
F is defined by the (completely) isometric embedding

where H4 ®o Hp is the Hilbert space tensor product. Namely, F ®;,;, F' is the norm
completion of £ ® F' for the inclusion E® F' C B(Hj ® Hp). Via injectivity of ®in,
one has the (completely) isometric embedding [21, Chapter 0]

E* ®min F C CB(E, F) . (2.2)

Another important tensor product is the projective tensor product. We denote by
|- ||l zzs the Hilbert-Schmidt norm. The operator space projective tensor product EQF is
defined as the completion of £ ® F with respect to the following norm,

Izl pgp=f [allaslz a9 s, o) 101 s

where the infimum runs over all factorizations of rectangular matrices a,b, and * =
(i)t j=1 € Mi(E),y = (Yp,g)plq=1 € M (F) such that

l m

z=a(z®@y)b= Z Z i pTij & Yp,gbisg - (2.3)

,j=1p,q=1
For 2 = (z5)y s—1 € My (E ® F'), we consider the following factorization

l

m
Zr,s = E ar,ipTij ® Yp,gbig,s » (2.4)
i,j=1p,q=1
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where a € My, i1, b € My, and € Mi(E),y € M,,,(F). The operator space structure
of EQF is defined as

2 las, (e ry=10f lallaz, il Ian ) 1Y a1, (2) 10Nl 22

where the infimum runs over all factorizations in (2.4). An equivalent characterization
is the following duality [7,1]

(EQF)* = CB(E,F*) . (2.5)
For x € E,y € F and ® € CB(FE, F*). The dual pairing is
(r@y,®) = (2(2),y)(r-.p) -

Let us mention some basic examples related to our discussion. Let K(H) denote the
space of compact operators on H and S;(H) the space of trace class operators. We have
the operator space dual relations

S\(H)" = B(H), K(H)" = S1(H), (2.6)
where both dual pairings are given by the trace

(b,a)(B(H),5.(H)) = tr(b'a) {a, €) (s, (1), k(1)) = tr(ae)

where a' is the transpose of a with respect to a (fixed) orthonormal basis. For two Hilbert
spaces Hq and Hp, by (2.1) and (2.2) we have the isometric embedding

B(Ha) @min B(Hp) C B(Ha ©2 Hp) , B(Ha) ®min B(Hp) C CB(51(Ha), B(Hg)).
Indeed, one has the equality
B(Ha ®2 Hp) = CB(S1(Ha), B(Hp)). (2.7)
Note that by (2.5) and (2.6),
CB(Si(Ha), B(Hg)) = (S1(HA)®81(Hp))" , B(Ha®2 Hp) = Si(Ha ®2 Hp)* .
For preduals, S1(HA)®S51(Hp) = S1(Hs ®2 Hp).
Another example related to our discussion is the space Sy(Hg)®B(H,). Let Sy(H)

denote the Hilbert-Schmidt operators on H. The operator space projective tensor norm
on S (Hp)®B(H ) admits the following expression (cf. [21]) for 2 € S1(Hp) ® B(H,)

zlls, (rrp)@BHH= lallsymp) 10l so )|V | B(H)@min B(HA)

inf
z=(a®1)y(1®b)
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where the infimum is taken over all possible factorizations of x = (a®14)y(b® 14) with
a,b € Sy(Hp) and 14 denotes the identity operator on H 4. For positive z, it suffices to
choose a = b* and, by rescaling ||a||2= 1, we obtain

12 lls,rmansy = Y | BHNGmm B |2 =(a®@1)y(a" @ 1)
for some |la||s,(my)= 1}

= inf{\ |z < Ao ® I for some density operator o € S1(Hp)} .

Therefore, this norm on Sy (H B)@B(H A) corresponds to the conditional min entropy
Hppin in (1.1). That is, for a bipartite density operator p,

Hmzn(A‘B)p = —IOg ||p||Sl(HB)®B(HA) .

At the dual level, by (2.5) we have
(S1(Hp)®B(Ha))* = CB(B(Ha), B(Hp)) - (2.8)

Note that a CPTP map ® : S1(Hp) — S1(Ha) is completely positive trace preserving,
and hence

® € CB(S1(Hg),S1(Ha)) C CB(B(H4), B(Hp))

where CB(S1(Hg),S1(Ha)) C CB(B(H4),B(Hg)) as normal CB maps by taking ad-
joints. Therefore, the S1(Hp)®B(H 4) norm or equivalently H,,;,, is the dual of CB-norm
with respect to quantum channels. This duality is implicitly used in Gour et al.’s argu-
ments in [10]. In quantum information literature, the C'B-norm of CB(S1(Hp), S1(HA))
is also called the diamond norm. The diamond norm and its dual norm have been used
by Jencova in studying Le Cam’s deficiency for quantum channels [16].

3. Quantum majorization on von Neumann algebras
3.1. Hpin and injectivity of von Neumann algebras

We first discuss the connection between the conditional min entropy H,,;, and the
projective tensor product in the setting of tracial von Neumann algebras. Throughout
this paper, we assume that (M, 7o) and (N, 7r) are semi-finite von Neumann algebras
with normal faithful semi-finite traces 7o (resp. 7ar). We introduce the notation

Mo :=U.eMe s

where the union runs over all projections with 7p(e) < oo which forms a lattice. For
1 < p < o0, the space L,(M) is the completion of My with respect to the L,-norm
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lallr, = Tam(laP)/? ja € My .

We will often use the shorthand notation || -||,, for the p-norm and ||- || for the operator
norm in M. Let M°P = {a°?|a € M} be the opposite algebra equipped with reversed
multiplication a®? - b°? = (ba)°? and trace Taor (a°?) = Taq(a). The predual of M can
be identified with M, = L;(M?°P), via the pairing (a°?, b) = Tr4(ab) for a € L1 (M) and
be M.

We will often use the normal part and the singular part of a continuous linear map
between von Neumann algebras. We say a completely bounded map ® : M — N is
normal if it is weak*- to weak*-topology continuous. A normal ® admits a pre-adjoint
map ¥ : N, — M, such that its adjoint UT = ®. In general, a completely bounded map
® : M — N admits the decomposition & = ®,, + @, as a normal part ®,, and a singular
part ®,. Indeed, let eg be the support projection of M C M** in the bidual M**. Then

©(2) = (DF|n.) (e0z) , s(2) = (@F )T (1 — e0)z)

where ®T|y, : Ny — M* is the restriction of the adjoint ® : N* — M* on N, and
(BT |n )T : M** — N is the adjoint of ®T|y, . In particular, for a positive linear functional
¢ : M — C, we have ¢ = ¢, + ¢5, where ¢, € M, is the normal part of ¢ (that is,
¢n is weak*-continuous) and ¢ € M, is singular (that is, there does not exist a non-
zero weak*-continuous positive linear functional ¢ on M such that ¢ < ¢,). The dual
space M* is then decomposed as M* = M, @ M; here M, is the normal part and
ME = M*(1 — ep) is the singular part. (See [25, Chapter 3, p. 127] for further details.)

Let M C B(H) (resp. N C B(K)) be a faithful representation of M (resp. N). The
von Neumann algebra tensor product M®AMN is the weak*-closure of M ®,,;, N inside
B(H ®2 K), and M®N is independent of the faithful representations M C B(H) and
N C B(K). The Effros-Ruan isomorphism [7] gives a complete isometry

NOM = CB(N,, M) =2 CB(Li(N?), M) . (3.1)

This isomorphism is order preserving. Indeed, a positive operator x € N ®M corresponds
to a completely positive map T, € CB(L1(N°P), M) given by

To(p?) = i @ idm((p ® 1)x).
As for the predual of (3.1), we have
Li(M)RL1(N) = Li(MBN) = (MPRN°P), .

The conditional min entropy H,,;, is related to the vector-valued Li-spaces introduced
n [21]. We use the shorthand notation that for a,b € M,y € MRN,

a-y-b:=(a®Ix)y(b® ly).
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We define the L1 (M, Loo(N)) norm for 2 € My ®@ N as follows,

121 LM, Lo )= WE{[[ @l Lo 19 |10l Lom) [ 2 = a-y-b a0, b € Mo,y € MaNT,

where the infimum is over all factorizations x = a -y - b. Then Li (M, Lo (N)) is defined
as the completion of My ® N under the above norm. The triangle inequality for this
norm is verified in [21, Lemma 3.5]. We will also use the shorthand notation

MBNp = UMBNq € MBN

where the union runs over all projections ¢ € N with Tar(q) < co. For z € M®N,, we
define the Lo (M, L1 (N)) norm as

122 movn=supilla-z bl e | lallLaon=10lL,an=11} -

This norm clearly satisfies the triangle inequality. The space Lo, (M, L1(N)) is defined as
the norm completion of M®&MNy. Both spaces contain the corresponding algebraic tensor
products

Li(M)@N C Li(M, Loo(N)) , M@ Li(N) C Loo(M, Ly (N)).

Indeed, for a ® b with a € L1(M) and b € N, let e, be the spectral projection of |a| for
the interval [1/n,n]. Then e,ae, ® b converges in Ly (M, Lo (N)) and the limit can be
identified with a ® b. It is clear from the definitions that

i) a complete contraction T : Lo (N1) = Loo(N2) extends to a contraction
idp ®T : L1(M, Log(N1)) = L1(M, Loo (N2)) -

ii) a complete contraction S : L1 (N7) — L1 (N2) extends to a contraction
idp ®S ¢ Loo (M, Li(N1)) = Loo(M, L1 (N2)) -

For the trivial case N/ = C, we have L1 (M,C) = L1(M) and Loo(M,C) = Leo(M). In
general, Lo (M, L1(N)) is a subspace of (Ll(/\/l, Loo(./\/))) . Indeed,

|2l Lermzovpy=sup{ [la-z-bl1 | [[all2=[bl2=1,a,b € Mo}
=sup{ [7(y(a-z-b))| | [lall2=[b]2=1,a,b € Mo, ||yl pman= 1}
=sup{ [7((b-y-a)z)| | [lall2=]b]2=1,a,b € Mo, ||yl pman= 1}
=sup{ |7(z2)| | [2lle, M Lev)=1,2 € Mg N} .

Here and in the following we will use 7 := 7oq ® Tos for the product trace.
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Lemma 3.1. i) For any self-adjoint x € My @ N,

12 Ly (M, Lo ()= IE{ I @[ Lo ) | Y | an T @7 [ o ) |
x=a-y-a*,a € Mo,y self-adjoint}.

In particular, if x € eMe @ N for some finite projection e with Ta(e) < oo,
. _1 _1
12|y (M Loy =10f [ (072 @ Da(o72 @ 1) [l

where the infimum is over all density operators o invertible in eMe.
i1) For any positive v € MRN,

12 Lo M,y = sup{T(a -z - a®)| [allL,=1}
Proof. For ii), Holder’s inequality gives,
lzllLomrvy= sup  [[(a®@D)z(db® 1))

llallz=ll®ll2=1

< sup [(@®@)zi|, sup [z2(b@1)].

lallz=1 1bl2=1

1 1
= sup [(e@Dz(@*@1)|f sup [[(0"@Dz(b®1)[]
lall2=1 Ibll2=1

= sup [[(a®@Dz(a*®@1)|1= sup 7(a-z-a").

llall2=1 llall2=1

For i), choose z = (a ® 1)y(b ® 1) such that a,b € eMe and

lall Lo =10l L= 1 1y lman <l 2l (M. Ly e

Take d = (aa* + b*b+ de)2. Then d > 0 is invertible in eMe and || d|2= (2 + d7(e))z=.
Note that x = z* implies that

1
x:§(a~y~b+b*~y*~a)
1
= 5d- (d*la-y.bd*wd*lb*-y*-ad 1) d

where

(d_la sy bdTl 4 d7T -yt ad_l)

1
2
_1 1 . 0 y a*d~!
_2[d a d b} ly* o] lbdl '
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. 0 _ . _ 1 LELN g—
Since [y* g] =yl | [d ta d='b } [ ary sry=11d™ (aa* +b*b)d " [m< 1
M2 (M)
*dfl
labdl ] < 1, it follows that
Mz 1 (M)

10 511 [t 4] H [yo g] H‘

Thus we have x = d - § - d with

and similarly

a*d_l
bd~1

_ 1
1al3< 2+ 07(e) s [ Flloe< 5 N1y lloo -

Since ¢ is arbitrarily small we prove the first expression in i). For the second expression,
we choose

1

= —d®, (cTF@la(c @ 1) =||d|} 7.
I3

ag

Then
1 1 o ~ 0
o™= ®@Dz(072 @1)[lo< | d]2]Flloo= (1 + 57(€)) 1y llo

0
<(1+ 57'(6))(||33||L1(M,L00(N)) +e€) .

Since § and e are arbitrarily small, we prove the second expression in i). O

We define positivity and self-adjointness on L1 (M, Lo (N)) and Ly (M, Lo (N)) as
follows. We say p € L1 (M, Lo (N)) is positive (resp. self-adjoint) if there exists a positive
(resp. self-adjoint) sequence p, € Mo®AN such that p, — p in norm. For two self-adjoint
operators p and o, we say p < o if o — p is positive. The positivity and self-adjointness in
Loo(M, Li(N)) are defined similarly as limits of sequences in M®ANj. The next lemma
shows that the Li(M, Lo (N)) norm for positive elements correspond to the conditional
min entropy H,in. Recall that p € Li(M) is a density operator if p > 0 and 7a¢(p) = 1.

Lemma 3.2. Let x € L1(M, Loo(N)) be self-adjoint. Define
AMz) =inf{\| z < Ao ® 1 for some density operator o € L1 (M)} .

Then

1) Az) <[z oy (m,Le )
ii) M) =l |l5,(m, Lo vy) if T is positive.
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Proof. We first discuss the case € My ® N. Suppose z = (a ® 1)y(a* ® 1) for some
self-adjoint y € M ®N and | a (2= 1 with a € My. Then = <||y |l aa* ® 1, where
aa* € My. Then by Lemma 3.1, we have

A@) <ll@ | Ly (M, Lo )
for x € My ®@N. Note that if 21 < M\o; ® 1 and 25 < A0 ® 1, then

A1 L Ao
o o
MAd DTN+

1+ 22 < (Ao1 + )\20'2) ®1= ()\1 + )\2)( )® 1. (3.2)

This implies
MMz + x2) < Map) + Maz2), [AMz1) — AMze2)| < max{A(z1 — x2) , Maa — 1)}

For general x and € > 0, we can find a self-adjoint sequence z, € My ® N such that
x =Y x, converges absolutely and

D el Moz ) S Ly (M L)) e -

n

By the same argument of (3.2), we have X is also countably sub-additive. Indeed, given
§ > 0, we choose for each n a density operator o,, such that =, < (A, +27 "0)o, ® 1.
Then

270+ Ay
=Y 2, <@ A 0 1= 0+ A e ) @ 1
n=1 n=1 7 n=1 n=1 6+ 2"21 )\ng

which implies A(z) < > A(z,) because ), %an is a density operator and ¢ is
arbitrary. Therefore

A@) <D AMwn) <0 @ |y oL ) S22y ML)

Since € is arbitrary, this proves i). To prove ii), first let € eMe ® N be positive. If
x < Ao ® 1 for some density operator o € Mg, we can choose & = o + de invertible in
eMe with T((6) < 1+ e. Then, we have

N

o
=
<
Qi
wl=

0<y=62-xz-6 2<A,x=¢
Hence, we obtain

Izl o, Mmooy <inf{A [z < Ao ®1, 0 € Mg density operator}. (3.3)
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Then it suffices to show that A(z) equals the right hand side. Suppose z < Ao ® 1 for
some density operator o € Li(M). Without losing generality, we can assume that o is
invertible and supported on eMe. By definition, for any positive y € MQNy,

A ((0 @ 1)y) > 1(zy) -

This implies || (072 ® )a(0~2 @ 1)||< A + . We modify o to a density operator & € M
such that & = oejg i) + ke o) Where e[g i) is the spectral projection of o for the interval
[0, k]. Note that for any z > 0,

(min{z,k}) "' — 271 = (2 — min{z, k})/2(min{z, k}) = {O_k ifz<k

it z > k.
Then by functional calculus, |[67! — 07! || < 3. Therefore,
1E 2 @z 2 @1)|=ll22 (G @ 1) |
= et @ Nat | + a7 @1- 0 @ et S A+ 4 ol
By choosing k large enough, we have
< (A+2)0®1
where || 7 || < k hence belongs to M. This proves ii) for positive x € My ® N. For a

general positive element = € L1(M, Lo (N)), let x,, be a sequence of positive operators
in Mo ® N such that ||z, — 2|1, m,L.ov))— 0. Then by i), we know

Az) = HmA(zn) =l [[ 25 || L, v, Lo ) =2y M L)
which completes the proof. O
The above lemma generalizes the definition of H,,;, entropy to semi-finite von Neu-

mann algebras. For a bipartite density operator p € L1(M®AN), the H,,;, entropy of p
conditional on M can be defined as

—log ||pllL,m,L vy if p € Li(M, Lo (N))

—00, otherwise.

Hmin(NlM)p = {
The next lemma shows that \(x) is attained by the duality

Loo (M, Li(N)) C (Ll(M,LOO(N))>* .
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Lemma 3.3. Let p € L1(M, Loo(N)) be self-adjoint. Then
A(p) = sup{ 7(zp) | z € MONy,z >0, ||z || L. (M,L. (V)= 1}
In particular, if p € L1(M, Loo(N)) is positive, then

o0l (M, Lo (vyy=sup{ T(zp) | © € MONy, x > 0, || x|l L (ML, (A= 1}

Proof. In the proof of Lemma 3.2, we have shown [A(p1) —=A(p2)| <|| pr—p2 |2, (M, Lo (A)) -
Then by density argument, it suffices to consider p € Mg @ N. Let p € eMe ® N for
some T (e) < oo. We can assume M is finite by restricting to eMe. Let us first consider
the case that N is finite. We use a standard Grothendieck-Pietsch separation argument.
Let A be a positive number such that A < A(p). We know from (3.3) that for any density
operator o € Mg, AM(oc ® 1) — p is not positive and hence has nontrivial negative part.
Then there exists a positive z € L (M®N) such that ||z] =1 and

T(pz) = At((c ® 1)z) > 0.
Consider the weak*-compact subset
B={z e MRN]||z|w< 1,z >0}

For each positive operator o € My with 7o((0) < 1, we define the function f, : B — R
as follows (we suppress the dependence on p since p is fixed)

folx) =7(px) = M((0 @ 1)) ,2 € B.

These f, are continuous with respect to weak*-topology on B because A is finite and
both ¢ ® 1 and p are in Ly (M®N). Denote C(B,R) as the space w*-continuous real
function on B. We define two subsets

F={fo € C(B,R) |0 € Mp,0 >20,7(0) <1}
F_={feC(B,R)| supf < 0}.
Both F and F_ are convex sets and F_ is open. Moreover, F and F_ are disjoint
because for each f, € F, sup, fy(x) > 0. Then by the Hahn-Banach Theorem, there

exists a norm-one linear function ¢ : C(B,R) — R and a real number r such that for
any f_ € F_ and f, € F,

o(f-) <r=o(fs).

Because F_ is a cone, r > 0. Similarly, » < 0 because for any 0 < § < 1, 6F C F.
Then r = 0 and ¢ is a positive linear functional because ¢(f_) < 0 for any f_ € F_. By
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the Riesz Representation Theorem, ¢ is given by a Borel probability measure y on B.
Namely,

o(f) = / f(@)dp(z)
B

Denote zy = fB xdp(z). We have for any positive operator o € My with Tp(0) < 1,
that

o(fo) = /fa(w)du(fﬂ) = /T(Pff) — Ar((0 @ Da)du(z) = 7(pro) — At((0 @ 1)z0) = 0.
B B

By Lemma 3.1,
T(pxo) > Asup{7((0c ® 1)) |0 € Mo, Tm(o0) 1,0 >0} = A |20 |1 (M,Li () -

Normalizing Zg =|| 2o HZ;(M LA To, we have 7(pZo) > A. This proves the case for
finite AV. For semi-finite N, we define for each projection p € N with 7ar(p) < oo,

Ap =nf{ XA | (1 ®p)p(1 ® p) < Ao @ p for some density operator o € Mg} .

For two projections p; < pa, we have A,, < \p,,. Thus A, is monotone non-decreasing
over p for the natural ordering. Since each )\, is attainable based on the finite case, it
suffices to show that lim, A\, > A(p). Write A\; = lim, \,. Given € > 0, for each projection
p we choose a density operator o, € M such that

(1@p)p(lep) < ()‘p+€)‘7p®p < (M +€)Up p,

where both (1® p)p(1®p) and o, ® p belongs to M @ pN'p. We denote 1, : MBN — C
as the normal linear functional ¢,(z) = 7((1 ® p)p(1 ® p)z) and §, : M — C as the
normal state &,(y) = Tam(opy). Let € be a weak*-limit point of &, in M*. Denote Tpar, as
the induced finite trace on pA'p. For any positive M ® pA'p and finite projection ¢ > p,

Vp(@) = Yq(@) < (M1 + €)§ @ Tanvg(@) = (M1 + €)&g @ Tpap(2) -
Taking the limit over ¢, we have
Yp(r) < (A1 + ) im &g ® Tnp () = (A1 + €)§ @ Tpwp(2) - (3.4)

Note that £ is a state on M and it decomposes into a normal part and a singular part
& =¢&, +&. Then from (3.4) we have

Pp — (M + €)&n @ Tpap < (M1 + €)€s @ Tpnrp -
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Note that the right hand side & ® Tparp is a singular positive linear functional (which
is clear from [25, Corollary 3.11]). By normality, ¥, < (A1 + €)&, @ Tparp as self-adjoint
linear functionals for each p. Namely, for any positive z € M ® pNp,

T(1@p)p(l@p)r) < (M +er((c@1)z).

Now we apply the same trick in Lemma 3.2 to modify o to be an invertible density
operator M with bounded inverse c~! € M. First, since M is finite, o can be replaced

by an invertible density o; = o+ 41). By choosing § > 0 small enough, we

! (
Tm(0)+0TM0(1)
have

T(1@p)p(l@p)z) < (M +e)71((c@1)z) < (Tm(o) + 6Ta(1)) (A + €)7((01 @ 1))
< (A1 +26)7((01 @ 1)x) .
Then by choosing z = (01_% ® p)y(al_% ® p) for positive y € M®pNp, we have

_1 1

_1 _1 _1
(o1 2 @p)p((oy * @p)y) < (M +26)7((01 @ 1)(0, * @p)y(oy * @p)) = (A +26)7(y) ,
which implies (01_% ®p)p(01_% ®p) < (A1 + 2¢)1. Take 03 = gr(01) as the functional
_1 _1
caleulus of gy (x) = min{z, k}. We have |[o] 2 — 0y 2 ||o< k™2 and
_1 _1 _1 1
(o1 * @p)p(oy * @p) — (0,2 @p)ploy * @p)|
_1 _1 _1 _1
< |l(oy * ®@p)p(oy * @p) — (07 > @p)p(oy * @p)||
_1 _1 _1 _1
+ (o) 2 ®@p)p(oy * @p) — (02 2 @p)p(oy * @p) |
_1 -1 1 _1
<k72 |plleclloy ? leo +572 [[pllocllog * [l
<22 = 1) [lpllo -
By choosing k large enough (depending on €, ¢ and || p||~), we have
_1 _1
(03 % @p)p(oy * @p)
_1 _1 _1 _1 _1 _1
=(0y * ®@p)p(oy > @p) + ((02 > @p)ploy * @p)— (o) * @p)p(oy ®p))

_1 _1 _1 _1
<(A1 4 2€)1+ || (03 2 @p)p(oy * @p) — (0 > @ p)ploy > @p) || 1
<A +2014+2k72 (07 = 1) | pllee 1 < (A1 + 36)1.

This implies that for each finite projection p € N,

1ep)p(1@p) < (M +3€)oa@p < (A1 +3€)oa®1,
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as self-adjoint operators in M ® A. Then for each p and positive z € L1 (M®pNp),

7(pz) = T(p(1 @ p)a(l @ p)) = 7((L@p)p(1 @ p)x) < (A1 +3€)7((02 © 1)) .

Because U, L1 (M®pNp) is dense in L (M®N), we obtain that p < (A + 3€)or @ 1
as self-adjoint operators, which implies A(p) < \; as € is arbitrary. That completes the
proof. O

This next lemma is an analogue of the Choi matrix.
Lemma 3.4. There is a contraction

Loo(M,Li(N)) — CB(L1(M°P), L1(N)) ,
2> Ty € CB(Ly(M), Ly(N)) , Tolp™) = maq @ iy ((p @ 1)a).

Moreover,

i) for any positive x, ||z || a0, ()= Tz l|cb-
ii) T, is completely positive if and only if x is positive.

)
)
iii) T, is trace preserving if and only if id @7 (z) = 1pg.
iV) fO?" S e CB(L1(N),L1(N)), So Tx = Tlid@S(z)'

v) for any finite rank T : Ly(M°P) — Li(N), T =T, for some x € M @ Ly(N).
Proof. By a density argument, it suffices to discuss x € M®&pNp with 7po/(p) < oo.
Given p € Li(M), (p ® Ixy)z = (p ® p)r € L1(MRpNp) hence the map T,(p®) =
T:m @ 1da((p ® 1n)z) € Li(N) is well defined. For || p° ||z, (aqery= 1, we have p = ba
for some ||a||2=]||b||2= 1. Note that 7o @ idar((ba @ 1ar)z) = Tm @idpa((a @ 1)z (b® 1)).
Then

1T (p”) I,y <lla-z - bl o, e ST Lo, (v) -

Let e;; be the matrix units in M,, and S5 be the Schatten 2-class. For the completely
bounded norm, we first note that idy, @1y = Tyge : Li1(M,(M)P) — Li(M,(N))
where ¢ = 37, ce;; ® e € My ® My, and ¢ @ 1 € Loo(Mp(M), L1 (M, (N))). Here
¢ is the Choi matrlx for id : M, — M,. Given || a|[sgL,m)= 0 lls5(Lo(m))= 1, We
can write a = ), wy ® a such that wy, (resp. a;) orthogonal in S5 (resp. La(M)) and
|ak fla= 1,3 ||wk [|3=1 and similarly for b = Y, 0, ® b;. Then, by >, |wk 3= >, |
all3=1,

idr, @7y (ab) = Tyga(ab) = Z (tr®idMn((wkUl ® 1)¢)) ® (TM ® idy ((axb @ 1)3:))
k.l

(tr®1dM" Wy - ol)> ® (TM ® idpr(ag ~m~bz))
k,l
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= tr®idas, @ Tm ®id/\f<2(wk “p0) @ (ag - x - bl)) .
k,l

Using bracket notation,

where {|i)} is the standard basis in I5. We have
lwr - & - o1 li=llwx @ 1A) [, | o7 @ 1[R) i, =[lwr ll2llou ]2 -
Here || |1, is the vector norm and
lwr ® LR) |17, = (Plwiws ® 1|h) = tr(wiws) =[ w2 -
Therefore,

I (wi-¢-01) @ (a2 b)) <Y lwe - ¢-orllallak -z by

k,l k,l

<D Mwrlzllonllzll @ oz, o SNl vz ) -
k.l

By [lidn, ®@Tw(ab) 1 <[ 325 (wk - ¢ - 01) ® (ak - - by) ||1, this implies
lidaz, ®T; : L1 (M (M)°P) = Li(Myu (M) <12 || oo (M2 (N) -
Then by L1 (M, (M) tr @Trq) = S7(L1(M°P)) and [21, Lemma 1.2], we obtain
7o = La(M) = La(N) lep= sup [[idn & T : ST (Lo (M) = ST (L1 (V) |

=sup [[idps, ®T; : Ly (M (M)?) = Ly (Mp(N)) |=] 2 | L (ML V) -
Now suppose z is positive. For a density operator p € L1 (M°P),

To(p™) = T( @ idn ((p ® 1)7) = Tpq @iy (p? -2 p2) > 0

Applying the same argument for ¢ ® x, we know T, is completely positive. Then taking
the supremum over all density operators p,

1 1
sup || Tu (p?) 1= sup 7y @ ar(p? - - p2) =[x || (Mm,L. (V) -
p p

Thus for positive x, we find || T% |6 <[/ || 1. (m, 2, W) =l T2 | <[] T% [|cp, Which proves i).
For ii), we note that the “if” statement follows by the construction of T,. To prove the
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“only if” statement, we conversely suppose x is not positive and we show that T, is not

completely positive. There exists a vector h = 7 a; ® bj € La(M) @2 L2(N) such

that a; € Mo,b; € Ny, (h,zh) # 0 (that is, the inner product is either not real or is
negative). This means

(hyxh) = Y Tad @ Tar((af @ b} )a(a; @ b))

ij=1

= (Y birm @iy ((af @ Dala; ©1))b;) £0.

i,j=1

n
Thus, (TM @ idy ((af @ 1)z(a; ® 1))) is not positive in S7(L1(N)). Note that
ij=1

WP = 3 0oy eig ® (a)P(a;) = 307 ey @ (aja7)°P is positive in ST(L1(MP)).
Then T}, is not completely positive because

idy @ To(w) = Y €15 @ (@ idn (a5} @ 1)2))

i,7=1

—Y e, @ (TM ®idy((a; @ Da(a; @ 1))) $0.
N
This proves ii). For any p € L;(M), by Fubini’s theorem,

(o) =7 (man @ il (p @ 1)) = 7o (pidaa @ (@) ) -

Thus Ty, is trace preserving if and only if id s ®7ar(x) = 1. This verifies iii). For iv), let
S e CB(Li(N), L1(N)). For p € L1(M),

S0 Tu(p) =8 (7m @ idn((p© 1)a))
= Tm ®idy ((p ®1)id ®S(w))
= lid@S(x) (p?) .

Finally, for v), let T be a finite rank map from L; (M) to Ly (N'). Then there exists
finite y; € M and z; € Li(N) such that T'(p) = 377, Tm(py;)zj. Then T = T, for
T = 2?21 yj ® z; which belongs to M ® Lq(N). That completes the proof. O

The above lemma gives a contraction
Loo(M,Li(N)) = CB(L1 (M), L1y(N)) C CB(N? M) .

Note that CB(N, M), = Li(M°)&L.(N°P). The pairings for an algebraic tensor
p? =301 yF @2 € Li(M)PRNP to Loo(M, Li(N)) and to CB(N P, M) coincide,
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n

(@, D7) (L e (M Ly N)), Ly (Mo, Lo (Vo)) =TM D Ta () 45 @ 25)
j=1

:TN(szTM ®id((y; ® 1)@)

= (3 5 Telu)) = v (3T )y
J J
={Te, %) (€ BOoP M), Ly (MoD)B Lo (W or))-

Then, for an algebraic tensor = 37, y; ® 2; € L1(M) @ N, we have

Izl Mzeevn SN2l ren -
It was proved in [21, Theorem 3.4] that for hyperfinite M (i.e. M = (U M,)™", where
the union is of an increasing net of finite-dimensional subalgebras M), we have the
isometric isomorphism

Li(M, Loo(N)) 2 Ly (M)RN. (3.5)

We shall show that this isomorphism is characterized by the injectivity of M. Recall that
a von Neumann algebra M is injective if there exists an embedding M C B(H) and a
completely positive projection P : B(H) — M with || P||= 1. An equivalent condition is
the weak™ completely positive approximation property (weak*-CPAP). A von Neumann
algebra M has weak*-CPAP if there exists a net of normal finite rank completely positive
maps @, such that for any x € M, ®,(x) — z in the weak™ topology. In general,
hyperfinite implies injective. The converse (say, when M C B(H) on a separable Hilbert
space H) is a celebrated result of Connes [5]. We refer to [22] for more information about
these properties.

The next theorem is a dual form of Haagerup’s characterization of injectivity by de-
composability [12]. It suggests that the conditional min entropy connects to the projective
tensor norm if and only if M is injective.

Theorem 3.5. Let M, N be semi-finite von Neumann algebras. Suppose N is infinite
dimensional. The following are equivalent

i) M is injective
ii) Li(M,Loo(N)) = Li(M)RN isomorphically
iii) L1 (M, Loo(N)) = Ly (M)QN isometrically

In particular, Li(M, Loo(M®P)) = Li(M)RMCP if and only if M is injective.
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Proof. We first prove i) = iii). Suppose L;(M, Loo(N)) # Li(M)SN isometrically.
Because both spaces are norm completions of the algebraic tensor product Li(M) @ N,
there exists p = Z?Zl y; ® z; such that

oLy vy <1 =loll, (rman -

Then by the duality (L;(M)@N)* = CB(N, M), there exists a CB map S €
CB(N, M°P) with || S||sp= 1 such that

1= (S, p) = (id, idm ®5(p)) -

Here we have

[lidam @S(0) |2, (ML A SIS evll 212y (ML (v < T

If M is injective, then there exists a net of finite-rank, normal, unital, completely pos-
itive maps ®, approximating the identity map ida, in the point-weak® topology. By
Lemma 3.4, &, = T, for some z, € M ® L;(N°P) with

120 || oo (Mo Ly or)) = P [lep= 1 -

This leads to a contradiction:

1= {id,idy ®5(p)) = Hm(T;, . idpd 25(0))
= lién(xa, idap ®S(p))
<him ||z || 2o (mor, Ly very) 1dat @S (0) |y (M. Lo (1))
< lidam @S () |1y (M, Lo (v < 1.

For ii)= i), we first reduce the semi-finite M to the finite case. We have the decomposi-
tion M = @;¢;(M;®@B(H;)) (see [25, Chapter 5, Proposition |) where M, are finite von
Neumann algebras and H; are Hilbert spaces. For each M;, there exists a trace preserv-
ing embedding ¢ : M; — M and a projection P : M — e;Me; for some projection e;
such that P o¢ = idy,. This induces the isometric embedding

Li(Mi, Loo(N)) C L1 (M, Loo(N)) , Ly (M)ON C Li(M)SN .

Suppose Li(M, Loo(N)) = Li(M)RN isometrically. We have for each i, Li(M;,
Loo(N)) 22 Ly (M;)®N isometrically. Tt suffices to show that this implies M is injective.

We now assume M = M, finite. Let [l be the n-dimensional commutative C*-
algebra. Because N is infinite dimensional, for any n there exists completely positive
and contractive maps (see [12, Lemma 2.7])
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Q:l >N, R:N =1

such that Ro @ = id;» . Both idy ® R and idy ® @ extend to complete contractions

Li(M)BI™ MER L (M)BN 189 L (m)BIn |
Ly(M, %) “ME7 LM, Lo (W) 89 LM, 1)
Thus we have the isometric imbeddings
Li(M,I%) C Ly(M, Loo(N)) and Li(M)RIZ, C Li(M)SN.

Suppose L (M, Loo(N)) 2 Li(M)®&N isomorphically. Then we have L;(M,I%) =
Li(M)®I2, for each n, and moreover a uniform constant ¢ such that for all n,
cllelln, e <lellwam) <ol vz,

At the dual level, for each T': [ — M°P,
IT o= Ts les <[l Ml poo ptom gy < €7 I T et - (3.6)

Here T'= T} as in Lemma 3.4, for 2 = 377, T(e;) ® ¢j € MP @ I} with e; € If being

the dual standard basis of I”,. We shall suppress the “op” notation since it is equivalent
to consider M and M°P here. For any n unitaries u; and a central projection ¢ in M,
we consider z,, = qZ?Zl u; ® ej. We have

n

2wl e razy = sup{ll gD aujb @ €[l (maz) | @l oo =0l or= 1}
j=1

:SuP{Z llgawbllL,(my | llallLyn=I10lly= 1}

> ZTM “lgu |z, ()

:il:n.

=1

Here we have chosen a = b = 754(q)~*/?q. Then by (3.6), we have
I Tulleo> ¢ | TullLo(aimy= cn , where T, 2 15, — M, To( )= chjuj .

Then it follows from [12, Lemma 2.3 & Lemma 2.5] that M is injective. Since iii)=> ii)
is trivial, this completes the proof. O
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3.2. Quantum majorization

We now discuss quantum majorization for semi-finite von Neumann algebras. We will
focus on the case where M is injective, because by Theorem 3.5, beyond injectivity we
lose the connection between H,,;, entropy and projection tensor norm.

We say T : L1(M) — Li(M) is completely positive trace preserving (resp. trace non-
increasing) if its adjoint 77 : M°P — MOP is normal completely positive and unital (resp.
sub-unital). We will use the abbreviation CPTP for completely positive trace preserv-
ing, CPTNI for completely positive trace non-increasing and UCP for unital completely
positive. The next proposition is a consequence of Lemma 3.3 and Theorem 3.5. All the
assumptions of injectivity in later theorems is to ensure the following proposition holds.

Proposition 3.6. Let M be an injective semi-finite von Neumann algebra.
i) For a self-adjoint © € Li(M)QN,
Ax) =sup{ (®,z) | @ : Ly(M) — L (N°P) CPTNI }.
ii) Define the real part of x € Li(M)®N as Rex = (x + x*)/2. Then
A(Re x) =sup{ Re (®,z) | ®: L1(M) — L1(N°?) CPTNI }.
iii) For positive p,

1ol myan=sup{ (2, p) | ©: Li(M) = L1 (N*") CPTNI }

=sup{ (®,p) | D : L1 (M) — Ly (N°P) CPTP }.
Proof. We first show that (T, y) > 0 for a positive y € L;(M)@N and CP T : N — M°P.
By a density argument, it suffices to consider y € My ® N. Suppose y = (22;1 a; @

bj)*(32j—1 aj ® bj) for some a; € eMe and by € N. We have 377", e;; @ T(bib;) =
id, @T'(327 =, €i,j @ bib;) is positive in M,,(M°P). Therefore,

n

(T,y) = TM(Z (ata;)PT(brb; Z Taer ((afP) T (b;b;)a?)

n

= Y (aP|T(bib;)]af") = 0,

7,j=1

where [aj”) € La(M®P, Tp) is the vector of af” in the GNS representation. Thus, (T'y) >
0for CPT: N — M° and also CP T : L1(M) — L1 (N°P) as normal maps. Then for
x<A®IandT:Li(M)— Li(N°) CPTNI, we have

(T,z) < XNT,1®0) = Atn(T(0)) < A,
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which implies (T, p) < A(p). On the other hand, by Theorem 3.5 and Lemma 3.3,

A(z) = sup{ 7(zy) | y € MBNo,y > 0, | yllLom,vp=1}
= sup{ (T}, z) | y € MBNo,y > 0, | yllLomr,vp=11}
<sup{ (T,z) | T : L1(M) — L;(N) CPTNI }
< Aaz) .

This proves i). ii) follows from the fact that for any CP T, Re(T, z) = (T, Re z). For iii),
given a CPTNI map 7', one can always find a CPTP T such that T — T is CP. Therefore,

ol (ampan=Alp) = sup (T,p) < sup (T,p) < A(p). O
T CPTNI T CPTP

Lemma 3.7. Let p be a bipartite density operator in Li(MQN). The set
Cp)={®®id(p) | ®: Ly(M) — L1(M) CPTP}
is a closed set in L1(M®N) with respect to the topology induced by
M @pin NP C MPRNP = L1 (MRN)*.
In particular, C(p) is a norm closed set in L1 (MKN).

Proof. Let o0 € L;(M®N) and ®, be a net of CPTP maps such that &, ®id(p) = o
with respect to M° @pin NP, That is, for any r € M QN

ligl T(xP, ® id(p)) = 7(x0) . (3.7)
Taking 2 = 1y ® 1, this implies 7(o) = lim,, 7(®, ® id(p)) = 1. Note that the
CB(Ly (M), L1(M)) C CB(MP, M) = (L (M)BMP)* .
By weak*-compactness, there exists a sub-net ®5 such that their corresponding subnet

of adjoints (IDL : MP — MP°P converges to some ®f : M — MPOP in the point-weak*
topology. That is, for z € L1(M),y°? € M°P, we have

li/rgn M (x‘b;(y"p)) =Tm (w@T(y"p)) .

Then it is clear that ® is UCP. Note that (M°P)* = L;(M) @ Li(M)*+ decomposes
into a normal part and a singular part. Let ® : L1(M) — (M°P)* be the restriction of
the double adjoint map @1 : (MP)* — (M°P)*. Then 5 ® id(p) — ® ® id(p) in the
sense that for any 1 € M @ N
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T(a®s ®id(p)) = (@] ®id(z)p) — ® ®id(p)(2) ,
where ® ® id(p) € (MP)*@L;1(N). Then by (3.7), for any z € M @ N,
o ®id(p)(z) = 7(ox) := o(x)

where the density operator ¢ is viewed as a normal state. Decompose the map & = ¢, +
®, where ®,, € CB(L;(M), L1(M)) is the normal part and ®, € CB(L;(M), L;(M)?1)
is the singular map. Then for any z € M QN

(o — D, ® id(p)) (z) = @, @ id(p) () (3.8)

where o — ®,, ® id(p) € L1(M)BL1(N) and &, ® id(p) € (MP)*@Li(N). Let wy,ws :
M — C be the linear functionals defined by

wi(y) = (0 -0, 21d(p))(y 2 1) , waly) == @, @id(p)(y @ 1), y € M.

Then w; is normal and ws is singular. By (3.8), w1 = wy which implies w1 = wy = 0.
Therefore,

B, 2id(p)(1® 1) = wy(1) =0 .

Hence ®;®id(p) = 0. We have o = ®,, ®id(p) for ®,, : L1 (M) — L1 (M) CPTNI. Define
®y(z) = 7(Pp () — z)w for any density operator w € Li(M). Then & = &, + d is a
CPTP map and ® ® id(p) = o. This completes the proof. O

We say a CPTP map ® : L;(M) — Ly(N) is entanglement-breaking if ®(p) =
> ey T(xjp)w; for some set of zj, j = 1,2,..., satisfying 372, 2; = 1 and 2; > 0
(such a set {x;} is called a measurement in quantum mechanics) and density operators
wj. Such a CPTP map is a quantum channel that admits a factorization through I7°,
which is the state space of a classical system. We note that a CP map 7' : M — N is au-
tomatically CB by Stinespring’s theorem || T'||=||T"||co=||T'(1) || (cf. [25, Theorem 3.6]).
This also holds for a CP map ® : Ly (N) — L1 (M) as a pre-adjoint of normal maps, but
is not necessarily true for a completely positive map ® : L (N) — M (for example, the
identity map id : S1(H) — B(H) is CP but not CB). We now prove our main theorem
with respect to quantum majorization for injective semi-finite von Neumanna algebra.

Theorem 3.8. Let M and N be two semi-finite von Neumann algebras and let M be
injective. Let p,o be two density operators in L1(M®N). The following are equivalent:

i) there exists a CPTP map ® : Li(M) — L1(M) such that ® @ id(p) = o
ii) for any CP and CB map ¥ : Ly (N) — M°P,

11 @Y (p) [, rmy@amer 211 @Y (0) (| 1, (A1) Mo
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iii) for any projection e € M with Tpq(€) < 0o and for any entanglement-breaking CPTP
map ¥ : L1(N) — Li(eMeP) with range Ran(V) C eMe°P,

11d @Y () || 1, (py@eseor Z A @Y (0) |1, Ay emteor
Proof. The direction i)= ii) and iii) follows from the factorization id @¥ (o) = ¢ ®
id(id@@(p)) and
@ ®id : Li(M)@M?P — Li(M)BMP||<|| @ : Li(M) = Li(M)[|a=1.
Let C(p) be the convex set from Lemma 3.7
Cp)={2xid(p) |P: L;y(M) — L1(M) CPTP}

for some bipartite density operator p. Suppose by way of contradiction that o ¢ C(p).
Because C(p) is closed with respect to the weak topology induced by M ®,,;, NP, by
the Hahn-Banach theorem there exists 1 € M ®yin N such that

Re 7(oz1) > Re sup7(® ®@id(p)z1) -
@

We can replace 1 with a finite tensor 2 =3~ a; ®b; € M®N such that [z —22([< €
is small enough and

Re 7(ox2) > supRe 7(id @®(p)x2).
o
Take x3 = (z2 + x3)/2 be the real part of xa:

1 * 1 * *
T3 :§(x2 +13) = 52(%’ ®bj + aj @ bj)

J

%(Z(aj Fa) @ b+ 8) + Y ila; - a) @ (<) - 8). (39)

J

which is a finite sum of tensor products of self-adjoint elements. Since o and ® ® id(p)
are positive,

T(oxz3) = Re tr(oxz) > supRe 7(id @ P(p)x2) = sup 7(id @P(p)x3).
@ @
For each j,
a; @bj+ [la;[[[[ ;] 1@ 1

:%<(%‘+ laj [l 1) @ (bj+ 15| 1) + (la; | (1 —a;)) @ (16| (1 - bj))),
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is a sum of tensor products of positive elements. Take K = ., || a; ||| b; [|. Then
24 =23+ K1®1 € M®N is a sum of tensor products of positive elements. Since
T(id®®(p)) = 7(0) = 1, we have

T(ox4) = T(0x3) + K > sgp T(id @®(p)z3) + K > sgp TId@®(p)zs) . (3.10)

The opposite element 23" € MPRNP corresponds to a CP map T € CB(Ly(N'), M°P).
Note that id ® T(0) and id @ T(p) € Li(M)@MP®P. Since M is injective, we have by
Proposition 3.6

T(x40) = (T, 0) = (idp, id @ T(0)) <[[id @ T'(0) ||, Ay Aew >

sup _ 7(24® @ id(p)) = sup(T, @ @ id(p)) = sup(®,id ® T'(p))
® CPTP [} P

=[id @ T(p) I, rm)@Mer -

Here the bracket is the pairing for (L;(M)@MP)* = CB(M®°P, M) and ® : L, (M) —
L1(M) is a normal map in CB(M°, M°P). Then the inequality (3.10) implies that

1id @ T(0) | £, (vpy@mer =11 @ T(0) | 1, Aty @ por

which violates ii). This proves the direction ii)= i). For the direction iii)= i), we shall
further modify T to get a CPTP map. Given € > 0, there exists a projection e € M such
that Trpq(e) < oo and || (e ® 1)o(e ® 1) — o||1< €. Then for small enough e we have

tr(o(e® Dzy(e® 1)) > tr(ozy) — € > sgp tr(id @@ (p)z4) - (3.11)

n

Take 5 == (e ® za(e ® 1) = 377 ¢; ®d; € eMe® N as a finite sum of tensor
product of positive operators. Then z:" € eMe? ® NP corresponds to the CP map
Ty : Li(N) — eMe°P given by

Ty (w) = ZTN(djw)cj .

By (3.11), we have

tr(ozs) > sup tr(id@®(p)zs) = sup (@,id®T(p)) =[lid @ T(p) |1, rty@ror -
@ CPTP @ CPTP

Take the map T7(-) = eT(-)e. Because the map y — eye is a complete contraction from
MPOP to e MeP, we have

1dRT () | L, (Ay@rmer 2 I (12)ADT () (1€ [| 1, (Aty@ e =11 T1(P) |, (AyBeMeor -
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On the other hand,

tr(ows) = (idm,1d @ Ti(0)) <[[id © T1(0) |, (Ay@emteor -

Thus Ty : L1(M) — eMe°P is a CP map and

1id @ T1(0) | 1, (rmy@emeor =11 @ Ta(p) 1, (M) Gereor - (3.12)

Note that eMe®? C Li(eMe°P) because Taq(e) < oo. Since 17 is CP and finite rank, we
have

HTI : Ll(/\/) — Ll(eMeOP) ||cb:||T1 : Ll(./\/) — Ll(e./\/leOp) ||< o0 .

Then Ty =|| Ty : Li(N) — Li(eMe°P) |71 Ty is CPTNI and satisfies the inequality
(3.12).

Finally, we modify T5 to be trace preserving. Denote by pr = id @ Tar(p) and py =
Tm ®1d(p) the reduced density operator of p and similarly for o. For the case pyr = o,
we define Ty = T + Ty where To(z) = (tr(z) — tr(Tg(x)))#(e). Then T5 : Li(M) —
Lqi(eMeP) is CPTP. We have

A
id® Ts(p) =id ® Ta(p) + ———pm ®e,
Trm(e)
A
id® Ts(0) =id ® Ta(o) + —2—om ®e,
Trm(e)

where A\ = tr(pn) — tr(Ta(pn)) is equal to Mg = tr(opr) — tr(T2(onr)). Note that for any
density operator w € Li(M) and A > 0

A A
id@Ts(p) = id@Ts(p)+ ———pm®e < dw®e < d@T(p) < Aw————pum) Qe .
Tm(€) Tm(e)

Therefore we have

1id @ T5(p) | 1, (My@ereor
A1

_ d T > op — ()
|lid ® z(p)”Ll(M)@eMG JrTM(e)

_ A1 .
<[id @ T2(0) |1, my@emeor er =1id @ T5(0) | 1, Ay @erteor -

Thus T3 is a CPTP map that violates the condition iii). For the case pn # oar, we
denote q¢; € N to be projection onto the support of (op — par)+ and go = 1 — ¢;. Since
N # C1 is not the trivial algebra (otherwise ppr = oar), we can choose two different
projections ey, e € N such that eg < e and 7pr(eg) < 7ar(€). We define the CPTP map
Ty: Li(N) — M as
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€o (&
) N

Denote o ; = id @ trar ((1 ® qj)a) and pag; =1d @ trp ((1 ® qj)a) with 7 = 1,2. Note
that

Ty(x) = tra(qu)

tra(om,1) Ftrag(on2) = tra(om) =1, tram(pa1) + tram(pmz) = traq(pm) =1,

and

tra(oan) = tra(pamn) = 7((L@ @) (0 = p)) = tea ((oa = pa)qr) > 0.

Since Tar(eg) < Tar(e),

. eo
daT. BeMeor = m(eo)
11d @T4(0) |, (MyBemteor =llort1 © Tm(eo)

_ tI"M(O'MJ) tI“M(O'MQ)

e
+ ® —— SeMeo
OM,2 TM(e) ||L1(M)®e./\/le 4

Trm(eo) Trm(e)
tra(pm,n) | tram(pae) .
’ 2) _|id ®T, .
™ (60) TM(G) H 4(p) ‘|L1(M)®6Me

Note that both 75 and T, are entanglement-breaking. Then in both cases, we reach a
contradiction to condition iii). This proves iii)=-i). O

Remark 3.9. In the proof above, the assumption of the injectivity of M is only used to
ensure the equivalence between Li(M, Ly (N)) and Li(M)RN. In fact, Theorem 3.8
holds for any von Neumann algebras M for which Proposition 3.6 iii) holds. It is possible
to further extend Theorem 3.8 to general M by using L;(M, Loo(N)) norm instead
of Li(M)&N-norm (even for non-tracial M, see [17] for the case of Lj(M,ls) for
general M). However, that requires further investigation of L;(M, Ly (N))-space for
non-injective M, which is beyond the scope of this paper. The same remark applies to
all other theorems in this section.

We shall now discuss the special case of N' = [. Let {p;} and {o;} be two families of
density operators in L;(M). Consider the bipartite density operator p, o € Ll(M)@)ll =
l1(L1(M)) given by

p=Nipi)i, 0= (Nios)i ,

where \; > 0, Z;); A; = 1 is a probability distribution. Then there exists a CPTP
map such that ¢ = ® ® id;, (p) if and only if there exists a CPTP map ® such that
o; = ®(p;) for each i. The latter statement, called the quantum interpolation problem in
[14], concerns the convertibility from one family of density operators to another using a
quantum process (CPTP map). For finite families of finite dimensional density operators,
it was shown in [14] that the quantum interpolation problem is solvable by semi-definite
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programming (SDP). The H,,;, characterization of quantum interpolation problem was
used in [10] as a key lemma to prove the bipartite matrix case and has applications in
the study of quantum thermal processes. A similar theorem for finite families of self-
adjoint operators is obtained in [14, Theorem 7.6], which will be discussed in Section 4.
The following theorem is an extension in two ways: it addresses infinite sequences and
density operators on von Neumann algebras.

Theorem 3.10. Let M be an injective semi-finite von Neumann algebra. Let {p;};en and
{oi}ien be two countable families of density operators in L1(M). TFAE

i) there exists a CPTP map such that ®(p;) = o; for alli € N
it) for any finitely supported probability distribution (X\;);en and any set of density op-
erators {w;} € L1(M°P) N M°P

1D X @ @il (rygaaen 2l D Ao @ willp, (rygaer -

7

Proof. Choose a probability distribution (p;);en such that p; > 0 for each i € N. Let
p = (pip;) and o = (p;0;) be density operators in Li(M)®I; = 11 (L1(M)). Then i)=
ii) again follows from the factorization ® ® id(p) = ¢ and

@ ®id : Li(M)@M?P — Li(M)BMP || <@ : Li(M) = Li(M)[|a< 1.
Assume that such ® does not exist. Then by Theorem 3.8 there exists a CPTP map
U 1° — Ly(eMPe) N eMPe for some finite projection e such that

11d @¥(0) |, (rmygerere> 1A @YD) | L, (Ay@emore -

We can omit the projection e here because Li(eM%Pe) C Li(M°P) and eMPe C M°P
as subspaces. Note that the map ¥ constructed in Theorem 3.8 is also CB from I$°
to M°P. Given ¢ > 0, we can choose N large enough such that . u; < e. Write
pn = (pi)i<ny ®0and on = (04)i<ny @O0 as the corresponding truncated sequences. Then

[id®@W (o) —id®@W¥(on) ||L1(M)®Mop§||‘7 —ON ||L1(M)®11§ Z My < €.
i>N

Thus,
[id @Y (on) |1, (rmyamer= 1HdD(0) [, (A Mer —€
> [[1d@¥(p) [l 1, (ry@ager —€
> [id @Y (pon) I, (Ay@ror -

Write w; = ¥(e;) where ¢; is the standard basis of 1;. We have
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ideU(oy) = Z 1io; @ w; , IdW(pn) Z Wipi @ Wi .

1<i<N 1<i<N

Renormalizing the coefficient \; = /M(Zi]\;l w;) L, we have a violation of ii). This com-
pletes the proof. 0O

Note that the condition ii) above only concerns finite subsets of {p;} and {o;}. This
leads to the following “compactness” result. It says that to ask whether there is a CPTP
map that sends an infinite family of density operators to another infinite family of density
operators, it suffices to check the convertibility for every finite subfamily of the two
infinite families.

Corollary 3.11. Let M be an injective semi-finite von Neumann algebra. Let {p;};en and
{oi}ien be two infinite families of density operators in Li(M). There exists a CPTP
map ® such that ®(p;) = o; for all i € N if and only if for any finite subset I C N,
there exists a CPTP map ®r(p;) = oy for alli € 1.

3.83. Channel factorization

The dual picture of quantum majorization is channel factorization: given two CPTP
maps T and S, determine if there exists a third CPTP ® such that ® o T = S. Such a
factorization relation for two CPTP maps has many implications in quantum information
theory. In particular, the channel T" has larger capacity than S for various communication
tasks. For a finite dimensional CPTP map & : M,, — M,,, its Choi matrix is

Xo =) ei;®P(ei)

4,j=1

where e, ; are the matrix units in M,. As noted in [10], for two CPTP map S,T : M,, —
M, there exists a CPTP ® such that ® o T = S if and only if there exists a CPTP ®
such that id ® ®(xr) = xs- So in finite dimensions channel factorization corresponds to
quantum majorization of Choi matrices. However, in the infinite dimensional case, such a
correspondence fails because the Choi matrix of a CPTP map is never a density operator
(since its trace is unbounded). We shall use again the duality CB(Ly(M), L1(M)) C
(L1 (M)@MPP)* to give a characterization of channel factorization on preduals of von
Neumann algebras. We start with a lemma.

Lemma 3.12. Let T : L1(N) — L1(M) be a CPTP map. Define the set of CPTP maps

Chost(T) = {® 0T | & : L1(M) — Ly(M) CPTP} |
Cpre(T) = {To0® | ®: Ly(N) — Ly(N) CPTP} .
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Then both Cpost(T) and Cpre(T) are relatively closed in CB(Li(N),Li(M)) C
CB(M°P N°P) for the weak*-topology induced by CB(Li(N),L1(M)) € CB(M°P,
NP) = (Li(N)@MO°P)*. Namely, both sets are closed in the point-weak topology on
CB(Li(N), Li(M)).

Proof. We first argue for Cpos(T). Let (®,) be a net such that &, 0T — S in the
weak*-topology. That is, for any x € Li(N),y € M

lim Tt (40 0 T(x)) = Ta (45 () - (3.13)

Let (®3) be a sub-net such that ®3 — ® for some ® : Li(M) — (M)* in the weak*-
topology CB(Ly(N), (M°P)*) = (L1 (N)@M°P)*. Note that

CB(Ly(N), (M°P)*) = CB(MP NP)
by taking adjoint. The map ®' is UCP because for any positive x € L;(N)
(@t (1)) = lim Tm(a®(1)) = lim ;M (Ps(x)) = Tar(2)
We have @30T — ® o T because for any x € Li(N),y € M
lizn TMm(yPs o T(2)) = lign Mm@ T (@) = T(m (@ ()T () = o T(2)(yP)

where ® o T'(z) € (M°P)*. Then by (3.13), ® o T'(z) = S(z) € L1(M). This implies
®, 0T =S for &, : L1(M) — L1(M) being the normal part of ®. Since ®], is normal
CP and sub-unital, ®,, is CPTNI. Define ®¢(p) = 7m(Pn(p) — p)o where o is some
density operator. Then ® = ®,, + & is CPTP. Moreover, &, 0T = 0 because both ®oT'
and @, oT = S are CPTP. Thus, we obtain SoT =,0T =S5.

For Cpre(T), let U, be a net such that ToW¥, — S in the weak*-topology. Let ¥ be a
sub-net of ¥, such that U5 — ¥ for some ¥ € CB(Ly(N), (M°P)*). For any = € Ly (N)
and y € M,

lim 7(yT 0 ¥ 3(x)) = lim (T (y)¥p(2)) = C(2)(T"(y)) = T™ o V() (y)

This means T o Wg — T o W in the weak*-topology of CB(L1(N), (M°P)*). Let ¥,, be
the normal part of ¥. Since 77|, (p) = T, we have

S=T"MoW, =T, (jmyo¥,=ToT,.

The argument to modify ®,, to be CPTP is similar. 0O
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We say a bipartite density operator p € L1 (M®N) is separable if p can be written
as p =y ;— ) \jw; ® oy, for some A\; > 0,372, \j = 1 and w; € L1(M),0; € Li(N) are
density operators.

Theorem 3.13. Assume that M is an injective semi-finite von Neumann algebra. Let

T,S: L1(N) — L1 (M) be two CPTP maps. TFAE

i) there exists a CPTP ® : L1(M) — Ly (M) such that oT =S
ii) for any projection e € M with 7(e) < oo and any separable density operator p €
Li(N) ® eMe°P,

1T @id(p) |1, Ay @erteor =11 S @1A(P) I 1, Ay @erteor

Proof. i)= ii) follows from (® o T) ® id(p) = S ® id(p) and that the map ® ® id is
contractive on L;(M)®@eMe?. For ii) = i), we again argue by contradiction. Suppose
S ¢ Cpost(T) = {®oT| & CPTP}. Then by Lemma 3.12, there exists 21 € Ly (N)QMP
such that

Re(S,z1) > Re sup (®oT,zq).
& CPTP

We can replace x; by a finite tensor sum xo = Z?Zl a; ® b; with [|z1 — 22 [, (Ay@mer
small enough. Moreover, following the same argument in (3.9), a; € L (N') and b; € M°P
can be self-adjoint. Note that for any w € Lq(N),

(S,w®1) =trpm(S(w)) =try(w) =trpm(PoT(w) =(PoT,we1l)
because S and ® o T are trace preserving. Then we can replace xo by

T3 = Zaj ®bj+ [0 (Ja;| ® 1) = Z(%‘M ® (105 [1 1+ b5) + (az)- @ ([1b; | 1 = b;)

which is a finite sum of positive elements. Let e € M be a projection with finite trace
such that

ZTM(b;?PS(aj)) =Y Tm(ebFeS(aj))| <e.

J
Take 24 = (1 ® e)x3(1 ® e). We have for small €

(S,x4) > (S,x3) — € > sup(® o T, x3). (3.14)
@

Since M is injective, we reinterpret the duality pairing and applying Proposition 3.6,
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(S, wq) =(id, S ®@id(z4)) <||S @ id(z4) | 1, A)Berteor -

sup (®oT,z3) = sup (@, T®id(zs)) =T @id(xs) |, r)@eeor
& CPTP @ CPTP

2| T @id(@a) | L, mygamer -

Here the last inequality uses the fact that p — epe is a complete contraction from M to
eMe. Thus we have a violation of ii),

IS ®id(z4) |‘L1(M)®5Meop>” T ®id(z4) ||L1(M)®6Meop :

Here x4 € Li(M)®eMeP is a finite tensor of positive element with finite trace. Replac-
ing z4 by its normalization, we get a separable density operator. That completes the
proof. O

The above theorem gives the characterization for “post”-factorization. Similarly, we
consider the “pre”-factorization, which is equivalent to the “post”-factorization of normal
UCP maps.

Theorem 3.14. Assume that M is injective. Let T, S : L1(M) — Li(N) be two CPTP
maps. TFAE

i) there exists a CPTP ® : Li(M) — Li(M) such that To® =S,
ii) for any positive v € N°P @ M,

1T ®id(2) | morsm<I1ST @ 1d(@) | mergm

Proof. By taking the adjoint, ® o 7T = ST as normal UCP maps. Then i)= ii) follows
from

15T @id(2) oo=] ®T 0 TT @ id(2) oo <[ T @ id(2) [loo -

For ii) = i), suppose S ¢ Cpre(T) := {T o ®| & CPTP}. By the same argument as for
Theorem 3.13, there exists a finite tensor zo = >, a; ® b; € Li(M)RN°P with a;,b;
positive such that

(S,22) > sup (T'o®,zs).
® CPTP

Then we choose a finite trace projection e € M such that eaje € M are bounded and
for z3 = (e®1)z2(e®1) = 3, eaje ®bj,

(S,z3) > (S,22) —e> sup (T o®, z2) (3.15)
@ CPTP
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Since M is injective, we apply Proposition 3.6,

(S,23) = (id,id ® ST($3)> <[lid® ST(@"B) ||L1(M)®Mop )

(To@.zz) = sup (@140 T (22)) =id @ T 22) g, royaves

lid @ T (23) I, () @ ater -

v

This implies
lid ® ST (x3) I, py@per > 11 © TT(x2) |1, Ay@ pger 211 © TH(3) | 1, Ay pten -
Because id @1 (x3) is a positive operator in eMe ® M, by Lemma 3.1 we have
1A @) |4, (ertergagen= it [l (07F © 1) id T () (0 © 1)

where the infimum is over all invertible density operators o € eMe. Thus we choose an
invertible density operator o € eMe such that

_1 . -3 i
o™ @ 1)id@T (@5)(0™> @ 1) lestemm< 11 ST (@) |11, (categmer +e
< 1 @S (@3) [ 1, (e perp Mo

<o7* @ DidS (23)(0* @ 1) lememm -
Then 24 = (072 ® 1)z3(c~2 ® 1) is positive in M @ NP, and we have
lid & (24) | e mer <1d @S (24) || mi@er
which is a violation to condition ii). This proves ii)= i). O
3.4. Approzimate case

In [16], Jencova gives a characterization for the approximate post-channel factorization
in finite dimensions that

inf [|S—®oT||ap<d
& CPTP

is small but nonzero. Inspired by Jencova’s work, we consider the approximate case of
quantum majorization. The following lemma is an analogue of [16, Proposition 1].

Lemma 3.15. Let M be a semi-finite von Neumann algebra.
i) For two density operators p,o in Li(M),

1
5 lp—olh=suwp{r(z(p—0)) 220 [lz]e=s1}.
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it) Let M be injective. For two CPTP maps T,S : Ly(M) — Li(M),

S 1T = 8= sup{ (T = 5,5} | 02 0, 1, (vt (ory < 13
Proof. For i), note that
r=z"|z||<l<=2z+1>0]z+1||<2
Since 7(p — o) =0,

lp = o lli=sup{Re 7(z(p — 0))| [ 2]l < 1}
=sup{7(z(p — 0))| |z [|cc< 1, x self-adjoint }
=sup{t((z+ 1)(p — 0))| |z || < 1, z self-adjoint }
=sup{7(y(p — )| |y llo< 2,y > 0}
=2sup{7(y(p — 0))| [ylleo< 1,y = 0}.

For ii), let  be self-adjoint and satisfy || ||z, .. (mery)< 1. Apply Lemma 3.2 to =
and —z, we have density operators o1, 09 € L1(M) such that © > 01 ®1 and —z < z5,®1.
Then

0<zx4+0o®1> (0'1 +02)®1a‘|$+02®1||L1(M,LOO(M"”))S2'

Conversely, let ¥ > 0, y ||z, (M,L(Mmer))< 2. Then there exists a density operator
o € L1(M) such that 0 <y < 20 ® 1. Then

—0®1<y-0o®1<o®l, |ly—0@1|L, (M Lomer)n< 1.

Thus we have

z =" |21, M LoMmor) < 1

—=r+1®0 20,2+ 1®0| 1, (M,Lo(Mer) < 2 for some density o € Li(M) .

Since M is injective, we have Li(M, Lo (M®P)) = Ly(M)@MOP. Then using the fact
that (T'— S,0 ® 1) = 7(T(0)) — 7(S(c)) = 0, we have

IT = Slles=sup{Re (T" = S, )| [[ @£, (M, Lo (Mmer))< 1}
=sup{(T" = S, )| |2 1, M, Lo (Mmer)) < 1,2 =27}
=sup{(T' = S, )| |2 L, (M Lo (Mmor)) < 2,2 > 0}
=2sup{(T - S, 2)| |z |, M, Loc (Mmerp< L,z >0} O
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Theorem 3.16. Let M, N be semi-finite von Neumanna algebras and M be injective
and Tam (1) = 4o00. Suppose p and o are two density operators in Li(MQN') such that
Tm ®id(p) = T(m ®id(0). TFAE

i) inf{|lc —®®id(p)|; |P: Liy(M)— Li(M)CPTP} <.
ii) for any CPTP map ¥ : L1(N) — L1(M°P) and ran(¥) C M°P, we have

. . 4 o
lid @ ¥(o) ||z, (wy@rter SN @ U(0) L, ppy@mer +5 102 LiN) = MP e
Proof. For a CPTP ¥, we can choose R : L1 (M) — Li(M) CPTP such that
(R,id @ ¥(0)) >[|id © ¥(0) ||, A@amer —€ -
Then

11d @ ¥ (o) |, (amy@mer < € + (R, id @ ¥(0))
<e+ (R, 2®Y(p))+ (R,id® ¥(c) — 2 ® ¥(p))
<e+ (Ro®,id® ¥(p)) + (RT o ¥, 0 — @ ®id(p))

et [[id@ ¥ (o) |2, (mysamer +% IR 0¥ : Li(N) = MP ||l — @ @id(p) |4
<et 114 ® W) g, (vysaer +3 12 L) = MP llo — @ 9id(p) s
Here in the second last inequality we apply Lemma 3.15 i) to
<R‘L ol o0 —id® d(p)) = T(.I‘RTO\I,(O' —d® id(p)))

where Zptoy € N®M is the operator corresponding to the map Rf o ¥ via the Effros-
Ruan isomorphism

CB(L1(N), M) =2 NOPGMP (3.16)

Then i)= ii) follows from taking the infimum over all CPTP ® and ¢ — 0. Conversely,
suppose (ijl%’fTP lo —® ®id(p)||1> ¢. By Lemma 3.15 i), we have for z € NQM,

(T, ~id® B(p) = (a(0 ~ 8 ©id(p)) < 1 | T Lu(N) = M [l o ~ 2@ id(p) s

where T is the map corresponding to z°P via the isomorphism (3.16). Because the above
pairing is linear for both 7" and ®, we have by Sion’s minimax theorem [24],
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0 <, g}l)fTP o —®®id(p)]1

=2 inf sup T,o0—-d®id(p
¢ CPTP 1 CP,IHW|cb§1< )

=2 sup inf (T,o0—®®id(p
T CPfHTHCbSI o CPTP< ( )>

=2 sup (T,o)— sup (T,P®id(p))
T CP,|M]| <1 & CPTP

Rescaling the above inequality, there exists a CP T : Ly (N) — M°P such that

1)
(T,o) — sup (T, ®®id(p)) > = [T : L1(N) = MP || -
® CPTP 2

For a projection e € M, denote the map T.(-) = eT'(-)e. There exists e with Trq(e) < oo
such that [(T, (e ® 1)o(e ® 1) — o)| is small enough that

(Te,0) = (T, (e®@ 1)a(e® 1))

1)
> sup (T, ®2®id(p)) + 5 |T: Li(N) = M ||
& CPTP 2

. 1
=lid@ T L, mparmer +5 1T LaN) = MP e
. d o
>[[id ® Te(p) | 1, (M) epmeor +5 I T : Li(N) — eMe ||ep -
Here we use Proposition 3.6 by the assumption M is injective

o CPTP o CPTP

and that | T, : L1 (N) = eMeP || <|| Te. : L1 (N) = M| . Also, we have
(Te,0) = (id,id ® Te(0)) <[[id @ Te(0) | 1, (rty@eteor -
Therefore, we have a violation of ii) for T, : L;(N) — eMe°? is CP,
5

[id ® Te (o) ||L1(M)®6Meop>|| id® Te(p) ||L1(M)®5Meop +§ | T : Li(N) — eMeP ||
(3.17)

By linearity, we can assume T, is CPTNI. Denote ppr = A ®1d(p) and on = A ®id(0).
Because pnr = o, we follow the argument in Theorem 3.8 to replace T, by

Tm(T — Te(x))e

T = TE +TO ’ TO(J") = TM(G)
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Note that || Ty : L1(N) — eMeP || = #(e) Then we can always choose Tp(e) large
enough such that || T || — || 7% ||cp is small and (3.17) is satisfied for T. O

Remark 3.17. If, in addition, inf{ 7r¢(eo) | egp nonzero projection } = 0, we do not need
the assumption pyr = o in Theorem 3.16. In the case of pyr # oar, by the corresponding
discussion in Theorem 3.8, we have a CPTP map T} such that

11d @ T1 (o) ||, vy @emerr = 1A @ TL(P) 1, (M) Beteor

1 1
>(TM(60) - TM(e))TN((PN —on)-)

where eg < e is a sub-projection. This difference can be arbitrarily large if ir;éfo Tm(eo) =
€0
0.

The following is a generalization of [16, Theorem 1].

Theorem 3.18. Let M, N be semi-finite von Neumanna algebras and let M be injective.
Let S,T : L1(N) = L1(M) be two CPTP maps. TFAE

i) inf{||S—PoT||e | P:L1(M)— Li(M)CPTP} <§;
ii) for any density operator p € Li(N®M°P), we have

. . é
15 @1d(p) |, (vy@mer SIT @ 1) 2y ay@ pter +5 Iy Ay@A0r -

Proof. Let p € L1 (N®MPO°P) be a density operator. By Proposition 3.6, for any € > 0 we
can choose R : L1(M) — Li;(M) CPTP such that

(R, S®@id(p)) =[S @id(p) |, my@amer —€ -

Then

15 @id(p) |1, vty per < € + (R, S @ ()
<ct (R, oT ®id(p)) + (R, (S~ o T) ®id(p))
et 0T @id(p) |1, ryspeen +S — Do T id® B (p))

. 1 .

<et |20 T @id() |1, (aparter +5 118 = 0T llellid ® B (o) 1, (rty@nor
. 1

<et [[@oT ®id(p) ||L1(M)®Mop Jri |5 —@ OTch||P||L1(M)®Mop

where in the second last inequality we used Lemma 3.15 ii) for the 1/2 factor. Then i)=
ii) follows from taking the infimum over all CPTP ® and ¢ — 0. For ii) = i), suppose
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o gll)fTP [ S—®oT (> 0. Let us use the shorthand notation |- [l1,cc=I" | 1, Ay@ 10

Using the minimax theorem [24],

§< inf |[S—®oT|w
o CPTP

=2 inf sup S—®oT,p
¢ opTP p20,|w|1m§1< !

=2 sup inf S—_do 1—17 p
p>0,[Hl1,00<1 aaBhp! )

=2 sup (id,S®id(p)) — sup (?,T ®id(p))
PZO’W’Hl,ooSl ®CPTP

<2  sup sup (P, S®id(p)) — sup (P,T ®id(p))
p>0, 1,00 <1 ®CPTP $CPTP

=2 sup [[S@1d(p) Iz, apemer — T @1d(P) 1, ay@rt0r
PZO’WJHl,ooSl

where in the last equality we used Proposition 3.6 because M is injective. Thus there
exists a positive p € L1 (M)RMPP violating the inequality in ii). One can then replace
p by a bipartite density operator g in L;(M®M?°P) as in Theorem 3.13. O

Remark 3.19. In Theorem 3.16 & 3.18, we cannot reduce condition ii) to entanglement-
breaking CPTP maps and respectively separable density operator as in the case for § = 0.
This is because Lemma 3.15 fails when we restrict the pairing to entanglement-breaking
or separable elements.

3.5. Results in the type I setting

The results of the previous subsections subsume the case of B(H) where H is infi-
nite dimensional. However, since this is the case most relevant to quantum information
theory, we briefly restate some of our results for B(H) in terms of the conditional min
entropy Hpin. Hmin(A|B) is the sandwiched Rényi p-version of H(A|B) at p = co and
the smooth version of Hyp,;,(A|B) connects to H(A|B) by quantum asymptotic equipar-
tition property [26]. While the operational meaning of H(A|B) is in i.i.d. asymptotic
regime, H,,;n(A|B) has many applications in the one shot setting ([27] and reference
therein). The following theorem summarizes the results on quantum majorization, state
convertibility and channel factorization.

Theorem 3.20. Let Ha, Hg be two infinite-dimensional Hilbert spaces. The following
statements hold.

i) For two bipartite density operators pAB, a8 € S1(Ha®.Hp), there exists a quantum
channel ® : S1(Hg) — S1(Hp) such that ida @®(p) = o if and only if for any
entanglement-breaking channel U : S1(Ha) — S1(Ha)
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Hpnin(AlB)wgid(p) < Hmin(A|B)wgid(s) -

ii) For two families of density operators {p; }ien and {0;}ien in B(Hp), there exists a
quantum channel such that ®(p;) = o; for all i € N if and only if for any finitely
supported probability distribution \; on N and any set of density operators {w;} €
B(Ha)

Hm’LTL(A|B)(21 Aiw; ®p;) < Hmzn(A|B)(Zl Aiw;®0;) *

iii) For two quantum channels T, S : S1(Ha) — S1(Hp), there exists a quantum channel
D such that ®oT = S if and only if for any separable density operator p € S1(Ha @2
Hp),

Hpnin(A|B)iaor(p) < Hmin(A|B)id 25(p)-

The above theorem make sense even when H,,;, equals “—occ”. We know by Theo-
rem 3.10 and 3.13 that it suffices to consider all finite dimensional H4 in the equiv-
alence ii) and iii). Similarly, for the equivalence i) it suffices to consider channels
U : S1(Ha) — Si(Ha) into a finite dimensional H’,. In these situations, H,,;, will
always take finite values. In general, H,,;,,(A|B) can be “—00”, where the inequalities in
the above theorem are trivially satisfied.

4. Tracial convex sets in vector-valued noncommutative L1-space

In this section, we discuss the analogue of quantum majorization in vector-valued
noncommutative Li-spaces and the connection to the tracial Hahn-Banach Theorem.
Let (M, T) be a semi-finite von Neumann algebra equipped with a normal faithful semi-
finite trace 7. Let E be an operator space. The E-valued noncommutative Li-spaces
were introduced by Pisier in [21]. For £ € M ® E in the algebraic tensor, we define the
Li(M, E) norm as follows,

Izl m.my= it {{lall L, bl o Y M i [ =a-y- b}, (4.1)

where the infimum runs over all factorizations x = a-y-b = (a ® 1g)y(b® 1g) with
a,b € My and y € M ® E. The space L1(M, E) is defined as the norm completion of
Mo ® E. The Li(M, Lo (N)) space we discussed in the previous section is the special
case of FE being a von Neumann algebra A/. Recall that a von Neumann algebra M is
hyperfinite if M = UM, is the w*-closure of the union of an increasing net of finite
dimensional von Nuemann algebras M,. It was proved in [21, Theorem 3.4] that for
hyperfinite M,

L1(M, E) = Li(M)BE (4.2)
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isometrically. Namely, for hyperfinite M, the vector-valued noncommutative L; space
is identified with projective tensor product. Following that, we introduce the following
definition of a tracial set in Li(M)®E.

Definition 4.1. A subset V C L;(M)®E is called a contractively tracial set if for any
CPTNI map @ : L1(M) - Li(M), 2®idg(V) C V.

The matrix tracial sets are discussed in [14, Section 6.2] as the dual concept of matrix
convex set. We refer to their definition as matrix tracial set.

Definition 4.2. A matrix contractively tracial set (V},), is a sequence of subsets V,, C
M, (E) such that for any CPTNI map ® : M,, — M,,, ® ® id(V},,) C V,,.

This definition was considered in [14] for finite dimensional E. Indeed, for dim E = m,
each element in V,, C M, (E) = M]" can be identified with a finite sequence (z;) €
(M,,)™. We discuss the relations of these two definitions in the following proposition.

Proposition 4.3. Let H be a separable Hilbert space and (e,)n be a sequence of projections
such that dim(e,H) = n and e, — 1 weakly. Identify M, = Si(e,H) as subspace of
S1(H).

i) Given a contractively tracial set V C Sy(H)QE, the set
Vinl]=e,-V-e,

forms a matriz contractively tracial set such that U,V [n] = VI-I.
ii) Given a matriz contractively tracial set (V,,) C M, (FE), the set

V = (U, V)l € S (H)®E
is a closed contractively tracial set such that V[n] =V,,.

Proof. i) Let e € B(H) be a projection. Because the map p — epe is CPTNI on S} (H),
x € V implies that ez -e € V. Then for any ® : M, — M,, CPTNI, ¢ ® id(e, -
x-e,) € Vim] C V. Thus (V[n]), is a matrix contractively tracial set. Moreover, for
z € S1(H)®F, Jim len 2 en—2|lg mee= 0. Then VI-I C U,V[n]l-I and the other

inclusion follows from Vn] C V.
ii) Let x € V,,. For @ : S1(H) — S1(H) CPTNI, we find that

em - PRid(x) - ey € Vi

because p — e, P(p)e,, can be viewed as a CPTNI map from M,, to M,,. By klim €m
— 00
¢ ®id(x) - e, —= ® ®@id(x), this shows that &(x) € V for x € V,,. Let x3, € Vi) be a
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sequence such that zy — = in S;(H)®E. Then ® ® id(zy) — ® @ id(z), which implies
® @ id(z) € V. This verifies that V is contractively tracial. In particular, the fact that
€n - Tk - €, converges to e, - T - e, implies that V[n] C V,,. O

The above proposition shows that Definition 4.1 and Definition 4.2 are closely related
for the case M = B(H). In particular, they coincide for closed sets. It is easy to see that
the convex hull of a contractively tracial set is again contractively tracial. In general,
contractively tracial sets are not necessary convex.

The next theorem is the tracial Hahn-Banach separation theorem for convex con-
tractively tracial sets. For matrix contractively tracial sets with dim ' < oo, this was
obtained in [14, Theorem 7.6]. Using the projective tensor product, we can now consider
semi-finite injective M and a general operator space F.

Theorem 4.4. Let M be an injective semi-finite von Neumann algebra. Let V be a closed
convex contractively tracial set in Li(M)SE and x € Li(M)SE. Then x ¢ V if and
only if there exists a CB map T : E — M°P such that for each y € V', there exists a
density operator wy € Li(M) depending on y such that

Re id®T(y) <w, ®1
and for any density operator w,
Re id®T(z) £ w® 1.

Proof. The “if” direction is trivial. For the other direction, suppose = ¢ V. Using the
duality Li(M)RE* = CB(E, M°P), there exists a CB map T : E — M°P

Re (T, z) > sup Re (T, y).
peEV

Reinterpreting the dual pairing,

Re (T,z) = Re (idp,id @T(z)) < sup Re (9,id®@T'(x))
@ CPTNI

= inf{7(w)|Re d®T(z) Cw®1, w>0}.

Here we used Proposition 3.6 by the assumption that M is injective. On the other hand,
because V is contractively tracial,

sup Re (T, y) > sup Re (T, ® ®id(y))

yeV yeV,® CPTNI
=supinf{7(w) | Re T ®id(y) Sw®1,w > 0}.
yev
Take A such that Re (T, x) > A > sup,cy Re (T, y). Then for the map T =1T,
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sup inf{7(w) | Re T®id(y) < w®1 ,w > 0} < 1 < inf{7(w)|Re T®id(z) < w1 ,w >0}
yeVv

which completes the proof. O

Using similar idea, we obtain a variant of Effros-Winkler’s separation theorem [9].
Recall a CP map @ is sub-unital if ®(1) < 1.

Theorem 4.5. Let E be a operator space. Let V. C M, (E) be a closed conver set such
®®id(V) C V for any CP sub-unital ® : M, — M,. Then x ¢ V if and only if there
exists a map T : E — M, such that for each y € V, there exists a density operator
wy € M, depending on y such that

Re id@T(y) <1®uwy ,
and for any density operator w,
Re id@T(z) £ 1Q@w .

Proof. Suppose x ¢ V. Because M,, is finite dimensional, we have M, (E)* = S}QFE*.
Then there exists an element 7 € E*®S7 such that

Re (T, z) > sup Re (T, y) . (4.3)
yev

We identify T € E*®S} with a map T : E — S}*. Then the pairing on the left hand side
of (4.3) can be rewritten as

Re (T, z) = Re(idys,,,id @T(x)) < inf{7(w)|Re id@T(z) <1®@w ,w >0} .

Here the second pairing is between C B(M,,, M,,) = (M, &S7)*. For the right hand side
of (4.3),

sup Re (T, y) = sup sup Re (T, ® ® id(y)) = sup sup Re(®,id ®T'(y))

yeVv y€V @ CP sub-unital yev o
< sup inf{r(w)|Re id@T(y) <1Q®w ,w > 0}.
yev

Then the assertion follows from the inequality (4.3). O

Recall that a contractively matrix convex set is a sequence (V,) C M, (E) such
that i) for any CP sub-unital ® : M,, — M,, ® ® id(V,,) C V,; and ii) for any
a € Vi,b € Vo, a ®b € Vg Effros-Winkler’s theorem stated for matrix convex
set admits a stronger separation: there exists a density operator w uniform for all y such
that Re id®T(y) < 1 ® w. A similar lemma for tracial sets was given in [14, Lemma
7.4]. The above Theorem 4.5 leads to a weaker separation because we consider convex
sets closed under CP sub-unital maps but not necessarily satisfies ii).
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5. Norm separations on projective tensor product

In this section, we discuss the analogue of quantum majorization on projective tensor
product. Recall that a operator space G is I-locally reflezive if for any finite dimensional
operator space E/, we have the complete isometry

CB(E,G™) =~ CB(E,G)™ .

It is clear from the definition that G = G** is reflexive implies that G is 1-locally re-
flexive. It was proved by Effros, Junge, and Ruan [8] that the predual of von Neumann
algebras are 1-locally reflexive. Another property needed in our discussion is the com-
pletely contractive approximation property (CCAP). A operator space F has the CCAP
if there exists a net of finite rank completely contractive maps ®,, : £ — F such that
for any z, ®,(x) — = in norm. In the setting of operator spaces, this is an analog of
w*-CPAP.

The following lemma shows that these two properties combined give the desired norm
attaining property similar to Proposition 3.6. Throughout this section, we write C'B for
completely bounded and C'C for completely contractive.

Lemma 5.1. Let E be an operator space with the CCAP. Then CB(E,G) C CB(E,G**)
is w*-dense in the sense of CB(E,G**) = (E®G*)*. If, in addition, G is 1-locally
reflexive, then

o lpgg-=sup{Re (¥, p) |V : E— G CC}.

Proof. Let ®, : E — E be anet of CC maps such that ®,(z) — x in norm for any x € E.

For p € EQG* with |2l gge-= 1, we can choose a finite tensor sum pg = -7, x; ® y;

such that || p — po [|pgg-< € Then for T : E — G** with || T'[|s= 1, there exists an «
such that

‘<TO(D04_Tap>| < |<T0¢’a—TaP_PO>|+‘<TO‘I)a—TaPO>|
<[T o =T,p—po)| + (T, 0 @id(po) — po)| < 2¢ + €.

Let E,, be the range of @, as a finite dimensional subspace of F and T'|g,, € CB(E,, G**)
be the restriction of T' to E,. There exists T, € CB(E,, G) such that

|(To = T, ®a ®@id(po))| = [{(Ta = T) © o, po)| < €.
Therefore T, 0o &, : E — G is CB and

(T 0 @0 =T, p)| [T 0 Do — T, p)| + [(Ta = T) © D p — po)| + [((Tes = T) © D, po)|
<3e+ 2¢ + € = b¢
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which proves the w*-density of CB(E,G) C CB(E,G**). If G is 1-locally reflexive, T,
and T, o @, can be CC because we can of the isometry CB(E,,G*) 2 CB(E,,G)*. O

The following theorem is the analog of quantum majorization and channel factoriza-
tion in the abstract operator space setting.

Theorem 5.2. Let E, F,G be operator spaces. Suppose one of the following conditions
holds:

a) G is reflexive;
b) G is 1-locally reflective and F has the CCAP

Then the following two statements hold:

i) Forp € EQF and 0 € ERG, there exists a sequence of CC maps u, : F — G such
that id ®u,(p) — o in the norm of EQG if and only if for any CB map v : E — G*,

lv®id(p)[lg-gr>[lv®@id(o)|

G*®G *

iiy ForT € CB(E,F) and S € CB(E,G), there exists a net of CC uq : F — G such
that uq o T — S in the point-weak topology if and only if for any v € E Q@ G*,

IT®id(z) || pge- IS ®id(@) [l cae -

Proof. i) The “only if” direction is easy. For the “if” part, consider the norm-closed
convex set

C(p) = {idou(p)|u: F — G,CC} C ERG.
If o ¢ C(p), there exists v € CB(E,G*) = (E®G)* such that
Re (v,0) > sup Re (v, id @u(p)) .
Let tq : G — G™* be the embedding. Note that

Re (v,0) = Re (1g,v ®id(0)) <[[v®id(0) [|g-5¢
sup Re (v,id @u(p)) = supRe (u,v @ id(p)) =||v @ id(p) |

G*QF

where the last equality follows Lemma 5.1.
ii) Suppose u, is a net of CC maps such that u, oT — S in the point-weak topology.
Then for any R € CB(G*,G*) = (G&G*)* and z € E ® G*

li£n<R, Uo o T ®id(z)) = li£n<ua oT,id®@R(z)) = (S,id®R(z)) = (R, S ® id(x))
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which implies || 7' ® id(z) ||pgg->[l S ® id(z) ||ggg-- For the converse, consider the
w*-closure of convex set

C(T)={uoTu:F — G,CC}» c CB(E,G**) = (ERG*)*.
If S ¢ C(T), there exists a p € E®G* such that

Re (S, p) > supRe (uo T, p) .

By a density argument, we can further assume p € E®QG™ in the algebraic tensor product.
Note that

Re (S.p) = Re (1, S ®1d(p)) <[[S ©id(p) | s
supRe (uo T, p) = supRe (u,T ®id(p)) =[| T ®id(p) | ps-

where again the last equality uses Lemma 5.1. O

The following proposition discusses the case when the limits in above theorem can be
replaced by equality.

Proposition 5.3. Let E, F,G be operator spaces. Let T € CB(E,F) and p € EQF.
Suppose G = (G,)* is a dual space. Then {uoT |u : F — G, CC} is w*-closed in
CB(E,G). If, in addition, E has the CCAP or G is reflexive, {id®@u(p) |u : F —
G, CC} is norm-closed in E®G.

Proof. To prove the first statement, let u, : F — G be a net of CC maps such that
limy ue 0o T = S in the w*-topology of CB(E,G) = (E®G.)*. Because CB(F,G) =
(F®G.)*, we choose u as w*-limit of (u,) such that the subnet ug — u. Then ugoT —
w o T in the point w*-topology hence S = u o T. For the second statement, we assume
E has the CCAP or G is reflexive. Let ug : FF — G be a sequence of CC such that
id ®ug(p) — o in the norm of E®QG. Choose a subsequence uy, — u in the w*-topology
for some CC u. For any T' € CB(FE, G.),

lign(T, id @ug, (p)) = lilm<uki,T ®1id(p)) = (u, T ®id(p)) = (T, u @ id(p)).

Thus id ®ug,(p) — id@u(p) in E®G with the topology induced by CB(E,G.) C
CB(FE,G*). Note that by Lemma 5.1, this topology is separating. Hence we have
o = limid @uy, (p) = id®u(p). O

Theorem 5.2 also holds for Banach space tensor products. We can replace the opera-
tor space concepts with their Banach space counterparts: replace “operator spaces” by
“Banach spaces”, “CB (resp. CC)” by “bounded (resp. contractive)” and “CCAP” by
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“metric approximation property (or 1-AP)”. Moreover, all Banach spaces have 1-local
reflexivity. We refer to the book [18] for definitions of the above mentioned Banach space
concepts. Here we state the result analogous to Theorem 5.2. Let ®, denote the Banach
space projective tensor product and B(F, F') be the set of bounded maps from Banach
space E to F.

Theorem 5.4. Let E, F,G be Banach spaces. Suppose one of the following conditions
holds:

a) G is reflexive;
b) F has the metric approzimation property.

Then the following two statements hold:

i) for p € E®; F and 0 € E ®, G, there exists a sequence of contractive maps
up 2 F = G such that id ®u,(p) = o in the norm of E ®, G if and only if for any
bounded map v : £ — G*,

lv®@id(p) le+o,p2llv@id(o) [ce.c -

ii) forT € B(E,F) and S € B(E,Q), there exists a net of contractions uy : F — G
such that ug, o T — S in the point-weak topology if and only if for any x € E ® G*,

IT®id(z) |re.c-=[ S ®id(z)[lee.ax -
The proof is identical to Theorem 5.2 and the details are left to the reader.
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