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Building Codes Part-of-Speech Tagging Performance Improvement by Error-Driven 1 

Transformational Rules 2 

Xiaorui Xue, S.M.ASCE1; Jiansong Zhang, Ph.D., A.M.ASCE2 3 

Abstract 4 

To enable full automation, automated code compliance checking systems need to extract regulatory 5 

information in building codes and convert it to computable representations. This conversion is a natural 6 

language processing (NLP) task that requires highly accurate part-of-speech (POS) tagging results on 7 

building codes. Existing POS taggers, however, do not provide such accuracy on building codes. To address 8 

this need, the authors propose to improve the performance of POS taggers by error-driven transformational 9 

rules that revise machine tagged POS results. The proposed method utilizes a syntactic and semantic rule-10 

based, NLP approach combined with a structure that is inspired by transfer learning. This method generates 11 

a group of transformational rulesets, from simple ones to complex ones, that will convert machine taggers’ 12 

tagging results to their corresponding human-labeled gold standard. The transformational rules utilize 13 

syntactic and semantic information of domain texts. All rules are constrained not to introduce any errors 14 

when fixing existing errors of machine taggers. The last ruleset, which fixes most common remaining errors 15 

in textual data after all other rules are applied, is exempted from this constraint. An experimental testing on 16 

Part-of-Speech Tagged Building Codes (PTBC) data shows this method reduced 78.91% of errors in POS 17 

tagging results of building codes, which increased the POS tagging accuracy on building codes from 89.13% 18 

to 98.12%. 19 

Civil Engineering (CE) Database Subject Headings: Project management; Construction management; 20 

Information management; Computer applications; Artificial intelligence. 21 
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Author Keywords: Automated compliance checking; Automated information extraction; Natural 22 

language processing; Part-of-speech tagging; Automated construction management systems. 23 

Introduction 24 

Traditional manual building code compliance checking methods have several limitations, such as (1) a 25 

lengthy review process, (2) a high cost, and (3) error-prone results (Alghamdi et al. 2017; Lee et al. 2018; 26 

Preidel and Borrmann 2017; Sacks et al. 2019). It remains a paper-based, manual, and non-standardized 27 

process that requires constant human attention and inputs. A traditional building plan review process begins 28 

with the building permit applicant submitting a range of hard copy documents, including all the drawings, 29 

specifications, documentations and contracts of a project, and a plan review fee, to a building authority. 30 

Any mistakes or omissions in the submitted building plans will cause the submission returned to the 31 

applicant with requests for revision or additional information. The applicant needs to respond to this request 32 

within a certain time frame. The building authority reviews the response and checks the updated building 33 

plans. This process may last several weeks or several months until the building authority issues a building 34 

permit (City of Savannah 2019). For example, in San Clemente, California, this process can last 120 days 35 

for accessory dwelling units (City of San Clemente 2019). Not limited to the building itself, many sub-36 

systems or components of a building require sperate reviews and permissions, such as heating, ventilation, 37 

and air conditioning (HVAC) systems (Lopes et al. 2011), fire alarm systems (City of El Cajon Community 38 

Development Department 2019), and elevators (State of California 2016), which may further increase the 39 

cost and time to obtain building permits. The time and cost needed to obtain building permits also increase 40 

with the complexity of modern construction projects (City of Chicago 2019). At the same time, local 41 

governments’ diverse adaptation of buildings codes (Ching and Winkel 2018) further increases 42 

complexities in code compliance. The demand of innovative code compliance checking systems rises. 43 
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Background 44 

Automated Code Compliance Checking 45 

To address the increasing demand in building permits, many researchers and industry experts introduced 46 

new methods of code compliance checking. Their efforts focus on making code compliance checking 47 

paperless, automated and standardized. The structural design checking using decision table (Fenves 1966) 48 

was one of the first efforts in this domain (İlal and Günaydın 2017), which led to many attempts to create 49 

expert systems for building codes in the 1980s (Dimyadi and Amor 2013), such as the Standard Interface 50 

for Computer Aided Design (SICAD) (Lopez et al. 1989), the Standards Processing Expert (SPEX) (Delis 51 

and Delis 1995; Garrett and Fenves 1987), and the Design Prototypes (Gero 1990). However, low 52 

performance and high maintenance cost of expert systems in the 1980s limited these attempts only to proofs 53 

of concepts with a lack of actual implementations. An expert system, which uses a vast body of domain-54 

specific knowledge stored in a computer (Liao 2005), has limitations such as high maintenance cost, 55 

difficulty in scalability, and the narrow range of applications (Chollet 2017). These forerunners’ efforts 56 

gave birth to more recent code compliance checking expert systems, such as BCAider and DesignCheck, 57 

in early 2000s (Dimyadi and Amor 2013). In addition, there were expert systems that focused on building 58 

codes in a specific domain or a limited range of domains in 1980s and 1990s. For example, the Fire-Code 59 

Analyzer (Delis and Delis 1995) focused on fire protection related codes in New Zealand, the Life Safety 60 

Code Advisor focused on National Fire Protection Association (NFPA) safety code in the U.S., and the 61 

TALLEX (Sabouni and Al-Mourad 1997) focused on tall buildings in the United Arab Emirates (UAE).  62 

In the 2000s, building information modeling (BIM) dramatically changed the way code compliance systems 63 

work by providing a reliable digital representation of buildings (Nguyen and Kim 2011). For example, 64 

Solibri Model Checker (SMC) started as a BIM validation tool, and it obtained code compliance checking 65 

ability in its later updates (Eastman et al. 2009). Singapore government initiated the Construction and Real 66 
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Estate Network (CORENET) project, which allows BIM model, instead of papers, to be submitted for plan 67 

review. The UK government started to require submissions of BIM for all public projects that are funded 68 

by the British Central Government from 2016 (UK BIM Task Group 2016). The KBimCode in South Korea 69 

was capable of code compliance checking of BIM against building codes, but it needs manual efforts to 70 

convert building codes from natural language to a computer-processable format (Choi and Kim 2017). 71 

Gap in Existing Information Extraction Systems  72 

With BIM as a reliable digital representation of buildings, code compliance checking systems made great 73 

progress over the last two decades. However, they are still far from a wide real-world deployment. In many 74 

current automated code compliance systems, information extraction and information transformation rely on 75 

domain experts’ manual efforts to convert building codes to a computer-processable format, such as 76 

decision tables (Tan et al. 2010), regulatory knowledge model (Dimyadi et al. 2016), and structured 77 

regulatory information rulesets (İlal and Günaydın 2017). 78 

Based on existing literature, current code compliance checking systems lack automated regulatory 79 

information extraction and transformation capabilities. By drafting building codes in computer-checkable 80 

logic clauses or rulesets instead of natural language, code compliance checking systems can bypass the 81 

needed information extraction and transformation step and achieve full automation in an alternative way. 82 

However, such a dramatic shift is not expected in a foreseeable future (Bell et al. 2009; Li et al. 2012). In 83 

addition, the large size of existing building codes creates further challenges in achieving such a transition. 84 

In the U.S., local jurisdictions usually apply customizations and modifications to standard codes published 85 

by the international code council (ICC), which further contribute to the complexity of the body of building 86 

codes. Automated information extraction and transformation are necessary for automated code compliance 87 

systems to function on existing as well as forthcoming building code versions. Some researchers proposed 88 

sematic analysis of building codes through deep learning for information extraction, but the extracted 89 
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information failed to convert to checkable rules (Song et al. 2018). Pattern matching-based natural language 90 

processing method, on the other hand, can generate logic clauses through information extraction and 91 

transformation with a high accuracy (Zhang and El-Gohary 2015; Li et al. 2016; Xu and Cai 2020). The 92 

pattern matching-based method of Zhang and El-Gohary (2015) can convert natural language provisions to 93 

logic clauses, and their entire automated code compliance checking method reached a 98.7% recall and 94 

87.6% precision in non-compliance detection (Zhang and El-Gohary 2017). However, to enable real-world 95 

applications, the recall must be improved to 100%. The main sources of errors reported by Zhang and El-96 

Gohary (2017) were of two types: limitations of the extraction and transformation rules, and limitations of 97 

the state-of-the-art POS taggers’ performance on building codes. Reducing/eliminating such errors were 98 

expected to further improve the overall non-compliance detection performance. In this paper, the authors 99 

focus on addressing the performance of the state-of-the-art POS taggers on building codes, because the 100 

extraction and transformation rules use the POS tagging information and therefore rely on its performance. 101 

Part-of-Speech Tagging  102 

A fully automated code compliance checking system could be an NLP-based system with an essential 103 

information extraction and transformation component. The information extraction and transformation 104 

component utilizes part-of-speech information as well as other syntactic/semantic information of building 105 

codes provisional sentences to convert building codes from natural language to computer-processable 106 

representations. POS tagging is about assigning the corresponding morphosyntactic category to each word 107 

in a sentence (Giménez and Marquez 2004). As an early step of the discussed automated code compliance 108 

checking system, POS tagging will cascade errors into later steps of the system (Dell’Orletta 2009) and 109 

jeopardize its final performance. An accurate POS tagging results of building codes is the foundation to 110 

support the high performance of the information extraction and transformation component and therefore 111 

the entire automated code compliance checking system.  112 
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POS categories of words are classes of words that share common features (Brill 1992). In general, there are 113 

eight basic POS categories in English, namely, noun, pronoun, verb, adjective, adverb, preposition, 114 

conjunction and interjection (Butte College 2016). However, a decent representation of text for further NLP 115 

analysis needs more than just eight POS tags. For example, singular noun and plural noun are usually 116 

separated into two different categories. Among the commonly used tagset, Universal tagset has 12 tags 117 

(Petrov et al. 2011), Penn Treebank tagset has 36 tags (Marcus et al. 1993), and Brown tagset has 179 tags 118 

(Francis and Kucera 1979). The authors decided to use Penn Treebank tagset because of its good balance 119 

between information richness and conciseness.  120 

There are multiple ways to get a textual corpus POS tagged. Human annotators can complete this task with 121 

their knowledge in English and understanding of the text. However, the high cost, low speed and human 122 

inconsistency make it rarely used in real-word applications. In contrast, POS tagging software, or POS 123 

taggers (will be called machine taggers hereafter) are usually used in NLP systems because of their fast 124 

tagging speed, low tagging cost, and free of human inconsistency. Machine taggers can tag a large amount 125 

of text in a short time without human interventions. The large amount of existing and upcoming building 126 

codes and frequent building codes updates require a machine POS tagging solution to support automated 127 

code compliance checking systems. POS taggers annotate texts according to rules or mathematical models. 128 

Correspondingly, there are two main types of machine POS taggers based on their corresponding annotation 129 

methodologies: rule-based POS taggers and machine learning POS taggers. These rules or models are either 130 

developed by humans or generated by algorithms.  131 

Rule-based Part-of-Speech Tagger 132 

Rule-based POS taggers decide POS tags of words based on a set of rules. Rules are designed to make POS 133 

tagging results of texts follow human-labeled results. These rules can be either hand-crafted by domain 134 

experts or generated by algorithms. Domain experts generate rules based on their understanding of English 135 
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grammar and the text being tagged. Rules can also be generated by algorithms. POS taggers with hand-136 

crafted rules are rarely used nowadays. They usually are not intended for practical use but rather for 137 

educational purposes. For example, Bird et al. (2009) introduced a rule-based tagger with hand-crafted rules 138 

for educational purpose. However, this tagger has a low accuracy and only slightly outperformed a baseline 139 

tagger that tagged all words as “NNS” (plural nouns) (Bird et al. 2009). Development of rule-based POS 140 

taggers stopped because they, even with thousands of hand-crafted rules, fail to reach a comparable 141 

accuracy to that of machine learning taggers. For example, the TAGGIT system contains more than 3,000 142 

hand-crafted rules and reached a 77% accuracy on Brown corpus (Greene and Rubin 1971), whereas the 143 

state-of-the-art machine taggers had an accuracy of 87.1% on Brown corpus which was much higher than 144 

the 77% accuracy achieved by TAGGIT (Li et al. 2012). However, rule-based POS tagger with algorithm-145 

generated rules can achieve a higher accuracy than rule-based POS taggers with hand-crafted rules (Bird et 146 

al. 2009). For example, Brill (Brill 1992) developed the Brill tagger with algorithm-generated rules and 147 

claimed his tagger’s performance “on par with stochastic taggers.”  148 

Machine Learning Part-of-Speech Tagger 149 

Classification is one main task that machine learning was designed for. POS tagging is a type of 150 

classification task, i.e., classifying words into different POS categories according to its context and English 151 

grammar. Machine learning taggers are built by training machine learning models on corpus of English 152 

texts. Different machine learning models can be used such as support vector machines (SVM), decision 153 

tree, hidden Markov model (HMM), and neural network.  154 

Methodology 155 

The authors propose to use transformational rules to address errors in the tagging results of general POS 156 

taggers (i.e., machine taggers trained on general English texts) on building codes to increase their accuracy 157 

on POS tagging of building codes. Instead of training a new POS tagger from scratch, improving existing 158 
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taggers can decrease the amount of annotated data needed, therefore save system development time and 159 

effort and potentially achieve higher POS tagging accuracy. The transformational rules are automatically 160 

generated by algorithms with no human intervention during the generation process execution. 161 

In this paper, the authors define errors in POS tagging as nonconformities between the machine-assigned 162 

POS tag of a word and that word’s human-labeled tag. For example, machine taggers make a POS tagging 163 

error by tagging the word “can” in the phrase “a steel can,” which is a noun, as an “auxiliary verb.” Errors 164 

are further grouped into types. A type of error subsumes all appearances of a word in the textual data that 165 

have the same correct POS tag and are given the same incorrectly assigned POS tag by machine taggers. 166 

For example, for all occurrences of the word “can” as a noun, machine taggers may correctly tag them as a 167 

noun or incorrectly tag them as a modal verb or verb. For the occurrences that machine taggers incorrectly 168 

tagged the word “can” as a verb, it is one type of error. For the occurrences that machine taggers incorrectly 169 

tagged the word “can” as a modal verb, it is a different type of error. The proposed method focuses on 170 

decreasing the overall occurrence of errors, not specific types of errors. However, knowing possible types 171 

of errors is helpful to identify sources of errors. Furthermore, POS tagging errors in building codes textual 172 

data show a long-tail distribution. That is, a few types of errors happen many times and most types of errors 173 

only happen few times. In fact, for 1,758 types of 31,495 errors in the authors’ data of POS tagged building 174 

code where errors were defined to be the difference between machine tagging results and manually created 175 

gold standard, the top 100 types occurred 20,338 times, which accounted for 64.58% of all errors (Xue and 176 

Zhang 2020). The uneven distribution of errors implies that a small number of fixes may eliminate a large 177 

portion of errors.  178 

Overview of the Method 179 

The authors’ proposed method divides textual data into two parts, training dataset and testing dataset. The 180 

proposed method has two main components, rule generation component, and rule application component. 181 
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The rule generation component uses rule templates to generate transformation rules. For example, “If the 182 

word B after the word A is tagged as X and the word A is tagged as Y, then change the tag of the word A 183 

to Z” is a rule template. All rules that are generated by the same template form a ruleset. This method allows 184 

users to input their customized templates to generate customized rulesets. The authors provided sample rule 185 

templates in the experiment section. The rule generation component generates rules from simple rulesets to 186 

complex rulesets, from uni-grams to n-grams, and from syntax to semantics. Before the development of 187 

each ruleset, the errors in the training set are collected and recorded. A process flowchart about error 188 

collection is shown in Figure 1. This process compares machine-generated tags of words and their 189 

corresponding human-labeled tags (from gold standard) in the training dataset, and records any word whose 190 

machine-generated tag is different from its human-labeled tag. If the machine-generated tag of the word 191 

“wood” is JJ (Adjective) and its human-labeled tag is NN (Noun), this method records the word “wood” is 192 

incorrectly tagged as JJ (Adjective) when it should be tagged as NN (Noun). This process is automatically 193 

and algorithmically performed by comparing the machine-assigned POS tag of a word and the human-194 

labeled POS tag (from gold standard) of the same word, and recording any discrepancy between them for 195 

later steps of this method. After the error collection process, the rule generation process begins. The rule 196 

extraction component collects contextual information of errors in the training dataset and converts them to 197 

candidate transformational rules according to the template of that ruleset, and filters out unqualified rules. 198 

This is also automatically performed without human intervention. The proposed method will collect POS 199 

tags of words before and after the target word as the contextual information of the collected error. Before 200 

the extraction of the next ruleset, rules in the previous ruleset are applied to the training text. After the 201 

completion of rule development, all rulesets are applied to the testing dataset to evaluate the performance 202 

of the developed rules. The method also records remaining errors after each ruleset is applied to the testing 203 

dataset. The steps of this method are shown in Figure 2. 204 

 205 
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 206 
Description of Transformational Rules 207 

The transformational rules fix POS tagging errors in the textual data. The POS tagging errors in the textual 208 

data are gathered by comparing machine tagging results of the textual data to the human-labeled gold 209 

standard. The rules store the word it matches and its contextual information, including semantic information 210 

(e.g., the word before the target word is “egress”) and syntax information [e.g., the POS tag of the word 211 

before the target word is NN (noun)]. The proposed method utilizes two types of rulesets: n-gram rulesets 212 

that consider n-grams information of words and remaining error rulesets that consider remaining errors in 213 

the text. Rules in the N-grams rulesets also need to meet the rule acceptance criterion, which states that 214 

rules are not allowed to introduce any new errors in the training set. 215 

N-grams Rulesets 216 

N-gram rulesets are developed through the contextual information of errors in the training data. This paper 217 

does not differentiate bi-gram rules from n-gram rules. The authors treated them unanimously as n-gram 218 

rules. For example, “If machine tagger tags the word before ‘pedestrian’ as a noun and tags the token 219 

‘pedestrian’ as an adjective, change POS tag of that prior word to adjective” is an n-gram rule. Each N-220 

gram rule represents a context in which a word only has one possible correct POS tag. The context may 221 

include the word itself, the machine-assigned POS tag of the word, and machine-assigned POS tags of the 222 

word before and after a word. 223 

Remaining Error Rulesets 224 

After all n-gram rulesets are applied to the training data, a special ruleset is generated by fixing the n most 225 

common errors remaining in the training data. The choice of n is arbitrary. This special ruleset is special 226 

because the generation of rules in this set needs information from the entire training dataset whereas the 227 

generation of n-gram rulesets only need information from one sentence. The rule of thumb is that the user 228 
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can choose a larger n when there are more errors in the training dataset compared to when there are less 229 

errors. Different values of n can be tested to optimize the performance. 230 

Rule Acceptance Test 231 

To eliminate any potential negative effects of transformational rules on the downstream tasks of the 232 

automated code compliance checking system, any n-gram rules cannot introduce any new error to the 233 

textual data. The remaining error ruleset does not need to comply with this requirement. The rule acceptance 234 

test ensures an n-gram rule will not introduce any new error by making sure that the word only has one 235 

correct POS tag in the context described in the rule. If the word has more than one correct POS tag in the 236 

same context, all rules using that context will be dropped. Although it is mathematically true that a rule that 237 

fixes more errors than it introduces can increase the level of accuracy, the errors it introduces may 238 

undermine the performance of downstream tasks of the automated code compliance checking system in an 239 

unexpected way and drive the entire system further away from the 100% recall goal. Therefore, if a rule 240 

introduces new errors to the training set, even if it resolves more errors than it introduced, it failed to meet 241 

the rule acceptance criterion and will be left out from the ruleset. This strict requirement may limit the 242 

number of transformational rules generated, but it ensures a monotonous improvement of the quality of 243 

extracted rules and the rulesets’ performance.  244 

Rule Generation  245 

The rule generation processes for each ruleset are similar. A general description of the rule generation 246 

procedure is shown in Figure 3. For each ruleset, the rule generation component collects contextual 247 

information of all errors and their corresponding human-labeled tags in the training dataset. In the second 248 

step, this component coverts collected information of each errors into candidate rules by deleting 249 

unnecessary contextual information. For example, if a rule only considers the POS tag of the word before 250 
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the target word, then only the target word, POS tag of the target word, and POS tag of the word before the 251 

target word will be kept and everything else in the target word’s context will be deleted.  252 

 253 
After that, all candidate rules need to undergo the rule acceptance test. This test clarifies the ambiguities in 254 

the textual data. One main challenge in POS tagging is that the same word may have different POS tags in 255 

different contexts. This test can ensure that the target word that a rule fixes only has one correct POS tag in 256 

the context described in the rule in the training dataset.  257 

There are two scenarios that may occur in the generation of rules: all occurrences of a type of error have 258 

the same contextual information or have different contextual information. If all occurrences of a type of 259 

error share the same contextual information, this method will generate one candidate rule to fix all 260 

occurrences of this type of error. The candidate rule can pass the rule acceptance test and be included. If 261 

the same contextual information led to different rules, however, this indicates that the contextual 262 

information used was inappropriate. The rule acceptance test will prevent such candidate rules from being 263 

used, by grouping candidate rules with the same contextual information together and comparing them. Two 264 

scenarios may occur in this comparison: a word only has one correct POS tag in this captured context or 265 

has different possible POS tags in this captured context. There is no ambiguity in the first scenario. 266 

Replacing the machine generated tag with the correct POS tag will not introduce new errors. For example, 267 

the word “provided” only has one correct tag VBG in the training dataset when the POS tag of the word 268 

after it is DT (i.e., the word is “that”) and it was incorrectly tagged by the machine taggers as VBN. In the 269 

second scenario, however, there is ambiguity. For example, the word “accessed” has two correct tags VBG 270 

and VBD in the training dataset, when it is incorrectly tagged by the machine taggers as VBN and the POS 271 

tag of the word after it is IN. Replacing the tag of “accessed” to either VBD or VBG entirely would 272 

introduce new errors, this indicates the captured context in this case (i.e., the POS tag of the word after it) 273 

is inappropriate and our method will not accept either rule in this scenario. Table 1 shows some example 274 
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sentences and candidate rules with regard to the above discussed scenarios. In this research, the authors 275 

adopted the widely used Penn Treebank POS tagset, which consists of 36 tags.  276 

 277 
The decrease in the total number of errors only indicates a rule solved more errors than it introduced. It 278 

cannot ensure that a rule introduces no new errors. To check that, a detailed comparison between training 279 

datasets before and after applications of each rule is necessary after the generation of every single rule. 280 

However, the large number of possible rules and the large amount of calculation involved in a full-text 281 

comparison will extend the rule generation time to impractically long. The rule acceptance test used in this 282 

method can substantially save time necessary to generate rules by comparing candidate rules to find 283 

potential conflicts which will then be used to prevent rules in conflict from being added and therefore reduce 284 

the amount of rules to add.  285 

Rule Application 286 

In the rule application process (Figure 4), the rule application component will apply transformational rules 287 

to the textual data and fix POS tagging errors. For each rule, the rule application component will search 288 

through the entire text and look for words whose contextual information matches that rule’s conditions. If 289 

a word’s contextual information was found to match that rule’s conditions, the rule application component 290 

will replace the machine-generated tag of that word with the predefined tag in the rule. After the generation 291 

of each ruleset, the developed ruleset is applied to the training dataset to prevent the rule application 292 

component from developing different rules that essentially fix the same error. After the generation of all 293 

rulesets, the rulesets are applied to the testing dataset as a whole.  294 

 295 

Experiment 296 

To test the performance of the proposed method on domain-specific data, the authors applied this method 297 

to the POS tagged building codes (PTBC) dataset (Xue and Zhang 2019). It contains 1,522 POS tagged 298 
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sentences from Chapters 5 and 10 of the 2015 International Building Codes (IBC). For each tagged sentence, 299 

the dataset provides machine generated and human labeled POS tags of every token. In the formation of the 300 

PTBC dataset, the authors collected textual data by obtaining the Portable Document Format (PDF) version 301 

of 2015 IBC and manually extracted building code text from Chapters 5 and 10. A group of seven state-of-302 

the-art machine taggers POS tagged the extracted texts. The seven selected POS taggers were: (1) the NLTK 303 

tagger (Loper and Bird 2002), (2) the spaCy tagger (Explosion 2015), (3) the Standford coreNLP tagger 304 

(Manning et al. 2014), (4) A Nearly-New Information Extraction System (ANNIE) tagger in the General 305 

Architecture for Text Engineering (GATE) tool (Cunningham 2002), (5) the Apache OpenNLP tagger 306 

(Kottmann et al. 2011), (6) the TreeTagger (Schmid et al. 2007), and (7) the RNNTagger (Schmid 2019). 307 

These taggers were chosen because they have high accuracy, are easy to use, and freely available. The most 308 

commonly chosen tag of each word in the extracted text by all the seven taggers formed the machine tagging 309 

results. The authors selected the Penn Treebank POS tagset because it was commonly used in various 310 

domains for NLP tasks and it is balanced between conciseness and informational richness. Five graduate 311 

students labeled textual data without access to others’ tagging results. All of them have proficiency in 312 

English and building domain knowledge to complete the tagging task, which ensures the quality of the 313 

textual data annotation. The mostly commonly chosen tag by them formed the gold standard of POS tagging 314 

of the textual data, with an inter-annotator agreement of 0.91.  315 

The PTBC dataset was split into the training data, which contains 80% of the original dataset, and the testing 316 

data, which contains the remaining 20% of the original dataset. In the experiment, text is stored in lists of 317 

tuples (Figure 5). Each sentence is a list of tuples and each tuple in the list stores the word itself, human 318 

generated tag of the word, and machine generated tag of the word. In this experiment, the authors used 319 

possible combinations of contextual information of mistakenly tagged words in the textual data, to generate 320 

templates that rule generation component can use to extract rules. In total, fourteen templates were used in 321 

the experiment. They are listed in Table 2. The rule generation component extracted rules in the same order.  322 
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 323 
 324 

This method was also tested on the freely accessible portion of the Penn Treebank Corpus in the Natural 325 

Language Toolkit (NLTK) to further evaluate the applicability of the proposed method. The authors used 326 

the NLTK tagger to tag the text and collected the machine tagging results. Gold standard POS tags of the 327 

available text provided by the Penn Treebank Corpus served as the target of transformation. This 328 

comparative experiment was conducted in the same way as the previous experiment on PTBC data. 329 

Experimental Results and Discussion 330 

In total, on the PTBC data, 899 rules were generated in 14 rulesets. All extracted rules, when combined, 331 

fixed 3,003 out of 3,013 errors in the training dataset and 764 out of 924 errors in the testing dataset. They 332 

increased the tagging accuracy in the training dataset from 90.49% to 99.97% and that in the testing dataset 333 

from 89.13% to 98.12%. This 98.12% accuracy in testing dataset is comparable to the performance of the 334 

state-of-the-art POS taggers on general English corpus. The first three rulesets, which used contexts 335 

represented by: (1) the target word itself, (2) POS tag of the word two positions before the target word, and 336 

(3) POS tag of the word two positions after the target word, contained 825 rules (92.80% of all rules). In 337 

total, these first three rulesets fixed 2,961 errors (98.27% of errors) in the training dataset and 741 errors 338 

(80.19% of errors) in the testing dataset. 339 

Accuracy of POS tagging both in the training dataset and in the testing dataset increased after application 340 

of the transformation rules. Before application of any transformational rules, the training dataset had an 341 

accuracy of 90.49% and the testing dataset had an accuracy of 89.13%. After all rulesets were applied, the 342 

training dataset achieved an accuracy of 99.97% and the testing dataset achieved an accuracy of 98.12%. 343 

The overall reduction of errors in the training set was 99.67% and that in the testing set was 82.68%. The 344 

most significant increase in accuracy happened after the application of the first and second rulesets. After 345 

the first ruleset was applied, accuracy in the training dataset increased from 90.49% to 97.60% and that in 346 
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the testing dataset increased from 89.13% to 95.78%. After the second ruleset was applied, accuracy in the 347 

training dataset increased from 97.60% to 99.11% and that in the testing dataset increased from 95.78% to 348 

97.29%. The number of errors and accuracy after application of each ruleset is provided in Table 3. 349 

 350 
The authors recorded the number of errors each rule fixed to evaluate effectiveness of the generated rules. 351 

Ten rules that fixed the most errors fixed 52.34% errors in the training dataset and 38.10% errors in the 352 

testing dataset, respectively. This distribution confirms the authors’ prediction that a small group of rules 353 

can fix a large number of errors. Nine out of ten most frequently applied rules in the training dataset are 354 

uni-gram rules and that in the testing dataset is ten out of ten. This distribution shows that simple rules are 355 

more frequently applied than complex rules. It may not be necessary to generate over-complex rules in 356 

increasing POS tagging accuracy. 357 

In the development of this method, the authors attempted to lemmatize word in text before the generation 358 

of transformational rules. The authors assumed that mapping multiple words to their common lemmatized 359 

form would improve the coverage of error cases. However, this generalization did not improve the 360 

performance and therefore the authors abandoned this technique. Word lemmatization actually caused a 361 

slight decrease in the number of extracted rules in all rulesets (i.e., 1.57% decrease on average). It is possible 362 

that mapping multiple forms of a word to one may have harmed the diversity of contextual information 363 

representation. With less fine-grained contextual information representation, it is harder to pinpoint 364 

contextual scenarios that only has one correct POS tag for a target word. The authors concluded that word 365 

lemmatization did not bring benefit to the proposed method. 366 

This research also included a comparative study that applied the proposed method to improve NLTK POS 367 

tagger’s performance on Penn Treebank Corpus. This cross-comparison provides a useful benchmark for 368 

other researchers to compare this method’s performance on general English. In the processing of the Penn 369 

Treebank Corpus, the authors noticed that a none negligible amount of words in Penn Treebank Corpus, 370 
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which do not belong to any Penn Treebank POS tagset, were tagged as ‘-none-’. Pre-processing Penn 371 

Treebank Corpus is a possible way to eliminate this ‘-none-’ tag. However, solving this issue is out of the 372 

scope of this paper. The authors decided to use the Penn Treebank Corpus and the NLTK tagging results in 373 

this method as is. The authors divided the Penn Treebank Corpus into a training dataset and a testing dataset 374 

with an 80/20 split. NLTK tagger tagged 89.28% of words in the training dataset correctly and 89.37% of 375 

words in the testing dataset correctly. The proposed method then increased the accuracy of NLTK tagger 376 

to 99.96% on the training dataset and to 96.47% in the testing dataset. This increase in accuracy indicates 377 

that the proposed method has the ability of improving the POS tagging accuracy of general English as well. 378 

Discussion 379 

Due to the specific type of texts covered in this research, the authors suggest that transformational rules 380 

should only be applied to texts that are in the target domain. A major potential risk is that transformational 381 

rules may introduce errors to the tagging results. This risk is eliminated by the rule acceptance test. This 382 

constraint can push the machine labeled result unidirectionally to the human labeled result. 383 

Research interests of the authors require them to use the PTBC dataset, which is not used by other research 384 

currently. This method may overfit this particular dataset and lacks the ability to boost tagging accuracy of 385 

POS taggers, which are trained on general English, on general English. The authors conducted a 386 

comparative study to address this concern. They used this to boost the performance of Natural Language 387 

Toolkit (NLTK) tagger on the part of Penn Treebank Corpus that were readily available in NLTK (Loper 388 

and Bird 2002).  389 

This method does not address unknown words. It requires a word to exist in the training set to generate 390 

transformational rules for it. This limitation, however, should not significantly influence the performance 391 

of the transformational rules, because generated rules are only to be applied to the text in the target domain 392 

(e.g., building codes), in which the rate of unknow words is expected to be low. The stringent format of the 393 
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transformational rules in the proposed method, while effectively induced rules to improve POS tagging 394 

results, may introduce counter-intuitive tagging results. To alleviate that, future work may look into 395 

different representations of the fixes (e.g., tokens’ roles) in addition to their original POS tags. In addition, 396 

the authors only tested their method on the commonly adopted Penn Tree bank tag set, how this method 397 

will perform when using other tag set will need to be investigated in the future work.   398 

Contributions to the Body of Knowledge 399 

This research presents a new way to get domain specific English texts POS tagged accurately when there 400 

is no POS tagger trained on that domain, by transformational rules. The proposed method can alleviate 401 

problems such as, (1) the lack of POS taggers that are trained on domain specific English texts, (2) the 402 

performance drop of general POS taggers on domain-specific texts, and (3) the high cost of developing a 403 

large domain specific corpus needed in training domain-specific POS taggers. This method provides a 404 

possible way for future researchers to get reliable POS tagged text in a selected domain without the need 405 

of a specialized POS tagger. The authors discovered that simple unigram and bigram rules resolved most 406 

errors. Word lemmatization did not bring observable benefit to this method. For future application of this 407 

method, development time could be saved by avoiding over-complicated rulesets and word lemmatization.  408 

Secondly, this research proves that it is possible to boost the performance of POS taggers that are trained 409 

on general English texts on domain specific English texts with a small set of algorithmically generated rules. 410 

The authors use building codes as an example. These rules can increase the accuracy of POS taggers on 411 

building codes from 89.13% to 98.12% with 898 rules. This significant improvement is achieved by using 412 

a small set of labeled data. The fact that all rulesets transform machine-generated POS tags of words uni-413 

directionally to their human-annotated tags proved the validity of the rule acceptance criterion. In addition, 414 

the increase in the accuracy in the testing dataset after the application of the last ruleset supports its 415 

exemption from the rule acceptance criterion.  416 
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Thirdly, the rules generated in this research can be used to increase the accuracy of POS tagging results on 417 

building codes. If interested researchers use one of the POS taggers tested, they can directly apply our 418 

developed rulesets to improve the POS tagging results/performance on building codes. The potential risk 419 

of introducing more errors were alleviated by the constraint applied when the rules were derived. This 420 

method does not need experts to generate new rules to be adapted to new domains, but it needs experts to 421 

annotate some training data as gold standard. Last but not least, this method is also applicable to general 422 

English. With a small amount of human-labeled data, it can boost the accuracy of POS taggers that are 423 

trained on general English, on general English.  424 

Conclusions 425 

This paper presented a new method to increase the accuracy of POS taggers, that were trained on general 426 

English texts, on building codes by using error-driven transformational rules. The authors developed an 427 

algorithm to generate these rules and tested the algorithm on PTBC data. The experiment shows this method 428 

can increase the POS tagging accuracy on building codes from 89.13% to 98.12%. A comparative test on 429 

NLTK and Penn Treebank Corpus shows that the proposed method can also increase the POS tagging 430 

accuracy on general English texts. 431 

Data Availability 432 

Some or all data, models, or code generated or used during the study are available in a repository or online 433 

in accordance with funder data retention policies. 434 

1. Xue, X., Zhang, J. (2019). Part-of-Speech Tagged Building Codes (PTBC). Purdue University 435 

Research Repository. doi:10.4231/Y0ZQ-4946.URL: https://purr.purdue.edu/publications/3246/1)  436 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://purr.purdue.edu/publications/3246/1
https://purr.purdue.edu/publications/3246/1
https://purr.purdue.edu/publications/3246/1


Final published version is found in the ASCE Library here: 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917  

Xue, X., and Zhang, J. (2020). “Building codes Part-of-Speech tagging performance 

improvement by error-driven transformational rules.” J. Comput. in Civ. Eng., 34(5), 04020035. 

 

20 

 

Acknowledgement 437 

The authors would like to thank the National Science Foundation (NSF). This material is based on work 438 

supported by the NSF under Grant No. 1827733. Any opinions, findings, and conclusions or 439 

recommendations expressed in this material are those of the authors and do not necessarily reflect the views 440 

of the NSF. 441 

Reference 442 

Alghamdi, A., Sulaiman, M., Alghamdi, A., Alhosan, M., Mastali, M., and Zhang, J. (2017). “Building 443 

accessibility code compliance verification using game simulations in virtual reality.” Computing in 444 

Civil Engineering 2017, 262-270. 445 

Bell, H., Bjorkhaug, L., and Hjelseth, E. (2009). “Standardized computable rules.” National Office of 446 

Building Technology and Administration and Statsbygg, Oslo, Norway. 447 

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python: analyzing text with the 448 

natural language toolkit, O'Reilly Media, Inc. 449 

Brill, E. (1992). “A simple rule-based part of speech tagger.” Proc., Proceedings of the third conference on 450 

Applied natural language processing, Association for Computational Linguistics, 152-155. 451 

Butte College (2016). “The eight parts of speech.” 452 

<http://www.butte.edu/departments/cas/tipsheets/grammar/parts_of_speech.html>. (Sep 11st, 453 

2019). 454 

Ching, F. D., and Winkel, S. R. (2018). Building Codes Illustrated: A Guide to Understanding the 2018 455 

International Building Code, John Wiley & Sons. 456 

Choi, J., and Kim, I. (2017). A Methodology of Building Code Checking System for Building Permission 457 

based on openBIM. 458 

Chollet, F. (2017). Deep Learning with Python, Manning Publications Co. 459 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917


Final published version is found in the ASCE Library here: 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917  

Xue, X., and Zhang, J. (2020). “Building codes Part-of-Speech tagging performance 

improvement by error-driven transformational rules.” J. Comput. in Civ. Eng., 34(5), 04020035. 

 

21 

 

City of Chicago (2019). “Chicago construction codes.” 460 

<https://www.chicago.gov/city/en/depts/bldgs/provdrs/bldg_code/svcs/chicago_buildingcodeonli461 

ne.html>. (Sep 11st, 2019). 462 

City of El Cajon Community Development Department (2019). “Fire permits.” 463 

<https://www.cityofelcajon.us/your-government/departments/community-development/building-464 

fire-safety-division/fire-permits>. (Sep 11st, 2019). 465 

City of San Clemente (2019). “Ordinance No. 1668.”San Clement, California. 466 

City of Savannah (2019). “Building permit process flow chart.” 467 

<https://www.savannahga.gov/DocumentCenter/View/3065/Building-Permit-Process-Flow-468 

Chart?bidId=>. (Sep 11st, 2019). 469 

Cunningham, H. (2002). “GATE, a general architecture for text engineering.” Computers and the 470 

Humanities, 36(2), 223-254. 471 

Delis, E. A., and Delis, A. (1995). “Automatic fire-code checking using expert-system technology.” Journal 472 

of computing in civil engineering, 9(2), 141-156. 473 

Dell’Orletta, F. (2009). “Ensemble system for part-of-Speech tagging.” Proceedings of EVALITA, 9, 1-8. 474 

Dimyadi, J., and Amor, R. (2013). “Automated building code compliance checking–where is it at.” 475 

Proceedings of CIB WBC, 6. 476 

Dimyadi, J., Clifton, C., Spearpoint, M., and Amor, R. (2016). “Computerizing regulatory knowledge for 477 

building engineering design.” Journal of Computing in Civil Engineering, 30(5), C4016001. 478 

Eastman, C., Lee, J.m., Jeong, Y.s., and Lee, J.k. (2009). “Automatic rule-based checking of building 479 

designs.” Automation in construction, 18(8), 1011-1033. 480 

Explosion, A. (2015). “Industrial-strength natural language processing.” Train. named entity recognizer. 481 

Fenves, S. J. (1966). “Tabular decision logic for structural design.” Journal of the Structural Division, 92(6), 482 

473-490. 483 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917


Final published version is found in the ASCE Library here: 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917  

Xue, X., and Zhang, J. (2020). “Building codes Part-of-Speech tagging performance 

improvement by error-driven transformational rules.” J. Comput. in Civ. Eng., 34(5), 04020035. 

 

22 

 

Francis, W. N., and Kucera, H. (1979). “Brown Corpus Manual.” 484 

Garrett, J. H., and Fenves, S. J. (1987). “A knowledge-based standards processor for structural component 485 

design.” Engineering with Computers, 2(4), 219-238. 486 

Gero, J. S. (1990). “Design prototypes: a knowledge representation schema for design.” AI magazine, 11(4), 487 

26-26. 488 

Giménez, J., and Marquez, L. (2004). “Fast and accurate part-of-speech tagging: The SVM approach 489 

revisited.” Recent Advances in Natural Language Processing III, 153-162. 490 

Greene, B. B., and Rubin, G. M. (1971). Automatic Grammatical Tagging of English, Department of 491 

Linguistics, Brown University. 492 

İlal, S. M., and Günaydın, H. M. (2017). “Computer representation of building codes for automated 493 

compliance checking.” Automation in Construction, 82, 43-58. 494 

Kottmann, J., Margulies, B., Ingersoll, G., Drost, I., Kosin, J., Baldridge, J., Goetz, T., Morton, T., Silva, 495 

W., and Autayeu, A. (2011). “Apache opennlp.” Online (May 2011), www. opennlp. apache. org. 496 

Lee, Y.C., Ghannad, P., Shang, N., Eastman, C., and Barrett, S. (2018). “Graphical scripting approach 497 

integrated with speech recognition for bim-based rule checking.” Construction Research Congress 498 

2018, 262-272. 499 

Li, S., Cai, H., and Kamat, V.R. (2016). “Integrating natural language processing and spatial reasoning for 500 

utility compliance checking.” Journal of Construction Engineering and Management, 142(12), 501 

04016074. 502 

Li, S., Graça, J. V., and Taskar, B. (2012). “Wiki-ly supervised part-of-speech tagging.” Proc., Proceedings 503 

of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and 504 

Computational Natural Language Learning, Association for Computational Linguistics, 1389-505 

1398. 506 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917


Final published version is found in the ASCE Library here: 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917  

Xue, X., and Zhang, J. (2020). “Building codes Part-of-Speech tagging performance 

improvement by error-driven transformational rules.” J. Comput. in Civ. Eng., 34(5), 04020035. 

 

23 

 

Liao, S.H. (2005). “Expert system methodologies and applications—a decade review from 1995 to 2004.” 507 

Expert systems with applications, 28(1), 93-103. 508 

Loper, E., and Bird, S. (2002). “NLTK: the natural language toolkit.” arXiv preprint cs/0205028. 509 

Lopes, R., Bedwell, M., Stromberg, V., and Gottlieb, A. (2011). “Changing your hvac system? Don’t 510 

forget permits.” <https://ww2.energy.ca.gov/title24/2013standards/changeout/documents/2011-511 

11-16_CSLB_News_Release_HVAC_Permits.pdf>. (Sep 11st, 2019). 512 

Lopez, L., Elam, S., and Reed, K. (1989). “Software concept for checking engineering designs for 513 

conformance with codes and standards.” Engineering with computers, 5(2), 63-78. 514 

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. (2014). “The Stanford 515 

CoreNLP natural language processing toolkit.” Proc., Proceedings of 52nd annual meeting of the 516 

association for computational linguistics: system demonstrations, 55-60. 517 

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993). “Building a large annotated corpus of English: 518 

The Penn Treebank.” 519 

Nguyen, T.H., and Kim, J.L. (2011). “Building code compliance checking using BIM technology.” Proc., 520 

Proceedings of the 2011 Winter Simulation Conference (WSC), IEEE, 3395-3400. 521 

Petrov, S., Das, D., and McDonald, R. (2011). “A universal part-of-speech tagset.” arXiv preprint 522 

arXiv:1104.2086. 523 

Preidel, C., and Borrmann, A. (2017). “Refinement of the visual code checking language for an automated 524 

checking of building information models regarding applicable regulations.” Computing in Civil 525 

Engineering 2017, 157-165. 526 

Sabouni, A., and Al-Mourad, O. (1997). “Quantitative knowledge based approach for preliminary design 527 

of tall buildings.” Artificial intelligence in Engineering, 11(2), 143-154. 528 

Sacks, R., Bloch, T., Katz, M., and Yosef, R. (2019). “Automating design review with artificial intelligence 529 

and bim: state of the art and research framework.” Computing in Civil Engineering 2019, 353-360. 530 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917


Final published version is found in the ASCE Library here: 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917  

Xue, X., and Zhang, J. (2020). “Building codes Part-of-Speech tagging performance 

improvement by error-driven transformational rules.” J. Comput. in Civ. Eng., 34(5), 04020035. 

 

24 

 

Schmid, H. (2019). “Deep learning-based morphological taggers and lemmatizers for annotating historical 531 

texts.” Proc., Proceedings of the 3rd International Conference on Digital Access to Textual 532 

Cultural Heritage, ACM, 133-137. 533 

Schmid, H., Baroni, M., Zanchetta, E., and Stein, A. (2007). “The enriched treetagger system.” Proc., 534 

proceedings of the EVALITA 2007 workshop. 535 

Song, J., Kim, J., and Lee, J.K. (2018). “NLP and deep learning-based analysis of building regulations to 536 

support automated rule checking system.” Proc., ISARC. Proceedings of the International 537 

Symposium on Automation and Robotics in Construction, IAARC Publications, 1-7. 538 

State of California, D. o. I. R. (2016). “Elevator permits.” 539 

<https://www.dir.ca.gov/dosh/ElevatorPermits.html>. (Sep 11st, 2019). 540 

Tan, X., Hammad, A., and Fazio, P. (2010). “Automated code compliance checking for building envelope 541 

design.” Journal of Computing in Civil Engineering, 24(2), 203-211. 542 

UK BIM Task Group (2016). “BIM level 2 frequently asked questions.” <https://bim-level2.org/en/faqs/>. 543 

(Sep 11st, 2019). 544 

Xu, X., and Cai, H. (2020). “Semantic approach to compliance checking of underground utilities.” 545 

Automation in Construction, 109, 103006. 546 

Xue, X., and Zhang, J. (2020). “Evaluation of eight part-of-speech taggers in tagging building codes: 547 

identifying the best performing tagger and common sources of errors.” Proc., The ASCE 548 

Construction Research Congress 2020, ASCE, Reston, VA.  549 

Xue, X., Zhang, J. (2019). “Part-of-speech tagged building codes (PTBC).” Purdue University Research 550 

Repository. doi:10.4231/Y0ZQ-4946.  551 

Zhang, J., and El-Gohary, N. M. (2015). “Automated information transformation for automated regulatory 552 

compliance checking in construction.” Journal of Computing in Civil Engineering, 29(4), 553 

B4015001. 554 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CP.1943-5487.0000917
https://doi.org/10.4231/Y0ZQ-4946
https://doi.org/10.4231/Y0ZQ-4946


Final published version is found in the ASCE Library here: 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917  

Xue, X., and Zhang, J. (2020). “Building codes Part-of-Speech tagging performance 

improvement by error-driven transformational rules.” J. Comput. in Civ. Eng., 34(5), 04020035. 

 

25 

 

Zhang, J., and El-Gohary, N. M. (2017). “Integrating semantic NLP and logic reasoning into a unified 555 

system for fully-automated code checking.” Automation in Construction, 73, 45-57. 556 

 557 

 558 

 559 

Tables 560 

Table 1. Candidate Rules with and without Conflict 561 
Scenario Sentence Candidate Rule 

Without 

Conflict  

The occupant load permitted in any building, or portion 

thereof, is permitted to be increased from that number 

established for the occupancies in Table 10, provided 

(Manual tag: VBG; Machine tag: VBN) that (DT) all 

other requirements of the code are met based on such 

modified number and the occupant load does not exceed 

one occupant per 7 square feet of occupiable floor space. 

If the word that is one position 

after the word “provided” is 

tagged as DT and the word 

“provided” is tagged as VBN, 

then change the tag of the word 

“provided” to VBG. 

For auditoriums, theaters, concert or opera halls and 

similar assembly occupancies, the illumination at the 

walking surface is permitted to be reduced during 

performances by one of the following methods provided 

(Manual tag: VBG; Machine tag: VBN) that (DT) the 

required illumination is automatically restored upon 

activation of a premises’ fire alarm system. 

If the word that is one position 

after the word “provided” is 

tagged as DT and the word 

“provided” is tagged as VBN, 

then change the tag of the word 

“provided” to VBG. 

With 

Conflict  

Areas of refuge are not required for stairways accessed 

(Manual tag: VBG; Machine tag: VBN) from (IN) a 

refuge area in conjunction with a horizontal exit. 

If the word that is one position 

after the word “accessed” is 

tagged as IN and the word 

“accessed” is tagged as VBN, 

then change the tag of the word 

“accessed” to VBG. 

Such open space shall be either on the same lot or 

dedicated for public use and shall be accessed (Manual 

tag: VBD; Machine tag: VBN) from (IN) a street or 

approved fire lane. 

If the word that is one position 

after the word “accessed” is 

tagged as IN and the word 

“accessed” is tagged as VBN, 

then change the tag of the word 

“accessed” to VBD. 
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Table 2. Transformational Rulesets in the Experiment 573 
Ruleset Description 

1 If the word A is tagged as X, then change the tag X to Y. 

2 If the word that is one position before the word A is tagged as X and the word A is 

tagged as Y, then change the tag of the word A to Z. 

3 If the word that is one position after the word A is tagged as X and the word A is 

tagged as Y, then change the tag of the word A to Z. 

4 If the word that is one position before the word A is word B and the word A is 

tagged as X, then change the tag of the word A to Y. 

5 If the word that is one position after the word A is word B and the word A is tagged 

as X, then change tag of the word A to Y. 

6 If the word that is one position after the word A is tagged as X and the tag of the 

word that is two positions after word A is Y and the word A is tagged as Z, then 

change the tag of the word to W. 

7 If the word that is one position after the word A is tagged as X and the tag of the 

word that is two positions after word A is Y and the word A is tagged as Z, then 

change the tag of the word A to W. 

8 If the word one position before the word A is B, the word two positions before the 

word A is C, and the word A is tagged as X, then change the tag of word A to Y. 

9 If the word one position after the word A is B, the word two positions after the 

word A is C, and the word A is tagged as X, then change the tag of the word A to 

Y. 

10 If the tag of the word that is two positions after word A is X and the word is tagged 

as Y, then change the tag of the word A to Z. 

11 If the tag of the word that is two positions before word A is X and the word is 

tagged as Y, then change the tag of the word A to Z. 

12 If the word that is two positions after the word A is B and the word A is tagged as 

X, then change the tag of the word A to Y. 

13 If the word that is two positions before the word A is B and the word A is tagged as 

X, then change the tag of the word A to Y. 

14 Fix five most common errors remaining in the training set. 
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Table 3. POS Tagging Accuracy After Applying Each Ruleset 584 

Ruleset 
Training Dataset Testing Dataset 

Number of Errors Accuracy Number of Errors Accuracy 

1 759 97.60% 359 95.78% 

2 282 99.11% 230 97.29% 

3 142 99.55% 183 97.85% 

4 91 99.71% 176 97.93% 

5 80 99.75% 176 97.93% 

6 36 99.89% 167 98.03% 

7 36 99.89% 167 98.03% 

8 29 99.91% 165 98.06% 

9 29 99.91% 165 98.06% 

10 29 99.91% 165 98.06% 

11 29 99.91% 165 98.06% 

12 29 99.91% 165 98.06% 

13 29 99.91% 165 98.06% 

14 10 99.97% 160 98.12% 
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