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Abstract

To enable full automation, automated code compliance checking systems need {to-extract regulatory
information in building codes and convert it to computable representations. This conversion is a natural
language processing (NLP) task that requires highly accurate part-of-speech (POS) tagging results on
building codes. Existing POS taggers, however, do not provide such accuracy on building codes. To address
this need, the authors propose to improve the performance of POS taggers by error-driven transformational
rules that revise machine tagged POS results. The proposed method utilizes a syntactic and semantic rule-
based, NLP approach combined with a structure that is inspired by transfer learning. This method generates
a group of transformational rulesets, from simple ones to complex ones, that will convert machine taggers’
tagging results to their corresponding human-labeled gold standard. The transformational rules utilize
syntactic and semantic information of domain texts. All rules are constrained not to introduce any errors
when fixing existing errors of machine taggers. The last ruleset, which fixes most common remaining errors
in textual data after all other rules are applied, is exempted from this constraint. An experimental testing on
Part-of-Speech Tagged Building Codes (PTBC) data shows this method reduced 78.91% of errors in POS
tagging results of building codes, which increased the POS tagging accuracy on building codes from 89.13%

to 98.12%.
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Introduction

Traditional manual building code compliance checking methods have several limitations, such/as (1) a
lengthy review process, (2) a high cost, and (3) error-prone results (Alghamdi et al. 2017; Lee et al. 2018;
Preidel and Borrmann 2017; Sacks et al. 2019). It remains a paper-based, manual, and non-standardized
process that requires constant human attention and inputs. A traditional building plan review process begins
with the building permit applicant submitting a range of hard copy documents;.including all the drawings,
specifications, documentations and contracts of a project, and a plan review fee, to a building authority.
Any mistakes or omissions in the submitted building plans will cause the submission returned to the
applicant with requests for revision or additional information. The applicant needs to respond to this request
within a certain time frame. The building authority-reviews the response and checks the updated building
plans. This process may last several weeks or'several months until the building authority issues a building
permit (City of Savannah 2019). For example, in San Clemente, California, this process can last 120 days
for accessory dwelling units (City of San Clemente 2019). Not limited to the building itself, many sub-
systems or components of a building require sperate reviews and permissions, such as heating, ventilation,
and air conditioning (HVAC) systems (Lopes et al. 2011), fire alarm systems (City of EI Cajon Community
Development Department 2019), and elevators (State of California 2016), which may further increase the
cost and time to obtain building permits. The time and cost needed to obtain building permits also increase
with: the complexity of modern construction projects (City of Chicago 2019). At the same time, local
governments’ diverse adaptation of buildings codes (Ching and Winkel 2018) further increases

complexities in code compliance. The demand of innovative code compliance checking systems rises.
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Background

Automated Code Compliance Checking

To address the increasing demand in building permits, many researchers and industry experts introduced
new methods of code compliance checking. Their efforts focus on making code compliance, checking
paperless, automated and standardized. The structural design checking using decision table (Fenves 1966)

was one of the first efforts in this domain (ilal and Giinaydin 2017), which led to many attempts to create

expert systems for building codes in the 1980s (Dimyadi and Amor 2013), such as the Standard Interface
for Computer Aided Design (SICAD) (Lopez et al. 1989), the Standards Processing Expert (SPEX) (Delis
and Delis 1995; Garrett and Fenves 1987), and the Design Prototypes (Gero 1990). However, low
performance and high maintenance cost of expert systems in the 1980s limited these attempts only to proofs
of concepts with a lack of actual implementations. An expert system, which uses a vast body of domain-
specific knowledge stored in a computer (Liao 2005), has limitations such as high maintenance cost,
difficulty in scalability, and the narrow range of,applications (Chollet 2017). These forerunners’ efforts
gave birth to more recent code compliance checking expert systems, such as BCAider and DesignCheck,
in early 2000s (Dimyadi and Amor 2013). In addition, there were expert systems that focused on building
codes in a specific domain or ‘a’limited range of domains in 1980s and 1990s. For example, the Fire-Code
Analyzer (Delis and Delis 1995) focused on fire protection related codes in New Zealand, the Life Safety
Code Advisor focused on National Fire Protection Association (NFPA) safety code in the U.S., and the

TALLEX (Sabouni and Al-Mourad 1997) focused on tall buildings in the United Arab Emirates (UAE).

In the 2000s, building information modeling (BIM) dramatically changed the way code compliance systems
work by providing a reliable digital representation of buildings (Nguyen and Kim 2011). For example,
Solibri Model Checker (SMC) started as a BIM validation tool, and it obtained code compliance checking

ability in its later updates (Eastman et al. 2009). Singapore government initiated the Construction and Real
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Estate Network (CORENET) project, which allows BIM model, instead of papers, to be submitted for plan
review. The UK government started to require submissions of BIM for all public projects that are funded
by the British Central Government from 2016 (UK BIM Task Group 2016). The KBimCode in South Korea
was capable of code compliance checking of BIM against building codes, but it needs manual efforts to

convert building codes from natural language to a computer-processable format (Choi and Kim 2017).

Gap in Existing Information Extraction Systems

With BIM as a reliable digital representation of buildings, code compliance checking systems made great
progress over the last two decades. However, they are still far from a wide real-world deployment. In many
current automated code compliance systems, information extraction and information transformation rely on
domain experts’ manual efforts to convert building codes to a.computer-processable format, such as
decision tables (Tan et al. 2010), regulatory knowledge model (Dimyadi et al. 2016), and structured

regulatory information rulesets (ilal and Giinaydin.2017).

Based on existing literature, current code ‘compliance checking systems lack automated regulatory
information extraction and transformation:capabilities. By drafting building codes in computer-checkable
logic clauses or rulesets instead. of natural language, code compliance checking systems can bypass the
needed information extraction'and transformation step and achieve full automation in an alternative way.
However, such a dramatic shift is not expected in a foreseeable future (Bell et al. 2009; Li et al. 2012). In
addition, the large size of existing building codes creates further challenges in achieving such a transition.
In the U.S., local jurisdictions usually apply customizations and modifications to standard codes published
by the international code council (ICC), which further contribute to the complexity of the body of building
codes. Automated information extraction and transformation are necessary for automated code compliance
systems to function on existing as well as forthcoming building code versions. Some researchers proposed

sematic analysis of building codes through deep learning for information extraction, but the extracted
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information failed to convert to checkable rules (Song et al. 2018). Pattern matching-based natural language
processing method, on the other hand, can generate logic clauses through information extraction and
transformation with a high accuracy (Zhang and El-Gohary 2015; Li et al. 2016; Xu and Cai 2020). The
pattern matching-based method of Zhang and El-Gohary (2015) can convert natural language provisions to
logic clauses, and their entire automated code compliance checking method reached a 98.7% recall and
87.6% precision in non-compliance detection (Zhang and El-Gohary 2017). However, to/enable-real-world
applications, the recall must be improved to 100%. The main sources of errors reported by Zhang and El-
Gohary (2017) were of two types: limitations of the extraction and transformation,rules, and limitations of
the state-of-the-art POS taggers’ performance on building codes. Reducing/eliminating such errors were
expected to further improve the overall non-compliance detection performance. In this paper, the authors
focus on addressing the performance of the state-of-the-art POS taggers on building codes, because the

extraction and transformation rules use the POS tagging information and therefore rely on its performance.

Part-of-Speech Tagging

A fully automated code compliance checking system could be an NLP-based system with an essential
information extraction and transformation component. The information extraction and transformation
component utilizes part-of-speech information as well as other syntactic/semantic information of building
codes provisional sentences to convert building codes from natural language to computer-processable
representations. POS tagging is about assigning the corresponding morphosyntactic category to each word

in a sentence (Giménez and Marquez 2004). As an early step of the discussed automated code compliance

checking system, POS tagging will cascade errors into later steps of the system (Dell’Orletta 2009) and
jeopardize its final performance. An accurate POS tagging results of building codes is the foundation to
support the high performance of the information extraction and transformation component and therefore

the entire automated code compliance checking system.
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POS categories of words are classes of words that share common features (Brill 1992). In general, there are
eight basic POS categories in English, namely, noun, pronoun, verb, adjective, adverb, preposition,
conjunction and interjection (Butte College 2016). However, a decent representation of text for further NLP
analysis needs more than just eight POS tags. For example, singular noun and plural noun are usually
separated into two different categories. Among the commonly used tagset, Universal tagset has 12 tags
(Petrov et al. 2011), Penn Treebank tagset has 36 tags (Marcus et al. 1993), and Brown tagscthas 179 tags
(Francis and Kucera 1979). The authors decided to use Penn Treebank tagset because of its good balance

between information richness and conciseness.

There are multiple ways to get a textual corpus POS tagged. Human anneotators can complete this task with
their knowledge in English and understanding of the text. However, the high cost, low speed and human
inconsistency make it rarely used in real-word applications. In contrast, POS tagging software, or POS
taggers (will be called machine taggers hereafter) are usually used in NLP systems because of their fast
tagging speed, low tagging cost, and free of human inconsistency. Machine taggers can tag a large amount
of text in a short time without human interventions. The large amount of existing and upcoming building
codes and frequent building codes updates require a machine POS tagging solution to support automated
code compliance checking systems. POS taggers annotate texts according to rules or mathematical models.
Correspondingly, there are two'main types of machine POS taggers based on their corresponding annotation
methodologies: rule-based POS taggers and machine learning POS taggers. These rules or models are either

developed by humans or generated by algorithms.

Rule-based Part-of-Speech Tagger

Rule-based POS taggers decide POS tags of words based on a set of rules. Rules are designed to make POS
tagging results of texts follow human-labeled results. These rules can be either hand-crafted by domain

experts or generated by algorithms. Domain experts generate rules based on their understanding of English
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grammar and the text being tagged. Rules can also be generated by algorithms. POS taggers with hand-
crafted rules are rarely used nowadays. They usually are not intended for practical use but rather for
educational purposes. For example, Bird et al. (2009) introduced a rule-based tagger with hand-crafted rules
for educational purpose. However, this tagger has a low accuracy and only slightly outperformed a baseline
tagger that tagged all words as “NNS” (plural nouns) (Bird et al. 2009). Development of rule-based POS
taggers stopped because they, even with thousands of hand-crafted rules, fail to reach a:comparable
accuracy to that of machine learning taggers. For example, the TAGGIT system contains more than 3,000
hand-crafted rules and reached a 77% accuracy on Brown corpus (Greene and Rubin 1971), whereas the
state-of-the-art machine taggers had an accuracy of 87.1% on Brown.corpus which was much higher than
the 77% accuracy achieved by TAGGIT (Li et al. 2012). Howeyer, rule-based POS tagger with algorithm-
generated rules can achieve a higher accuracy than rule-based POS taggers with hand-crafted rules (Bird et
al. 2009). For example, Brill (Brill 1992) developed the Brill tagger with algorithm-generated rules and

claimed his tagger’s performance “on par with stochastic taggers.”

Machine Learning Part-of-Speech Tagger

Classification is one main task that machine learning was designed for. POS tagging is a type of
classification task, i.e., classifying words into different POS categories according to its context and English
grammar. Machine learning taggers are built by training machine learning models on corpus of English
texts. Different machine learning models can be used such as support vector machines (SVM), decision

tree, hidden Markov model (HMM), and neural network.

Methodology

The authors propose to use transformational rules to address errors in the tagging results of general POS
taggers (i.e., machine taggers trained on general English texts) on building codes to increase their accuracy

on POS tagging of building codes. Instead of training a new POS tagger from scratch, improving existing
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taggers can decrease the amount of annotated data needed, therefore save system development time and
effort and potentially achieve higher POS tagging accuracy. The transformational rules are automatically

generated by algorithms with no human intervention during the generation process execution.

In this paper, the authors define errors in POS tagging as nonconformities between the machine-assigned
POS tag of a word and that word’s human-labeled tag. For example, machine taggers make a POS tagging
error by tagging the word “can” in the phrase “a steel can,” which is a noun, as an “auxiliary verb.” Errors
are further grouped into types. A type of error subsumes all appearances of a wotd in the textual data that
have the same correct POS tag and are given the same incorrectly assigned POS tag by machine taggers.
For example, for all occurrences of the word “can” as a noun, machine taggers may correctly tag them as a
noun or incorrectly tag them as a modal verb or verb. For the occurrences that machine taggers incorrectly
tagged the word “can” as a verb, it is one type of error. Forthe occurrences that machine taggers incorrectly
tagged the word “can” as a modal verb, it is a different type of error. The proposed method focuses on
decreasing the overall occurrence of errors, not specific types of errors. However, knowing possible types
of errors is helpful to identify sources of’errors. Furthermore, POS tagging errors in building codes textual
data show a long-tail distribution. That is, a few types of errors happen many times and most types of errors
only happen few times. In fact, for 1,758 types of 31,495 errors in the authors’ data of POS tagged building
code where errors were defined to be the difference between machine tagging results and manually created
gold standard, thetop 100 types occurred 20,338 times, which accounted for 64.58% of all errors (Xue and
Zhang 2020). The uneven distribution of errors implies that a small number of fixes may eliminate a large

pottion of errors.

Overview of the Method

The authors’ proposed method divides textual data into two parts, training dataset and testing dataset. The

proposed method has two main components, rule generation component, and rule application component.
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The rule generation component uses rule templates to generate transformation rules. For example, “If the
word B after the word A is tagged as X and the word A is tagged as Y, then change the tag of the word A
to Z” is arule template. All rules that are generated by the same template form a ruleset. This method allows
users to input their customized templates to generate customized rulesets. The authors provided sample rule
templates in the experiment section. The rule generation component generates rules from simple rulesets to
complex rulesets, from uni-grams to n-grams, and from syntax to semantics. Before the development of
each ruleset, the errors in the training set are collected and recorded. A process flowchart about error
collection is shown in Figure 1. This process compares machine-generated tags of words and their
corresponding human-labeled tags (from gold standard) in the training dataset, and records any word whose
machine-generated tag is different from its human-labeled tag: If the machine-generated tag of the word
“wood” is JJ (Adjective) and its human-labeled tag is NN (Noun), this method records the word “wood” is
incorrectly tagged as JJ (Adjective) when it should be tagged'as NN (Noun). This process is automatically
and algorithmically performed by comparing the machine-assigned POS tag of a word and the human-
labeled POS tag (from gold standard) of the same word, and recording any discrepancy between them for
later steps of this method. After the error collection process, the rule generation process begins. The rule
extraction component collects contextual information of errors in the training dataset and converts them to
candidate transformational rules according to the template of that ruleset, and filters out unqualified rules.
This is also automatically performed without human intervention. The proposed method will collect POS
tags of words before and after the target word as the contextual information of the collected error. Before
the extraction of the next ruleset, rules in the previous ruleset are applied to the training text. After the
completion of rule development, all rulesets are applied to the testing dataset to evaluate the performance
of the developed rules. The method also records remaining errors after each ruleset is applied to the testing

dataset. The steps of this method are shown in Figure 2.
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Description of Transformational Rules

The transformational rules fix POS tagging errors in the textual data. The POS tagging errors in the textual
data are gathered by comparing machine tagging results of the textual data to the human-labeled gold
standard. The rules store the word it matches and its contextual information, including semantic information
(e.g., the word before the target word is “egress”) and syntax information [e.g., the POS tag of the word
before the target word is NN (noun)]. The proposed method utilizes two types of rulesets: n-gram rulesets
that consider n-grams information of words and remaining error rulesets that consider remaining errors in
the text. Rules in the N-grams rulesets also need to meet the rule acceptance.criterion, which states that
rules are not allowed to introduce any new errors in the training set.

N-grams Rulesets

N-gram rulesets are developed through the contextual information of errors in the training data. This paper
does not differentiate bi-gram rules from n-gram rules. The authors treated them unanimously as n-gram
rules. For example, “If machine tagger tagsthe word before ‘pedestrian’ as a noun and tags the token
‘pedestrian’ as an adjective, change POS:tag of that prior word to adjective” is an n-gram rule. Each N-
gram rule represents a context.in which a word only has one possible correct POS tag. The context may
include the word itself, the machine-assigned POS tag of the word, and machine-assigned POS tags of the
word before and after a word.

Remaining Error Rulesets

After all.n-gram rulesets are applied to the training data, a special ruleset is generated by fixing the n most
common errors remaining in the training data. The choice of n is arbitrary. This special ruleset is special
because the generation of rules in this set needs information from the entire training dataset whereas the

generation of n-gram rulesets only need information from one sentence. The rule of thumb is that the user

10
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can choose a larger n when there are more errors in the training dataset compared to when there are less
errors. Different values of n can be tested to optimize the performance.

Rule Acceptance Test

To eliminate any potential negative effects of transformational rules on the downstream tasks of the
automated code compliance checking system, any n-gram rules cannot introduce any new error to the
textual data. The remaining error ruleset does not need to comply with this requirement.-The rule acceptance
test ensures an n-gram rule will not introduce any new error by making sure that the'word only has one
correct POS tag in the context described in the rule. If the word has more than one correct POS tag in the
same context, all rules using that context will be dropped. Although it is mathematically true that a rule that
fixes more errors than it introduces can increase the level of accuracy, the errors it introduces may
undermine the performance of downstream tasks of the automated code compliance checking system in an
unexpected way and drive the entire system further away from the 100% recall goal. Therefore, if a rule
introduces new errors to the training set, even-ifit resolves more errors than it introduced, it failed to meet
the rule acceptance criterion and will be left out from the ruleset. This strict requirement may limit the
number of transformational rules generated, but it ensures a monotonous improvement of the quality of

extracted rules and the rulesets’ performance.

Rule Generation

The rule generation processes for each ruleset are similar. A general description of the rule generation
procedure is. shown in Figure 3. For each ruleset, the rule generation component collects contextual
information of all errors and their corresponding human-labeled tags in the training dataset. In the second
step, this component coverts collected information of each errors into candidate rules by deleting

unnecessary contextual information. For example, if a rule only considers the POS tag of the word before

11
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the target word, then only the target word, POS tag of the target word, and POS tag of the word before the

target word will be kept and everything else in the target word’s context will be deleted.

After that, all candidate rules need to undergo the rule acceptance test. This test clarifies the ambiguities in
the textual data. One main challenge in POS tagging is that the same word may have different POS tags in
different contexts. This test can ensure that the target word that a rule fixes only has one correct POS tag in

the context described in the rule in the training dataset.

There are two scenarios that may occur in the generation of rules: all occurrences of a type of error have
the same contextual information or have different contextual information. If all occurrences of a type of
error share the same contextual information, this method will generate one candidate rule to fix all
occurrences of this type of error. The candidate rule can pass the'rule acceptance test and be included. If
the same contextual information led to different Tules, however, this indicates that the contextual
information used was inappropriate. The rule acceptance test will prevent such candidate rules from being
used, by grouping candidate rules with the'samecontextual information together and comparing them. Two
scenarios may occur in this comparison: a word only has one correct POS tag in this captured context or
has different possible POS tags in this captured context. There is no ambiguity in the first scenario.
Replacing the machine generated tag with the correct POS tag will not introduce new errors. For example,
the word “provided” only has one correct tag VBG in the training dataset when the POS tag of the word
after it is DT(i.e., the word is “that”) and it was incorrectly tagged by the machine taggers as VBN. In the
second scenario, however, there is ambiguity. For example, the word “accessed” has two correct tags VBG
and VBD in the training dataset, when it is incorrectly tagged by the machine taggers as VBN and the POS
tag of the word after it is IN. Replacing the tag of “accessed” to either VBD or VBG entirely would
introduce new errors, this indicates the captured context in this case (i.e., the POS tag of the word after it)

is inappropriate and our method will not accept either rule in this scenario. Table 1 shows some example
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sentences and candidate rules with regard to the above discussed scenarios. In this research, the authors

adopted the widely used Penn Treebank POS tagset, which consists of 36 tags.

The decrease in the total number of errors only indicates a rule solved more errors than it introduced. It
cannot ensure that a rule introduces no new errors. To check that, a detailed comparison between training
datasets before and after applications of each rule is necessary after the generation of every single rule.
However, the large number of possible rules and the large amount of calculation involved in a full-text
comparison will extend the rule generation time to impractically long. The rule’acceptance test used in this
method can substantially save time necessary to generate rules by comparing candidate rules to find
potential conflicts which will then be used to prevent rules in conflict from being added and therefore reduce

the amount of rules to add.

Rule Application

In the rule application process (Figure 4), the rule application component will apply transformational rules
to the textual data and fix POS tagging errors. For each rule, the rule application component will search
through the entire text and look for words whose contextual information matches that rule’s conditions. If
a word’s contextual information-was found to match that rule’s conditions, the rule application component
will replace the machine-generated tag of that word with the predefined tag in the rule. After the generation
of each ruleset, the /developed ruleset is applied to the training dataset to prevent the rule application
component from developing different rules that essentially fix the same error. After the generation of all

rulesets, the rulesets are applied to the testing dataset as a whole.

Experiment

To test the performance of the proposed method on domain-specific data, the authors applied this method

to the POS tagged building codes (PTBC) dataset (Xue and Zhang 2019). It contains 1,522 POS tagged
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sentences from Chapters 5 and 10 of the 2015 International Building Codes (IBC). For each tagged sentence,
the dataset provides machine generated and human labeled POS tags of every token. In the formation of the
PTBC dataset, the authors collected textual data by obtaining the Portable Document Format (PDF) version
of 2015 IBC and manually extracted building code text from Chapters 5 and 10. A group of seven state-of-
the-art machine taggers POS tagged the extracted texts. The seven selected POS taggers were: (1) the NLTK
tagger (Loper and Bird 2002), (2) the spaCy tagger (Explosion 2015), (3) the Standford coreNLP tagger
(Manning et al. 2014), (4) A Nearly-New Information Extraction System (ANNIE) tagger in the General
Architecture for Text Engineering (GATE) tool (Cunningham 2002), (5) the Apache OpenNLP tagger
(Kottmann et al. 2011), (6) the TreeTagger (Schmid et al. 2007), and.(7) the RNNTagger (Schmid 2019).
These taggers were chosen because they have high accuracy, are easy to use, and freely available. The most
commonly chosen tag of each word in the extracted text by all the seven taggers formed the machine tagging
results. The authors selected the Penn Treebank POS tagset because it was commonly used in various
domains for NLP tasks and it is balanced between conciseness and informational richness. Five graduate
students labeled textual data without access to_others’ tagging results. All of them have proficiency in
English and building domain knowledge to complete the tagging task, which ensures the quality of the
textual data annotation. The mostly commonly chosen tag by them formed the gold standard of POS tagging

of the textual data, with an inter-annotator agreement of 0.91.

The PTBC dataset'was split into the training data, which contains 80% of the original dataset, and the testing
data, which contains the remaining 20% of the original dataset. In the experiment, text is stored in lists of
tuples (Figure 5). Each sentence is a list of tuples and each tuple in the list stores the word itself, human
generated tag of the word, and machine generated tag of the word. In this experiment, the authors used
possible combinations of contextual information of mistakenly tagged words in the textual data, to generate
templates that rule generation component can use to extract rules. In total, fourteen templates were used in

the experiment. They are listed in Table 2. The rule generation component extracted rules in the same order.
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This method was also tested on the freely accessible portion of the Penn Treebank Corpus in the Natural
Language Toolkit (NLTK) to further evaluate the applicability of the proposed method. The authors used
the NLTK tagger to tag the text and collected the machine tagging results. Gold standard POS tags of the
available text provided by the Penn Treebank Corpus served as the target of transformation. This

comparative experiment was conducted in the same way as the previous experiment on PTBC data.

Experimental Results and Discussion

In total, on the PTBC data, 899 rules were generated in 14 rulesets. All extracted rules, when combined,
fixed 3,003 out of 3,013 errors in the training dataset and 764 out of 924 errors in the testing dataset. They
increased the tagging accuracy in the training dataset from 90.49%to 99.97% and that in the testing dataset
from 89.13% to 98.12%. This 98.12% accuracy in testing dataset is comparable to the performance of the
state-of-the-art POS taggers on general English corpus.’ The first three rulesets, which used contexts
represented by: (1) the target word itself, (2) POS tagof the word two positions before the target word, and
(3) POS tag of the word two positions after the target word, contained 825 rules (92.80% of all rules). In
total, these first three rulesets fixed 2,961 errors (98.27% of errors) in the training dataset and 741 errors

(80.19% of errors) in the testing’dataset.

Accuracy of POS tagging both in the training dataset and in the testing dataset increased after application
of the transformation-tules. Before application of any transformational rules, the training dataset had an
accuracy 0f90.49% and the testing dataset had an accuracy of 89.13%. After all rulesets were applied, the
training dataset achieved an accuracy of 99.97% and the testing dataset achieved an accuracy of 98.12%.
The overall reduction of errors in the training set was 99.67% and that in the testing set was 82.68%. The
most significant increase in accuracy happened after the application of the first and second rulesets. After

the first ruleset was applied, accuracy in the training dataset increased from 90.49% to 97.60% and that in
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the testing dataset increased from 89.13% to 95.78%. After the second ruleset was applied, accuracy in the
training dataset increased from 97.60% to 99.11% and that in the testing dataset increased from 95.78% to

97.29%. The number of errors and accuracy after application of each ruleset is provided in Table 3.

The authors recorded the number of errors each rule fixed to evaluate effectiveness of the generated rules.
Ten rules that fixed the most errors fixed 52.34% errors in the training dataset and 38.10% errors in the
testing dataset, respectively. This distribution confirms the authors’ prediction that a.small group of rules
can fix a large number of errors. Nine out of ten most frequently applied rules in the training dataset are
uni-gram rules and that in the testing dataset is ten out of ten. This distribution shows that simple rules are
more frequently applied than complex rules. It may not be necessary to generate over-complex rules in

increasing POS tagging accuracy.

In the development of this method, the authors attempted to lemmatize word in text before the generation
of transformational rules. The authors assumed that mapping multiple words to their common lemmatized
form would improve the coverage of efror cases. However, this generalization did not improve the
performance and therefore the authors abandoned this technique. Word lemmatization actually caused a
slight decrease in the number of extracted rules in all rulesets (i.e., 1.57% decrease on average). It is possible
that mapping multiple forms of a word to one may have harmed the diversity of contextual information
representation. With less fine-grained contextual information representation, it is harder to pinpoint
contextual scenarios that only has one correct POS tag for a target word. The authors concluded that word

lemmatization-did not bring benefit to the proposed method.

This research also included a comparative study that applied the proposed method to improve NLTK POS
tagger’s performance on Penn Treebank Corpus. This cross-comparison provides a useful benchmark for
other researchers to compare this method’s performance on general English. In the processing of the Penn
Treebank Corpus, the authors noticed that a none negligible amount of words in Penn Treebank Corpus,
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which do not belong to any Penn Treebank POS tagset, were tagged as ‘-none-’. Pre-processing Penn
Treebank Corpus is a possible way to eliminate this ‘-none-’ tag. However, solving this issue is out of the
scope of this paper. The authors decided to use the Penn Treebank Corpus and the NLTK tagging results in
this method as is. The authors divided the Penn Treebank Corpus into a training dataset and a testing dataset
with an 80/20 split. NLTK tagger tagged 89.28% of words in the training dataset correctly and 89.37% of
words in the testing dataset correctly. The proposed method then increased the accuracy of NLTK tagger
to 99.96% on the training dataset and to 96.47% in the testing dataset. This increase in accuracy indicates

that the proposed method has the ability of improving the POS tagging acecuracy of general English as well.

Discussion

Due to the specific type of texts covered in this research, the-authors suggest that transformational rules
should only be applied to texts that are in the target domain: Aymajor potential risk is that transformational
rules may introduce errors to the tagging results. This risk is eliminated by the rule acceptance test. This

constraint can push the machine labeled result unidirectionally to the human labeled result.

Research interests of the authors require them to use the PTBC dataset, which is not used by other research
currently. This method may overfit thisparticular dataset and lacks the ability to boost tagging accuracy of
POS taggers, which are trained on general English, on general English. The authors conducted a
comparative study to address this concern. They used this to boost the performance of Natural Language
Toolkit (NLTK) tagger on the part of Penn Treebank Corpus that were readily available in NLTK (Loper

and Bird 2002).

This method does not address unknown words. It requires a word to exist in the training set to generate
transformational rules for it. This limitation, however, should not significantly influence the performance
of the transformational rules, because generated rules are only to be applied to the text in the target domain

(e.g., building codes), in which the rate of unknow words is expected to be low. The stringent format of the
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transformational rules in the proposed method, while effectively induced rules to improve POS tagging
results, may introduce counter-intuitive tagging results. To alleviate that, future work may look into
different representations of the fixes (e.g., tokens’ roles) in addition to their original POS tags. In addition,
the authors only tested their method on the commonly adopted Penn Tree bank tag set, how this method

will perform when using other tag set will need to be investigated in the future work.

Contributions to the Body of Knowledge

This research presents a new way to get domain specific English texts POS tagged accurately when there
is no POS tagger trained on that domain, by transformational rules. The proposed method can alleviate
problems such as, (1) the lack of POS taggers that are trained on domain specific English texts, (2) the
performance drop of general POS taggers on domain-specific texts, and (3) the high cost of developing a
large domain specific corpus needed in training domain-specific POS taggers. This method provides a
possible way for future researchers to get reliable POS tagged text in a selected domain without the need
of a specialized POS tagger. The authors discovered that simple unigram and bigram rules resolved most
errors. Word lemmatization did not bring observable benefit to this method. For future application of this

method, development time could be saved by avoiding over-complicated rulesets and word lemmatization.

Secondly, this research proves that it is possible to boost the performance of POS taggers that are trained
on general English texts on domain specific English texts with a small set of algorithmically generated rules.
The authors use'building codes as an example. These rules can increase the accuracy of POS taggers on
building codes from 89.13% to 98.12% with 898 rules. This significant improvement is achieved by using
a small set of labeled data. The fact that all rulesets transform machine-generated POS tags of words uni-
directionally to their human-annotated tags proved the validity of the rule acceptance criterion. In addition,
the increase in the accuracy in the testing dataset after the application of the last ruleset supports its

exemption from the rule acceptance criterion.
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Thirdly, the rules generated in this research can be used to increase the accuracy of POS tagging results on
building codes. If interested researchers use one of the POS taggers tested, they can directly apply our
developed rulesets to improve the POS tagging results/performance on building codes. The potential risk
of introducing more errors were alleviated by the constraint applied when the rules were derived. This
method does not need experts to generate new rules to be adapted to new domains, but it needs experts to
annotate some training data as gold standard. Last but not least, this method is also applicable-to general
English. With a small amount of human-labeled data, it can boost the accuracy of POS taggers that are

trained on general English, on general English.

Conclusions

This paper presented a new method to increase the accuracy of POS taggers, that were trained on general
English texts, on building codes by using error-driven transformational rules. The authors developed an
algorithm to generate these rules and tested the algorithm on PTBC data. The experiment shows this method
can increase the POS tagging accuracy on building codes from 89.13% to 98.12%. A comparative test on
NLTK and Penn Treebank Corpus shows that the proposed method can also increase the POS tagging

accuracy on general English texts.

Data Availability
Some or all data, medels, or code generated or used during the study are available in a repository or online

in accordance with funder data retention policies.
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Tables

Table 1. Candidate Rules with and without Conflict

Scenario

Sentence

Candidate Rule

Without
Conflict

The occupant load permitted in any building, or portion
thereof, is permitted to be increased from that number
established for the occupancies in Table 10, provided
(Manual tag: VBG; Machine tag: VBN) that(DT) all
other requirements of the code are met based on such

modified number and the occupant load does not exceed

one occupant per 7 square feet of occupiable floor space.

If the word that is one position
after the word “provided” is
tagged as DT and the word

“provided” is tagged as VBN,

then change the tag of the word

“provided” to VBG.

For auditoriums, theaters, concert or opera halls and
similar assembly occupancies, the illumination at the
walking surface is permitted to-be reduced during
performances by one of the following methods provided
(Manual tag: VBG; Machine tag: VBN) that (DT) the
required illumination is automatically restored upon
activation of apremises’ fire alarm system.

If the word that is one position
after the word “provided” is
tagged as DT and the word

“provided” is tagged as VBN,

then change the tag of the word

“provided” to VBG.

With
Contflict

Areas of refuge are not required for stairways accessed
(Manual tag: VBG; Machine tag: VBN) from (IN) a
refuge.area in conjunction with a horizontal exit.

If the word that is one position
after the word “accessed” is
tagged as IN and the word
“accessed” is tagged as VBN,
then change the tag of the word
“accessed” to VBG.

Such open space shall be either on the same lot or
dedicated for public use and shall be accessed (Manual
tag: VBD; Machine tag: VBN) from (IN) a street or
approved fire lane.

If the word that is one position
after the word “accessed” is
tagged as IN and the word
“accessed” is tagged as VBN,
then change the tag of the word
“accessed” to VBD.
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565
566
567
568
569
570
571
572
573  Table 2. Transformational Rulesets in the Experiment
Ruleset Description
1 If the word A is tagged as X, then change the tag X to Y.
2 If the word that is one position before the word A is tagged as X and the word A is
tagged as Y, then change the tag of the word A to Z.
3 If the word that is one position after the word Ais tagged as X and the word A is
tagged as Y, then change the tag of the word A to Z.
4 If the word that is one position before the word A is word B and the word A is
tagged as X, then-change-the tag of the word A to Y.
5 If the word that is one position after the word A is word B and the word A is tagged
as X, then change tag of the word A to Y.
6 If the word that is one position after the word A is tagged as X and the tag of the

word that is two positions after word A is Y and the word A is tagged as Z, then
change the tag of the word to W.
7 If the word that is’one position after the word A is tagged as X and the tag of the
word that is two positions after word A is Y and the word A is tagged as Z, then
change the tag of the word A to W.

8 If the word one position before the word A is B, the word two positions before the
word A is'C, and the word A is tagged as X, then change the tag of word A to Y.
9 If the' word one position after the word A is B, the word two positions after the
word A is C, and the word A is tagged as X, then change the tag of the word A to
Y.
10 If the tag of the word that is two positions after word A is X and the word is tagged
as Y, then change the tag of the word A to Z.
11 If the tag of the word that is two positions before word A is X and the word is
tagged as Y, then change the tag of the word A to Z.
12 If the word that is two positions after the word A is B and the word A is tagged as
X, then change the tag of the word A to Y.
13 If the word that is two positions before the word A is B and the word A is tagged as
X, then change the tag of the word Ato Y.
14 Fix five most common errors remaining in the training set.
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574
575

576
577
578
579
580
581
582
583

584  Table 3. POS Tagging Accuracy After Applying Each Ruleset

Ruleset Training Dataset Testing Dataset
Number of Errors | Accuracy | Number of Errors | Accuracy
1 759 97.60% 359 95.78%
2 282 99.11% 230 97.29%
3 142 99:55% 183 97.85%
4 91 99.71% 176 97.93%
5 80 99.75% 176 97.93%
6 36 99.89% 167 98.03%
7 36 99.89% 167 98.03%
8 29 99.91% 165 98.06%
9 29 99.91% 165 98.06%
10 29 99.91% 165 98.06%
11 29 99.91% 165 98.06%
12 29 99.91% 165 98.06%
13 29 99.91% 165 98.06%
14 10 99.97% 160 98.12%

585
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