

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

Building Codes Part-of-Speech Tagging Performance Improvement by Error-Driven

Transformational Rules

Xiaorui Xue, S.M.ASCE¹; Jiansong Zhang, Ph.D., A.M.ASCE²

4 Abstract

5 To enable full automation, automated code compliance checking systems need to extract regulatory
6 information in building codes and convert it to computable representations. This conversion is a natural
7 language processing (NLP) task that requires highly accurate part-of-speech (POS) tagging results on
8 building codes. Existing POS taggers, however, do not provide such accuracy on building codes. To address
9 this need, the authors propose to improve the performance of POS taggers by error-driven transformational
10 rules that revise machine tagged POS results. The proposed method utilizes a syntactic and semantic rule-
11 based, NLP approach combined with a structure that is inspired by transfer learning. This method generates
12 a group of transformational rulesets, from simple ones to complex ones, that will convert machine taggers'
13 tagging results to their corresponding human-labeled gold standard. The transformational rules utilize
14 syntactic and semantic information of domain texts. All rules are constrained not to introduce any errors
15 when fixing existing errors of machine taggers. The last ruleset, which fixes most common remaining errors
16 in textual data after all other rules are applied, is exempted from this constraint. An experimental testing on
17 Part-of-Speech Tagged Building Codes (PTBC) data shows this method reduced 78.91% of errors in POS
18 tagging results of building codes, which increased the POS tagging accuracy on building codes from 89.13%
19 to 98.12%.

20 **Civil Engineering (CE) Database Subject Headings:** Project management; Construction management;
21 Information management; Computer applications; Artificial intelligence.

¹ Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 430-2009. email: xue39@purdue.edu.

² Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 494-1574; FAX (765) 496-2246. (corresponding author). email: zhan3062@purdue.edu.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

22 **Author Keywords:** Automated compliance checking; Automated information extraction; Natural
23 language processing; Part-of-speech tagging; Automated construction management systems.

24 **Introduction**

25 Traditional manual building code compliance checking methods have several limitations, such as (1) a
26 lengthy review process, (2) a high cost, and (3) error-prone results (Alghamdi et al. 2017; Lee et al. 2018;
27 Preidel and Borrmann 2017; Sacks et al. 2019). It remains a paper-based, manual, and non-standardized
28 process that requires constant human attention and inputs. A traditional building plan review process begins
29 with the building permit applicant submitting a range of hard copy documents, including all the drawings,
30 specifications, documentations and contracts of a project, and a plan review fee, to a building authority.
31 Any mistakes or omissions in the submitted building plans will cause the submission returned to the
32 applicant with requests for revision or additional information. The applicant needs to respond to this request
33 within a certain time frame. The building authority reviews the response and checks the updated building
34 plans. This process may last several weeks or several months until the building authority issues a building
35 permit (City of Savannah 2019). For example, in San Clemente, California, this process can last 120 days
36 for accessory dwelling units (City of San Clemente 2019). Not limited to the building itself, many sub-
37 systems or components of a building require separate reviews and permissions, such as heating, ventilation,
38 and air conditioning (HVAC) systems (Lopes et al. 2011), fire alarm systems (City of El Cajon Community
39 Development Department 2019), and elevators (State of California 2016), which may further increase the
40 cost and time to obtain building permits. The time and cost needed to obtain building permits also increase
41 with the complexity of modern construction projects (City of Chicago 2019). At the same time, local
42 governments' diverse adaptation of building codes (Ching and Winkel 2018) further increases
43 complexities in code compliance. The demand of innovative code compliance checking systems rises.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

44 **Background**

45 ***Automated Code Compliance Checking***

46 To address the increasing demand in building permits, many researchers and industry experts introduced
47 new methods of code compliance checking. Their efforts focus on making code compliance checking
48 paperless, automated and standardized. The structural design checking using decision table (Fenves 1966)
49 was one of the first efforts in this domain (İlal and Günaydin 2017), which led to many attempts to create
50 expert systems for building codes in the 1980s (Dimyadi and Amor 2013), such as the Standard Interface
51 for Computer Aided Design (SICAD) (Lopez et al. 1989), the Standards Processing Expert (SPEX) (Delis
52 and Delis 1995; Garrett and Fenves 1987), and the Design Prototypes (Gero 1990). However, low
53 performance and high maintenance cost of expert systems in the 1980s limited these attempts only to proofs
54 of concepts with a lack of actual implementations. An expert system, which uses a vast body of domain-
55 specific knowledge stored in a computer (Liao 2005), has limitations such as high maintenance cost,
56 difficulty in scalability, and the narrow range of applications (Chollet 2017). These forerunners' efforts
57 gave birth to more recent code compliance checking expert systems, such as BCAider and DesignCheck,
58 in early 2000s (Dimyadi and Amor 2013). In addition, there were expert systems that focused on building
59 codes in a specific domain or a limited range of domains in 1980s and 1990s. For example, the Fire-Code
60 Analyzer (Delis and Delis 1995) focused on fire protection related codes in New Zealand, the Life Safety
61 Code Advisor focused on National Fire Protection Association (NFPA) safety code in the U.S., and the
62 TALLEX (Sabouni and Al-Mourad 1997) focused on tall buildings in the United Arab Emirates (UAE).
63 In the 2000s, building information modeling (BIM) dramatically changed the way code compliance systems
64 work by providing a reliable digital representation of buildings (Nguyen and Kim 2011). For example,
65 Solibri Model Checker (SMC) started as a BIM validation tool, and it obtained code compliance checking
66 ability in its later updates (Eastman et al. 2009). Singapore government initiated the Construction and Real

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

67 Estate Network (CORENET) project, which allows BIM model, instead of papers, to be submitted for plan
68 review. The UK government started to require submissions of BIM for all public projects that are funded
69 by the British Central Government from 2016 (UK BIM Task Group 2016). The KBimCode in South Korea
70 was capable of code compliance checking of BIM against building codes, but it needs manual efforts to
71 convert building codes from natural language to a computer-processable format (Choi and Kim 2017).

72 ***Gap in Existing Information Extraction Systems***

73 With BIM as a reliable digital representation of buildings, code compliance checking systems made great
74 progress over the last two decades. However, they are still far from a wide real-world deployment. In many
75 current automated code compliance systems, information extraction and information transformation rely on
76 domain experts' manual efforts to convert building codes to a computer-processable format, such as
77 decision tables (Tan et al. 2010), regulatory knowledge model (Dimyadi et al. 2016), and structured
78 regulatory information rulesets (İlal and Günaydin 2017).

79 Based on existing literature, current code compliance checking systems lack automated regulatory
80 information extraction and transformation capabilities. By drafting building codes in computer-checkable
81 logic clauses or rulesets instead of natural language, code compliance checking systems can bypass the
82 needed information extraction and transformation step and achieve full automation in an alternative way.
83 However, such a dramatic shift is not expected in a foreseeable future (Bell et al. 2009; Li et al. 2012). In
84 addition, the large size of existing building codes creates further challenges in achieving such a transition.
85 In the U.S., local jurisdictions usually apply customizations and modifications to standard codes published
86 by the international code council (ICC), which further contribute to the complexity of the body of building
87 codes. Automated information extraction and transformation are necessary for automated code compliance
88 systems to function on existing as well as forthcoming building code versions. Some researchers proposed
89 semantic analysis of building codes through deep learning for information extraction, but the extracted

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

90 information failed to convert to checkable rules (Song et al. 2018). Pattern matching-based natural language
91 processing method, on the other hand, can generate logic clauses through information extraction and
92 transformation with a high accuracy (Zhang and El-Gohary 2015; Li et al. 2016; Xu and Cai 2020). The
93 pattern matching-based method of Zhang and El-Gohary (2015) can convert natural language provisions to
94 logic clauses, and their entire automated code compliance checking method reached a 98.7% recall and
95 87.6% precision in non-compliance detection (Zhang and El-Gohary 2017). However, to enable real-world
96 applications, the recall must be improved to 100%. The main sources of errors reported by Zhang and El-
97 Gohary (2017) were of two types: limitations of the extraction and transformation rules, and limitations of
98 the state-of-the-art POS taggers' performance on building codes. Reducing/eliminating such errors were
99 expected to further improve the overall non-compliance detection performance. In this paper, the authors
100 focus on addressing the performance of the state-of-the-art POS taggers on building codes, because the
101 extraction and transformation rules use the POS tagging information and therefore rely on its performance.

102 ***Part-of-Speech Tagging***

103 A fully automated code compliance checking system could be an NLP-based system with an essential
104 information extraction and transformation component. The information extraction and transformation
105 component utilizes part-of-speech information as well as other syntactic/semantic information of building
106 codes provisional sentences to convert building codes from natural language to computer-processable
107 representations. POS tagging is about assigning the corresponding morphosyntactic category to each word
108 in a sentence (Giménez and Marquez 2004). As an early step of the discussed automated code compliance
109 checking system, POS tagging will cascade errors into later steps of the system (Dell'Orletta 2009) and
110 jeopardize its final performance. An accurate POS tagging results of building codes is the foundation to
111 support the high performance of the information extraction and transformation component and therefore
112 the entire automated code compliance checking system.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

113 POS categories of words are classes of words that share common features (Brill 1992). In general, there are
114 eight basic POS categories in English, namely, noun, pronoun, verb, adjective, adverb, preposition,
115 conjunction and interjection (Butte College 2016). However, a decent representation of text for further NLP
116 analysis needs more than just eight POS tags. For example, singular noun and plural noun are usually
117 separated into two different categories. Among the commonly used tagset, Universal tagset has 12 tags
118 (Petrov et al. 2011), Penn Treebank tagset has 36 tags (Marcus et al. 1993), and Brown tagset has 179 tags
119 (Francis and Kucera 1979). The authors decided to use Penn Treebank tagset because of its good balance
120 between information richness and conciseness.

121 There are multiple ways to get a textual corpus POS tagged. Human annotators can complete this task with
122 their knowledge in English and understanding of the text. However, the high cost, low speed and human
123 inconsistency make it rarely used in real-word applications. In contrast, POS tagging software, or POS
124 taggers (will be called machine taggers hereafter) are usually used in NLP systems because of their fast
125 tagging speed, low tagging cost, and free of human inconsistency. Machine taggers can tag a large amount
126 of text in a short time without human interventions. The large amount of existing and upcoming building
127 codes and frequent building codes updates require a machine POS tagging solution to support automated
128 code compliance checking systems. POS taggers annotate texts according to rules or mathematical models.
129 Correspondingly, there are two main types of machine POS taggers based on their corresponding annotation
130 methodologies: rule-based POS taggers and machine learning POS taggers. These rules or models are either
131 developed by humans or generated by algorithms.

132 ***Rule-based Part-of-Speech Tagger***

133 Rule-based POS taggers decide POS tags of words based on a set of rules. Rules are designed to make POS
134 tagging results of texts follow human-labeled results. These rules can be either hand-crafted by domain
135 experts or generated by algorithms. Domain experts generate rules based on their understanding of English

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

136 grammar and the text being tagged. Rules can also be generated by algorithms. POS taggers with hand-
137 crafted rules are rarely used nowadays. They usually are not intended for practical use but rather for
138 educational purposes. For example, Bird et al. (2009) introduced a rule-based tagger with hand-crafted rules
139 for educational purpose. However, this tagger has a low accuracy and only slightly outperformed a baseline
140 tagger that tagged all words as "NNS" (plural nouns) (Bird et al. 2009). Development of rule-based POS
141 taggers stopped because they, even with thousands of hand-crafted rules, fail to reach a comparable
142 accuracy to that of machine learning taggers. For example, the TAGGIT system contains more than 3,000
143 hand-crafted rules and reached a 77% accuracy on Brown corpus (Greene and Rubin 1971), whereas the
144 state-of-the-art machine taggers had an accuracy of 87.1% on Brown corpus which was much higher than
145 the 77% accuracy achieved by TAGGIT (Li et al. 2012). However, rule-based POS tagger with algorithm-
146 generated rules can achieve a higher accuracy than rule-based POS taggers with hand-crafted rules (Bird et
147 al. 2009). For example, Brill (Brill 1992) developed the Brill tagger with algorithm-generated rules and
148 claimed his tagger's performance "on par with stochastic taggers."

149 ***Machine Learning Part-of-Speech Tagger***

150 Classification is one main task that machine learning was designed for. POS tagging is a type of
151 classification task, i.e., classifying words into different POS categories according to its context and English
152 grammar. Machine learning taggers are built by training machine learning models on corpus of English
153 texts. Different machine learning models can be used such as support vector machines (SVM), decision
154 tree, hidden Markov model (HMM), and neural network.

155 **Methodology**

156 The authors propose to use transformational rules to address errors in the tagging results of general POS
157 taggers (i.e., machine taggers trained on general English texts) on building codes to increase their accuracy
158 on POS tagging of building codes. Instead of training a new POS tagger from scratch, improving existing

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

159 taggers can decrease the amount of annotated data needed, therefore save system development time and
160 effort and potentially achieve higher POS tagging accuracy. The transformational rules are automatically
161 generated by algorithms with no human intervention during the generation process execution.

162 In this paper, the authors define errors in POS tagging as nonconformities between the machine-assigned
163 POS tag of a word and that word's human-labeled tag. For example, machine taggers make a POS tagging
164 error by tagging the word "can" in the phrase "a steel can," which is a noun, as an "auxiliary verb." Errors
165 are further grouped into types. A type of error subsumes all appearances of a word in the textual data that
166 have the same correct POS tag and are given the same incorrectly assigned POS tag by machine taggers.
167 For example, for all occurrences of the word "can" as a noun, machine taggers may correctly tag them as a
168 noun or incorrectly tag them as a modal verb or verb. For the occurrences that machine taggers incorrectly
169 tagged the word "can" as a verb, it is one type of error. For the occurrences that machine taggers incorrectly
170 tagged the word "can" as a modal verb, it is a different type of error. The proposed method focuses on
171 decreasing the overall occurrence of errors, not specific types of errors. However, knowing possible types
172 of errors is helpful to identify sources of errors. Furthermore, POS tagging errors in building codes textual
173 data show a long-tail distribution. That is, a few types of errors happen many times and most types of errors
174 only happen few times. In fact, for 1,758 types of 31,495 errors in the authors' data of POS tagged building
175 code where errors were defined to be the difference between machine tagging results and manually created
176 gold standard, the top 100 types occurred 20,338 times, which accounted for 64.58% of all errors (Xue and
177 Zhang 2020). The uneven distribution of errors implies that a small number of fixes may eliminate a large
178 portion of errors.

179 ***Overview of the Method***

180 The authors' proposed method divides textual data into two parts, training dataset and testing dataset. The
181 proposed method has two main components, rule generation component, and rule application component.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

182 The rule generation component uses rule templates to generate transformation rules. For example, "If the
183 word B after the word A is tagged as X and the word A is tagged as Y, then change the tag of the word A
184 to Z" is a rule template. All rules that are generated by the same template form a ruleset. This method allows
185 users to input their customized templates to generate customized rulesets. The authors provided sample rule
186 templates in the experiment section. The rule generation component generates rules from simple rulesets to
187 complex rulesets, from uni-grams to n-grams, and from syntax to semantics. Before the development of
188 each ruleset, the errors in the training set are collected and recorded. A process flowchart about error
189 collection is shown in Figure 1. This process compares machine-generated tags of words and their
190 corresponding human-labeled tags (from gold standard) in the training dataset, and records any word whose
191 machine-generated tag is different from its human-labeled tag. If the machine-generated tag of the word
192 "wood" is JJ (Adjective) and its human-labeled tag is NN (Noun), this method records the word "wood" is
193 incorrectly tagged as JJ (Adjective) when it should be tagged as NN (Noun). This process is automatically
194 and algorithmically performed by comparing the machine-assigned POS tag of a word and the human-
195 labeled POS tag (from gold standard) of the same word, and recording any discrepancy between them for
196 later steps of this method. After the error collection process, the rule generation process begins. The rule
197 extraction component collects contextual information of errors in the training dataset and converts them to
198 candidate transformational rules according to the template of that ruleset, and filters out unqualified rules.
199 This is also automatically performed without human intervention. The proposed method will collect POS
200 tags of words before and after the target word as the contextual information of the collected error. Before
201 the extraction of the next ruleset, rules in the previous ruleset are applied to the training text. After the
202 completion of rule development, all rulesets are applied to the testing dataset to evaluate the performance
203 of the developed rules. The method also records remaining errors after each ruleset is applied to the testing
204 dataset. The steps of this method are shown in Figure 2.

205

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

206

207 ***Description of Transformational Rules***

208 The transformational rules fix POS tagging errors in the textual data. The POS tagging errors in the textual
209 data are gathered by comparing machine tagging results of the textual data to the human-labeled gold
210 standard. The rules store the word it matches and its contextual information, including semantic information
211 (e.g., the word before the target word is "egress") and syntax information [e.g., the POS tag of the word
212 before the target word is NN (noun)]. The proposed method utilizes two types of rulesets: n-gram rulesets
213 that consider n-grams information of words and remaining error rulesets that consider remaining errors in
214 the text. Rules in the N-grams rulesets also need to meet the rule acceptance criterion, which states that
215 rules are not allowed to introduce any new errors in the training set.

216 **N-grams Rulesets**

217 N-gram rulesets are developed through the contextual information of errors in the training data. This paper
218 does not differentiate bi-gram rules from n-gram rules. The authors treated them unanimously as n-gram
219 rules. For example, "If machine tagger tags the word before 'pedestrian' as a noun and tags the token
220 'pedestrian' as an adjective, change POS tag of that prior word to adjective" is an n-gram rule. Each N-
221 gram rule represents a context in which a word only has one possible correct POS tag. The context may
222 include the word itself, the machine-assigned POS tag of the word, and machine-assigned POS tags of the
223 word before and after a word.

224 **Remaining Error Rulesets**

225 After all n-gram rulesets are applied to the training data, a special ruleset is generated by fixing the n most
226 common errors remaining in the training data. The choice of n is arbitrary. This special ruleset is special
227 because the generation of rules in this set needs information from the entire training dataset whereas the
228 generation of n-gram rulesets only need information from one sentence. The rule of thumb is that the user

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

229 can choose a larger n when there are more errors in the training dataset compared to when there are less
230 errors. Different values of n can be tested to optimize the performance.

231 **Rule Acceptance Test**

232 To eliminate any potential negative effects of transformational rules on the downstream tasks of the
233 automated code compliance checking system, any n-gram rules cannot introduce any new error to the
234 textual data. The remaining error ruleset does not need to comply with this requirement. The rule acceptance
235 test ensures an n-gram rule will not introduce any new error by making sure that the word only has one
236 correct POS tag in the context described in the rule. If the word has more than one correct POS tag in the
237 same context, all rules using that context will be dropped. Although it is mathematically true that a rule that
238 fixes more errors than it introduces can increase the level of accuracy, the errors it introduces may
239 undermine the performance of downstream tasks of the automated code compliance checking system in an
240 unexpected way and drive the entire system further away from the 100% recall goal. Therefore, if a rule
241 introduces new errors to the training set, even if it resolves more errors than it introduced, it failed to meet
242 the rule acceptance criterion and will be left out from the ruleset. This strict requirement may limit the
243 number of transformational rules generated, but it ensures a monotonous improvement of the quality of
244 extracted rules and the rulesets' performance.

245 **Rule Generation**

246 The rule generation processes for each ruleset are similar. A general description of the rule generation
247 procedure is shown in Figure 3. For each ruleset, the rule generation component collects contextual
248 information of all errors and their corresponding human-labeled tags in the training dataset. In the second
249 step, this component converts collected information of each errors into candidate rules by deleting
250 unnecessary contextual information. For example, if a rule only considers the POS tag of the word before

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

251 the target word, then only the target word, POS tag of the target word, and POS tag of the word before the
252 target word will be kept and everything else in the target word's context will be deleted.

253
254 After that, all candidate rules need to undergo the rule acceptance test. This test clarifies the ambiguities in
255 the textual data. One main challenge in POS tagging is that the same word may have different POS tags in
256 different contexts. This test can ensure that the target word that a rule fixes only has one correct POS tag in
257 the context described in the rule in the training dataset.

258 There are two scenarios that may occur in the generation of rules: all occurrences of a type of error have
259 the same contextual information or have different contextual information. If all occurrences of a type of
260 error share the same contextual information, this method will generate one candidate rule to fix all
261 occurrences of this type of error. The candidate rule can pass the rule acceptance test and be included. If
262 the same contextual information led to different rules, however, this indicates that the contextual
263 information used was inappropriate. The rule acceptance test will prevent such candidate rules from being
264 used, by grouping candidate rules with the same contextual information together and comparing them. Two
265 scenarios may occur in this comparison: a word only has one correct POS tag in this captured context or
266 has different possible POS tags in this captured context. There is no ambiguity in the first scenario.
267 Replacing the machine generated tag with the correct POS tag will not introduce new errors. For example,
268 the word "provided" only has one correct tag VBG in the training dataset when the POS tag of the word
269 after it is DT (i.e., the word is "that") and it was incorrectly tagged by the machine taggers as VBN. In the
270 second scenario, however, there is ambiguity. For example, the word "accessed" has two correct tags VBG
271 and VBD in the training dataset, when it is incorrectly tagged by the machine taggers as VBN and the POS
272 tag of the word after it is IN. Replacing the tag of "accessed" to either VBD or VBG entirely would
273 introduce new errors, this indicates the captured context in this case (i.e., the POS tag of the word after it)
274 is inappropriate and our method will not accept either rule in this scenario. Table 1 shows some example

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

275 sentences and candidate rules with regard to the above discussed scenarios. In this research, the authors
276 adopted the widely used Penn Treebank POS tagset, which consists of 36 tags.

277
278 The decrease in the total number of errors only indicates a rule solved more errors than it introduced. It
279 cannot ensure that a rule introduces no new errors. To check that, a detailed comparison between training
280 datasets before and after applications of each rule is necessary after the generation of every single rule.
281 However, the large number of possible rules and the large amount of calculation involved in a full-text
282 comparison will extend the rule generation time to impractically long. The rule acceptance test used in this
283 method can substantially save time necessary to generate rules by comparing candidate rules to find
284 potential conflicts which will then be used to prevent rules in conflict from being added and therefore reduce
285 the amount of rules to add.

286 ***Rule Application***

287 In the rule application process (Figure 4), the rule application component will apply transformational rules
288 to the textual data and fix POS tagging errors. For each rule, the rule application component will search
289 through the entire text and look for words whose contextual information matches that rule's conditions. If
290 a word's contextual information was found to match that rule's conditions, the rule application component
291 will replace the machine-generated tag of that word with the predefined tag in the rule. After the generation
292 of each ruleset, the developed ruleset is applied to the training dataset to prevent the rule application
293 component from developing different rules that essentially fix the same error. After the generation of all
294 rulesets, the rulesets are applied to the testing dataset as a whole.

295

296 **Experiment**

297 To test the performance of the proposed method on domain-specific data, the authors applied this method
298 to the POS tagged building codes (PTBC) dataset (Xue and Zhang 2019). It contains 1,522 POS tagged

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

299 sentences from Chapters 5 and 10 of the 2015 International Building Codes (IBC). For each tagged sentence,
300 the dataset provides machine generated and human labeled POS tags of every token. In the formation of the
301 PTBC dataset, the authors collected textual data by obtaining the Portable Document Format (PDF) version
302 of 2015 IBC and manually extracted building code text from Chapters 5 and 10. A group of seven state-of-
303 the-art machine taggers POS tagged the extracted texts. The seven selected POS taggers were: (1) the NLTK
304 tagger (Loper and Bird 2002), (2) the spaCy tagger (Explosion 2015), (3) the Standford coreNLP tagger
305 (Manning et al. 2014), (4) A Nearly-New Information Extraction System (ANNIE) tagger in the General
306 Architecture for Text Engineering (GATE) tool (Cunningham 2002), (5) the Apache OpenNLP tagger
307 (Kottmann et al. 2011), (6) the TreeTagger (Schmid et al. 2007), and (7) the RNNTagger (Schmid 2019).
308 These taggers were chosen because they have high accuracy, are easy to use, and freely available. The most
309 commonly chosen tag of each word in the extracted text by all the seven taggers formed the machine tagging
310 results. The authors selected the Penn Treebank POS tagset because it was commonly used in various
311 domains for NLP tasks and it is balanced between conciseness and informational richness. Five graduate
312 students labeled textual data without access to others' tagging results. All of them have proficiency in
313 English and building domain knowledge to complete the tagging task, which ensures the quality of the
314 textual data annotation. The mostly commonly chosen tag by them formed the gold standard of POS tagging
315 of the textual data, with an inter-annotator agreement of 0.91.

316 The PTBC dataset was split into the training data, which contains 80% of the original dataset, and the testing
317 data, which contains the remaining 20% of the original dataset. In the experiment, text is stored in lists of
318 tuples (Figure 5). Each sentence is a list of tuples and each tuple in the list stores the word itself, human
319 generated tag of the word, and machine generated tag of the word. In this experiment, the authors used
320 possible combinations of contextual information of mistakenly tagged words in the textual data, to generate
321 templates that rule generation component can use to extract rules. In total, fourteen templates were used in
322 the experiment. They are listed in Table 2. The rule generation component extracted rules in the same order.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

323
324
325 This method was also tested on the freely accessible portion of the Penn Treebank Corpus in the Natural
326 Language Toolkit (NLTK) to further evaluate the applicability of the proposed method. The authors used
327 the NLTK tagger to tag the text and collected the machine tagging results. Gold standard POS tags of the
328 available text provided by the Penn Treebank Corpus served as the target of transformation. This
329 comparative experiment was conducted in the same way as the previous experiment on PTBC data.

330 **Experimental Results and Discussion**

331 In total, on the PTBC data, 899 rules were generated in 14 rulesets. All extracted rules, when combined,
332 fixed 3,003 out of 3,013 errors in the training dataset and 764 out of 924 errors in the testing dataset. They
333 increased the tagging accuracy in the training dataset from 90.49% to 99.97% and that in the testing dataset
334 from 89.13% to 98.12%. This 98.12% accuracy in testing dataset is comparable to the performance of the
335 state-of-the-art POS taggers on general English corpus. The first three rulesets, which used contexts
336 represented by: (1) the target word itself, (2) POS tag of the word two positions before the target word, and
337 (3) POS tag of the word two positions after the target word, contained 825 rules (92.80% of all rules). In
338 total, these first three rulesets fixed 2,961 errors (98.27% of errors) in the training dataset and 741 errors
339 (80.19% of errors) in the testing dataset.

340 Accuracy of POS tagging both in the training dataset and in the testing dataset increased after application
341 of the transformation rules. Before application of any transformational rules, the training dataset had an
342 accuracy of 90.49% and the testing dataset had an accuracy of 89.13%. After all rulesets were applied, the
343 training dataset achieved an accuracy of 99.97% and the testing dataset achieved an accuracy of 98.12%.
344 The overall reduction of errors in the training set was 99.67% and that in the testing set was 82.68%. The
345 most significant increase in accuracy happened after the application of the first and second rulesets. After
346 the first ruleset was applied, accuracy in the training dataset increased from 90.49% to 97.60% and that in

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

347 the testing dataset increased from 89.13% to 95.78%. After the second ruleset was applied, accuracy in the
348 training dataset increased from 97.60% to 99.11% and that in the testing dataset increased from 95.78% to
349 97.29%. The number of errors and accuracy after application of each ruleset is provided in Table 3.

350
351 The authors recorded the number of errors each rule fixed to evaluate effectiveness of the generated rules.
352 Ten rules that fixed the most errors fixed 52.34% errors in the training dataset and 38.10% errors in the
353 testing dataset, respectively. This distribution confirms the authors' prediction that a small group of rules
354 can fix a large number of errors. Nine out of ten most frequently applied rules in the training dataset are
355 uni-gram rules and that in the testing dataset is ten out of ten. This distribution shows that simple rules are
356 more frequently applied than complex rules. It may not be necessary to generate over-complex rules in
357 increasing POS tagging accuracy.

358 In the development of this method, the authors attempted to lemmatize word in text before the generation
359 of transformational rules. The authors assumed that mapping multiple words to their common lemmatized
360 form would improve the coverage of error cases. However, this generalization did not improve the
361 performance and therefore the authors abandoned this technique. Word lemmatization actually caused a
362 slight decrease in the number of extracted rules in all rulesets (i.e., 1.57% decrease on average). It is possible
363 that mapping multiple forms of a word to one may have harmed the diversity of contextual information
364 representation. With less fine-grained contextual information representation, it is harder to pinpoint
365 contextual scenarios that only has one correct POS tag for a target word. The authors concluded that word
366 lemmatization did not bring benefit to the proposed method.

367 This research also included a comparative study that applied the proposed method to improve NLTK POS
368 tagger's performance on Penn Treebank Corpus. This cross-comparison provides a useful benchmark for
369 other researchers to compare this method's performance on general English. In the processing of the Penn
370 Treebank Corpus, the authors noticed that a none negligible amount of words in Penn Treebank Corpus,

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

371 which do not belong to any Penn Treebank POS tagset, were tagged as ‘-none-’. Pre-processing Penn
372 Treebank Corpus is a possible way to eliminate this ‘-none-’ tag. However, solving this issue is out of the
373 scope of this paper. The authors decided to use the Penn Treebank Corpus and the NLTK tagging results in
374 this method as is. The authors divided the Penn Treebank Corpus into a training dataset and a testing dataset
375 with an 80/20 split. NLTK tagger tagged 89.28% of words in the training dataset correctly and 89.37% of
376 words in the testing dataset correctly. The proposed method then increased the accuracy of NLTK tagger
377 to 99.96% on the training dataset and to 96.47% in the testing dataset. This increase in accuracy indicates
378 that the proposed method has the ability of improving the POS tagging accuracy of general English as well.

379 **Discussion**

380 Due to the specific type of texts covered in this research, the authors suggest that transformational rules
381 should only be applied to texts that are in the target domain. A major potential risk is that transformational
382 rules may introduce errors to the tagging results. This risk is eliminated by the rule acceptance test. This
383 constraint can push the machine labeled result unidirectionally to the human labeled result.

384 Research interests of the authors require them to use the PTBC dataset, which is not used by other research
385 currently. This method may overfit this particular dataset and lacks the ability to boost tagging accuracy of
386 POS taggers, which are trained on general English, on general English. The authors conducted a
387 comparative study to address this concern. They used this to boost the performance of Natural Language
388 Toolkit (NLTK) tagger on the part of Penn Treebank Corpus that were readily available in NLTK (Loper
389 and Bird 2002).

390 This method does not address unknown words. It requires a word to exist in the training set to generate
391 transformational rules for it. This limitation, however, should not significantly influence the performance
392 of the transformational rules, because generated rules are only to be applied to the text in the target domain
393 (e.g., building codes), in which the rate of unknown words is expected to be low. The stringent format of the

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

394 transformational rules in the proposed method, while effectively induced rules to improve POS tagging
395 results, may introduce counter-intuitive tagging results. To alleviate that, future work may look into
396 different representations of the fixes (e.g., tokens' roles) in addition to their original POS tags. In addition,
397 the authors only tested their method on the commonly adopted Penn Tree bank tag set, how this method
398 will perform when using other tag set will need to be investigated in the future work.

399 **Contributions to the Body of Knowledge**

400 This research presents a new way to get domain specific English texts POS tagged accurately when there
401 is no POS tagger trained on that domain, by transformational rules. The proposed method can alleviate
402 problems such as, (1) the lack of POS taggers that are trained on domain specific English texts, (2) the
403 performance drop of general POS taggers on domain-specific texts, and (3) the high cost of developing a
404 large domain specific corpus needed in training domain-specific POS taggers. This method provides a
405 possible way for future researchers to get reliable POS tagged text in a selected domain without the need
406 of a specialized POS tagger. The authors discovered that simple unigram and bigram rules resolved most
407 errors. Word lemmatization did not bring observable benefit to this method. For future application of this
408 method, development time could be saved by avoiding over-complicated rulesets and word lemmatization.

409 Secondly, this research proves that it is possible to boost the performance of POS taggers that are trained
410 on general English texts on domain specific English texts with a small set of algorithmically generated rules.
411 The authors use building codes as an example. These rules can increase the accuracy of POS taggers on
412 building codes from 89.13% to 98.12% with 898 rules. This significant improvement is achieved by using
413 a small set of labeled data. The fact that all rulesets transform machine-generated POS tags of words uni-
414 directionally to their human-annotated tags proved the validity of the rule acceptance criterion. In addition,
415 the increase in the accuracy in the testing dataset after the application of the last ruleset supports its
416 exemption from the rule acceptance criterion.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

417 Thirdly, the rules generated in this research can be used to increase the accuracy of POS tagging results on
418 building codes. If interested researchers use one of the POS taggers tested, they can directly apply our
419 developed rulesets to improve the POS tagging results/performance on building codes. The potential risk
420 of introducing more errors were alleviated by the constraint applied when the rules were derived. This
421 method does not need experts to generate new rules to be adapted to new domains, but it needs experts to
422 annotate some training data as gold standard. Last but not least, this method is also applicable to general
423 English. With a small amount of human-labeled data, it can boost the accuracy of POS taggers that are
424 trained on general English, on general English.

425 **Conclusions**

426 This paper presented a new method to increase the accuracy of POS taggers, that were trained on general
427 English texts, on building codes by using error-driven transformational rules. The authors developed an
428 algorithm to generate these rules and tested the algorithm on PTBC data. The experiment shows this method
429 can increase the POS tagging accuracy on building codes from 89.13% to 98.12%. A comparative test on
430 NLTK and Penn Treebank Corpus shows that the proposed method can also increase the POS tagging
431 accuracy on general English texts.

432 **Data Availability**

433 Some or all data, models, or code generated or used during the study are available in a repository or online
434 in accordance with funder data retention policies.

435 1. Xue, X., Zhang, J. (2019). Part-of-Speech Tagged Building Codes (PTBC). Purdue University
436 Research Repository. doi:10.4231/Y0ZQ-4946. URL: <https://purr.purdue.edu/publications/3246/1>

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

437 **Acknowledgement**

438 The authors would like to thank the National Science Foundation (NSF). This material is based on work
439 supported by the NSF under Grant No. 1827733. Any opinions, findings, and conclusions or
440 recommendations expressed in this material are those of the authors and do not necessarily reflect the views
441 of the NSF.

442 **Reference**

443 Alghamdi, A., Sulaiman, M., Alghamdi, A., Alhosan, M., Mastali, M., and Zhang, J. (2017). "Building
444 accessibility code compliance verification using game simulations in virtual reality." *Computing in
445 Civil Engineering 2017*, 262-270.

446 Bell, H., Bjorkhaug, L., and Hjelseth, E. (2009). "Standardized computable rules." *National Office of
447 Building Technology and Administration and Statsbygg, Oslo, Norway*.

448 Bird, S., Klein, E., and Loper, E. (2009). *Natural language processing with Python: analyzing text with the
449 natural language toolkit*, O'Reilly Media, Inc.

450 Brill, E. (1992). "A simple rule-based part of speech tagger." *Proc., Proceedings of the third conference on
451 Applied natural language processing*, Association for Computational Linguistics, 152-155.

452 Butte College (2016). "The eight parts of speech."
453 <http://www.butte.edu/departments/cas/tipsheets/grammar/parts_of_speech.html>. (Sep 11st,
454 2019).

455 Ching, F. D., and Winkel, S. R. (2018). *Building Codes Illustrated: A Guide to Understanding the 2018
456 International Building Code*, John Wiley & Sons.

457 Choi, J., and Kim, I. (2017). *A Methodology of Building Code Checking System for Building Permission
458 based on openBIM*.

459 Chollet, F. (2017). *Deep Learning with Python*, Manning Publications Co.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

460 City of Chicago (2019). "Chicago construction codes."
461 <https://www.chicago.gov/city/en/depts/bldgs/provdrs/bldg_code/svcs/chicago_buildingcodeonline.html>. (Sep 11st, 2019).

463 City of El Cajon Community Development Department (2019). "Fire permits."
464 <<https://www.cityofelcajon.us/your-government/departments/community-development/building-fire-safety-division/fire-permits>>. (Sep 11st, 2019).

466 City of San Clemente (2019). "Ordinance No. 1668." San Clemente, California.

467 City of Savannah (2019). "Building permit process flow chart."
468 <<https://www.savannahga.gov/DocumentCenter/View/3065/Building-Permit-Process-Flow-Chart?bidId=>>>. (Sep 11st, 2019).

470 Cunningham, H. (2002). "GATE, a general architecture for text engineering." *Computers and the Humanities*, 36(2), 223-254.

472 Delis, E. A., and Delis, A. (1995). "Automatic fire-code checking using expert-system technology." *Journal of computing in civil engineering*, 9(2), 141-156.

474 Dell'Orletta, F. (2009). "Ensemble system for part-of-Speech tagging." *Proceedings of EVALITA*, 9, 1-8.

475 Dimyadi, J., and Amor, R. (2013). "Automated building code compliance checking—where is it at." *Proceedings of CIB WBC*, 6.

477 Dimyadi, J., Clifton, C., Spearpoint, M., and Amor, R. (2016). "Computerizing regulatory knowledge for building engineering design." *Journal of Computing in Civil Engineering*, 30(5), C4016001.

479 Eastman, C., Lee, J.m., Jeong, Y.s., and Lee, J.k. (2009). "Automatic rule-based checking of building designs." *Automation in construction*, 18(8), 1011-1033.

481 Explosion, A. (2015). "Industrial-strength natural language processing." *Train. named entity recognizer*.

482 Fenves, S. J. (1966). "Tabular decision logic for structural design." *Journal of the Structural Division*, 92(6), 483 473-490.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

484 Francis, W. N., and Kucera, H. (1979). "Brown Corpus Manual."

485 Garrett, J. H., and Fenves, S. J. (1987). "A knowledge-based standards processor for structural component
486 design." *Engineering with Computers*, 2(4), 219-238.

487 Gero, J. S. (1990). "Design prototypes: a knowledge representation schema for design." *AI magazine*, 11(4),
488 26-26.

489 Giménez, J., and Marquez, L. (2004). "Fast and accurate part-of-speech tagging: The SVM approach
490 revisited." *Recent Advances in Natural Language Processing III*, 153-162.

491 Greene, B. B., and Rubin, G. M. (1971). *Automatic Grammatical Tagging of English*, Department of
492 Linguistics, Brown University.

493 Ilal, S. M., and Günaydin, H. M. (2017). "Computer representation of building codes for automated
494 compliance checking." *Automation in Construction*, 82, 43-58.

495 Kottmann, J., Margulies, B., Ingersoll, G., Drost, I., Kosin, J., Baldridge, J., Goetz, T., Morton, T., Silva,
496 W., and Autayeu, A. (2011). "Apache opennlp." *Online (May 2011)*, www.opennlp.apache.org.

497 Lee, Y.C., Ghannad, P., Shang, N., Eastman, C., and Barrett, S. (2018). "Graphical scripting approach
498 integrated with speech recognition for bim-based rule checking." *Construction Research Congress
499 2018*, 262-272.

500 Li, S., Cai, H., and Kamat, V.R. (2016). "Integrating natural language processing and spatial reasoning for
501 utility compliance checking." *Journal of Construction Engineering and Management*, 142(12),
502 04016074.

503 Li, S., Graça, J. V., and Taskar, B. (2012). "Wiki-ly supervised part-of-speech tagging." *Proc., Proceedings
504 of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and
505 Computational Natural Language Learning*, Association for Computational Linguistics, 1389-
506 1398.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

507 Liao, S.H. (2005). "Expert system methodologies and applications—a decade review from 1995 to 2004." *508 Expert systems with applications*, 28(1), 93-103.

509 Loper, E., and Bird, S. (2002). "NLTK: the natural language toolkit." *arXiv preprint cs/0205028*.

510 Lopes, R., Bedwell, M., Stromberg, V., and Gottlieb, A. (2011). "Changing your hvac system? Don't 511 forget permits." <https://www2.energy.ca.gov/title24/2013standards/changeout/documents/2011-11-16_CSLB_News_Release_HVAC_Permits.pdf>. (Sep 11st, 2019).

512 Lopez, L., Elam, S., and Reed, K. (1989). "Software concept for checking engineering designs for 513 conformance with codes and standards." *Engineering with computers*, 5(2), 63-78.

514 Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky, D. (2014). "The Stanford 515 CoreNLP natural language processing toolkit." *Proc., Proceedings of 52nd annual meeting of the 516 association for computational linguistics: system demonstrations*, 55-60.

517 Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993). "Building a large annotated corpus of English: 518 The Penn Treebank."

519 Nguyen, T.H., and Kim, J.L. (2011). "Building code compliance checking using BIM technology." *Proc., 520 Proceedings of the 2011 Winter Simulation Conference (WSC)*, IEEE, 3395-3400.

521 Petrov, S., Das, D., and McDonald, R. (2011). "A universal part-of-speech tagset." *arXiv preprint 522 arXiv:1104.2086*.

523 Preidel, C., and Borrman, A. (2017). "Refinement of the visual code checking language for an automated 524 checking of building information models regarding applicable regulations." *Computing in Civil 525 Engineering 2017*, 157-165.

526 Sabouni, A., and Al-Mourad, O. (1997). "Quantitative knowledge based approach for preliminary design 527 of tall buildings." *Artificial intelligence in Engineering*, 11(2), 143-154.

528 Sacks, R., Bloch, T., Katz, M., and Yosef, R. (2019). "Automating design review with artificial intelligence 529 and bim: state of the art and research framework." *Computing in Civil Engineering 2019*, 353-360.

530

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

531 Schmid, H. (2019). "Deep learning-based morphological taggers and lemmatizers for annotating historical
532 texts." *Proc., Proceedings of the 3rd International Conference on Digital Access to Textual
533 Cultural Heritage*, ACM, 133-137.

534 Schmid, H., Baroni, M., Zanchetta, E., and Stein, A. (2007). "The enriched treetagger system." *Proc.,
535 proceedings of the EVALITA 2007 workshop*.

536 Song, J., Kim, J., and Lee, J.K. (2018). "NLP and deep learning-based analysis of building regulations to
537 support automated rule checking system." *Proc., ISARC. Proceedings of the International
538 Symposium on Automation and Robotics in Construction*, IAARC Publications, 1-7.

539 State of California, D. o. I. R. (2016). "Elevator permits."
540 <<https://www.dir.ca.gov/dosh/ElevatorPermits.html>>. (Sep 11st, 2019).

541 Tan, X., Hammad, A., and Fazio, P. (2010). "Automated code compliance checking for building envelope
542 design." *Journal of Computing in Civil Engineering*, 24(2), 203-211.

543 UK BIM Task Group (2016). "BIM level 2 frequently asked questions." <<https://bim-level2.org/en/faqs/>>.
544 (Sep 11st, 2019).

545 Xu, X., and Cai, H. (2020). "Semantic approach to compliance checking of underground utilities."
546 *Automation in Construction*, 109, 103006.

547 Xue, X., and Zhang, J. (2020). "Evaluation of eight part-of-speech taggers in tagging building codes:
548 identifying the best performing tagger and common sources of errors." *Proc., The ASCE
549 Construction Research Congress 2020*, ASCE, Reston, VA.

550 Xue, X., Zhang, J. (2019). "Part-of-speech tagged building codes (PTBC)." Purdue University Research
551 Repository. doi:10.4231/Y0ZQ-4946.

552 Zhang, J., and El-Gohary, N. M. (2015). "Automated information transformation for automated regulatory
553 compliance checking in construction." *Journal of Computing in Civil Engineering*, 29(4),
554 B4015001.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

555 Zhang, J., and El-Gohary, N. M. (2017). "Integrating semantic NLP and logic reasoning into a unified
556 system for fully-automated code checking." *Automation in Construction*, 73, 45-57.

557

558

559

560 **Tables**

561 Table 1. Candidate Rules with and without Conflict

Scenario	Sentence	Candidate Rule
Without Conflict	The occupant load permitted in any building, or portion thereof, is permitted to be increased from that number established for the occupancies in Table 10, <i>provided (Manual tag: VBG; Machine tag: VBN) that (DT)</i> all other requirements of the code are met based on such modified number and the occupant load does not exceed one occupant per 7 square feet of occupiable floor space.	If the word that is one position after the word "provided" is tagged as DT and the word "provided" is tagged as VBN, then change the tag of the word "provided" to VBG.
	For auditoriums, theaters, concert or opera halls and similar assembly occupancies, the illumination at the walking surface is permitted to be reduced during performances by one of the following methods <i>provided (Manual tag: VBG; Machine tag: VBN) that (DT)</i> the required illumination is automatically restored upon activation of a premises' fire alarm system.	If the word that is one position after the word "provided" is tagged as DT and the word "provided" is tagged as VBN, then change the tag of the word "provided" to VBG.
With Conflict	Areas of refuge are not required for stairways <i>accessed (Manual tag: VBG; Machine tag: VBN) from (IN)</i> a refuge area in conjunction with a horizontal exit.	If the word that is one position after the word "accessed" is tagged as IN and the word "accessed" is tagged as VBN, then change the tag of the word "accessed" to VBG.
	Such open space shall be either on the same lot or dedicated for public use and shall be <i>accessed (Manual tag: VBD; Machine tag: VBN) from (IN)</i> a street or approved fire lane.	If the word that is one position after the word "accessed" is tagged as IN and the word "accessed" is tagged as VBN, then change the tag of the word "accessed" to VBD.

562

563

564

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

565

566

567

568

569

570

571

572

573 Table 2. Transformational Rulesets in the Experiment

Ruleset	Description
1	If the word A is tagged as X, then change the tag X to Y.
2	If the word that is one position before the word A is tagged as X and the word A is tagged as Y, then change the tag of the word A to Z.
3	If the word that is one position after the word A is tagged as X and the word A is tagged as Y, then change the tag of the word A to Z.
4	If the word that is one position before the word A is word B and the word A is tagged as X, then change the tag of the word A to Y.
5	If the word that is one position after the word A is word B and the word A is tagged as X, then change tag of the word A to Y.
6	If the word that is one position after the word A is tagged as X and the tag of the word that is two positions after word A is Y and the word A is tagged as Z, then change the tag of the word to W.
7	If the word that is one position after the word A is tagged as X and the tag of the word that is two positions after word A is Y and the word A is tagged as Z, then change the tag of the word A to W.
8	If the word one position before the word A is B, the word two positions before the word A is C, and the word A is tagged as X, then change the tag of word A to Y.
9	If the word one position after the word A is B, the word two positions after the word A is C, and the word A is tagged as X, then change the tag of the word A to Y.
10	If the tag of the word that is two positions after word A is X and the word is tagged as Y, then change the tag of the word A to Z.
11	If the tag of the word that is two positions before word A is X and the word is tagged as Y, then change the tag of the word A to Z.
12	If the word that is two positions after the word A is B and the word A is tagged as X, then change the tag of the word A to Y.
13	If the word that is two positions before the word A is B and the word A is tagged as X, then change the tag of the word A to Y.
14	Fix five most common errors remaining in the training set.

Final published version is found in the ASCE Library here:

[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000917](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917)

Xue, X., and Zhang, J. (2020). "Building codes Part-of-Speech tagging performance improvement by error-driven transformational rules." *J. Comput. in Civ. Eng.*, 34(5), 04020035.

574
575

576

577

578

579

580

581

582

583

584 Table 3. POS Tagging Accuracy After Applying Each Ruleset

Ruleset	Training Dataset		Testing Dataset	
	Number of Errors	Accuracy	Number of Errors	Accuracy
1	759	97.60%	359	95.78%
2	282	99.11%	230	97.29%
3	142	99.55%	183	97.85%
4	91	99.71%	176	97.93%
5	80	99.75%	176	97.93%
6	36	99.89%	167	98.03%
7	36	99.89%	167	98.03%
8	29	99.91%	165	98.06%
9	29	99.91%	165	98.06%
10	29	99.91%	165	98.06%
11	29	99.91%	165	98.06%
12	29	99.91%	165	98.06%
13	29	99.91%	165	98.06%
14	10	99.97%	160	98.12%

585