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Abstract— This paper introduces a new image smoothing
filter based on a feed-forward convolutional neural network
(CNN) in presence of impulse noise. This smoothing filter
integrates a very deep architecture, a regularization method,
and a batch normalization process. This fully integrated
approach yields an effectively denoised and smoothed image
yielding a high similarity measure with the original noise free
image. Specific structural metrics are used to assess the
denoising process and how effective was the removal of the
impulse noise. This CNN model can also deal with other noise
levels not seen during the training phase. The proposed CNN
model is constructed through a 20-layer network using 400
images from the Berkeley Segmentation Dataset (BSD) in the
training phase. Results are obtained using the standard testing
set of 8 natural images not seen in the training phase. The merits
of this proposed method are weighed in terms of high similarity
measure and structural metrics that conform to the original
image and compare favorably to the different results obtained
using state-of-art denoising filters.
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I.  INTRODUCTION

Impulse noise is inherent to digital images and degrades
the quality of images [1]. In this study, removal of impulse
(salt and pepper) random noise is considered. It appears as
white and black pixels in the noisy image. Assuming
normalization [2][3][4], the salt and pepper noise model can
be expressed by as follows:

0 Probability P,
I = 1 Probability P @)
G Probability 1 — P, — Py

Where C is uncorrupted pixels, probabilities P (Salt) and P,
(Pepper) are assigned to corrupted pixels.

When removing noise in images, one of the most
challenging part is in smoothing the image to attenuate the
noise effect while preserving the image details. In most
instances, smoothing filters cause irreversible loss of
important details, affecting as a consequence edges and
object boundaries. Therefore, an effectual smoothing filter is
one that minimizes the effect of noise no matter its intensity
while at the same time it preserves the image details. The
effectiveness of smoothing filter is measured through high
similarity and high structural metrics to the clean image. The
proposed smoothing filter is based on a deep convolutional
neural network (CNN) designed to remove the impulse (salt
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and pepper) noise and the latent original image is directly
estimated. Then, batch normalization is applied in order to
speed up and improve the denoising process. Finally, the
network is trained for unknown (blind) noise.

The results are compared to another well-established
denoising filter, the adaptive median and fixed weighted mean
filter AMFWMEF [3][4], which was already proven to
outperform many of the relevant denoising methods
introduced in the literature [5][6][7][8][9][10][11][12][13].
Several structural metrics, including peak signal to noise ratio
(PSNR), structural similarity index (SSIM) and feature
similarity index (FSIM) are used for evaluation purposes, and
to ensure that any ensuing edge detection method that follows
such denoising process preserves edge details. The aim of this
study is to determine if the PSNR, SSIM and FSIM metrics
can be improved through the use of convolutional neural
networks over the use of an image processing based algorithm
we named the switching adaptive median and fixed weighted
mean filter introduced in [3].

II.  PROPOSED METHOD

In this section, the network architecture and evaluation
measures are discussed. The network architecture subsection
provides the design details of the CNN architecture developed
to address the effects of impulse noise in digital images. The
evaluation measures subsection provides the mathematical
foundation for the structural metrics and the peak signal to
noise ratio as used in this study for evaluation purposes. The
genesis for this CNN design is in discovering that most
existing filters don’t have a good performance at the
boundaries, especially in the presence of high noise level, in
spite of having good performance overall in terms of noise
removal. So the proposed design aims at preserving all image
details including boundaries and yielding at the same time
high PSNR and structural similarities.

A. Network Architecture

The proposed CNN model is a modification on the DnCNN
introduced in [14] for impulse denoising. Then, training data
using 400 images from the well-known Berkeley
Segmentation Dataset (BSD) is provided for learning. The
input to the CNN is a noisy image y; produced by artificially
injecting impulse noise over the clean original image (x;) and
the output is directly estimated as the denoised original image
as f(y;). The [-2 loss function is the summation of squared
error between the estimated latent noise-free original patches
(mapped noisy patches) and the noise-free original patches as
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given in (2), then, the network parameter are updated by
minimizing the loss function [14][15].

L= §V=1||f(yi)_xi”§ 2

Where N is number of training patches set ({y;, x;}). The
network model introduced in this study follows the procedures
in [14] and has 3 types of layers: 1% layer is a combination of
convolution and ReLU (for non-linearity) [16] in which 64
filters of size 3x3x1) are used in order to create 64 feature
maps. 2™ layer to (Depth of the network — 1) layer is a
combination of convolutional, batch normalization [17] and
rectified linear unit (ReLU) [16] in which 64 filters (size of
3x3x64) are used. For reconstruction purposes, one filter of
size 3x3x64 is used at the last layer as a convolutional layer.
Combination of convolution and ReLU [16] separates the
noise from noisy observations through the hidden layers. Also,
it is noted that size mismatches between different input images
can cause boundary artifacts [14]. Therefore, the input image
is directly padded with zeros before the first convolution stage
in order to reduce such boundary artifacts. The network model
is illustrated in Fig. 1

B. Evaluation Measures

The feature similarity index (FSIM) [18] between noisy
and denoised images is measured as follows:

Yien SL).PCy (i)
FSIM = =———=
8 Yieq PCm (D) ®

Where 2 is the whole image spatial domain, PC,,(i) =
max(PC, (i), PC,(i)), S, (i) is the similarity at location i as
(4):

SL(i) = Spc (i)SG ® “4)

Spc (i) is the similarity measure between two feature maps
(PC, and PC,, they are extracted from noisy image and
denoised image) as (5).

N 2PCi(D).PCy(D)+Ty
Spc(i) = PC1()24PCy ()2+Ty ®)

PC is the model of how HVS detect and identify features
which is between 0 and 1, T; is a positive constant used in
order to increase the stability of Spe (i).

S (@) is the similarity measure between G, and G, (partial
derivatives of image) as (6).

2G1(1).Ga(D)+Ty
G1(D)2+G,(D)%+T,

Se() = (6)

T, is a positive constant, which depends on the dynamic

range of GM = ’Glz + G2

The structural similarity index (SSIM) as defined in [19] is
expressed as follows:

(2X7+C1)(20%y+C2)
(X2+y2+C1)(0x%+0y2+C2)

SSIM = @)
Where o, and o, denote the standard deviations for the x and

y images, respectively with the standard deviation of their
combination expressed as gy,

Input noisy image

A 4

1% : Convolutional layer + ReLU

Convolutional layers + Batch
normalization + ReLU

Last layer: Convolutional layer

L 4
Output denoised image

Fig. 1. Network model

The peak signal to noise ratio (PSNR) is defined as follows:

(max(x))?

PSNR = 10log SE ®)

Where MSE defines the mean square error in which max (x)
denotes the maximum intensity of the pixels.

III. RESULT AND DISCUSSION

With the intent to preserve as much image details as
possible while the effects of impulse noise are minimized, the
results of the CNN-based denoising filter are compared to the
results obtained with the most recent and highly effective
AMFWMF detailed in [3]. The 400 (180x180) images from
the Berkeley Segmentation Dataset (BSD) [14] are used in the
training phase. Additionally, we set aside another 8 natural
images as shown in Fig. 2 in the testing phase. It is important
to emphasize that the images that are used for testing are not
seen in the training phase.

As indicated earlier, the optimal results were obtained by
using depth of 20 layers with 40x40 patch size for unknown
denoising. The stochastic gradient descent (SGD)-momentum
with weight decay of 0.0001, momentum of 0.9, and a mini-
batch of 128 is used in similar fashion as in [14] [20] [21].
There are 50 epochs used for our model. MatConvNet package
which is a MATLAB toolbox for Convolutional network
(CNN) is used in this study. The implementation is carried out
in MATLAB 2017b on a PC with Nvidia GPU. The training
time of the network consisted nearly of 24 hours.

Tables I shows the results obtained on the averaged peak
signal to noise ratio (PSNR), averaged structural similarity
index (SSIM) and averaged FSIM measures, comparing the
AMFWMF filter (the adaptive median filter of AMFWMEF is
set based on the minimum and maximum initial window size
for the assumed noise level) against the proposed CNN-based
method. All these metrics are calculated in the presence of
different impulse noise, which varied in this case from 10 to
90 percent on the 8 aforementioned testing images.

Fig. 3 shows the same comparison in the presence of 90%
impulse noise on test image “Lena”. Fig. 4-6 show the
proposed filter (unknown denoising) results in the presence of
different impulse noise on different testing images. As the test
images show, the proposed CNN-based filter yields very good
results under different noise level intensities in terms of
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denoising, preservation of details and high similarity and
quality of the denoised image with respect to the original
noise-free image.

IV. SUMMARY

A new CNN-based denoising filter is proposed using a
deep feed-forward convolutional neural network (CNN) filter
with an appropriate loss function. The focus is placed on
removing or minimizing the impulse (salt and pepper) noise
even at high intensity levels. This filter is consequently shown
to yield the highest evaluation measures in contrast to the
AMFWMF method [3][4] and the other well-known denoising
filters that were compared earlier to the AMFWMEF. The
results show that the CNN method preserves more of the edge
details as reflected by the highest structural similarity
measures and the PSNR, proving the similitude of the
denoised image to the clean image. This similitude under the
CNN method seems to be resilient to the effects of impulse
noise even under high intensity levels.
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Fig. 4. Results of proposed filter (unknown denoising) on different test images, columns 1 through 3 are: Original test image, noisy image,
and denoised image a) Test image “Fruits” corrupted with 80% impulse noise b) Test image “Man” corrupted with 80% impulse noise
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Fig. 5. Results of the proposed filter (unknown denoising) on different test images, columns 1 through 3 are: Original test image, noisy
image, and denoised image a) Test image “Couple” corrupted with 90% impulse noise b) Test image “Finger print” corrupted with 90%
impulse noise
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Fig. 6. Results of the proposed filter (unknown denoising) on different test images, columns 1 through 3 are: Original test image, noisy
image, and denoised image a) Test image “Airplane” corrupted with 95% impulse noise b) Test image “Lena” corrupted with 95% impulse
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