
Flocking-based Live Streaming of 360-degree Video
Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang

New York University
{ls3817,yixiang.mao,tz1178,yongliu,yw523}@nyu.edu

ABSTRACT
Streaming of live 360-degree video allows users to follow a live event
from any view point and has already been deployed on some com-
mercial platforms. However, the current systems can only stream
the video at relatively low-quality because the entire 360-degree
video is delivered to the users under limited bandwidth. In this
paper, we propose to use the idea of “flocking” to improve the per-
formance of both prediction of field of view (FoV) and caching on
the edge servers for live 360-degree video streaming. By assigning
variable playback latencies to all the users in a streaming session, a
“streaming flock” is formed and led by low latency users in the front
of the flock. We propose a collaborative FoV prediction scheme
where the actual FoV information of users in the front of the flock
are utilized to predict of users behind them. We further propose
a network condition aware flocking strategy to reduce the video
freeze and increase the chance for collaborative FoV prediction on
all users. Flocking also facilitates caching as video tiles downloaded
by the front users can be cached by an edge server to serve the
users at the back of the flock, thereby reducing the traffic in the
core network. We propose a latency-FoV based caching strategy
and investigate the potential gain of applying transcoding on the
edge server. We conduct experiments using real-world user FoV
traces andWiGig network bandwidth traces to evaluate the gains of
the proposed strategies over benchmarks. Our experimental results
demonstrate that the proposed streaming system can roughly dou-
ble the effective video rate, which is the video rate inside a user’s
actual FoV, compared to the prediction only based on the user’s own
past FoV trajectory, while reducing video freeze. Furthermore, edge
caching can reduce the traffic in the core network by about 80%,
which can be increased to 90% with transcoding on edge server.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Live 360-degree Video, Collaborative FoV Prediction, Edge Caching
ACM Reference Format:
Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang. 2020.
Flocking-based Live Streaming of 360-degree Video. In 11th ACMMultimedia
Systems Conference (MMSys’20), June 8–11, 2020, Istanbul, Turkey.ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3339825.3391856

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys’20, June 8–11, 2020, Istanbul, Turkey
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6845-2/20/06. . . $15.00
https://doi.org/10.1145/3339825.3391856

1 INTRODUCTION
Live streaming of 360◦ video facilitates immersive view experience
by allowing users dynamically choose their view directions in live
events and is potential to be popular in many fields, e.g., concert
and E-sport. However, the bandwidth requirement of 360◦ video
is much higher than the traditional 2D-planar video. How to de-
liver high-quality 360◦ video with short playback latency over the
global Internet has become a hot topic for both academia and in-
dustry. To address the bandwidth and latency challenges, there are
two proven effective solutions: Field-of-View (FoV) streaming and
content caching. Instead of streaming the whole 360◦ video, FoV
streaming only streams a fraction of video within the predicted
user FoV. It can significantly reduce the bandwidth requirement
of 360◦ video streaming. However, the user Quality-of-Experience
(QoE) of FoV streaming largely hinges on the accuracy of user FoV
prediction. Meanwhile, without the global deployment of multicast,
caching at different levels of the network infrastructure can reduce
the redundant traffic resulting from streaming the same video to
multiple users. While caching has been widely employed for video-
on-demand, live video streaming can also benefit from caching if
users can tolerate some streaming latency: if users A and B in the
same local network are watching the same live event, and B can tol-
erate a longer playback latency than A, then a local network cache
can temporally store each video segment downloaded by A and
serve it to 𝐵 after a short delay, resulting in faster video download
on B, and reduced traffic in the core network between the server
and the local network edge. Indeed, recent study has shown that
the playback latencies in the commercial live streaming services
on Over-the-Top (OTT) devices range from 10 to 30 seconds [26],
presenting abundant opportunities for effective content caching for
live video streaming.

In this paper, we investigate how the idea of “flocking” can be
used to improve the efficiency of live 360◦ video streaming. We
treat all users watching the same live event from the same local
network as a “streaming flock”. While all the users display the video
at the same speed, they can be engineered to have different play-
back latencies within a short range, determined by their network
conditions. The relative position of a user in a streaming flock is
therefore determined by her playback latency. We explore the flock-
ing gain in both FoV prediction accuracy and live video caching. At a
high level, the view directions of users in the front of a flock, i.e.,
with shorter playback latency, serve as valuable inputs to predict
the view directions of users behind them, i.e., with longer playback
latency. Leveraging on this, we develop a novel light-weight FoV
prediction algorithm that predicts a target user’s view direction
for a video scene based on her own past FoV trajectory as well as
the actual view directions of “similar” users who have watched the
same video scene very recently. Similarly, video segments down-
loaded by users in the front of a flock can be cached to serve users
behind them. We develop different tile-based caching strategies

https://doi.org/10.1145/3339825.3391856
https://doi.org/10.1145/3339825.3391856

MMSys’20, June 8–11, 2020, Istanbul, Turkey Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang

to maximize the caching gain by taking into account the relative
flock positions and FoV consistency among users. We further study
the bandwidth, computation and storage trade-off when the cache
server is equipped with video transcoding capability.

2 RELATEDWORK
In recent years, numerous solutions have been proposed to solve
360◦ video streaming related problems. In the following, we review
works closely related to FoV prediction, live streaming, and edge
caching.

User FoV prediction is one of the most important techniques
for all types of 360◦ video streaming including video-on-demand
(VoD) [9, 17, 29, 33], live 360◦ [14, 30] and interactive 360◦ video [5,
40]. Different FoV predictionmethods are proposed to address differ-
ent requirements. In [4], linear regression and deep neural network
(DNN) based solutions are proposed to predict user future FoV cen-
ter using historical FoV trajectory. Instead of only using the past
FoV trajectory, video content features are also utilized to predict
future FoV in [11]. In [19], the authors focused on FoV prediction
over long time horizon, which is important for on-demand stream-
ing with long buffers to smooth the network traffic, and multiple
LSTM-based models are proposed. Auto Regressive Moving Aver-
age (ARMA) prediction and transition probability model are applied
in [12] and [7], respectively. The study in [16] shows user percep-
tual quality is also affected by the relative moving speed of the
objects, depth-of-field and luminance change. In [3, 19], collabora-
tive FoV prediction based on other users’ viewing directions are
considered. However, these methods are proposed for VoD stream-
ing and assume that there are always a large number of users who
have watched the same video. Our proposed collaborative FoV pre-
diction which is specifically designed for live streaming, can work
with any variable number of available users and is light-weight.

Live 360◦ video streaming poses more challenges for both end
users and video server than VoD type of 360◦ video streaming.
In [20], the authors proposed a measurement platform to conduct
measurement on the existing commercial live 360◦ streaming plat-
forms, e.g., Facebook and YouTube. QoE metrics including video
bitrate, duration and the number of video freezes, and user real-
time latency are collected from a large group of viewers from differ-
ent countries. Besides, [14] proposes a live 360◦ streaming system
which strikes a trade-off between the bandwidth usage and video
quality within user’s FoV.

In live 360◦ streaming system, encoding efficiency is challenged
by the stringent real-time requirement. As with VoD, tile-based
video encoding and delivery is widely used to achieve FoV-adaptive
video streaming [1, 42]. Based on this design, different encoding
methods can be utilized. In [31], tiles with different resolutions
are aggregated into one High Efficiency Video Coding (HEVC) bit-
stream on-the-fly allowing the usage of only a single decoder on the
end device. GPU-based real-time HEVC encoding platform is devel-
oped in [2] and evaluated by the measurement framework proposed
in [25] under 5G network environment. Layered coding scheme is
applied in [27, 35] to reduce the occurrences of video freezes with-
out compromising the quality and bandwidth efficiency. We focus
on the system-level design for live streaming, taking advantage of
the fact that viewers are often interested in similar regions in the

360◦ scope. By intentionally assigning varying playback latencies
to users based on their network conditions, we can improve the
accuracy of collaborative FoV prediction, while reducing the likeli-
hood for video freezing. Standard tile-based coding and streaming
are adopted in our system.

Edge caching for video streaming is widely studied in recent
works [18, 21, 41]. In [13], two-dimensional caching algorithm
which takes both content and network contexts into consideration
for 5G networks are proposed. Besides, the trade-off between the
gain of coded caching and delivery delay is investigated in [28].

For 360◦ video, edge caching also plays an important role to
solve both network efficiency and video delivery problems. Differ-
ent from legacy video caching, 360◦ users move their FoVs among
tiles during the playback (considered as non-linear viewing), which
can benefit from the caching technique proposed in [15] that is
demonstrated to be beneficial for non-linear video content. In [22],
FoV-aware caching strategy is proposed, and their results show that
the proposed algorithms generate significant improvement com-
pared with the traditional caching. However, they consider users
start watching 360◦ video with large latency gap about 30𝑠 . Differ-
ent from this, our work strategically assigns users varying latencies
over an acceptable range (0-20 s) and consider both the FoV and
latency factors to determine whether to cache a downloaded video
tile. A novel HEVC transcoding scheme is proposed in [10]. Authors
in [6] study the trade-off between caching and edge computing for
immersive video delivery. Caching and computation offloading pol-
icy are jointly optimized to reduce the required transmission rate
in [34]. Here we consider how to improve caching performance via
real-time transcoding, at the expense of computation.

3 CHALLENGES AND OUTLINES OF
PROPOSED SOLUTIONS

In this section, we provide an overview of the challenges and the
proposed solutions for live 360◦ video streaming.

3.1 Online User FoV Prediction
A user’s view direction for 360◦ video is affected by both the distri-
bution of the attractive objects in a video scene and her personal
preferences to them. FoV prediction for future frames based on the
FoV trajectories for the past frames is hard because there could be
newly appeared objects of interests that are not predictable from
the past. In this challenging scenario, knowing which areas other
users (earlier viewers) have focused on for those future frames could
greatly help the FoV prediction for the current user (late viewer).
Even in the situation when no new objects appear in the future
frames, the distribution of the viewing areas of the earlier viewers
can still help to predict the FoV of late viewer, especially if the
distribution is non-uniform and has one or a few peaks. In [3, 19],
FoV prediction based on multiuser trajectories was proposed. With
the help of information from other users, the prediction accuracy
for a target user can be improved. These studies were based on the
user FoV traces from VoD streaming and assumed that an equal
number of earlier viewers are always available and is relatively
large. However, in live 360◦ video streaming, the number of earlier
viewers for a target user is variable and dynamically changing.

Flocking-based Live Streaming of 360-degree Video MMSys’20, June 8–11, 2020, Istanbul, Turkey

Solution: In this paper, we employ a flocking-based real-time
FoV information sharing strategy for live 360◦ video streaming.
With the shared FoV trajectories from users in front of the target
user in terms of latency, we develop a light-weight collaborative
FoV prediction algorithm that adaptively combines the prediction
from the user’s own past trajectory and the prediction from the tra-
jectories of users in the front of the flock. Details will be presented
in Sec. 4.1

3.2 Temporal and Spatial Rate Adaptation
Similar to 2D-planar video streaming, to cope with dynamic net-
work bandwidth, the streaming rate of live 360◦ video has to be
adapted over time. It can be achieved by partitioning a 360◦ video
into temporal segments with some unit time, e.g., one second, and
dynamically changing the coding rate of segments. Additionally, to
cope with user view direction changes, rate allocation over different
directions within the same segment has to be adapted. In a tile-
based design, each 360◦ video segment is spatially partitioned into
multiple tiles in the Equirectangular Projection (ERP) format, and
each tile is coded with multiple rates. The rate and consequently
the quality chosen for a tile should be determined by its distance
to the center of a user’s FoV. The tiles within the predicted FoV
should be allocated with more bits than the tiles around the bound-
ary or outside of FoV. In addition, the impact of the rate difference
between two spatially adjacent tiles on the user perceived video
quality should also be considered.

Solution:We use segment+tile based design to achieve temporal
and spatial rate adaption. Similar to DASH for 2D-planar video, we
can adapt the total coding rate budget for a 360◦ video segment
using buffer-based and/or rate-based algorithms. Each segment
consists of multiple frames, and a user’s view direction can change
at the frame-level. A tile within a user’s FoV at one frame may fall
out of her FoV at the next frame. Instead of predicting one view
direction for each segment, we predict the tile attention distribution,
i.e., the fraction of time that a specific tile falls into the user’s FoV
over the whole duration of a segment. Given the predicted attention
distribution, we proportionally allocate the total rate budget for a
segment over all the tiles. Details will be presented in Sec. 4.3.

3.3 Massive Concurrent Requests and
Redundant Network Traffic

One main challenge of live video streaming is bursty requests. Pop-
ular live events attract people around the world to join the live
streaming service within a short time span. The so-called flash-
crowd effect is further amplified by social cascading in online so-
cial networks and recommendation engines of video streaming
platforms. The workload on the video streaming server would be
extremely heavy. In the context of live 360◦ video streaming, this
problem becomes more severe as each user request might be con-
sisted of multiple tiles with different rates. Besides, the huge volume
of video traffic imposed on network infrastructure should also be
considered. As a large number of users watch the same live event,
most of the traffic transmitted over the networkwould be redundant.
So, serving bursty requests and eliminating redundant video traffic
are critical to both Internet service providers (ISPs) and content
providers.

Solution: Caching is an efficient solution to reduce the redun-
dant network traffic and improve the QoS of user content retrieval.
In live 360◦, one video tile can be requested multiple times by users
in the flock. If the popular tiles can be cached at a local server, it can
reduce the workload on the original video server and the traffic in
the core network significantly. Different from VoD, live video con-
tent only needs to be cached for a short time span corresponding to
the maximum playback latency of the flock. The future popularity
of a tile watched by a user is determined by how many other users
behind her in the flock are likely to watch the tile, and how many of
them are likely to request the same rate version. In Sec. 5, we will
develop a novel live 360◦ video tile caching algorithm that takes
into account the latency spread and FoV divergence of users in the
flock.

4 FLOCKING-BASED LIVE 360◦ VIDEO
STREAMING

Figure 1: User FoV sharing in flock-based streaming.

In order to cope with the challenges mentioned in Sec. 3, we
propose a flocking-based live 360◦ video streaming system. The
detailed workflow is shown in Fig. 1. During the playback, each
user will record FoV center direction for each watched frame and
upload historical FoV trajectory along with the request for new
tiles to video server. The server stores the received users’ FoV
information into a shared FoV table. A user can download the shared
FoV information together with Media Presentation Description
(MPD) file. The shared FoV table maintained by the server allows all
users in a flock to fully exchange their up-to-date FoV information,
which can be used to improve their FoV prediction accuracy.

4.1 Collaborative FoV Prediction
With shared FoV information, a user can conduct collaborative FoV
prediction. Fig. 2 illustrates the detailed process of predicting future
FoV for a target user based on the FoV information of users in front
of her in the flock. It consists of the following steps:

1 At a specific time, the target user 𝑢𝑡 (user 1 in this case) is
watching segment 𝑖 + 1 (shown by the black vertical line). She also
has prefetched segment 𝑖 + 2 in the buffer and is going to download
segment 𝑖 + 3.

2 Before sending out the request to the server, 𝑢𝑡 first predicts
the center of FoV for segment 𝑖 + 3, denoted by 𝑐

𝑡,𝑖+3
1, based on

1𝑖 + 3 represents the frame in the middle of segment 𝑖 + 3. So only the FoV center of
the frame in the middle of a segment is predicted.

MMSys’20, June 8–11, 2020, Istanbul, Turkey Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang

Figure 2: Collaborative FoV prediction: to predict FoV of user 1 for a future video segment 𝑖 + 3, instead of only using her past
FoV trajectory, FoV information of other users are utilized in a collaborative filtering fashion.

her own frame-level FoV trajectory T𝑡 for all frames she has viewed
up to the first few frames of segment 𝑖 + 1. To filter the noise in
FoV measurement, we use Kalman Filter [38] to process the data
before inputting the data to FoV prediction module. Different time-
series prediction methods can be used to make FoV prediction, e.g.,
linear regression, recursive least squares (RLS), and Long Short-
Term Memory (LSTM). In this paper, we adopt truncated linear FoV
prediction proposed in [32].

3 Based on the predicted FoV center 𝑐
𝑡,𝑖+3, we can project the

FoV on the sphere to the ERP plane, and further obtain the tile
coverage (the area of the red envelop in Fig. 2) through the offline
calculated mapping M(·) based on the geometry mapping from
the sphere to ERP [8]. The value for each tile is the percentage of
pixels in this tile that falls into the mapped predicted FoV on the
ERP. For example, if the tile is completely inside the mapped FoV,
the value is 1. Then, the coverage mapM(𝑐

𝑡,𝑖+3) is normalized into
the tile attention distribution 𝑝𝑡,𝑖+3. In this attention distribution,
the value of each tile represents how much attention a tile can
acquire from the user within the playback of the video segment.
In our current implementation, the tile attention distribution for a
segment is determined by the predicted FoV center of the middle
frame of the segment. More generally, a user can also predict the FoV
centers of all the frames in a segment and average the tile attention
distribution for all the frames to derive the attention distribution
for the segment. Alternatively, a user may directly predict this
segment-level attention distribution from the past trajectory. These
alternatives will be explored in the future.

4 So far, the prediction is only based on the past trajectory of
the target user. To improve the prediction, the system further looks
for users who have watched segment 𝑖 + 3, and uses a weighted

average of their tile attention distributions to generate another
prediction:

𝑝𝑡,𝑖+3 =
∑
𝑗 ∈𝑆𝑡

𝛽 𝑗𝑝 𝑗,𝑖+3, (1)

where 𝑆𝑡 is the set of users who have already watched the video
segment to be watched by the target user 𝑢𝑡 . 𝛽 𝑗 and 𝑝 𝑗,𝑖+3 are the
normalized weight of user 𝑗 and user 𝑗 ’s true attention distribution
of segment 𝑖 + 3, respectively. We illustrate the calculation of 𝛽 𝑗
and 𝑝 𝑗,𝑖+3 using the following example.

In this example, user 2 and user 3 are watching segment 𝑖 + 4
and 𝑖 + 5, respectively. Their FoV historical trajectories of all the
previous segments (including segment 𝑖 + 3) have already been
uploaded to the server. We assume a collaborative filtering based
hypothesis: a user with similar trajectory to the target user in the
past is more likely to have similar viewing areas in the future,
therefore should be given a larger weight in Eq. (1). To determine
the weight, user 𝑢𝑡 will calculate the distance between her own
past FoV trajectory with each of other users’ trajectories in the
same past period (on the left side of the black vertical line). The
distance between FoV trajectories is defined as the average great-
circle sphere distance [36] of all the time-aligned FoV center pairs.
We will use 𝑑 (𝑗, 𝑡) to denote the distance between user 𝑗 and the
target user 𝑡 . For example, as illustrated in Fig. 2, if distance 𝑑 (1, 2)
is less than 𝑑 (1, 3), user 2 should be assigned a larger weight. We
choose to use the reversed sigmoidal function defined by Eq. (2) to
map the distance to the unnormalized weight:

𝑤 𝑗 = H(𝑑 (𝑗, 𝑡)) = 𝑒−𝛾 (𝑑 (𝑗,𝑡)−𝜙)

1 + 𝑒−𝛾 (𝑑 (𝑗,𝑡)−𝜙)
, (2)

where 𝛾 and 𝜙 are parameters to be optimized as explained in
Sec. 4.1.1. In the special case when 𝛾 is very large, it will have a

Flocking-based Live Streaming of 360-degree Video MMSys’20, June 8–11, 2020, Istanbul, Turkey

thresholding effect so that when the distance is greater than 𝜙 , the
weight is 0. The weights are finally normalized as below:

𝛽 𝑗 =
𝑤 𝑗∑

𝑗 ∈𝑆𝑡 𝑤 𝑗
. (3)

5 Since user 𝑗 has watched segment 𝑖 + 3, we can calculate
her actual segment-level tile attention distribution 𝑝 𝑗,𝑖+3 based on
its frame-level FoV trajectories within this segment. We follow
the same process in step 3 to determine the frame-level attention
distributionM(𝑐 𝑗,𝑓) for each frame 𝑓 within segment 𝑖+3, and then
average these frame-level distributions to obtain the segment-level
attention distribution:

𝑝 𝑗,𝑖+3 =

∑
𝑓 ∈𝐹𝑖+3 M(𝑐 𝑗,𝑓)

|𝐹𝑖+3 |
, (4)

where 𝐹𝑖+3 is the set of all the frames of segment 𝑖 + 3.
6 To combine the attention distribution 𝑝𝑡,𝑖+3 predicted from

user 𝑢𝑡 ’s own trajectory and the attention distribution 𝑝𝑡,𝑖+3 from
collaborative prediction, we propose to use a simple weighted aver-
age:

𝑝𝑡,𝑖+3 = 𝛼𝑝𝑡,𝑖+3 + (1 − 𝛼)𝑝𝑡,𝑖+3 . (5)
We hypothesize that the prediction based on others’ attention

distribution 𝑝 𝑗,𝑖+3 is more accurate when more users have viewed
segment 𝑖 + 3 and their past trajectories are more similar to the
target user. Therefore, we design the weight 𝛼 as:

𝛼 =
1

1 +∑
𝑗 ∈𝑆𝑡 𝑤 𝑗

(6)

If there is no user in 𝑆𝑡 , the target user will only use her own FoV
prediction as the value of 𝛼 in Eq. (5) is 1.

4.1.1 Parameters Tuning. Based on the definition of Eq. (3) and (6),
the contribution of self-prediction 𝑝𝑡,𝑖 and collaborative prediction
𝑝𝑡,𝑖 is controlled by the parameters 𝛾 and 𝜙 in the distance-to-
weight function in Eq. (2). We perform offline parameter tuning
through an exhaustive grid search to find the optimal setting. As the
distance 𝑑 (𝑗, 𝑡) between curves is defined by the sphere distance (in
radian) and ranges from 0 to 𝜋 , the value of 𝛾 and 𝜙 are chosen from
set {1, 2, 3, 4, 5} and {0.5, 1, 1.5, 2, 2.5}, respectively. We leverage the
FoV traces from the dataset in [39] to perform offline optimization.
The dataset has 48 user traces for each video. We randomly pick
one user 𝑡 as the target user and one video segment 𝑖 for prediction
and assume all other users have watched this segment. Then we use
the proposed method to obtain the collaborative prediction. We use
the KL divergence between the predicted attention distribution and
the actual distribution to evaluate the accuracy of the prediction.
For each candidate pair of 𝛾 and 𝜙 , we perform massive random
selections of users and segments and determine the average KL
divergence. The grid search shows that the combination of𝛾 = 3 and
𝜙 = 0.5 generates the lowest tile attention distribution prediction
error. For all the following experiments, the value of 𝛾 and 𝜙 keep
fixed at 3 and 0.5 respectively. The detailed evaluation results will
be presented in Sec. 6.

4.1.2 System Overhead Analysis. To perform real-time collabora-
tive FoV prediction within a flock, users have to upload their FoV
trajectories. Assuming FoV sampling frequency is 30Hz, for each

segment with duration of one second, 30 FoV data points (3D or 4D)
will be uploaded. Users also have to download the shared FoV table
of all the early users from the server. The amount of FoV data to
be downloaded for each user depends on her location in the flock.
The earlier, the less. Assuming there are 100 users in one flock,
at most 100*30 FoV data points of the past trajectory and 100 tile
distributions of the future segment should be downloaded. Both
the upload and download of FoV information can be piggybacked
with the video segment request and video segment, respectively,
without introducing extra latency. Compared with the video con-
tent data at rate of tens or hundreds of Mbps, this overhead can be
negligible. Furthermore, we will evaluate the overhead reduction
and the performance impact if the target user only uses the average
tile distribution of all the earlier users without distance weights.

4.2 Network Aware Latency and Buffer Upper
Bound Assignment

When birds fly in a flock, the birds in the front have to fight harder
against headwind. It is therefore wise to have stronger birds lead
a flock. We will follow a similar strategy to place “strong" users
with better network conditions in the front of a streaming flock. In
this section, we will elaborate how this can be naturally realized
by manipulating the target playback latency and maximum buffer
length on all users.

At any given time 𝑡 , if a user’s target latency is 𝑙 , and the maxi-
mum buffer length is 𝐵 (𝑢) ≤ 𝑙 , the user should be watching video
generated at time 𝑡 − 𝑙 and downloading video generated within
[𝑡 − 𝑙, 𝑡 − 𝑙 + 𝐵 (𝑢)]. 𝑙 and 𝐵 (𝑢) are two critical parameters for live
360◦ video streaming. Before downloading segment 𝑡 − 𝑙 +𝐵 (𝑢) , the
user should first estimate its FoV based on her FoV trajectory up to
𝑡 − 𝑙 . Therefore 𝐵 (𝑢) determines the FoV prediction temporal hori-
zon, and the larger the 𝐵 (𝑢) , the less accurate the trajectory-based
self-prediction. On the other hand, for collaborative FoV prediction,
the user can leverage FoV information of users with shorter play-
back latency who have watched segment 𝑡 − 𝑙 + 𝐵 (𝑢) . Therefore,
the larger the 𝑙 , the more potential for collaborative FoV predic-
tion. Meanwhile, streaming buffer is important to absorb network
bandwidth oscillation, a larger 𝐵 (𝑢) is beneficial to achieve high
quality.

In our proposed streaming flock, users at the front must have
short playback latency, that means they have to assume small 𝑙
and 𝐵 (𝑢) . The immediate requirement is that they must have high
bandwidth and stable network condition so that they don’t run
into video freeze or segment skip even with short streaming buffer.
Additionally, since they have no/low chance to benefit from col-
laborative FoV prediction, they may have to download more tiles
outside of the predicted FoV to accommodate FoV prediction errors.
The good news for them is that since 𝐵 (𝑢) is small, the FoV predic-
tion horizon is short, so that the trajectory-based FoV prediction
is generally more accurate. Meanwhile, for users with unstable
network conditions, to maintain smooth streaming, a large 𝐵 (𝑢) is
necessary. This naturally pushes them to the back of the flock. The
negative impact of long FoV prediction horizon resulted from large
𝐵 (𝑢) can be compensated by collaborative FoV prediction based on
FoV information of users in the front. This cooperative flocking
strategy can improve both the individual and overall user QoE.

MMSys’20, June 8–11, 2020, Istanbul, Turkey Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang

Figure 3: Latency and buffer upper bound for different groups.

In order to enable such network-aware assignment, before re-
questing for the first video segment, a user operates a short-term
monitoring on her current network condition. To illustrate, in Fig. 3,
users are divided into four groups with target latencies 𝑙1 = 𝐺1,
𝑙2 = 𝐺1 +𝐺2, 𝑙3 = 𝐺1 +𝐺2 +𝐺3, and 𝑙4 = 𝐺1 + ... +𝐺4. Since this is
live streaming, the buffer upper bound of Group 1 𝐵 (𝑢)

1 should be
less than 𝐺1 2. Then, for latency Group 2, in order to benefit from
Group 1 users’ FoV information, the buffer length of the users in
Group 2 should not exceed where users in Group 1 are watching.
In another word, the buffer upper bound of Group 2, 𝐵 (𝑢)

2 should
not be greater than 𝐺2. More generally, to enable Group 𝑘 users to
benefit from all the previous groups, its buffer upper bound should
satisfy 𝐵 (𝑢)

𝑘
< 𝐺𝑘 .

4.3 Spatial and Temporal Rate Adaption
4.3.1 Bandwidth Prediction. Due to the dynamic network envi-
ronment, adaptive rate control becomes crucial to video streaming
especially for live video streaming with short buffer. Bandwidth pre-
diction is one of the most important parts in adaptive rate control.
In our system, bandwidth prediction is an independent component,
and any effective bandwidth prediction algorithm can be applied.
In the simulation results shown later, the harmonic mean of the
download bandwidth of the past 10 video segments is calculated as
the predicted bandwidth for the next segment.

4.3.2 Temporal Rate Adaption. Instead of video rate, user QoE is
also affected by the rate fluctuation between two adjacent video seg-
ments. In order to solve this problem, temporal rate adaption should
be optimized. For example, model predictive control (MPC) [24] can
be applied to get the optimal temporal rate allocation for a given
sequence of predicted bandwidth. In addition, model-free based
solution, e.g., reinforcement learning (RL) [23], can also solve this
problem efficiently through exploring the optimal rate allocation
in the environment. In our current work, we operate temporal rate
allocation based on one-step bandwidth prediction and will explore
potential gain of different temporal rate adaption algorithms in
future work.

4.3.3 Spatial Rate Adaption. As each 360◦ frame is spatially divided
into multiple tiles, with a limited bandwidth budget, how much
bandwidth is allocated to each tile might lead to different perceptual

2If the user finishes downloading the latest video segment and the following video
segment is still under encoding or transcoding by the server, the user has to wait for
the server processing to be completed

qualities. Therefore, given a predicted bandwidth, rate should be
efficiently utilized on each tile. In our current work, we allocate
the total rate among the tiles proportional to the predicted tile
attention distribution. Based on the study in [33], the quality-rate
model of tiles differs with tile position. For example, to obtain the
same quality, the tiles near the equator and south pole require more
bits than the tiles near the north pole. Therefore, the quality can
be further improved by optimizing the rate allocation based on
position-dependent quality-rate-models. This is a subject of future
study.

5 FLOCKING-BASED LIVE 360◦ VIDEO
CACHING

Figure 4: Edge caching for live 360◦ video streaming.

In live 360◦ video streaming, the workload of the core network
can be heavy due to both the bursty video requests and the high
rates of 360◦ video. One efficient solution to reduce the core network
traffic is to cache the popular content on edge servers which are
located close to the end users. In a 5G network, a hierarchy of cache
servers can be deployed. For example, shown as Fig. 4, several small
cell base stations (SBSs) are associated to one macro base station
(MBS). Cache boxes can be collocated to the SBSs as well as the MBS.
A video chunk request will be served in a hierarchical fashion, from
SBS, MBS, finally back to the original server. All the users served
by the same SBS/MBS cache can make up a flock and their FoV
information can be shared. In this section, in addition to studying
the benefit of naive caching, transcoding is also discussed as an
important video technique which can further reduce the traffic in
the core network.

Flocking-based Live Streaming of 360-degree Video MMSys’20, June 8–11, 2020, Istanbul, Turkey

Figure 5: Latency-FoV based caching strategy. The users are
divided into different FoV groups based on their past FOV
trajectory similarity. A user with the largest latency in each
group is marked (user 4 and 6), and so is a lone user in a
group (user 1).

5.1 Latency-FoV based Caching Strategy
In real networks, due to the cost or space limit, cache can only work
under some storage limits, and hence, it is important to utilize the
limited caching space efficiently. Least Recently Used (LRU) is one
simple and efficient method to decide if a video content should
be cached or not. However, the pattern of the content data varies
according to the context. In the case of live 360◦ video streaming,
there are two unique properties. Firstly, even though users watch
the live streaming with different latencies, the gap between the
users with shortest and longest latency is not large. Normally, it
ranges from several seconds to tens of seconds. That is to say, one
video tile should be stored in the cache at most tens of seconds.
Secondly, if there is an attraction point in the video, users are likely
to request tiles around the point but not tiles far away from it. Hence
tile popularity can be inferred by the user watching behavior.

Based on these two observations, we propose a latency-FoV
(LF) based live 360◦ caching strategy. Illustrated by Fig. 5, at a
particular time, users are positioned horizontally according to their
latency. For example, user 2 is watching the segment (𝑖 + 6) with
shortest latency. The users are also implicitly divided into different
FoV groups based on their similarity in the FoV trajectories. More
specifically, for each user, the FoV trajectory distance between
herself and each of the other users is calculated at some frequency,
e.g. every 5 seconds. If the distance is greater than a threshold, the
two users are not considered as neighbors. In the proposed caching
algorithm, users with long latency and few neighbors sharing the
similar watching behaviors will be marked and the tiles requested
by them will be ignored by the cache. For example, user 4 and user
6 are the two users with the longest latency in their respective
groups, no other users request and download video tiles after them.
So, these two users are marked (shaded in Fig. 5). In addition, as
user 1 is clustered into FoV Group 1 and no other users are in the
same FoV Group. Then user 1 is also marked. The tiles requested
by the marked users are ignored and all the other tiles are cached
following the LRU caching rule.

5.2 Transcoding and Enhanced Transcoding at
Edge Server

Normally, a cache manager decides whether to store a content
when the data passes through it. However, the capability of an

edge server in the current network is not limited to storage only.
In this section, we assume the edge server supports real-time video
transcoding. For example, if a 360◦ video tile is requested and there
is a corresponding tile with a higher rate stored in the cache, the
edge server can operate real-time transcoding from the high rate to
the requested rate. Through this way, the traffic transmitted over
the core network can be saved.

Nevertheless, the method mentioned above is affected by the
requested rate of users with shorter latency. In some cases, even
though the same tile has been requested, if the rate is lower than
the one being requested, the edge server cannot transcode from low
rate to high rate. In order to solve this problem, we further propose
an enhanced transcoding (E-Transcoding) strategy. In this method,
as soon as a 360◦ video tile is requested, the highest rate for this
tile is downloaded from the original server and cached in the edge.
Then the edge server will transcode it to any requested lower rate.
This way, each requested tile will be downloaded only once from
the original server. To go even further, assuming abundant cache
storage and abundant bandwidth between video server and edge
cache, the video server can deliver all the tiles with the highest
rate to the edge as long as one video segment is ready. In this case,
all the requested tiles will hit the cache. And we call this ultimate
transcoding (U-Transcoding).

6 PERFORMANCE EVALUATION
6.1 Experiment Setting
In order to demonstrate the efficiency of the proposed streaming
scheme and caching algorithm, we perform trace-driven simula-
tions. The user FoV traces are from the dataset offered by [39].
In this dataset, for each of the 9 videos for different live events,
FoV trajectories of 48 users are provided. In the following exper-
iments, we assume all the 48 users are served by the same MBS
cache, but they may connect to different SBSs (WiGig base stations)
under the same MBS. The duration of each video ranges from
170s to 520s and the spatial resolution ranges from 1920 × 960 to
2880× 1440. The FoV traces of a video with duration of 360s are uti-
lized in our experiments. User network condition is emulated using
the WiGig bandwidth traces from [32]. The provided bandwidth
traces are collected under simulated environments with different
levels of interference, which leads to different bandwidth mean and
variance. In addition to the original traces from [32], additional
synthetic bandwidth traces are generated using Hidden Markov
Model (HMM) models which are obtained by fitting to the original
dataset. The average bandwidth of the synthetic traces ranges from
550 Mbps to 720 Mbps with the standard deviation ranging from 83
Mbps to 300 Mbps.

To match with the dynamic range of the bandwidth traces, we
assume that the video server codes each video at multiple rates of
{100, 500, 1000, 1500, 2000, 2500} Mbps (for the entire 360◦ video).
We further assume each video in the ERP format is divided into 6×5
tiles and coded independently, with an average rate that is 1/30
of the total video rate. Note that although the videos in [39] have
a low resolution and hence do not require such high rates, much
higher resolutions (e.g. 24𝐾 × 12𝐾 to match the retina resolution)
are required for high-quality rendering of 360◦ video, for which
the assumed rate range is appropriate. Finally, we assume that

MMSys’20, June 8–11, 2020, Istanbul, Turkey Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang

Latency Group 1 Latency Group 2 Latency Group 3 Latency Group 4
0

4

8

12

K
L
 D

iv
e
rg

e
n
c
e

Single User Self-Prediction Collaborative Prediction

Figure 6: KL Divergence between predicted tile attention distribution and ground truth distribution of all users in different
latency groups. Latencies and buffer upper bounds of group 1 to 4 are {3𝑠, 2𝑠}, {8𝑠, 3𝑠}, {13𝑠, 3𝑠} and {19𝑠, 3𝑠}, respectively.

users’ viewing directions are mostly driven by the video content,
but not the resolution of the video, and hence the FoV traces for
the low-resolution videos in [39] can be used as the FoV traces for
their high-resolution versions. To predict user FoV or calculate user
watching behavior similarity, FoV information of frames in the past
1 to 2 seconds (including the previous segment of 1 second and the
frames that have just been watched in the current segment) are
utilized. For the trajectory-based self-prediction, truncated linear
prediction [19, 32] is employed, because this simple method was
found to perform as well as more complicated LSTM-based methods
when the prediction horizon is short (1-2 seconds). Future work
will explore the use of more accurate prediction methods.

6.2 Evaluation of Flocking-based Live 360◦
Video Streaming

6.2.1 QoE Metrics. In order to evaluate FoV prediction accuracy,
we calculate KL Divergence [37] between the predicted attention
distribution and the true attention distribution. In terms of video
rate, the delivered rate is defined by the total rate of all the requested
and downloaded tiles by a user. Then, we define the effective rate
as the total rate watched by the user in the actual FoV of the user in
each frame. In addition, the duration of video freeze is also recorded.

6.2.2 Gain from Collaborative FoV Prediction. First, we evaluate
the flocking-based FoV prediction using the user FoV and WiGig
network bandwidth traces discussed in Sec. 6.1. There are 48 users
and each of them is assigned a unique FoV trajectory and a band-
width trace. For this experiment, the latency assignment is not
based on the network conditions as discussed in Sec. 4.2, rather
users are assigned to the 4 latency groups randomly with 12 users in
each group. Same assignment is used for the evaluation of different
FoV prediction methods. We choose to have 4 latency groups, with
latency of 3s, 8s, 13s and 19s, respectively. We set the actual initial
latency of each user to be slightly different from the group average
latency by adding a random noise. The buffer upper bounds for
different groups from 1 to 4 are set as: 2s, 3s, 3s and 3s respectively,
according to Fig. 3.

Fig. 6 illustrates the average KL Divergence of the tile attention
distribution for all the video segments between the predicted distri-
bution and the actual distribution. Single user self-prediction means
that only the trajectory-based self-prediction in Eq. (5) is used. For
this method, the average KL Divergence for all users are roughly the
same, as expected. However, for multiuser collaborative prediction,

the KL Divergences of some of the users within Group 1 are much
smaller than the ones of single user self-prediction (hence more
accurate prediction), and the improvement brought by collabora-
tive prediction increases as the group latency increases. The results
confirm our hypothesis that the users with long latency can benefit
from users with shorter latency regarding the FoV prediction as
they can gather information about which tiles in the segment to be
downloaded are more popular at the time of prediction. As Group
2 (with 8s latency) can achieve a similar performance to the later
groups, it implies that our system can perform well with a latency
gap of 10s. While comparing the KL Divergence for each user, we
find that collaborative prediction is always better than single user
self-prediction, even for the users with short latency, which sug-
gests that it is always beneficial to leverage other users’ attention
distributions to help predict your own.

6.2.3 Gain from Latency and Buffer Upper Bound Assignment. In
this experiment, we compare random user group assignment with
the proposed network aware assignment described in Sec. 4.2. Same
as the first experiment, we still use 4 latency groups. More specifi-
cally, the relative standard deviation (RSD) of user’s bandwidth is
calculated. Through comparing it with the predefined RSD thresh-
olds, a user’s network condition is classified so that the user can
be assigned to a latency group accordingly. In order to make a
fair comparison, the bandwidth traces are pre-selected to guaran-
tee that, even with network aware latency group assignment, the
number of users assigned into each latency group is the same 3.

First, we compare the performance achieved for one user by the
two different schemes. With random assignment, a sample user 𝑢𝑡
is assigned to Group 1 with short initial latency of 3s and buffer
upper bound of 2s; However, based on her network condition, user
𝑢𝑡 should be assigned into Group 3 with 13s initial latency and 5𝑠
buffer upper bound. Fig. 7 compares these two assignment strate-
gies in terms of QoEmetrics including delivered video rate, effective
video rate, FoV prediction KL Divergence and video freeze. The
comparison between Fig. 7(a) and 7(b) show that the delivered video
rates (the green curves) are roughly the same for both cases and
close to the available bandwidth (the gray curves). However, in
terms of the effective video rate, which is affected by FoV predic-
tion accuracy, which in turn depends on the latency and buffer
setting, the performance with random latency assignment is much
worse. Especially for the period of time before 70s, due to the lack

3For all the experiments, the same set of selected FoV and bandwidth traces are utilized.

Flocking-based Live Streaming of 360-degree Video MMSys’20, June 8–11, 2020, Istanbul, Turkey

0 50 100 150 200 250 300
Time (s)

0

200

400

600

800

R
a
te

 (
M

b
p
s
)

Bandwidth Delivered Rates Effective Rates

(a) Delivered and Effective Video Rate

0 50 100 150 200 250 300 350
Time (s)

0

200

400

600

800

R
a
te

 (
M

b
p
s
)

Bandwidth Delivered Rates Effective Rates

(b) Delivered and Effective Video Rate

0 50 100 150 200 250 300 350
Time (s)

0

10

20

30

KL Divergence

(c) KL Divergence

0 50 100 150 200 250 300 350
Time (s)

0

10

20

30

KL Divergence

(d) KL Divergence

0 50 100 150 200 250 300 350
Time (s)

0

2

4

T
im

e
 (

s
)

Freeze

(e) Freeze Duration

0 50 100 150 200 250 300 350
Time (s)

0

2

4

T
im

e
 (

s
)

Freeze

(f) Freeze Duration

Figure 7: QoE metrics comparison of a sample user between the case when she is randomly assigned into Group 1 (𝑙1 = 3𝑠,
𝐵
(𝑢)
1 = 2𝑠) without considering her network condition (left) and when she is assigned into Group 3 (𝑙3 = 13𝑠, 𝐵 (𝑢)

3 = 5𝑠) based on
her network condition (right).

Table 1: Comparison among three systems differing in FoV
prediction and latency group assignment. Note that users in
each group are the same among the first two schemes and
differ from the last scheme.

Latency Groups Self-
Prediction

Collab-
Prediction

Flocking
Strategy

Group 1 (3s)
𝐵 (𝑢) 2 2 2
Freeze 10.17 10.83 4.74

Effective Rate 216.02 303.06 250.68
KL 13.4 8.28 10.85

Group 2 (8s)
𝐵 (𝑢) 3 3 4
Freeze 11.10 13.74 9.6

Effective Rate 206.85 424.02 450.29
KL 13.41 0.58 0.5

Group 3 (13s)
𝐵 (𝑢) 3 3 5
Freeze 15.62 17.20 12.16

Effective Rate 200.0 449.43 458.25
KL 13.56 0.4 0.39

Group 4 (19s)
𝐵 (𝑢) 3 3 6
Freeze 13.37 14.8 14.0

Effective Rate 211.49 469.71 441.08
KL 13.28 0.38 0.34

Overall
Freeze 12.56 14.14 10.13

Delivered Rate 628.95 643.79 645.4
Effective Rate 208.59 411.56 400.08

KL 13.41 2.41 3.02

of other users’ information, effective video rate is negatively af-
fected by the inaccurate FoV prediction. The KL Divergence curve
in Fig. 7(c) further confirms this point. After several video freezes,
shown in Fig. 7(e), the latency of user 𝑢𝑡 increases, which allows
her to obtain more information about other users’ FoV distribution
and make more accurate FoV prediction after 70s. On the contrary,
with the proposed latency assignment, this user can benefit from
other users’ FoV information to improve her FoV prediction accu-
racy throughout the entire video duration, as shown in Fig 7(d).
Comparing Fig. 7(e) and 7(f), we find that video freeze is avoided
in most cases if the buffer upper bound is adjusted to 5s from 2s.

Besides individual user evaluation, we also perform group-level
evaluation. In Table 1, the average QoE metrics of each latency
group are compared among three schemes with different FoV pre-
diction and flocking strategies. The "self-prediction" and "collabora-
tive prediction" systems both use random latency assignment but
different FoV prediction methods, while "flocking strategy" uses col-
laborative FoV prediction and network aware latency assignment.
The average effective rate of each group and the overall average fur-
ther demonstrate that collaborative FoV prediction improve the FoV
prediction accuracy and effective rate dramatically. Furthermore,
while comparing collaborative prediction (with random latency and
buffer upper bound assignment) and flocking strategy (with net-
work aware assignment), we find that freeze can be reduced with
negligible influence on the effective rate and KL Divergence. Note
that with network aware assignment, users in the groups with long
latency are assigned a longer buffer upper bound and hence will
generally have longer FoV prediction horizon and slightly reduced
FoV prediction accuracy. For example, the overall average freeze
is reduced from 14.14s to 10.13s with effective rate reducing from

MMSys’20, June 8–11, 2020, Istanbul, Turkey Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang

411.56 Mbps to 400.08 Mbps. So, we can draw the conclusion that
both the individual and overall user experience can be improved
with appropriate latency and buffer upper bound assignment.

6.3 Caching Performance for Live 360◦ Video
Streaming

As discussed in Sec. 5.1, latency-FoV (LF) based caching strategy is
proposed to improve the caching efficiency and in Sec. 5.2, several
transcoding techniques are proposed to reduce the traffic delivered
in the core network. In this section, we investigate the caching gain
in terms of bandwidth saved in the core network and the cache hit
rate of the proposed caching solutions. Recall that the proposed
LF-based caching strategy (Sec. 5.1) marks users with the longest
latencies or the least number of users with similar FoV trajectories,
and ignores contents downloaded by these users. In our experiment,
we assign the users into 4 latency groups based on their network
condition as discussed in Sec. 6.2.3, and users are marked every 5s
based on their real-time latency and past FoV trajectories.

Naive Transcoding Enhanced
 Transcoding

Ultimate
 Transcoding

0.8

0.9

1.0

R
a
ti

o

Hit Rate

Network Efficiency

Transcoding Rate

(a) Cache Performance under Different
Strategies with LRU Applied

0 100 200 300
Time (s)

0

5

10

15

20

25

x
1
0
 G

B

Naive

Transcoding

E-Transcoding

U-Transcoding

(b) Cache Size (Assuming tiles are cached
for the entire streaming session)

Figure 8: Hit rate, network efficiency, transcoding ratio
and storage consumption comparison among different edge
functionalities assuming the cache size is unlimited.

6.3.1 Caching Performance without Storage Capacity Limit. We
first evaluate the cache performance assuming there is unlimited
cache storage at the edge server. We also assume all the 48 users are
in the same local network. The experiment setting remains the same
as Sec. 6.2.3 in which the latency and buffer upper bound of all the
48 users are assigned based on their network conditions. We eval-
uate cache performance by the cache hit rate, network efficiency,
transcoding ratio and the storage requirement. Network efficiency
is defined as 𝑉𝑟−𝑉𝑑

𝑉𝑟
where𝑉𝑟 and𝑉𝑑 are the total volumes of traffic

requested by the users and that delivered from the original server
to the cache, respectively. It quantifies the reduction percentage of
the core network traffic load by caching locally. Transcoding ratio
is the ratio between the number of transcoded tiles and the total
number of requested tiles. High transcoding rate is associated with
higher computation cost.

As shown in Fig. 8(a), if the edge only operates naive caching,
about 85% of all the requested tiles are cached by the edge server and
82% of the traffic of core network is saved. Furthermore, if transcod-
ing is enabled on the edge server, the cache hit rate is increased to
95%. As transcoding can only be operated from a high-rate video
version to a low rate version, the network efficiency, not as high as

hit rate, reaches about 90%. With the enhanced transcoding, both
the hit rate and network efficiency can be improved slightly, reach-
ing 96.5% and 92%, respectively. For ultimate transcoding, the hit
rate is 100% as all the requested tiles hit the cache. And the network
efficiency is roughly the same as the enhanced transcoding. The
transcoding ratio also increases from simple naive caching to the
most advanced ultimate transcoding. The results in Fig. 8(b) illus-
trates, without transcoding, storage consumption increases linearly
with a high slope. However, with transcoding, storage increases at a
significantly lower slope. With the enhanced and ultimate transcod-
ing, because all the tiles are delivered at the highest rates, their
storage requirements are higher than the transcoding approach.
Note that Fig. 8(b) is generated assuming any cached tiles will be
kept in the cache until the end of the streaming session. In reality,
any tile that has been cached for more than a certain duration can
be removed, where the duration depends on the expected dynamic
range in the latency of all the users. From Fig. 8(b), we can estimate
that the cache size needed by the algorithms will be approximately
30 GB, 10 GB, 13 GB and 13 GB if the cache lifetime is 30 seconds.

0.625 1.25 2.5 3.75 7.5 15.0 22.5
Cache Size (GB)

0.2

0.4

0.6

0.8

1.0

C
a
c
h
i
H

it
ra

te

LRU Naive

LRU Transcoding

LRU E-Transcoding

LF Naive

LF Transcoding

LF E-Transcoding

(a) Hit rate Curve

0.625 1.25 2.5 3.75 7.5 15.0 22.5
Cache Size (GB)

-1.4

-1.0

-0.6

-0.2

0.2

0.6

1.0

N
e
tw

o
rk

 E
ff

ic
ie

n
c
y

LRU Naive

LRU Transcoding

LRU E-Transcoding

LF Naive

LF Transcoding

LF E-Transcoding

(b) Network Efficiency Curve

Figure 9: Hit rate and network efficiency performance of
LRU and latency-FoV (LF) based caching algorithms at dif-
ferent cache sizes (in GB).

6.3.2 Caching Performance under Different Storage Capacities. In
order to evaluate how the caching performance is affected by the
cache size, we conduct experiments with different cache sizes rang-
ing from 0.625 to 22.5 GBytes. For LRU-based caching, when the
cache reaches its storage limit, and a new tile request cannot be
served from the cache, the earliest cached tiles will be removed
until there is enough space to store the new tile. Note that as with
the previous experiment, here we do not remove the cached tiles
based on their lifetime. Results in Fig. 9(a) show that transcoding
can achieve the highest hit rate when cache size is less than 15 GB
and naive caching algorithm performs the worst among the three.
When cache size reaches 15 GB, both transcoding and enhanced
transcoding reach upper bound. With further analysis, 15 GB can
cover 48s video content if the highest rate for a video segment is
2500 Mbps. And 48s is larger than the latency gap between the
users with the shortest and the longest playback latencies in our
setting. Theoretically, as long as the cache size is large enough to
cover all the tiles that are actively be requested by some users, the
hit rate can reach its upper bound.

Flocking-based Live Streaming of 360-degree Video MMSys’20, June 8–11, 2020, Istanbul, Turkey

The network efficiency results in Fig. 9(b) shows that the en-
hanced transcoding is not effective unless the cache size is suffi-
ciently large. For example, when the cache size is less than 7.5 GB,
the network efficiency is negative, which means the total volume of
data delivered in the core network is actually greater than the total
volume of tiles requested. The reason is that the same tile might be
delivered in the highest rate multiple times from original server to
the edge server no matter what the requested rates are. However,
when the cache size is relatively large, its network efficiency im-
proves dramatically and reaches the upper bound when cache size
is 15 GB. The results of both hit rate and network efficiency further
demonstrate LF outperforms LRU in all the cases by about 5%. We
expect the performance improvement of LF over LRU will increase
when the number of users in a streaming flock increases.

7 CONCLUSION
In this paper, we investigate how the idea of “flocking" can be used
to improve the efficiency of live 360◦ video streaming from the
aspects of both FoV prediction and live video caching. By assigning
users to different latency groups andmaking use of the actual FoV at-
tention distributions of the front users who have watched the same
video segment, the FoV prediction accuracy for a latter user can be
improved, leading to significant increase of the effective video rate
(approximately doubled when compared with self-trajectory based
FoV prediction). In addition, by assigning users into latency groups
with different latencies and buffer upper bounds based on their net-
work conditions, the seemly conflicting goals of low video freeze
ratio (requiring long streaming buffer) and high FoV prediction
accuracy (requiring short streaming buffer) on individual users can
be simultaneously achieved at the flock-level. We further propose
a latency-FoV based live 360◦ video caching strategy and investi-
gate the potential gain of applying transcoding on the edge server.
We show that caching at the edge can reduce the core network
traffic by about 80% under reasonable cache sizes, which can be
increased to 90% with real-time transcoding. The proposed latency-
FoV based strategy can further improve the caching performance
over the conventional LRU caching by about 5%. For deployment in
real systems, whether to use transcoding depends on the desirable
trade-off between the bandwidth cost inside the core network and
computation cost on the edge servers.

ACKNOWLEDGEMENT
We thank our shepherd Carsten Griwodz and the anonymous re-
viewers for the valuable comments. This work was supported in
part by NSF under contract number CNS-1816500.

REFERENCES
[1] Patrice Rondao Alface, Jean-François Macq, and Nico Verzijp. 2012. Interac-

tive omnidirectional video delivery: A bandwidth-effective approach. Bell Labs
Technical Journal 16, 4 (2012), 135–147.

[2] Trevor Ballard, Carsten Griwodz, Ralf Steinmetz, and Amr Rizk. 2019. RATS:
adaptive 360-degree live streaming. In Proceedings of the 10th ACM Multimedia
Systems Conference. 308–311.

[3] Yixuan Ban, Lan Xie, Zhimin Xu, Xinggong Zhang, Zongming Guo, and Yue
Wang. 2018. Cub360: Exploiting cross-users behaviors for viewport prediction in
360 video adaptive streaming. In 2018 IEEE International Conference on Multimedia
and Expo (ICME). IEEE, 1–6.

[4] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli, and Xin Liu. 2016.
Shooting a moving target: Motion-prediction-based transmission for 360-degree
videos. In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 1161–
1170.

[5] Matthias Berning, Takuro Yonezawa, Till Riedel, Jin Nakazawa, Michael Beigl,
and Hide Tokuda. 2013. pARnorama: 360 degree interactive video for augmented
reality prototyping. In Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing adjunct publication. ACM, 1471–1474.

[6] Jacob Chakareski. 2017. VR/AR immersive communication: Caching, edge com-
puting, and transmission trade-offs. In Proceedings of the Workshop on Virtual
Reality and Augmented Reality Network. ACM, 36–41.

[7] Gene Cheung, Zhi Liu, Zhiyou Ma, and Jack ZG Tan. 2017. Multi-stream switch-
ing for interactive virtual reality video streaming. In 2017 IEEE International
Conference on Image Processing (ICIP). IEEE, 2179–2183.

[8] Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger. 2018.
Spherenet: Learning spherical representations for detection and classification in
omnidirectional images. In Proceedings of the European Conference on Computer
Vision (ECCV). 518–533.

[9] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017.
Viewport-adaptive navigable 360-degree video delivery. In 2017 IEEE international
conference on communications (ICC). IEEE, 1–7.

[10] Fanyi Duanmu, Zhan Ma, Wei Wang, Meng Xu, and Yao Wang. 2016. A novel
screen content fast transcoding framework based on statistical study andmachine
learning. In 2016 IEEE International Conference on Image Processing (ICIP). IEEE,
4205–4209.

[11] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. Fixation prediction for 360 video streaming in head-
mounted virtual reality. In Proceedings of the 27th Workshop on Network and
Operating Systems Support for Digital Audio and Video. ACM, 67–72.

[12] Vamsidhar Reddy Gaddam, Michael Riegler, Ragnhild Eg, Carsten Griwodz, and
Pål Halvorsen. 2016. Tiling in interactive panoramic video: Approaches and
evaluation. IEEE Transactions on Multimedia 18, 9 (2016), 1819–1831.

[13] Chang Ge, Ning Wang, Severin Skillman, Gerry Foster, and Yue Cao. 2016. QoE-
driven DASH video caching and adaptation at 5G mobile edge. In Proceedings of
the 3rd ACM Conference on Information-Centric Networking. ACM, 237–242.

[14] Carsten Griwodz, Mattis Jeppsson, Håvard Espeland, Tomas Kupka, Rag-
nar Langseth, Andreas Petlund, Peng Qiaoqiao, Chuansong Xue, Konstantin
Pogorelov, Micheal Riegler, et al. 2018. Efficient Live and on-Demand Tiled HEVC
360 VR Video Streaming. In 2018 IEEE International Symposium on Multimedia
(ISM). IEEE, 81–88.

[15] Carsten Griwodz, Frank T Johnsen, Simen Rekkedal, and Pål Halvorsen. 2006.
Caching of interactive multiple choice MPEG-4 presentations. In 2006 IEEE Inter-
national Performance Computing and Communications Conference. IEEE, 7–pp.

[16] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen
Jiang. 2019. Pano: Optimizing 360 video streaming with a better understanding
of quality perception. In Proceedings of the ACM Special Interest Group on Data
Communication. 394–407.

[17] Mohammad Hosseini and Viswanathan Swaminathan. 2016. Adaptive 360 VR
video streaming: Divide and conquer. In 2016 IEEE International Symposium on
Multimedia (ISM). IEEE, 107–110.

[18] Chenglin Li, Laura Toni, Junni Zou, Hongkai Xiong, and Pascal Frossard. 2017.
QoE-driven mobile edge caching placement for adaptive video streaming. IEEE
Transactions on Multimedia 20, 4 (2017), 965–984.

[19] Chenge Li, Weixi Zhang, Yong Liu, and Yao Wang. 2019. Very Long Term Field
of View Prediction for 360-degree Video Streaming. In 2019 IEEE Conference on
Multimedia Information Processing and Retrieval (MIPR). IEEE, 297–302.

[20] Xing Liu, Bo Han, Feng Qian, and Matteo Varvello. 2019. LIME: understanding
commercial 360° live video streaming services. In Proceedings of the 10th ACM
Multimedia Systems Conference. ACM, 154–164.

[21] Ge Ma, Zhi Wang, Miao Zhang, Jiahui Ye, Minghua Chen, and Wenwu Zhu. 2017.
Understanding performance of edge content caching for mobile video streaming.
IEEE Journal on Selected Areas in Communications 35, 5 (2017), 1076–1089.

[22] Anahita Mahzari, Afshin Taghavi Nasrabadi, Aliehsan Samiei, and Ravi Prakash.
2018. Fov-aware edge caching for adaptive 360 video streaming. In 2018 ACM
Multimedia Conference on Multimedia Conference. ACM, 173–181.

MMSys’20, June 8–11, 2020, Istanbul, Turkey Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu and Yao Wang

[23] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 197–210.

[24] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert.
2000. Constrained model predictive control: Stability and optimality. Automatica
36, 6 (2000), 789–814.

[25] Cise Midoglu, Özgü Alay, and Carsten Griwodz. 2019. Evaluation Framework for
Real-Time Adaptive 360-Degree Video Streaming over 5G Networks. In Proceed-
ings of the 2019 on Wireless of the Students, by the Students, and for the Students
Workshop. 6–8.

[26] MUX. 2019. The Low Latency Live Streaming Landscape in 2019. https://mux.
com/blog/the-low-latency-live-streaming-landscape-in-2019/

[27] Afshin Taghavi Nasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi Prakash.
2017. Adaptive 360-degree video streaming using scalable video coding. In
Proceedings of the 25th ACM international conference on Multimedia. ACM, 1689–
1697.

[28] Urs Niesen and Mohammad Ali Maddah-Ali. 2015. Coded caching for delay-
sensitive content. In 2015 IEEE International Conference on Communications (ICC).
IEEE, 5559–5564.

[29] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Optimizing 360
video delivery over cellular networks. In Proceedings of the 5th Workshop on All
Things Cellular: Operations, Applications and Challenges. ACM, 1–6.

[30] Rodrigo Silva, Bruno Feijó, Pablo B Gomes, Thiago Frensh, and Daniel Monteiro.
2016. Real time 360 video stitching and streaming. In ACM SIGGRAPH 2016
Posters. ACM, 70.

[31] Robert Skupin, Yago Sanchez, Cornelius Hellge, and Thomas Schierl. 2016. Tile
based HEVC video for head mounted displays. In 2016 IEEE International Sympo-
sium on Multimedia (ISM). IEEE, 399–400.

[32] Liyang Sun, Fanyi Duanmu, Yong Liu, YaoWang, Yinghua Ye, Hang Shi, and David
Dai. 2018. Multi-path multi-tier 360-degree video streaming in 5G networks. In
Proceedings of the 9th ACM Multimedia Systems Conference. ACM, 162–173.

[33] Liyang Sun, Fanyi Duanmu, Yong Liu, Yao Wang, Yinghua Ye, Hang Shi, and
David Dai. 2019. A two-tier system for on-demand streaming of 360 degree video

over dynamic networks. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 9, 1 (2019), 43–57.

[34] Yaping Sun, Zhiyong Chen, Meixia Tao, and Hui Liu. 2018. Communication,
computing and caching for mobile VR delivery: Modeling and trade-off. In 2018
IEEE International Conference on Communications (ICC). IEEE, 1–6.

[35] Afshin TaghaviNasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi Prakash.
2017. Adaptive 360-degree video streaming using layered video coding. In 2017
IEEE Virtual Reality (VR). IEEE, 347–348.

[36] Wikipedia contributors. 2019. Great-circle distance — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Great-circle_distance&
oldid=913029918 [Online; accessed 8-January-2020].

[37] Wikipedia contributors. 2019. Kullback–Leibler divergence — Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Kullback%E2%
80%93Leibler_divergence&oldid=930573126 [Online; accessed 13-January-2020].

[38] Wikipedia contributors. 2020. Kalman filter — Wikipedia, The Free Encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=934461652
[Online; accessed 10-January-2020].

[39] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. 2017. A dataset for
exploring user behaviors in VR spherical video streaming. In Proceedings of the
8th ACM on Multimedia Systems Conference. ACM, 193–198.

[40] Xiufeng Xie and Xinyu Zhang. 2017. Poi360: Panoramic mobile video telephony
over lte cellular networks. In Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies. ACM, 336–349.

[41] Yu-Ting Yu, Francesco Bronzino, Ruolin Fan, Cedric Westphal, and Mario
Gerla. 2015. Congestion-aware edge caching for adaptive video streaming in
information-centric networks. In 2015 12th Annual IEEE Consumer Communica-
tions and Networking Conference (CCNC). IEEE, 588–596.

[42] Alireza Zare, Alireza Aminlou, Miska M Hannuksela, and Moncef Gabbouj. 2016.
HEVC-compliant tile-based streaming of panoramic video for virtual reality ap-
plications. In Proceedings of the 24th ACM international conference on Multimedia.
ACM, 601–605.

https://mux.com/blog/the-low-latency-live-streaming-landscape-in-2019/
https://mux.com/blog/the-low-latency-live-streaming-landscape-in-2019/
https://en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=913029918
https://en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=913029918
https://en.wikipedia.org/w/index.php?title=Kullback%E2%80%93Leibler_divergence&oldid=930573126
https://en.wikipedia.org/w/index.php?title=Kullback%E2%80%93Leibler_divergence&oldid=930573126
https://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=934461652

	Abstract
	1 Introduction
	2 Related Work
	3 Challenges and OUTLINES OF Proposed Solutions
	3.1 Online User FoV Prediction
	3.2 Temporal and Spatial Rate Adaptation
	3.3 Massive Concurrent Requests and Redundant Network Traffic

	4 Flocking-based Live 360 Video Streaming
	4.1 Collaborative FoV Prediction
	4.2 Network Aware Latency and Buffer Upper Bound Assignment
	4.3 Spatial and Temporal Rate Adaption

	5 Flocking-based Live 360 Video Caching
	5.1 Latency-FoV based Caching Strategy
	5.2 Transcoding and Enhanced Transcoding at Edge Server

	6 Performance Evaluation
	6.1 Experiment Setting
	6.2 Evaluation of Flocking-based Live 360 Video Streaming
	6.3 Caching Performance for Live 360 Video Streaming

	7 Conclusion
	References

