
Final published version is found in the ASCE Library. 

1 

 

Evaluation of Seven Part-of-Speech Taggers in Tagging Building Codes: Identifying the 

Best Performing Tagger and Common Sources of Errors 

 

Xiaorui XUE1 and Jiansong ZHANG2 

 
1 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management 

Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 430-2009; email: 

xue39@purdue.edu 
2 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management 

Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 494-1574; FAX (765) 496-

2246; email: zhan3062@purdue.edu 

 

ABSTRACT 

As the number, size and complexity of building construction projects increase, code 

compliance checking becomes more challenging because of the time-consuming, costly, and error-

prone nature of a manual checking process. A fully automated code compliance checking would 

be desirable in facilitating a more efficient, cost effective, and human error-proof code checking. 

Such automation requires automated information extraction from building designs and building 

codes, and automated information transformation to a format that allows automated reasoning. 

Natural Language Processing (NLP) is an important technology to support such automated 

processing of building codes, because building codes are represented in natural language texts. 

Part-of-speech (POS) tagging, as an important basis of NLP tasks, must have a high performance 

to ensure the quality of the automated processing of building codes in such a compliance checking 

system. However, no systematic testing of existing POS taggers on domain specific building codes 

data have been performed. To address this gap, the authors analyzed the performance of seven 

state-of-the-at POS taggers on tagging building codes and compared their results to a manually-

labeled gold standard. The authors aim to: (1) find the best performing tagger in terms of accuracy, 

and (2) identify common sources of errors. In providing the POS tags, the authors used the Penn 

Treebank tagset, which is a widely used tagset with a proper balance between conciseness and 

information richness. An average accuracy of 88.80% was found on the testing data. The Standford 

coreNLP tagger outperformed the other taggers in the experiment. Common sources of errors were 

identified to be: (1) word ambiguity, (2) rare words, and (3) unique meaning of common English 

words in the construction context. The found result of machine taggers on building codes calls for 

performance improvement, such as error-fixing transformational rules and machine taggers that 

are trained on building codes. 

 

INTRODUCTION 

In recent years, many researches introduced automated building code compliance checking 

systems of various types (Eastman et al. 2009; Pauwels et al. 2011; Kasim 2013; Solihin and 

Eastman 2016; Zhang and El-Gohary 2016, 2017; Dimyadi and Armor 2017; Kim et al. 2018), to 

address the problems of traditional manual code compliance checking procedure: time-consuming, 

costly (City of Newark 2014), error-prone, and requiring specialized skills and years of experience 

(Town of Palm Beach 2019). For example, the city of Philadelphia charges a 350 dollars fee for 

preliminary plan review and it takes up to 20 business days to finish the review (City of 

Philadelphia 2019). A construction project may need to go through serval cycles of code reviews, 

which will make the total cost several times higher and the total duration much longer. Just in 2018, 
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there were more than 1.3 million new housing units authorized with building permits in the U.S. 

(United States Census Bureau 2019). The demand of plan review service stays high. The time-

consuming, costly, and error-prone manual code compliance checking process already becomes a 

bottleneck of future productivity boosting in the architecture, engineering, and construction (AEC) 

industry and therefore calls for help by automation.  

Automated code compliance checking systems can help address this demand and be 

extended to applications in infrastructure domain and beyond (Li et al. 2016). An automated code 

compliance checking system takes digital representations of building designs and that of building 

codes as inputs, and uses computer programs to find building  designs’ violations of building codes. 

The widespread use of Building Information Models (BIMs) provides high-quality and accessible 

digital representations of buildings. Many researchers adapted BIMs as digital representations of 

buildings (Nguyen and Kim 2011). However, the lack of appropriate digital representation and 

fully automated processing of building codes remains a major barrier on the way to an end-to-end 

fully automated code compliance checking system. Currently, many state-of-the-art automated 

code compliance checking systems still require manual extraction of regulatory information from 

building codes (Dimyadi and Amor 2013). Changing the publication of regulatory information to 

a way that computers can understand is a foreseeable solution (Hjelseth 2012). However, the 

current legislative establishment makes it difficult (if not impossible) to change how building 

codes are drafted in a foreseeable future. Even if such a shift occurs, it may take a long time period 

to update the existing building codes. Due to the difficulty of transforming the current way of 

drafting building codes and the large amount of existing codes, some researchers proposed 

automated information extraction systems, which can convert unstructured natural text building 

code requirements to structured data that computers can process (Salama and El-Gohary 2016; 

Zhang and El-Gohary 2016). These systems can achieve high processing accuracy with hand-

crafted rules based on semantic NLP techniques. However, 100% recall of noncompliance 

detection is not achieved yet, which is a requirement to enable a practical application of such code 

compliance checking systems (Zhang and El-Gohary 2015).  

To increase the recall of noncompliance detection in a semantic NLP-based code 

compliance checking system to 100%, every imperfect step in the system needs to be investigated 

for potential improvement. POS tagging, as a basis of NLP-based information extraction and 

transformation, demands a high accuracy to help achieve the desired performance of the entire 

code compliance checking system. In search of the most suitable POS tagger for this purpose, the 

authors tested the performance of seven state-of-the-art POS taggers using a manually labeled gold 

standard. Through this experiment and corresponding analysis, the authors aim to: (1) find the best 

performing POS tagger in terms of accuracy for processing building codes, and (2) identify 

common sources of POS tagging errors in tagging building codes.  

 

BACKGROUND 

In pursuit of the 100% recall goal of noncompliance detection in building code compliance 

checking, every imperfect step in an automated building code compliance checking system needs 

to be potentially improved. POS tagging, as a basis of the building code information extraction 

and transformation system, when reaching a high accuracy, can better support the entire system in 

achieving the 100% recall goal. Conversely, when it fails to meet this expectation, errors in this 

step will be cascaded into later steps (Dell’Orletta 2009). For all the POS taggers to be evaluated 

in this paper, they either provide online services that require users to upload raw text to a remote 

server and download tagged results to a local drive, or are able to tag all texts within a 
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short/reasonable timeframe (e.g., the Natural Language Toolkit (NLTK) tagger can tag a 30-word 

sentence in 0.1 seconds]. Because hardware requirement and tagging speed are not bottlenecks of 

tagger performance in this test, they are out of the scope of this paper. The authors focus on 

evaluating accuracy of the POS taggers. 

 

EXPERIMENT 

To evaluate the accuracy of different POS taggers, seven state-of-the-art POS taggers were 

selected: (1) the NLTK tagger (Loper and Bird 2002), (2) the spaCy tagger (Honnibal and Montani 

2017), (3) the Standford coreNLP tagger (Manning et al. 2014), (4) A Nearly-New Information 

Extraction System (ANNIE) tagger in the General Architecture for Text Engineering (GATE) tool 

(The University of Sheffield 2019), (5) the Apache OpenNLP tagger (The Apache Software 

Foundation 2019), (6) the TreeTagger (Schmid 2019), and (7) the RNNTagger (Schmid 2019). 

They were selected based on their: (1) reported high performance, (2) off-the-shelf availability, (3) 

free access, and (4) easiness to use. Five annotators, who were proficient in English, independently 

labeled the textual data used in the paper after receiving a short training. They provided a high-

quality gold standard using an innovative annotating method that the authors developed. Their 

tagging results were published in the Purdue University Research Repository (PURR) for use in 

future researches. To compare the performance of different taggers and evaluate the reliability of 

human-labeled results, the authors used inter-annotator agreement as defined in Fleiss’s Kappa 

(Fleiss 1971). Fleiss’s Kappa is a statistical tool for measuring reliability of tagging results of more 

than two taggers. The widely used Cohen’s Kappa is not directly applicable to this experiment 

because it can only compare tagging results of two taggers (Cohen 1960). This research used the 

Penn Treebank tagset, which was a commonly used tagset with a proper balance between 

conciseness and information richness. For the detailed meaning of all POS tags mentioned in this 

paper, the readers are referred to Penn Treebank corpus guideline (Marcus 1993). Some example 

POS tags are explained in Table 1.  

 

Table 1: Example POS Tags 

 

Tag Meaning 

DT Determiner 

IN Preposition or subordinating conjunction 

NN Noun, singular or mass 

NNP Proper noun, singular 

NNS Noun, plural 

RB Adverb 

VBD Verb, past tense 

VBG Verb, gerund or present participle 

VBN Verb, past participle 

WDT Wh-determiner 

 

Word Tokenization Disagreement Issue 

To effectively compare the performances of different taggers, the most straightforward and 

intuitive way is to compare their tagging results word by word in a sentence. However, this simple 
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comparison sometimes cannot be easily achieved because different taggers may tokenize the same 

text in different ways. For example, some taggers tokenized ‘second-floor’ as a single word, 

whereas others tokenized it as three words: ‘second’, ‘-’, and ‘floor’. Some taggers tokenized 

‘cannot’ as a single word, whereas others may tokenize it as two different words: ‘can’ and ‘not’. 

A census showed there were less than 4 percent of sentences in the used textual data that had this 

issue. Because word tokenization is an integral step of POS tagging, inconsistency in word 

tokenization were treated as mistakes in POS tagging in the evaluation. 

 

Textual Data 

In this paper, the authors used Chapter 5: General Building Heights and Areas, and 

Chapter 10: Means of Egress of the International Building Code 2015 (IBC 2015) as the textual 

data to evaluate the performance of POS taggers. The authors manually extracted textual 

information in the PDF document of these two chapters and converted them to plain texts that 

taggers can process. In total, there were 1,522 sentences extracted from these two chapters. 

 

An Innovative POS Tag Labeling Method for Gold Standard Development  

POS labeling in a pure manual fashion is time-consuming, costly, and human error-prone 

(Manning 2011). In the creation of the Penn Treebank corpus (Marcus 1993), two main steps were 

taken to obtain POS-tagged text (i.e., labeled data) in a more efficient way: (1) a machine tagger 

POS tagged the text automatically, and (2) human annotators corrected the errors of machine tags 

manually. This method was more accurate and faster than letting human annotators tag the 

complete text manually, from scratch (Marcus 1993). Inspired by this method, the authors 

proposed and applied an innovative POS tag labeling method to reduce the workload of human 

annotators and improve the tagging accuracy. Annotators’ main task in this method, in contrast to 

annotating from scratch, is resolving the differences among tagging results of different machine 

POS taggers. If all machine taggers assigned the same POS tag to a word, that tag is considered 

correct. This assumption is based on the fact that all taggers used had a claimed accuracy higher 

than 97%, thus the probability that they all made an error on the same word is a low probability 

event. Therefore, if all machine taggers tag one word identically, the annotators do not need to 

change it, unless they strongly disagree with it. If the taggers assigned different tags to a word, the 

annotators need to resolve this machine disagreement. To decrease the workload of human 

annotators, this method provides all tags assigned by machine taggers as options. However, 

annotators are free to choose any tag they deem correct.  

The main advantage of this method is that it significantly decreases the workload of human 

annotators. Instead of selecting one tag from the entire tagset for all words in the text, the 

annotators just need to choose one tag from (usually) two or three tags, for a small portion of the 

text to be labeled. Annotators work on excel files that show all the words of each sentence in one 

column (Fig. 1), results of machine taggers (that are in agreement) in another column, and POS 

tag options (different tags assigned by different machine taggers) in the last column. Fig. 1 is an 

example of such a file. This annotation method can decrease the workload of annotators because 

they don’t need to check the correctness of POS tags for each and every word. They only need to 

check the ones that were inconsistently tagged by machine taggers. In most cases, they just need 

to check a small portion of the textual data and select one tag from a few likely tags. A potential 

limitation of this method is that it is still possible (although a low probability event) that all taggers 

agree to a wrong tag or the correct tag is not selected by any of them, because machine taggers do 

not have a 100% accuracy. The authors addressed this issue by allowing annotators to change the 
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results of machine taggers even if all machine taggers tagged a word identically. The annotators 

are allowed to select tags that were not assigned by any of the machine taggers. The human-labeled 

gold standard uses the most commonly chosen POS tags of words in the textual data by human 

annotators.   
The five annotators involved in this research were all Ph.D. students at Purdue University, 

proficient in English, and had sufficient AEC background knowledge to understand the textual 

data. To ensure the consistency of the tagging results, the annotators went through a short training 

on Penn Treebank POS tagset before the formal tagging process. The whole tagging phase was 

allotted 45 days, to provide annotators plenty of time to generate a high-quality tagging result. 

During the tagging process, the authors actively provided necessary answers and support to 

annotators. Their concerns and confusions about this task were resolved in a timely manner. After 

all tagging results were collected, the authors manually checked all of them to ensure that they 

were in a correct format, and corrected any formatting errors. In the end, all tagging results were 

stored in a single file for future research. 

 

 
 

Figure 1. Sample Annotator Work Space 

 

RESULTS 

Overall, the seven evaluated taggers reached an inter-annotator agreement of 0.93, 

indicating that they tagged the textual data with a high degree of consistency. At the same time, 

the inter-annotator agreement of human annotators was 0.91, showing that the human annotators 

also reached a high degree of consistency on their tagging task. Their tagging results formed the 

human-labeled gold standard used in this research where a majority vote mechanism was adopted. 

The differences between machine tagging results and the human-tagged gold standard were 

considered tagging errors. The performance of all the seven machine taggers were shown in Fig. 
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1. It can be seen that the Standford coreNLP tagger had the least errors and therefore was identified 

as the most accurate tagger in tagging our building codes data, with an accuracy of 89.82%. The 

average accuracy of all evaluated POS taggers was 88.80%. The accuracy of all the seven taggers 

was shown in Fig. 2. In addition, when taking the most commonly assigned tag from the seven 

taggers, a better performance (90.20%) was achieved than any single POS tagger in the ensemble.  

 

  
Figure 2: Accuracy of POS Taggers 

 

Although all taggers reached a high performance (i.e., higher than 85%) on the textual data, 

they still assigned many incorrect tags. An error analysis was conducted to look into error 

patterns, and to seek for potential improvement for boosting the performance of the taggers to a 

higher level. After comparing results of machine taggers to the human-labeled gold standard, a 

tagging error report was generated that listed all errors made. In total, 1,758 different types of 

errors occurred 31,495 times. The most common type of tagging error was when a tagger 

incorrectly assigned the tag “VBN” (i.e., past participle verb) to the word ‘required,’ whose 

correct tag was “VBD” (i.e., past tense verb). In total, this error occurred 1,362 times. The top 

100 most common errors happened 20,338 times, which took 64.58% of all the errors. This error 

distribution (Fig. 3) indicated that the taggers repetitively made a few types of errors. Therefore, 

a few countermeasures may correct a large portion of errors.  
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Figure 3: Distribution of Errors 

After analyzing a random sample of 100 sentences in the tagging results of each tagger, the 

authors  recognized three main categories of error causes: (1) word ambiguity - a word has multiple 

possible tags (e.g., most machine taggers tagged the word “required” VBN when it should be 

tagged VBD), (2) rare words (words that rarely appear in general English context but appear 

frequently in building codes, e.g., the word “egress”), and (3) unique meaning of common English 

words in the construction context, (e.g., the word “Fire” in the “International Fire Code Committee” 

refers to the name of a specific organization and should be NNP , but some machine tagger tagged 

it as NN). In the experimental results, 84% of errors were attributed to word ambiguity, 1% of 

errors were attribute to rare words, and 9% of errors were attributed to unique meanings of 

common English words in the construction context. The remaining 6% of errors could not be 

attributed to the categories above and were considered miscellaneous. For example, one machine 

tagger occasionally tagged double quotes (“”) incorrectly as NN or NNP. When one part of the 

building code is referring to other parts of building codes, it may state “in accordance with Section 

A, B, and C”. Machine taggers may tag “A”, “B”, and “C” as either NN, NNP or DT. Overall, 

word ambiguity contributes the most tagging errors. The most common type of error was when the 

correct tag of a word was VBD but it was tagged VBN incorrectly (Table 2). Furthermore, the 

taggers may be able to get most words tagged correctly, but a high performance at the word level 

(instead of at the sentence level) may still not be good enough to support a 100% recall goal in 

noncompliance detection for a code compliance checking system. For example, all evaluated 

taggers, when combined into an ensemble, could only tag 13.69% of sentences without error in the 

textual data used.   

 

Table 2: Ten Most Common Tagging Errors 

 

Word Correct Tag Wrong Tag Frequency 

required VBD VBN 1,362 

Group NN NNP 1,253 

permitted VBG VBN 785 

that DT WDT 733 

provided VBG VBN 722 

as RB IN 705 

feet NN NNS 581 

Section NN NNP 474 

located VBD VBN 470 

occupant JJ NN 408 
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Figure 4: Common Sources of Errors 

 

CONCLUSION 

The state-of-the-art POS taggers can reach a decent accuracy on tagging sentences from 

building codes. Among seven POS taggers tested, the most accurate POS tagger was the Standford 

coreNLP tagger with a tested accuracy of 89.82%. The combined effort of a group of taggers 

achieved a better performance than that of any individual tagger in the group. Directly applying 

off-the-shelf POS taggers may not be sufficient to support the 100% recall goal in noncompliance 

detection in an NLP-based code compliance checking system. This performance gap calls for 

further researches and developments to fix errors of existing POS taggers or to create a new POS 

tagger that is trained on building codes. The authors also introduced a new, fast, and accurate POS 

data labeling method in this paper. It allows researchers to get reliable tagging results in a timely 

manner. Feedbacks from annotators have shown that most of them were able to complete the POS 

tagging task of the textual data within a reasonable timeframe. An error analysis in comparing 

machine tagging results with the human-labeled gold standard showed that machine taggers tend 

to confuse VBN, VBD, and VBG and different types of nouns in the building code text tested.  

 

LIMITATIONS AND FUTURE WORK 

This research only evaluated a few currently available POS taggers. It is possible that some 

other POS taggers may achieve a higher accuracy than those evaluated in this research. Also, the 

evaluated POS taggers did not show a desirable performance on building codes. In particular, their 

sentence-level accuracy was low. The authors plan to test more POS taggers and develop methods 

to improve POS taggers’ performance on building codes.  
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