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ABSTRACT: In metal catalytic design, there is a well-established linear scaling relationship between reaction and adsorption
energies. However, owing to the challenges of performing experimental and/or computational experiments, there is a paucity of
empirical data regarding these systems. In particular, there is little experimental evidence suggesting how the linear scaling law might
be overcome in order to discover catalysts with more desirable properties. In this paper, we employ machine-learning techniques in
order to predict reaction and adsorption energies for 300 hypothetical binary compounds. We then apply outlier detection methods
to identify which of these predicted compounds do not follow the known scaling law. These outlier compounds, which would not
have been identified through traditional design rules, are the most likely to have unexpected and potentially transformative catalytic
behavior. Thus, this paper proposes a data-driven screening methodology to identify those metallic compounds (as a function of
gaseous environment) which are most likely to have targeted catalytic behavior.

■ INTRODUCTION

Building upon the Sabatier optimization principle introduced
over a century ago,1 Nørskov and co-workers have elucidated a
scaling law between reaction and adsorption energies to
predict the catalytic behavior for new chemistries.2,3 These
studies use the catalytic design concept of the “volcano plot”,
which describes a relationship between the catalytic behavior
and binding energy of a catalyst. Generally, the reactions being
studied can be described in terms of a single descriptor such as
the adsorption energy of a simpler reaction intermediate.
Consequently, the volcano plot greatly reduces the number of
catalytic descriptors which need to be defined for a given
reaction. Certain notable exceptions exist. For example, in an
oxygen reduction reaction the scaling relationship is described
using the binding energy of the intermediates OH and OOH.
In these cases, a three-dimensional volcano plot is used.4 This
relationship has been used extensively in a wide variety of
complex reaction networks.5

Other relations provide information on energetics. For
example, the Brønsted−Evans−Polanyi relationship implies a
linear relationship between the activation barrier for a given
reaction and binding energies of a few key intermediates.6

Similarly, the binding energy can be calculated using the d-
band model, which establishes a relationship between the d-
band center of a catalytic metal and its adsorption strength.7

However, even employing these relationships, we have at our
disposal only a small set of chemistries for which we have
appropriate descriptors.
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A different effect was introduced by Darby et al., who
proposed the idea of the “single-atom alloy” (SAA). This
notion is based on the ensemble effects that come into play
due to the low concentration doping of active transition metals
onto inert coinage metals. Darby et al. recognized that with
“...alloys one can access areas in the “volcano plot” that would
be inaccessible for pure metals, thereby developing catalysts
with improved performance...”.8 In a later paper, they remarked
that “...to date, only a small subset of SAAs has been
synthesized experimentally and it is unclear which metallic
combinations may best catalyze which chemical reactions.”9

Recent studies have used machine-learning (ML) methods
to screen the large combinatorial landscapes that must be
searched to discover new compounds within the catalyst
domain.10−12 SAAs are materials of particular interest due to
the wide range of applications and high reactivities they have

been found to display. The primary objective in these studies is
to circumvent the need for time-consuming and computation-
ally expensive DFT calculations or experiments. Thus, ML-
based approaches have been applied to microkinetic-model-
based reaction networks as well as existent DFT calculations.13

Descriptor-based approaches typically operate on the principle
that the property of a compound is directly associated with the
properties of the individual constituent elements.14,15 Scaling
laws and properties calculated using DFT16 are expressed as
combinations of descriptors or intermediates for input into ML
based regression models.17,18 Although key advances have been
made, the legacy data that exists remains largely unexplored,
with minimal knowledge regarding key considerations such as
thermodynamic stability and the processing plausibility of
these compounds.19

Figure 1. Logic of the approach to identify binary chemistries which have the most promising catalytic properties. We assume the known scaling
laws of single-element catalysts and convert this relationship to a descriptor space where we describe the elements based on their characteristics
(size, charge, bonding, etc.). Using this descriptor space, extended for binary compounds and coupled with a hybrid informatics approach, we
predict the catalytic properties of the alloys. Tracking those binary alloys which are outliers relative to this scaling relationship then identifies the
compounds which have the greatest potential for transformative performance (i.e., those compounds which have high kinetic reactivity in the left
image).

Figure 2. Description of the approach developed here for identifying alloys which have the potential to break from known scaling laws. We first
collect known empirical measurements and break them down into basic descriptors. Next, assuming physics is represented by the known scaling
laws, we expand these descriptors into a “virtual” material space and then follow a hybrid ML approach which predicts the catalytic properties for
this “virtual” space. The final stage uses outlier detection to identify the most promising alloys, namely, those compounds which do not follow the
scaling laws. This logic provides a data-driven approach to catalysis screening, which we demonstrate here for catalytic alloys. This methodology is
transferable to all chemical design issues where limited data exists.
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These studies provide the motivation for our data-driven
approach to binary catalysts. We break the limitations imposed
by a small set of experimental measurements, all of which
follow the known scaling law described by Nørskov.2 Indeed,
we assume that the scaling law does exist, and we model binary
systems assuming this relationship and the associated physics.
However, we introduce a new twist, by tracking the outlier
behaviors of chemistries relative to this scaling law. That is,
chemistries which we identify as not following the scaling law
are those which are most likely to have improved performance,
as defined by Darby et al.9 Using this ML approach to identify
important features of the binary compounds, we reduce the
chemical search space by 2 orders of magnitude. The logic of
our approach is laid out in Figure 1, and the rest of the paper
follows this logic.

■ METHODS
Our methodology integrates several ML techniques including
nonlinear manifold analysis to identify the most important
dimensions in the high-dimensional descriptor space, graph
theory to define close connections among the various binary
compounds, Gaussian process regression which provides a
nonparametric method for interpolating a quantity of interest,
and local outlier factor analysis. This approach is outlined in
Figure 2. We begin with a 21-dimensional space of descriptors
for each of the 19 metal/SAA catalysts. In prior work, we
discussed this descriptor space as it represents the underlying
physics of material properties20,21 and described approaches
for scaling these descriptors.22−26 In the current work, scaling
and normalization were performed on the entire descriptor
space. For simulating the expanded virtual library of

compounds, the descriptors of the imagined compounds
were calculated with the assumption of an equimolar
concentration of both the dopant atom and metal host for
each property. This was done to assign equal weight to both
site types and not introduce an inherent bias based on the site
type.

Input Data. Owing to the difficulty of experimental
generation of SAAs,9 legacy data within this class of materials
is extremely limited, resulting in a high-dimensional but sparse
data set. That is, although the number of descriptors used to
study catalytic reactions spans a high-dimensional data space
akin to the large number of factors that contribute to reaction
kinetics, the number of sample points within this space is small.
This “curse of dimensionality” is a challenge to optimization
and prediction, for which a large data set is required in order to
stabilize any model predictions.27

As an initial data set, we used the data described by Darby et
al. containing details of the spillover energy associated with
two site types, activation energies, and reaction energies for 7
elements and 12 SAAs for 5 adsorbates: H2, CO2, CH3OH,
NH3, and CH4

9 (i.e., 19 data points per adsorbate). Each of
these 19 data points correspond to the (111) surface facet, and
all predictions made within our model also correspond to the
(111) surface facet. These energies were calculated using
periodic plane wave DFT calculations using the Vienna ab
initio Simulation Package (VASP). Details of the calculations
are described in Darby et al. The activation energy is
consequently derived as the difference in the DFT total energy
in the transition state and initial state of the reaction, whereas
the reaction energy is derived as the difference in total energy
between the final and initial states of the reaction. Reactions

Figure 3. Training data space. The left figures show the empirical reaction and adsorption energies (in eV) for single-metal systems and previously
calculated SAA systems for the (111) surface facet, which serve as our training (target) data. Of particular note is the relationship between the
properties; the relationship has a roughly linear relationship which provides the starting point of our analysis. The right-hand figure is our
conversion of these elements into a normalized descriptor space (this panel labels all of the input descriptors in the analysis described in the
following sections). That is, the elements on the left are described by properties; however, in this paper we seek to understand how the underlying
characteristics of the materials (i.e., parameters representing the elemental contributions) contribute to the properties. This is governed by the logic
that if we can understand how the characteristics of the elements contribute to the catalytic properties then we can develop models which are based
on the governing physics and are not solely statistical correlations.
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studied are the dissociation of the adsorbate on the metal/SAA
alloy substrate with the elementary steps being an initial state,
transition state and final state of bond dissociation.8

Because we have a relatively small set of data residing in a
large descriptor space (Figure 3), we need to reduce the
descriptor dimensionality in order to ensure that we do not
overfit the data. The challenge is that if we remove descriptors
then we also remove data from our descriptor space. For this
reason, we employ a nonlinear manifold analysis on our
descriptor space, which reduces the dimensionality with
minimal loss of information. The result from this dimension-
ality reduction provides a simpler parametrization of the data.
This lower-dimensional data description serves as an input into
the Gaussian process regression. The following subsections
describe the relevant mathematics.
IsoMap for Parametrization via Nonlinear Manifold

Analysis. Through the application of the IsoMap algorithm28

on the descriptor space and the potential 300 chemistry space
(21 descriptors/dimensions and 300 chemistries) of the virtual
combinatorial library of hypothetical SAA alloys, we are able to
develop a parametrization of the data space. That is, every
compound is described as a function of a few IsoMap
dimensions with minimal loss in information encoded in the
data. This step is critical because otherwise we must either (i)
make a significant and not necessarily justified assumption
regarding the importance (i.e., bias) in the underlying data
structure or (ii) confront the likely overfitting of the data.
IsoMap is a nonlinear dimensionality reduction method;

thus, a nonlinear analogue to principal component analysis. In
addition to reducing the dimensionality of the data, IsoMap
determines the nearest neighbors of every data point, thereby
preserving the local geometry of the data.
A parametrization of data in the first two IsoMap dimensions

is shown in Figure 4. This shows the distribution of data,
demonstrating a distribution which is not overly impacted by
outliers. This parametrization will serve as the input into a
Gaussian process regression. That is, the parameters in this

figure serve as the inputs for the training reaction through the
adsorption energies.
A required input for the IsoMap is to prescribe the desired

number of nearest neighbors; one can attempt to find a near
optimal value of this nearest-neighbor number. The number of
nearest neighbors was calculated based on a derivation of the
proposed protocol by Samko et al.29 The optimal number of
neighbors was assumed to be the point at which reconstruction
error is minimized in each case. For the large data set (i.e., the
combinatorial expansion of the training data), 7 was
determined to be the “optimal” number of neighbors. For
the smaller training data set, the optimal number was
calculated to be 11. The computed transformed data was
then used to calculate and predict adsorption and reaction
energies using Gaussian process regression.

Gaussian Process Regression for Predicting Catalytic
Properties Assuming Scaling Laws. A Gaussian stochastic
process (GaSP) is a nonparametric methodology for regressing
data points. The data are assumed to be the realizations of a
Gaussian process, and the posterior distribution of the output
variable over the input parameters μ, conditioned on the data.
Thus, the output is

ψ σ∼y N R( , )2

where ψ is an assumed mean trend in the data and R is a
correlation matrix giving the relation between the outputs for
inputs i and j, often assumed as R = (rij) = exp(−(1/γ)(μi −
μj)

2). ψ and the correlation length γ are determined from the
data.30

Notably, the objective of this regression step is not to
identify chemistries with target adsorption and reaction
energies but rather to develop a data set which captures the
relationship between the chemical descriptors and the catalytic
reactions. That is, the regression is an intermediate step within
our larger developed framework for outlier detection.

Local Outlier Factor Analysis for Identifying the
Chemistries Which Do Not Follow Scaling Laws. Local
outlier factor (LOF) analysis computes a score that indicates
how likely a specified data point (say z) is to be an anomaly or
outlier. The local outlier factor examines the density of near
neighbors of z and compares this to the neighbor density of
other not-too-distant points. Specifically, the k-distance is
defined as the distance from z to its kth nearest neighbor. Next,
the average distance from z to all these k near neighbors is
determined. Finally, this average distance is compared to the
average distance of all the k neighbors.31 If z has a much larger
average distance than its neighbors, then it is more likely to be
an outlier.

Assessing the Correlation of Descriptors with
Adsorption and Reaction Energies. Our current computa-
tional framework uses the IsoMap algorithm to reduce the
dimensionality of the feature space before applying the
Gaussian process regression algorithm to determine the
predictive surface of the adsorption and reaction energies for
a given adsorbate. Due to the nonlinear manifold projection of
the IsoMap algorithm, it is not possible to assess an
interpretation of the physical meaning of each IsoMap
dimension in terms of the initial descriptors used. In order
to assess the correlation of the descriptors with the adsorption
and reaction energies of each of the adsorbates, a principal
component analysis (PCA) was performed. Since PCA is a
linear method, it is far easier to track the distribution of the
initial data space descriptors into the orthogonal components

Figure 4. Development of reduced descriptor space. The red circles
are the training systems from step 1, and the black circles are the
chemistries from step 2. We use these two dimensions as the input
into the ML model. By performing this step, we reduce the overfitting
of the predictions while maintaining the majority of the physics of the
input descriptor space.
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of the PCA. We discuss the underlying mathematical concepts
and the physical meaning of the obtained results within this
section.
Mathematically, PCA is an eigenvector decomposition of the

covariance of a matrix X with n samples and N features such
that cov(X) = XTX/n − 1. Thus, it is possible to decompose
the data matrix X into the sum of the outer product of principal
components/score vectors (ti) and loadings vector (pi) plus a
residual matrix (E) such that

= + + + +X t p t p t p E...T T T
1 1 2 2 A A

Generally, the decomposition of X into the first few
orthonormal prinicipal components is sufficient to explain
the data set with minimal loss of information.32,33 In the
current analysis, the correlation of the descriptors with each of
the adsorption and reaction energies was assessed as the
weighted sum of the relative weighting of the loads of the
descriptors and the percentage of variance explained by each
principal component. Figure 5 depicts the loads plot and the
correlation of descriptors with the adsorption energy and
reaction energy of ammonia.
PCA was performed on the entire data set (i.e., 21

descriptors and 10 predicted variables, 5 adsorption energies,

Figure 5. (top) Loadings plot for PCA and (bottom) assessed descriptor correlation with adsorption energy and reaction energy. We observe that
pseudopotential core radii sum and the Pauling electronegativity are the most correlated features with the adsorption energy and reaction energy
indicating that a consideration of the electronic structure is necessary when designing SAA catalysts. Furthermore, we observe that the other
variables also seem to play an important role in the design of new catalysts, thus confirming our initial assumption of this being a high-dimensional
data space. Thus, our approach to initialize the data space by projecting the variables within a lower dimensional nonlinear manifold helps us to
preserve the maximum amount of information while significantly reducing the dimensionality.

Figure 6. Prediction of adsorption energies for two different environments, (left) ammonia and (right) hydrogen, as a function of the IsoMap
parameters. The points represent the 300 potential chemistries (the data values and compound names are provided in the Supporting Information).
The coloring corresponds with the predicted energy values and is a visual aid to assess the data landscape. This figure serves to highlight that we
have developed a dimensionally reduced set of parameters (i.e., the IsoMap parameters) which can be used for modeling different types of
reactions. Beyond representing the relationship between model input and output, this figure also demonstrates the impact on the outliers on
defining the data landscapes. The approach for capturing the outliers is discussed in the following sections.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c01492
J. Phys. Chem. C 2020, 124, 14158−14166

14162

https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig6&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c01492/suppl_file/jp0c01492_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig6&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c01492?ref=pdf


and 5 reaction energies). The first five principal components
(explaining 96% of the data set variance) were used to assess
the correlation of descriptors. The first principal component
explained 60%, and the second principal component explained
23%. From the variable importance projection (VIP), we find
that the two most critical among the numerous descriptors
having some significance are the pseudopotential radii sum and
the Pauling electronegativity. Interestingly, both of these
descriptors are based on the electronic structure, with the
descriptors describing the behavior of nonvalence electrons
and then valence electrons, respectively. This highlights the
complexity of the problem, where all aspects of the electronic
structure require consideration. Although this analysis provides
insight into what is governing the relationships we study here,
an in-depth study of what is physically unique among the most
promising compounds is beyond the scope of the paper. Our
objective is to narrow the search space for chemistries which
warrant an in-depth analysis, whether through DFT or
experiments, and thereby provides guidance of future analyses.

■ RESULTS AND DISCUSSION
Results Based on Scaling Law Physics. In this section

and the next, we primarily discuss results for ammonia
reactions. However, the results for hydrogen, methane,
methanol, and carbon dioxide reactions can be obtained by a
similar analysis and are provided in the Supporting
Information. As discussed earlier, our predictions are
predicated on modeling the physics by the known scaling
laws. The GaSP regression is based on predicting the measured
reaction and adsorption energies as a function of the IsoMap
parameters of the red points in Figure 4. That is, we have two
models: one for reaction energy as a function of IsoMap
parameters and a second for adsorption energy as a function of
the same IsoMap parameters. On the basis of this regression,
we can then input the IsoMap parameters for other chemistries
(i.e., the black points in Figure 4) and predict the reaction and
adsorption energies. Figure 6 shows the GaSP energy
predictions. The Gaussian process regression surfaces were
trained using the Dot Product34 and White Noise kernel35 for
training and prediction. For the resultant surfaces, the
coefficient of determination36 was used to determine how
many components of the IsoMap would be most suited for
surface fitting. We see a relatively continuous surface,
demonstrating that the input descriptors and the dimension-
ality reduction both represent the general catalytic information
and physics. Of particular note, Figure 6 shows the predicted
data landscape for two different reactions: ammonia and
hydrogen. The results for the other reactions have been
included in the Supporting Information. The x- and y-axes for
all of the predicted surfaces (that is, the model input) are the
same, highlighting that we are making predictions for different
reactions with the same parameter set, even though the
compounds with highest energy values are not the same across
reactions.
Given that the empirical measurements were relatively small,

our approach was developed to address a different set of
challenges than in ML analyses which have large input data. To
limit the overfitting of the data, the IsoMap approach was used
to reduce the dimensionality to a minimum amount without
bias, while the selection of descriptors and the multiple
iterations of modeling were used to ensure consistency.
Building on our predicted energy landscapes, we seek to

assess the divergence from the expected relationship between

adsorption and reaction energies (Figure 7). The residual of
this divergence is simply defined as the difference between the

adsorption energy predicted from the Gaussian process
regression and the adsorption energy based on the predicted
reaction energy. A larger residual value indicates a chemistry
which deviates more from a linear relationship between
adsorption and reaction energies. The right panel of Figure 7
shows the residual distribution for the ammonia reaction. We
see that the largest distribution is around residual value of 0,
showing that we are indeed largely representing a linear
relationship between adsorption and reaction energies. Those
points with the largest magnitude residual values are those
which are of principle interest for this paper, that is, those
chemistries which are most likely not to follow the scaling laws
and which have the highest likelihood for unique catalytic
behavior. The assessment of these compounds is discussed in
the next section.
As an added point of interest, we compared the accuracy of

the Gaussian process regression models (based on the
coefficients of determination) with the residual distributions.
Our reasoning was to test whether reactions with larger
residual spreads might be due to greater inaccuracy in the
model; this comparison is able to assess whether the outlier
behaviors are likely real or solely resulting from the predictions.
Interestingly, no systematic relationship between the residual
spread and model accuracy was found. The prediction gave the
lowest accuracy for a methanol reaction, which also had the
least spread in residual values; in contrast, the most accurate
model was for CH4 reaction, which had the second smallest
spread in residual values. This implies that the identification of
outlier chemistries is governed by physics and not by data
methodology.

Outlier Identification for Systems Least Likely to
Follow Scaling Law. In this section, we perform novelty
detection using the LOF method. The objective was to identify
the chemistries which have the highest outlier behavior,
determine a ranking of the outlier behavior, and assess the

Figure 7. (Left) Predicted adsorption energy versus residuals for
ammonia reactions. This shows a roughly linear relationship, as
expected from the scaling law assumed in our models. (Right)
Distribution of residual values for adsorption energy, where the
residual is defined as the difference between the predicted adsorption
energy via Gaussian process regression and the adsorption energy
based on a purely linear relationship. Therefore, those chemistries
with the highest magnitude residual are those which are most likely
not to follow the previously described scaling laws used in catalytic
design.
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resulting distributions. We employ an LOF analysis, rather
than simply examining the residual values determined in the
previous section, in order to define outliers as those
chemistries that do not follow the distribution with respect
to the rest of the chemistries.
The result of the LOF analysis is shown in Figure 8, with the

identification of outliers. This analysis identifies 29 of the 300

chemistries as potential SAA chemistries which do not follow
the expected scaling relationships. The objective of this stage is
to identify those compounds which have unique physics that is
not captured in the current input data space. A few pure metal
systems have been identified as outliers. However, we note that
this is a reflection of having few single-metal systems with that
particular catalytic behavior; thus, the focus of this figure is
instead on the labeled SAAs which have the potential to break
the linear scaling laws.
It should be noted that we would not expect all of these

compounds to have improved performance, but rather would
expect some outliers to have particularly poor performance.
Along this line and following the existing figure of merit from
Figure 1, we anticipate the compounds falling below the
relative trendline (i.e., with reaction energy below the
trendline) would be the most promising, while those above
the trendline would likely have poor performance. Thus, we
have identified the compounds which would introduce
additional physics into the models while also identifying

those which would be most promising for further exper-
imentation.
To track the distributions, a Q−Q plot for adsorption energy

was considered (Figure 9). The ordering of points for the

sample quantiles corresponds with the ordering of predicted
adsorption energy, and the theoretical quantiles are based
assuming a normal distribution. From this, we identify the
regions of the predictions which do not follow a normal
distribution. The regions which do not follow closely with
normal distribution correspond roughly with the chemistries
with negative predicted adsorption energy, while those
compounds with positive predicted values follow a normal
distribution. Interestingly, this is consistent with the novelty
detection analysis, where the outlier chemistries primarily have
predicted negative adsorption energy. From the Q−Q plot,
CrIr and CrRu were the two chemistries most not following
the normal distribution, in agreement with the LOF analysis
which identified those as having the largest LOF score value.
Therefore, the analysis of the values relative to an expected
distribution helps to explain the basis for defining the outlier
chemistries.
The results for reactions other than ammonia are provided

in the Supporting Information. We summarize the findings of
these here. The other most promising SAA binary chemistries
were found to be VCr and VZr for hydrogen, VW and AgAu
for methane, ScTi and VAu for methanol reactions, and CuAg
and NiAg for CO2 reactions.

Feasibility and Synthesis of Proposed Candidates.
While SAAs have been studied due to their potential catalytic
applications and unique properties, synthesis of this class of
compounds presents a significant challenge. Currently, two
major routes of synthesis exist, each leading to a slightly
different variant of the SAA. The first method is an effective
doping wherein one atom is dispersed into another metal
atom’s nanocluster allowing for more delicate control within
the microscopic material and an ability to accurately model the
resulting compound and efficient characterizations using first-
principles methods. Conversely, synthesis using this route has
proved challenging and has been demonstrated in very limited

Figure 8. Predicted reaction and adsorption energies for ammonia
reaction with the outliers identified via novelty detection method. The
red points (which are also labeled) represent the novel cases, and the
black points represent points belonging to the distribution. The green
points represent the current known data points used in calculating the
scaling law based on the volcano plot, and the dotted line represents
the existing scaling law. The adsorption and reaction energies are
shown here as normalized values for clarity. The outlier detection
method operates on the relative values, and the normalization of
values is to avoid any confusion due to regression extrapolation. From
our starting search space of 300 chemistries, we identify the 29
chemistries which are most likely to not follow the known catalytic
scaling laws and instead to operate as SAAs. The notation for the
chemistries denotes the possibility of adding one element into the
other and the possibility that some combination of these metal species
as SAAs could provide enough of a perturbation within the catalyst
domain so as to be able to break the scaling law. Thus, the order of
element names is not specific. In terms of the LOF score values, CrIr
and CrRu are the most prominent outliers. This result therefore
identifies the compounds which are most likely not to follow known
scaling laws and which traditional modeling approaches would not
differentiate as unique.

Figure 9. Q−Q plot for the predicted adsorption energies for
ammonia reaction. The red line shows the normal distribution. From
this, we find that the chemistries with lower adsorption energy are
more likely not to follow the normal distribution (agreeing with our
result that the majority of outliers were at negative adsorption
energy). Additionally, CrIr and CrRu have the largest difference from
the normal distribution.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c01492
J. Phys. Chem. C 2020, 124, 14158−14166

14164

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c01492/suppl_file/jp0c01492_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c01492?fig=fig9&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c01492?ref=pdf


applications in nanocrystals such as Au25
37 and Ag25.

38 Gold
nanostructures are typically the preferred host and are the most
studied for these types of synthesis routes. Generally, wet
chemistry methods have been employed (e.g., the Brust
method)39 to accomplish the synthesis of this type of
compound.
The second method constitutes atomically dispersing one

metal into another metal’s nanocrystals. This is usually
achieved using surface chemistry methods. Multiple SAAs
have been synthesized using this route including PtCu40 and
PdCu.41,42 Within the current list of proposed SAAs for further
investigation, we would suggest the use of the single-atom
doping method for synthesis wherever it is feasible (for
example in Cu-doped Ag). The second method can be utilized
for the synthesis of Ag dispersed in Cu. Due to the very limited
literature describing the synthesis of other SAAs, further
investigations using model-based methods must be made
before an attempt to synthesize some of the more unique
outliers we have suggested in this work.

■ CONCLUSION

We have presented a computational framework for the
investigation of possible combinations of SAAs for five
adsorbates. From an analysis integrating nonlinear manifold
learning, Gaussian process regression and novelty detection,
we identified a limited number of “virtual” compounds which
have the highest likelihood of not following established scaling
laws. This approach introduces a new framework for
significantly shrinking the chemical search space, even in
cases where limited data is available, and provides a guide for
the next series of experiments to perform.
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(8) Darby, M. T.; Reócreux, R.; Sykes, E. C. H.; Michaelides, A.;
Stamatakis, M. Elucidating the Stability and Reactivity of Surface
Intermediates on Single-Atom Alloy Catalysts. ACS Catal. 2018, 8,
5038−5050.
(9) Darby, M. T.; Stamatakis, M.; Michaelides, A.; Sykes, E. C. H.
Lonely Atoms with Special Gifts: Breaking Linear Scaling Relation-
ships in Heterogeneous Catalysis with Single-Atom Alloys. J. Phys.
Chem. Lett. 2018, 9, 5636−5646.
(10) Ma, X.; Li, Z.; Achenie, L. E. K.; Xin, H. Machine-Learning-
Augmented Chemisorption Model for CO2 Electroreduction Catalyst
Screening. J. Phys. Chem. Lett. 2015, 6, 3528−3533.
(11) Goldsmith, B. R.; Esterhuizen, J.; Liu, J.-X.; Bartel, C. J.; Sutton,
C. Machine learning for heterogeneous catalyst design and discovery.
AIChE J. 2018, 64, 2311−2323.
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