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Abstract—In recent years, people with upper extremity
impairment (UEI) have been using wearable Internet of
Things (wloT) devices like head-mounted devices (HMDs)
for a variety of purposes such as rehabilitation, assistive
technology, and gaming. Often such wloT devices collect
and display sensitive information such as information
related to medical care and rehabilitation. It is therefore
crucial that HMDs can authenticate the person wearing
them so that appropriate access control can be implemented
for the sensitive information they manage. In this paper,
we explore a new authentication approach for people with
upper extremity impairment (UEI) for wloT devices head-
mounted devices (HMDs). The approach works by lever-
aging ballistocardiograms — representations of the cardiac
rhythm - derived from an accelerometer and a gyroscope,
mounted on an HMD for authentication. The derived
ballistocardiograms are then fed into six participant-specific
convolutional neural networks (CNNs) which act as our
authentication models. Analysis of our approach shows its
viability. Using data from 6 participants with UEI (and 22
able-bodied participants, for evaluation), we show that we
can authenticate a participant in 4 seconds with an average
equal error rate of 4.02% and 10.02%, immediately after
training and ~2 months later, respectively.

Index Terms—authentication, biometrics, internet of
things, wearable computers, assistive technology

I. INTRODUCTION

In recent years, wearable Internet-of-Things (wIloT)
devices such as head-mounted devices (HMDs) — i.e.,
augmented reality (AR) devices, and virtual reality (VR)
devices — have become increasingly useful for people
with upper extremity impairment (UEI) as an assistive
technology [1]-[3], for gaming [4], and for rehabilitation
[5], [6]. A person with UEI is someone who lacks
range of motion, strength, endurance, speed, and/or ac-
curacy associated with movement in the shoulders, upper
arms, forearms, hands, and/or fingers [7]. As people
with UEI use these wloT for increasingly personalized
tasks, being able to authenticate a person with UEI to
their HMDs is becoming increasingly important. This is
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Fig. 1: A typical ballistocardiogram (BCG) waveform pro-
duced as a reaction to the beating of the heart. Note the
characteristic I, J, and K peaks of the signal.

because people with UEI often must rely on caregivers
(e.g., family, friends, staff in a group home) to help
them with day-to-day activities, including the setup of
their computing devices such as HMDs. People with
disabilities are disproportionally affected by crime, in-
cluding theft and burglary, often perpetrated by people
who are their caregivers [8]. Caregiver crimes against
people with disabilities include the theft and misuse of
personal computing devices [9], which can lead to terri-
ble consequences, including the loss of sensitive data.
Authentication solutions on HMDs can help alleviate
such threats for a vulnerable population group.

Our goal in this paper is to explore an authentication
approach for HMDs that is specifically designed for
people with UEIL Given the nature of the disability of
people with UEI, we have designed an authentication ap-
proach that does not require any explicit action from the
individual. All our approach requires is for an individual
with UEI to wear the HMD and sit still for a short period
of time to authenticate. Our approach works by collecting
the subtle, natural movements of the head that occur
while a person is sitting still using an accelerometer and
gyroscope on the HMD. We use these measurements to
derive a ballistocardiogram (BCG). A BCG represents
the body’s motion as the blood flows through it, in
response to the beating of the heart, and thus captures
the characteristics of the cardiac process [10]. Figure 1
shows a typical BCG waveform with its characteristic
peaks usually referred to as I, J, and K peaks. A BCG



waveform, due to its nature, appears after every rhythmic
contraction of the heart muscle (heartbeat) [10]. Using
the BCG we train participant-specific (i.e., personalized)
convolutional neural networks (CNNs) which act as the
authentication model in our approach. Once the model is
trained, we can once again measure new accelerometer
and gyroscope measurements from the HMD, derive a
BCG from it, and use it to authenticate an individual.

Our approach has several advantages: (1) it does not
require the individual with UEI wearing the HMD to use
their limbs in any form; (2) it uses ubiquitous movement
sensors rather than relatively rarer physiological sig-
nals/interconnects to work; and (3) the head-movements
it uses for authentication are difficult for an adversary to
copy as they are subtle.

To the best of our knowledge, HMD authentication
has not been explored for the UEI population before.
An analysis of our approach shows its viability. We
used data from 6 participants with UEI (non-spastic
cerebral palsy) and 22 other able-bodied participants to
train six individual authentication models and to simulate
adversarial attacks. We were able to authenticate an
individual with UEI in 4 seconds with an average equal
error rate! of 4.02% immediately after training and
10.02% after about two months.

The contributions of this paper are two-fold: (a) a
novel authentication approach for people with UEI for
HMDs using ballistocardiograms derived from subtle
and involuntary head movements, and (b) a demonstra-
tion of the viability of this authentication approach.

II. RELATED WORK

HMD Authentication: Authentication approaches
have been previously explored for HMDs. Li et al. [11]
use simple head movements in response to a specific
song for authentication. The head movements used,
however, can be easily imitated by adversaries who are
able to observe the head patterns. Schneegass et al. [12]
induce white noise into participants’ skulls through the
bone conduction speakers of an HMD. The response
is then measured to identify the wearer. This is more
effective at imitation attack resistance, but requires bone
conductance speakers, which not all HMDs possess.
Further, the white noise was found by the authors to
be uncomfortable to some participants. Rogers et al.
[13] present a user identification approach using blinking
and head movement patterns of the participant while
they watch a video. However, this approach requires 34
seconds for identification, presenting a temporal barrier
to usefulness. Further, none of these approaches have
been focused on the context of people with UEIL

Authentication for People with Disabilities: Recent
years have seen the development of several authentica-
tion solutions specifically designed for people with dis-
abilities. However, most authentication work has focused
on people with visual impairments [14]-[19] or people

IThe point at which the false accept and false reject rates are equal.

with cognitive disabilities (e.g., Down syndrome) [20],
[21]. Very few solutions have been proposed or designed
for the needs of people with UEIL Solutions for people
with UEI often focus on voice traits [22] or password
dictation [23], [24] which can present barriers for peo-
ple with UEI who often have co-morbid voice/speech
impairments [25] — something we wish to avoid in this
work.

Authentication using Ballistocardiography: Ballis-
tocardiography has been tried for user identification
on previous occasions [26]-[28]. In Guo et al. and
Vural et al. [26], [28], ballistocardiography was used on
movement sensors on an individual’s torso. In the context
of our work, however, this would require the use of an
additional device to measure BCGs to authenticate into
an HMD, which we would like to minimize given the
ability of most HMDs to measure movement themselves.
In Hernandez et al. [27], the authors measured BCGs us-
ing a smart-watch; however, owing to the distance from
the person’s heart, the signals produced were noisy and
produced only 66% accuracy rate, which is rather low.
Further, none of these previous works were evaluated
using people with UEI or over time (as we shall see
later in the paper).

III. PROBLEM STATEMENT AND THREAT MODEL

Before we delve into our authentication approach, we
detail our problem statement, threat model, and assump-
tions about the adversaries that underlie this work.

Problem statement: The main problem that we ad-
dress in this paper is to determine if ballistocardiograms
derived from subtle head movements of an individual
with UEI using an HMD is capable of authenticating
them to that HMD.

In this work, we use a Google Glass as the HMD
device. The principal reasons for choosing Google Glass
are that it: (1) is used as head-mounted device by
people with UEI [1], [2], and (2) has the accelerometer
and gyroscope sensors that we need to implement our
approach. Our approach is not specific to Google Glass.

Imitation attack threat: People with UEI often re-
quire caregivers (e.g., family, friends, staff in a group
home) to help with routine daily activities, including
assisting with computing [29]. Unfortunately, this has
often led to the theft and unauthorized access of personal
computing devices by caregivers [9]. Consequently, we
assume that the principal adversaries to our authentica-
tion approach are malicious caregivers, having intimate
access to a particular individual with UEI. These ad-
versaries can observe the individual with UEI and have
access to their computing devices and HMD. Since our
approach involves no overt gestures/actions, that is, the
individual sits still for authentication, we assume the
adversaries can only perform imitation attacks where
they try to imitate (mimic) the individual’s subtle head
movements by sitting still while wearing their HMD.

Adversarial assumptions: For the purposes of this
work, we assume that adversaries: (1) do not have access



TABLE I: Demographics of participants

Set Avg. Age | SD Age | Male | Female
Model 40 11.06 3 3
Validation 32.83 13.13 4 8
Impersonation 28.50 10.91 8 2
All 32.82 12.06 15 13

to the authentication model; (2) are not present for the
training phase and cannot pollute the model during this
stage; (3) do not have any cardiac signals from the
individual with UEI, past or present; and (4) access the
HMD surreptitiously without forcing the HMD to be
unlocked through intimidation or violence.

IV. DATA COLLECTION

The first stage in our authentication approach is to col-
lect head movement data from participants. We obtained
approval from our institution’s institutional review board
(IRB) and collaborated with a local non-profit organiza-
tion to obtain the data. We asked each participant to
remove their glasses, if applicable, and sit comfortably,
upright, and still. We then situated an HMD on their
face such that it fit comfortably. We then collected 10
minutes of accelerometer and gyroscope data from each
participant, per session. In order to minimize fatigue, we
collected the data in five 2-minute intervals, with ample
breaks between intervals. We collected two sessions of
HMD data measurements from our participants to mea-
sure the effectiveness of our authentication approach after
a couple of months. The second session was conducted
anywhere from 15 to 57 days after the first session
depending on the availability of our participants.

We collect and divide data into 3 sets: model set,
validation set, and impersonation set. The model set
consists of data from 6 participants with UEI, specifi-
cally non-spastic cerebral palsy, for whom we build our
participant-specific authentication models. The valida-
tion set consists of data from 12 able-bodied individuals
and is used to train the authentication models and to
test against imitation attacks from a generic version of
our adversary. Finally, the impersonation set consists
of data from 10 able-bodied participants whose data
have not been seen by the authentication models during
training and is used to simulate imitation attacks by
an unseen adversary. The impersonation set is used to
evaluate the generalizability of our models. This is a
common approach that is used to evaluate authentication
models [30]. The demographic breakdown of these sets
is in Table L.

Data Preprocessing: During data collection, the
accelerometer and gyroscope sensors in the HMD are
set to sample at 50 Hz (as recommended in the Google
Glass API [31]). We obtain six discrete, raw sensor
streams: the three axes of the accelerometer and three
axes of the gyroscope measurements. Sensor data from
any Android device, like our HMD Google Glass, are
not guaranteed to align exactly to a sampling rate nor
will measurements from different sensors necessarily
be synchronized. Therefore, we preprocess the sensor

TABLE II: Maximum of the average of (TAR+TRR)/2
for various segment lengths. Based on these results, w =
4 was chosen.

w 2s 3s 4s 5s
92.73% | 95.77% | 97.5% | 96.63%

streams. We truncate the beginnings and endings of
both the gyroscope and accelerometer measurements,
such that the timestamp of the first and last samples of
both sensor measurements are as close as possible. We
then interpolate the data and align the samples with one
another.

Deriving the BCG Waveform: Once we obtain the
preprocessed sensor streams, we use them to derive the
BCG waveform. To do this, we divide each stream into
overlapped segments of size w seconds. Between two
sequential segments, there is a w — 1 second overlap.
Hence, two segments with w = 4 seconds would share
3 seconds of data. Then, inspired by [27], we perform
a three-step BCG derivation process. (1) Normalization:
We normalize each of the six sensor streams to have
a zero mean and unit variance within each segment.
(2) Rolling Average Filter: We then subtract a rolling-
average filter of 35 samples from each sensor stream
to correct for large motions as well as gyroscope and
accelerometer drift. (3) Band-Pass Filter: Finally, we
apply a 4th-order band-pass Butterworth filter with cutoff
frequencies at 4 and 11Hz to each sensor stream. In
all, we derive six versions of BCG, one per axis of
accelerometer and gyroscope, per segment. These six
BCGs are used as input for our authentication model.

Once the BCGs have been extracted, we derive six
participant-specific two-class convolutional neural net-
works (CNNs), each acting as an authentication model
for one of the six individuals with UEI in our dataset.
We use CNNs to avoid complex feature engineering.

V. MODEL TRAINING AND AUTHENTICATION

We now describe how the individual CNNs, used as
our authentication models, are parametrized and trained.
However, before we go into the details, we provide quick
descriptions of the metrics we use in our CNN setup and
the eventual evaluation of the authentication accuracy.

Metrics: To evaluate the efficacy of our approach, we
use the following core metrics: true accept rate (TAR),
false accept rate (FAR), area-under-the-curve (AUC),
and equal error rate (EER). These metrics were chosen
because they are common metrics used for evaluating au-
thentication models and they balance permitting correct
users with preventing attackers from receiving access.
TAR is the fraction of positively labeled test BCGs
that were correctly classified as positive and represent
providing access to the user. FAR is the fraction of
negatively labeled test BCGs that were misclassified
as positive, representing an attacker being mistakenly
allowed access. For our results we plot receiver operator
characteristic (ROC) curves which graph TAR vs. FAR
at various operating points for our authentication models.
ROC curves are a compact way of showing model
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Fig. 2: Representation of how data from both sessions of our model set, validation set, and impersonation set are used for

training and evaluation.

performance. The area-under-the-curve (AUC) gives a
measurement for describing the overall performance of
the ROC curve. Given TAR and FAR, we can easily
compute the complementary metrics of false reject rate
(FRR) as FRR = 1 —TAR, and true reject rate (TRR) as
TRR =1—FAR. EER is the equilibrium point where the
total error (FAR + FRR) is minimized.

CNN Parameter Selection: We start with a base
CNN model with 5 convolutional layers followed by
2 dense layers and an output layer. The output layer
is a single neuron that produces a binary decision. For
clarity and space reasons, we show our base CNN on
our website?. The goal is to parametrize this CNN in
a participant-specific manner so that it can authenticate
our target population. We do this as follows. We have 2
sessions of data from the participants in the model set?,
validation set, and impersonation set. To build a custom
CNN for each of the 6 participants in the model set, we
use a genetic algorithm-based method to find the hyper-
parameters of our CNN-based authentication model. This
is because enumerating all possible values of these
hyper-parameters and determining the best CNN config-
uration is prohibitively expensive. We optimize over 30
hyper-parameters that capture elements associated with
convolutional and dense layers in the network. We use
the first 8 minutes from session 1 of our model set and
validation set (which forms the generic adversary) to
train the models and the remaining 2 minutes of session
1 to test the model, for each generation of the genetic
algorithm. Each generation is composed of 20 CNN
configurations.

Previously, we had stated that we used (w) seconds
of overlapping segments to generate the BCG wave-

Zhttps://anonymoussubmissionuser.github.io/CNNs/
3We were able to collect only 1 session’s worth of data for
participant 6 in the model set.

forms. We determine the value of w simultaneously
with determining the CNN hyper-parameters. We do this
by running the genetic algorithm for 5 generations for
segment lengths from w=2 seconds to w=5 seconds. This
range was chosen as segments of less than 2 seconds
may not be long enough to capture an entire cardiac
rhythm if a person’s resting heart rate is below 60 bpm,
and longer segment times decrease usability. We then
determine the maximum value of (TAR+ TRR)/2 for
each participant, over all 5 generations for a given
segment length. We then compute the average of this
maximum value (over our 6 participants) and choose
the segment length that produced the maximum average.
Table II shows the maximum of average (TAR+TRR)/2
observed for different segment lengths. Based on these
results, we chose w=4 seconds. We input BCGs, de-
rived from each segment of sensor measurements, into
the CNN. Hence, the segment length determines how
quickly we can authenticate a person. A w=4 seconds,
therefore, means we need only 4 seconds of movement
sensor measurements to authenticate someone.

Once the segment length is chosen, we run the genetic
algorithm for w=4 seconds for another 5 generations for
a total of 10 generations. For each participant we pick
the CNN hyper-parameters that produce the maximum
value of (TAR+ TRR)/2 in those 10 generations. For
clarity reasons the CNNs, trained for the 6 participants
in our study, are posted on our website®*.

Training and Authentication: Once we have the
hyper-parameters, we train a participant-specific two-
class CNN as the authentication model for each of the
6 participants in our model set. We use the participant’s
first 8 minutes of data from session 1 as positive class
points and the first 8 minutes of data from both the other
5 participants in the model set and the 12 participants

“https://anonymoussubmissionuser.github.io/CNNs/



ER'=2.39% 100

9.87%

80 Participant 1: AUC 1.0

Participant 2: AUC 0.99

Participant 3: AUC 0.98

Participant 4: AUC 0.99

Participant 5: AUC 1.0

Participant 6: AUC 1.0

= Average: AUC 0.99

= EER

0+ - 0

0 20 40 60 80 100 0
FAR (%)

80 :c‘ !
3 Participant 1: AUC 0.96
—— Participant 2: AUC 0.99
Participant 3: AUC 0.77
—— Participant 4: AUC 0.97
Participant 5: AUC 1.0
== Average: AUC 0.94
--—- EER

60 60

TAR (%)
TAR (%)

40 40

20 20

20 60 100

40 80
FAR (%)

(a) Generic Adversary Session 1 (b) Generic Adversary Session 2

(EER = 4.02%

Participant 1: AUC 1.0
Participant 2: AUC 0.99
Participant 3: AUC 0.95
Participant 4: AUC 0.98
Participant 5: AUC 1.0
Participant 6: AUC 0.98
» Average: AUC 0.98
- EER
0 - 0
20 40 60 80 100 0
FAR (%)

—— Participant 2: AUC 0.99
Participant 3: AUC 0.78
—— Participant 4: AUC 0.97
Participant 5: AUC 0.99
== Average: AUC 0.94
—===: |EER;

Participant 1: AUC 0.96

TAR (%)
TAR (%)

20 60 80 100

40
FAR (%)

(c) Unseen Adversary Session 1 (d) Unseen Adversary Session 2

Fig. 3: Performance of our authentication approach

from the validation set as negative points and weight our
model for the class imbalance. The usage of our data for
training and evaluation can be seen in Figure 2. In the
figure, positive and negative data points are marked with
“+” and “-” symbols respectively. We train the CNN for
100 epochs, at which point the training loss of the model
stabilizes to a minimum. Once the model is trained, we
can authenticate an individual with UEIL by supplying
their CNN with BCG waveforms obtained from a new
(yet unseen) snippet for w=4 seconds of accelerometer
and gyroscope measurements obtained from the HMD
sensors. The CNN produces a binary decision, which
can be evaluated for accuracy.

A. Performance under imitation attacks

Generic Adversary: As a first step in evaluating our
models, we evaluate how well our six authentication
models can differentiate a given participant from all the
other participants in the model set and the validation
set. The model set and validation set are used as a
reference for characterizing a generic adversary for
our authentication models. We perform our evaluations
over two sessions using the unseen data from the last
two minutes in session 1, and the full 10 minutes of
unseen data collected for session 2. For our adversarial
data, we treat the session 1 and session 2 data the
same because these data do not have any temporal
significance in relation to the positive data (i.e., the
adversary can use data collected at any time to attack
the authentication process).This process is detailed in the
Generic Adversary Evaluation box in Figure 2. Figure 3
(a) and (b) show the ROC curves for the 6 trained models
for session 1 and session 2 for the generic adversary,
respectively. In session 1, the ROC curves show that the
authentication models are accurate with average area-
under-the-curve (AUC) values greater than 0.99. The
average AUC drops to 0.94 in session 2. The EER shows
an increase starting at 2.39% in session 1, and then
increases to around 9.87% in session 2. We observe that
the change in performance is largely due to Participant
3’s data (whose AUC is 0.77). The reason Participant
3’s data performed poorly is because they had relatively
poor control of their neck muscles and could not sit still
for sustained periods of time.

Previously Unseen Adversary: In practice, reference
data for each potential attacker are not generally avail-
able. Therefore, we use data from both sessions of the
impersonation set as negative data to evaluate our six

authentication models. This process is detailed in the
Previously Unseen Adversary Evaluation box in Figure
2. This simulates the actions of the primary adversary
of our threat model, someone who views a participant
authenticating and tries to mimic them. As the victim
exhibits only subtle movements and no overt gestures
during authentication, the adversary has nothing to copy
and is reduced to using their own head movements.
Figure 3 (c) and (d) show the ROC curves for the
6 trained models for session 1 and session 2 for the
previously unseen adversary, respectively. The TAR is
obtained using participants’ unseen data as described
earlier. The ROC curves for the 6 trained models have an
average AUC that goes from 0.98 to 0.94 from session
1 to session 2, respectively (see Figure 3). Once again
Participant 3’s data performed relatively poorly for the
same reasons as above. The EER shows an increase to
4.02% in session 1 and 10.02% in session 2. It is not
surprising that the performance for the impersonation set
is worse than when using unseen data from participants
whose data are used to train the participant-specific
models. However, the overall low error rate and high
AUC shows that our authentication approach for people
with UEI is promising.

VI. DISCUSSION AND LIMITATIONS

Our study has a three main limitations. First, during
our study, motion artifacts from the lack of neck muscle
control presented a problem with extracting noise-free
signals for one participant. Therefore, we need strategies
to compensate for artifacts induced by the participant.
Second, in our current dataset the participants were alert
during both data collection sessions. However, it has
been shown that factors such as fatigue or recent physical
activity affect an individual’s physiology, movements,
and posture [32]. It will be interesting to see how
our approach works for individuals who are fatigued,
sick, or even depressed. Third, physiological responses
change over time, necessitating retraining. Approaches
are required to determine when to retrain in order to
balance the drop in authentication accuracy over time
with the inconvenience of taking the system offline.

VII. CONCLUSIONS

In this paper, we have explored a new authentication
approach for head mounted devices (HMDs), a type
of wearable Internet-of-Things (wloT) device, for peo-
ple with UEL Our approach used ballistocardiograms



(BCGs) derived from subtle head movements captured
by movement sensors in an HMD. In the immediate
future we plan to extend this work in several directions
including: (1) increasing the participant pool, and (2)
making the approach tolerant to the motion from partic-
ipants with poor neck control.
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