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Abstract—In recent years, people with upper extremity
impairment (UEI) have been using wearable Internet of
Things (wIoT) devices like head-mounted devices (HMDs)
for a variety of purposes such as rehabilitation, assistive
technology, and gaming. Often such wIoT devices collect
and display sensitive information such as information
related to medical care and rehabilitation. It is therefore
crucial that HMDs can authenticate the person wearing
them so that appropriate access control can be implemented
for the sensitive information they manage. In this paper,
we explore a new authentication approach for people with
upper extremity impairment (UEI) for wIoT devices head-
mounted devices (HMDs). The approach works by lever-
aging ballistocardiograms – representations of the cardiac
rhythm – derived from an accelerometer and a gyroscope,
mounted on an HMD for authentication. The derived
ballistocardiograms are then fed into six participant-specific
convolutional neural networks (CNNs) which act as our
authentication models. Analysis of our approach shows its
viability. Using data from 6 participants with UEI (and 22
able-bodied participants, for evaluation), we show that we
can authenticate a participant in 4 seconds with an average
equal error rate of 4.02% and 10.02%, immediately after
training and ∼2 months later, respectively.

Index Terms—authentication, biometrics, internet of
things, wearable computers, assistive technology

I. INTRODUCTION

In recent years, wearable Internet-of-Things (wIoT)

devices such as head-mounted devices (HMDs) – i.e.,

augmented reality (AR) devices, and virtual reality (VR)

devices — have become increasingly useful for people

with upper extremity impairment (UEI) as an assistive

technology [1]–[3], for gaming [4], and for rehabilitation

[5], [6]. A person with UEI is someone who lacks

range of motion, strength, endurance, speed, and/or ac-

curacy associated with movement in the shoulders, upper

arms, forearms, hands, and/or fingers [7]. As people

with UEI use these wIoT for increasingly personalized

tasks, being able to authenticate a person with UEI to

their HMDs is becoming increasingly important. This is

* The bulk of this work was completed while the first and third
authors were at Worcester Polytechnic Institute

Fig. 1: A typical ballistocardiogram (BCG) waveform pro-

duced as a reaction to the beating of the heart. Note the

characteristic I, J, and K peaks of the signal.

because people with UEI often must rely on caregivers

(e.g., family, friends, staff in a group home) to help

them with day-to-day activities, including the setup of

their computing devices such as HMDs. People with

disabilities are disproportionally affected by crime, in-

cluding theft and burglary, often perpetrated by people

who are their caregivers [8]. Caregiver crimes against

people with disabilities include the theft and misuse of

personal computing devices [9], which can lead to terri-

ble consequences, including the loss of sensitive data.

Authentication solutions on HMDs can help alleviate

such threats for a vulnerable population group.

Our goal in this paper is to explore an authentication

approach for HMDs that is specifically designed for

people with UEI. Given the nature of the disability of

people with UEI, we have designed an authentication ap-

proach that does not require any explicit action from the

individual. All our approach requires is for an individual

with UEI to wear the HMD and sit still for a short period

of time to authenticate. Our approach works by collecting

the subtle, natural movements of the head that occur

while a person is sitting still using an accelerometer and

gyroscope on the HMD. We use these measurements to

derive a ballistocardiogram (BCG). A BCG represents

the body’s motion as the blood flows through it, in

response to the beating of the heart, and thus captures

the characteristics of the cardiac process [10]. Figure 1

shows a typical BCG waveform with its characteristic

peaks usually referred to as I, J, and K peaks. A BCG



waveform, due to its nature, appears after every rhythmic

contraction of the heart muscle (heartbeat) [10]. Using

the BCG we train participant-specific (i.e., personalized)

convolutional neural networks (CNNs) which act as the

authentication model in our approach. Once the model is

trained, we can once again measure new accelerometer

and gyroscope measurements from the HMD, derive a

BCG from it, and use it to authenticate an individual.

Our approach has several advantages: (1) it does not

require the individual with UEI wearing the HMD to use

their limbs in any form; (2) it uses ubiquitous movement

sensors rather than relatively rarer physiological sig-

nals/interconnects to work; and (3) the head-movements

it uses for authentication are difficult for an adversary to

copy as they are subtle.

To the best of our knowledge, HMD authentication

has not been explored for the UEI population before.

An analysis of our approach shows its viability. We

used data from 6 participants with UEI (non-spastic

cerebral palsy) and 22 other able-bodied participants to

train six individual authentication models and to simulate

adversarial attacks. We were able to authenticate an

individual with UEI in 4 seconds with an average equal

error rate1 of 4.02% immediately after training and

10.02% after about two months.

The contributions of this paper are two-fold: (a) a

novel authentication approach for people with UEI for

HMDs using ballistocardiograms derived from subtle

and involuntary head movements, and (b) a demonstra-

tion of the viability of this authentication approach.

II. RELATED WORK

HMD Authentication: Authentication approaches

have been previously explored for HMDs. Li et al. [11]

use simple head movements in response to a specific

song for authentication. The head movements used,

however, can be easily imitated by adversaries who are

able to observe the head patterns. Schneegass et al. [12]

induce white noise into participants’ skulls through the

bone conduction speakers of an HMD. The response

is then measured to identify the wearer. This is more

effective at imitation attack resistance, but requires bone

conductance speakers, which not all HMDs possess.

Further, the white noise was found by the authors to

be uncomfortable to some participants. Rogers et al.

[13] present a user identification approach using blinking

and head movement patterns of the participant while

they watch a video. However, this approach requires 34

seconds for identification, presenting a temporal barrier

to usefulness. Further, none of these approaches have

been focused on the context of people with UEI.

Authentication for People with Disabilities: Recent

years have seen the development of several authentica-

tion solutions specifically designed for people with dis-

abilities. However, most authentication work has focused

on people with visual impairments [14]–[19] or people

1The point at which the false accept and false reject rates are equal.

with cognitive disabilities (e.g., Down syndrome) [20],

[21]. Very few solutions have been proposed or designed

for the needs of people with UEI. Solutions for people

with UEI often focus on voice traits [22] or password

dictation [23], [24] which can present barriers for peo-

ple with UEI who often have co-morbid voice/speech

impairments [25] – something we wish to avoid in this

work.

Authentication using Ballistocardiography: Ballis-

tocardiography has been tried for user identification

on previous occasions [26]–[28]. In Guo et al. and

Vural et al. [26], [28], ballistocardiography was used on

movement sensors on an individual’s torso. In the context

of our work, however, this would require the use of an

additional device to measure BCGs to authenticate into

an HMD, which we would like to minimize given the

ability of most HMDs to measure movement themselves.

In Hernandez et al. [27], the authors measured BCGs us-

ing a smart-watch; however, owing to the distance from

the person’s heart, the signals produced were noisy and

produced only 66% accuracy rate, which is rather low.

Further, none of these previous works were evaluated

using people with UEI or over time (as we shall see

later in the paper).

III. PROBLEM STATEMENT AND THREAT MODEL

Before we delve into our authentication approach, we

detail our problem statement, threat model, and assump-

tions about the adversaries that underlie this work.

Problem statement: The main problem that we ad-

dress in this paper is to determine if ballistocardiograms

derived from subtle head movements of an individual

with UEI using an HMD is capable of authenticating

them to that HMD.

In this work, we use a Google Glass as the HMD

device. The principal reasons for choosing Google Glass

are that it: (1) is used as head-mounted device by

people with UEI [1], [2], and (2) has the accelerometer

and gyroscope sensors that we need to implement our

approach. Our approach is not specific to Google Glass.

Imitation attack threat: People with UEI often re-

quire caregivers (e.g., family, friends, staff in a group

home) to help with routine daily activities, including

assisting with computing [29]. Unfortunately, this has

often led to the theft and unauthorized access of personal

computing devices by caregivers [9]. Consequently, we

assume that the principal adversaries to our authentica-

tion approach are malicious caregivers, having intimate

access to a particular individual with UEI. These ad-

versaries can observe the individual with UEI and have

access to their computing devices and HMD. Since our

approach involves no overt gestures/actions, that is, the

individual sits still for authentication, we assume the

adversaries can only perform imitation attacks where

they try to imitate (mimic) the individual’s subtle head

movements by sitting still while wearing their HMD.

Adversarial assumptions: For the purposes of this

work, we assume that adversaries: (1) do not have access



TABLE I: Demographics of participants

Set Avg. Age SD Age Male Female

Model 40 11.06 3 3

Validation 32.83 13.13 4 8

Impersonation 28.50 10.91 8 2

All 32.82 12.06 15 13

to the authentication model; (2) are not present for the

training phase and cannot pollute the model during this

stage; (3) do not have any cardiac signals from the

individual with UEI, past or present; and (4) access the

HMD surreptitiously without forcing the HMD to be

unlocked through intimidation or violence.

IV. DATA COLLECTION

The first stage in our authentication approach is to col-

lect head movement data from participants. We obtained

approval from our institution’s institutional review board

(IRB) and collaborated with a local non-profit organiza-

tion to obtain the data. We asked each participant to

remove their glasses, if applicable, and sit comfortably,

upright, and still. We then situated an HMD on their

face such that it fit comfortably. We then collected 10

minutes of accelerometer and gyroscope data from each

participant, per session. In order to minimize fatigue, we

collected the data in five 2-minute intervals, with ample

breaks between intervals. We collected two sessions of

HMD data measurements from our participants to mea-

sure the effectiveness of our authentication approach after

a couple of months. The second session was conducted

anywhere from 15 to 57 days after the first session

depending on the availability of our participants.

We collect and divide data into 3 sets: model set,

validation set, and impersonation set. The model set

consists of data from 6 participants with UEI, specifi-

cally non-spastic cerebral palsy, for whom we build our

participant-specific authentication models. The valida-

tion set consists of data from 12 able-bodied individuals

and is used to train the authentication models and to

test against imitation attacks from a generic version of

our adversary. Finally, the impersonation set consists

of data from 10 able-bodied participants whose data

have not been seen by the authentication models during

training and is used to simulate imitation attacks by

an unseen adversary. The impersonation set is used to

evaluate the generalizability of our models. This is a

common approach that is used to evaluate authentication

models [30]. The demographic breakdown of these sets

is in Table I.

Data Preprocessing: During data collection, the

accelerometer and gyroscope sensors in the HMD are

set to sample at 50 Hz (as recommended in the Google

Glass API [31]). We obtain six discrete, raw sensor

streams: the three axes of the accelerometer and three

axes of the gyroscope measurements. Sensor data from

any Android device, like our HMD Google Glass, are

not guaranteed to align exactly to a sampling rate nor

will measurements from different sensors necessarily

be synchronized. Therefore, we preprocess the sensor

TABLE II: Maximum of the average of (TAR+T RR)/2

for various segment lengths. Based on these results, w =
4 was chosen.

w 2s 3s 4s 5s

92.73% 95.77% 97.5% 96.63%

streams. We truncate the beginnings and endings of

both the gyroscope and accelerometer measurements,

such that the timestamp of the first and last samples of

both sensor measurements are as close as possible. We

then interpolate the data and align the samples with one

another.

Deriving the BCG Waveform: Once we obtain the

preprocessed sensor streams, we use them to derive the

BCG waveform. To do this, we divide each stream into

overlapped segments of size w seconds. Between two

sequential segments, there is a w − 1 second overlap.

Hence, two segments with w = 4 seconds would share

3 seconds of data. Then, inspired by [27], we perform

a three-step BCG derivation process. (1) Normalization:

We normalize each of the six sensor streams to have

a zero mean and unit variance within each segment.

(2) Rolling Average Filter: We then subtract a rolling-

average filter of 35 samples from each sensor stream

to correct for large motions as well as gyroscope and

accelerometer drift. (3) Band-Pass Filter: Finally, we

apply a 4th-order band-pass Butterworth filter with cutoff

frequencies at 4 and 11Hz to each sensor stream. In

all, we derive six versions of BCG, one per axis of

accelerometer and gyroscope, per segment. These six

BCGs are used as input for our authentication model.

Once the BCGs have been extracted, we derive six

participant-specific two-class convolutional neural net-

works (CNNs), each acting as an authentication model

for one of the six individuals with UEI in our dataset.

We use CNNs to avoid complex feature engineering.

V. MODEL TRAINING AND AUTHENTICATION

We now describe how the individual CNNs, used as

our authentication models, are parametrized and trained.

However, before we go into the details, we provide quick

descriptions of the metrics we use in our CNN setup and

the eventual evaluation of the authentication accuracy.

Metrics: To evaluate the efficacy of our approach, we

use the following core metrics: true accept rate (TAR),

false accept rate (FAR), area-under-the-curve (AUC),

and equal error rate (EER). These metrics were chosen

because they are common metrics used for evaluating au-

thentication models and they balance permitting correct

users with preventing attackers from receiving access.

TAR is the fraction of positively labeled test BCGs

that were correctly classified as positive and represent

providing access to the user. FAR is the fraction of

negatively labeled test BCGs that were misclassified

as positive, representing an attacker being mistakenly

allowed access. For our results we plot receiver operator

characteristic (ROC) curves which graph TAR vs. FAR

at various operating points for our authentication models.

ROC curves are a compact way of showing model



Fig. 2: Representation of how data from both sessions of our model set, validation set, and impersonation set are used for

training and evaluation.

performance. The area-under-the-curve (AUC) gives a

measurement for describing the overall performance of

the ROC curve. Given TAR and FAR, we can easily

compute the complementary metrics of false reject rate

(FRR) as FRR = 1−TAR, and true reject rate (TRR) as

T RR = 1−FAR. EER is the equilibrium point where the

total error (FAR+FRR) is minimized.

CNN Parameter Selection: We start with a base

CNN model with 5 convolutional layers followed by

2 dense layers and an output layer. The output layer

is a single neuron that produces a binary decision. For

clarity and space reasons, we show our base CNN on

our website2. The goal is to parametrize this CNN in

a participant-specific manner so that it can authenticate

our target population. We do this as follows. We have 2

sessions of data from the participants in the model set3,

validation set, and impersonation set. To build a custom

CNN for each of the 6 participants in the model set, we

use a genetic algorithm-based method to find the hyper-

parameters of our CNN-based authentication model. This

is because enumerating all possible values of these

hyper-parameters and determining the best CNN config-

uration is prohibitively expensive. We optimize over 30

hyper-parameters that capture elements associated with

convolutional and dense layers in the network. We use

the first 8 minutes from session 1 of our model set and

validation set (which forms the generic adversary) to

train the models and the remaining 2 minutes of session

1 to test the model, for each generation of the genetic

algorithm. Each generation is composed of 20 CNN

configurations.

Previously, we had stated that we used (w) seconds

of overlapping segments to generate the BCG wave-

2https://anonymoussubmissionuser.github.io/CNNs/
3We were able to collect only 1 session’s worth of data for

participant 6 in the model set.

forms. We determine the value of w simultaneously

with determining the CNN hyper-parameters. We do this

by running the genetic algorithm for 5 generations for

segment lengths from w=2 seconds to w=5 seconds. This

range was chosen as segments of less than 2 seconds

may not be long enough to capture an entire cardiac

rhythm if a person’s resting heart rate is below 60 bpm,

and longer segment times decrease usability. We then

determine the maximum value of (TAR+ T RR)/2 for

each participant, over all 5 generations for a given

segment length. We then compute the average of this

maximum value (over our 6 participants) and choose

the segment length that produced the maximum average.

Table II shows the maximum of average (TAR+T RR)/2

observed for different segment lengths. Based on these

results, we chose w=4 seconds. We input BCGs, de-

rived from each segment of sensor measurements, into

the CNN. Hence, the segment length determines how

quickly we can authenticate a person. A w=4 seconds,

therefore, means we need only 4 seconds of movement

sensor measurements to authenticate someone.

Once the segment length is chosen, we run the genetic

algorithm for w=4 seconds for another 5 generations for

a total of 10 generations. For each participant we pick

the CNN hyper-parameters that produce the maximum

value of (TAR+ T RR)/2 in those 10 generations. For

clarity reasons the CNNs, trained for the 6 participants

in our study, are posted on our website4.

Training and Authentication: Once we have the

hyper-parameters, we train a participant-specific two-

class CNN as the authentication model for each of the

6 participants in our model set. We use the participant’s

first 8 minutes of data from session 1 as positive class

points and the first 8 minutes of data from both the other

5 participants in the model set and the 12 participants

4https://anonymoussubmissionuser.github.io/CNNs/



(a) Generic Adversary Session 1 (b) Generic Adversary Session 2 (c) Unseen Adversary Session 1 (d) Unseen Adversary Session 2

Fig. 3: Performance of our authentication approach

from the validation set as negative points and weight our

model for the class imbalance. The usage of our data for

training and evaluation can be seen in Figure 2. In the

figure, positive and negative data points are marked with

“+” and “-” symbols respectively. We train the CNN for

100 epochs, at which point the training loss of the model

stabilizes to a minimum. Once the model is trained, we

can authenticate an individual with UEI, by supplying

their CNN with BCG waveforms obtained from a new

(yet unseen) snippet for w=4 seconds of accelerometer

and gyroscope measurements obtained from the HMD

sensors. The CNN produces a binary decision, which

can be evaluated for accuracy.

A. Performance under imitation attacks

Generic Adversary: As a first step in evaluating our

models, we evaluate how well our six authentication

models can differentiate a given participant from all the

other participants in the model set and the validation

set. The model set and validation set are used as a

reference for characterizing a generic adversary for

our authentication models. We perform our evaluations

over two sessions using the unseen data from the last

two minutes in session 1, and the full 10 minutes of

unseen data collected for session 2. For our adversarial

data, we treat the session 1 and session 2 data the

same because these data do not have any temporal

significance in relation to the positive data (i.e., the

adversary can use data collected at any time to attack

the authentication process).This process is detailed in the

Generic Adversary Evaluation box in Figure 2. Figure 3

(a) and (b) show the ROC curves for the 6 trained models

for session 1 and session 2 for the generic adversary,

respectively. In session 1, the ROC curves show that the

authentication models are accurate with average area-

under-the-curve (AUC) values greater than 0.99. The

average AUC drops to 0.94 in session 2. The EER shows

an increase starting at 2.39% in session 1, and then

increases to around 9.87% in session 2. We observe that

the change in performance is largely due to Participant

3’s data (whose AUC is 0.77). The reason Participant

3’s data performed poorly is because they had relatively

poor control of their neck muscles and could not sit still

for sustained periods of time.

Previously Unseen Adversary: In practice, reference

data for each potential attacker are not generally avail-

able. Therefore, we use data from both sessions of the

impersonation set as negative data to evaluate our six

authentication models. This process is detailed in the

Previously Unseen Adversary Evaluation box in Figure

2. This simulates the actions of the primary adversary

of our threat model, someone who views a participant

authenticating and tries to mimic them. As the victim

exhibits only subtle movements and no overt gestures

during authentication, the adversary has nothing to copy

and is reduced to using their own head movements.

Figure 3 (c) and (d) show the ROC curves for the

6 trained models for session 1 and session 2 for the

previously unseen adversary, respectively. The TAR is

obtained using participants’ unseen data as described

earlier. The ROC curves for the 6 trained models have an

average AUC that goes from 0.98 to 0.94 from session

1 to session 2, respectively (see Figure 3). Once again

Participant 3’s data performed relatively poorly for the

same reasons as above. The EER shows an increase to

4.02% in session 1 and 10.02% in session 2. It is not

surprising that the performance for the impersonation set

is worse than when using unseen data from participants

whose data are used to train the participant-specific

models. However, the overall low error rate and high

AUC shows that our authentication approach for people

with UEI is promising.

VI. DISCUSSION AND LIMITATIONS

Our study has a three main limitations. First, during

our study, motion artifacts from the lack of neck muscle

control presented a problem with extracting noise-free

signals for one participant. Therefore, we need strategies

to compensate for artifacts induced by the participant.

Second, in our current dataset the participants were alert

during both data collection sessions. However, it has

been shown that factors such as fatigue or recent physical

activity affect an individual’s physiology, movements,

and posture [32]. It will be interesting to see how

our approach works for individuals who are fatigued,

sick, or even depressed. Third, physiological responses

change over time, necessitating retraining. Approaches

are required to determine when to retrain in order to

balance the drop in authentication accuracy over time

with the inconvenience of taking the system offline.

VII. CONCLUSIONS

In this paper, we have explored a new authentication

approach for head mounted devices (HMDs), a type

of wearable Internet-of-Things (wIoT) device, for peo-

ple with UEI. Our approach used ballistocardiograms



(BCGs) derived from subtle head movements captured

by movement sensors in an HMD. In the immediate

future we plan to extend this work in several directions

including: (1) increasing the participant pool, and (2)

making the approach tolerant to the motion from partic-

ipants with poor neck control.
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