2019 IEEE Cloud Summit

KubeSphere: An Approach to Multi-Tenant Fair
Scheduling for Kubernetes Clusters

Angel Beltre!, Pankaj Saha', and Madhusudhan Govindaraju!

'SUNY Binghamton University, Binghamton, NY
Email: {abeltrel, psaha4, mgovinda}@binghamton.edu

Abstract—In a multi-tenant environment, users’ resource de-
mands must be understood by cluster administrators to efficiently
and fairly share cluster resources without hindering performance.
Kubernetes is a container orchestration system that enables users
to share cluster resources, such as CPU, memory, and disk, for
the execution of their tasks. Kubernetes provides a monolithic
scheduler to make a scheduling decisions for all users in a multi-
tenant shared cluster. Kube-batch enables Kubernetes to make
scheduling decision based on a multi-resource fairness policy
called Dominant Resource Fairness (DRF). DRF has been proven
to be a successful mechanism for fine grained resource allocation.
However, it does not incorporate other fairness aspects of a shared
cluster. Qur fairness metrics take into account the use of DRF
along with a task’s resource demand and average waiting time.
We have developed a policy driven meta-scheduler, KubeSphere,
for a Kubernetes cluster where tasks for individual users can be
scheduled based on each user’s overall resource demands and
current resource consumption. Our experimental results show
how the dominant share of a task along with the overall resource
derlnand can improve fairness in a multi-tenant cluster.

Index Terms—Kubernetes; Resource Fairness; scheduling;
Multi-tenant.

I. INTRODUCTION

It is a common practice for users to acquire a lease on
nodes or Virtual Machines from cloud vendors. It is important
to improve cluster utilization to fully take advantage of the ac-
quired computing resources. Balancing both cluster utilization
and fairness is challenging. In previous work, we identified
how different Mesos frameworks [1], with different internal
property configurations, can negatively affect performance and
the overall resource fairness [2][3]. In Figure 1, we show
an example of unfair resource usage in a cluster. User-First
is able to launch more tasks at a faster rate and create an
unfairness gap with User-Second. In KubeSphere, we improve
the Kubernetes monolithic scheduler to a two-level scheduler.
Our aim is to leverage the flexibility of a two-level scheduling
scheme so that it can access the state of the entire cluster and
thereby make fairness based scheduling decisions.

In our previous work [3], we provided insight on how
overall cluster demand and waiting time can be used to provide
fairness in an Apache Mesos environment. While the previous
work provided fairness within Mesos’ two level scheduling
scheme, this paper provides fairness in Kubernetes, along with
a new two level scheduling capability on top of Kubernetes’
monolithic mechanism.

I'This work was supported in part by NSF grant OAC-1740263.

The key contributions of the paper are the following:

o We have designed and developed, KubeSphere, to enable
two-level scheduling in a Kubernetes environment.

« We demonstrate how different fairness policies, when used
with the Kubernetes default scheduler, can reduce the aver-
age waiting time across all users.

Multi-Tenant Environment Unfair Cluster Sharing

== UserFirst == User-Second

R,
o

'
' '
' '
' '
R N
,,,,,,,,, o e
o
'

Number of Tasks

200

300

Time (s)

Figure 1. Unfairness: Two users launch 200 and 100 tasks
every I second and 2 seconds respectively. The area between
the two users represents the unfairness.

II. BACKGROUND
A. Cloud Scheduling Mechanisms

Task scheduling and resource allocation in cloud infrastruc-
ture is a well known and widely discussed topic. In monolithic
scheduling, such as off-the-shelf Kubernetes, one scheduling
component takes care of all incoming task requests and places
them in the cluster based on a single policy. In a homogeneous
environment, where all tasks are similar, such an approach
works well.

Apache Mesos [4][5] [6] has two level scheduling wherein
at the first level, based on the scheduling priority, a user re-
ceives resource offers from the cluster manager. Once resource
offers are received, the user makes a second level scheduling
decision based on the specific resource demands to accept
and reject the resource offer. Apache Mesos incorporated the
idea of multi-resource fairness to bring fine grained resource
allocation in a cluster based on the Dominant Resource Fair-
ness (DRF) [7] algorithm. However, in our studies [2][3], we
show how DRF based fairness in Apache Mesos has several
limitations.

In shared state scheduling, introduced by Omega [8],
all users have similar access to all available resources. With
knowledge of the shared resource state of the cluster, users can
compete for resources based on their own custom scheduling
policy.

978-1-7281-3101-6/19/$31.00 ©2019 IEEE
DOI 10.1109/CloudSummit47114.2019.00009

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 16:24:08 UTC from IEEE Xplore. Restrictions apply.

B. How Dominant Resource Fairness (DRF) works.

To characterize how DRF works, we illustrate with a pool of
computing resources (i.e., <8 CPU, 16 GB of memory>) for
which multiple users bid to launch their particular tasks. We
have a pair of users named User-A and User-B, who can get
access to the pool of resources. User-A consumes <5 CPU,
8 GB of memory>and User-B consumes <2 CPU, 6 GB of
memory>in their respective queues of executing tasks. In this
particular scenario, User-A consumes 62.5% and 50% from
the CPU and memory pool respectively. In addition, User-
B consumes 25% and 37.5% from CPU and memory pool
respectively. As a result, User-A’s dominant share is CPU and
User-B’s dominant share is memory with 62.5% and 37.5%
respectively. The Dominant Share calculation was introduced
by Ghodsi et al. [7] with the following equation:

s s
DS; = maxf_, (=)
rj

(D

III. ARCHITECTURE AND RESOURCE ALLOCATION

KubeSphere works as a middleware component in a Kuber-
netes (k8s) cluster. It receives tasks from users and dispatches
them to a connected k8s cluster based on custom defined
policy and fairness goals. In a conventional k8s cluster, a
user submits tasks directly to a Kubernetes control plane to
let k8s master decide when to launch each task. However,
in KubeSphere, we provide another layer of control wherein
the cluster admin can define and employ fairness policies to
control the task dispatching for each user. KubeSphere pro-
vides three fairness policies, similar to the ones provided in
our earlier work with Apache Mesos [3]: (1) DRF-Aware,
(2) Demand-Aware, (3) Demand-DRF-Aware. KubeSphere also
allows other pluggable policies to be used for different classes
of applications.

A. KubeSphere Architecture Components

KubeServ

KubeClient

i

Kubernetes Cluster

Figure 2. KubeSphere Architectural Components: Kube-

Sphere has a client-server architecture in which multiple users

can submit their jobs to be processed based on a specific

fairness policy.

Figure 2 shows the architecture components of KubeSphere.

o KubeServer: KubeServer is the user facing component that
receives tasks from users and if required instructs the
KubeSphere scheduler to perform the necessary logistics for
new users. Each user is mapped with a namespace in the k8s
cluster. When a task is received, KubeServer places the task
in the appropriate task queue associated with the user.

o Multi-tenant Task Queue: KubeSphere has a multi-tenant
task queue for different users to keep track and maintain

fairness. KubeServer can store tasks in appropriate queues
and the scheduler can dispatch them as needed to meet
fairness goals.

o Policy based Scheduler: The scheduler is placed between
the task queue and k8s master. Periodically, the scheduler
checks the resource availability form the k8s cluster and the
status of the multi-tenant task queue. Based on the chosen
custom fairness policy, along with the status of the cluster
and task queue, the scheduler periodically dispatches tasks
to the k8s cluster. Unlike a conventional k8s cluster, with
help of KubeSphere, k8s does not have to hold a task for
each user to schedule them later.

B. KubeSphere Task Allocation Cycle

STOP)

Sort users and
make a list based
on scheduling
criteria

List have
users

Recalculate
each users
scheduling
priority

Move the task
into the ready
NO queue for that

user
Check if any agent

node available to host

the task YES

Figure 3. KubeSphere Allocation Cycle: KubeSphere alloca-
tion based on fairness policies and the number of waiting tasks
in their respective queues. Tasks from each user are scheduled

on nodes with available resources.
The primary goal of KubeSphere is to incorporate another

layer of scheduling mechanism, on top of the k8s default
scheduler, which is aware of cluster resources and task queues
in order to incorporate the custom fairness policy. Note that
while changing the Kubernetes allocation module is also an
option, it requires constant community support for managing
and building the code. Instead, KubeSphere is designed as
an optional module that can be used along with off-the-
shelf Kubernetes by interested users. Figure 3 presents a
flow diagram that depicts the resource allocation cycles in
KubeSphere.

KubeSphere consists of two cycles of scheduling resources.
At the beginning of an outer cycle, it makes a list of users
sorted by the fairness criteria and a list of available resources
in all the nodes.

Pick the nextuser (U) with
highest priority

Remove the
user form the
priority list

Poll the next available
task from waiting queue

o Inner Cycle: The inner cycle picks one user from the sorted
priority list. One pending task is picked from the user’s task
queue and it is determined if any node can host the task. If
no nodes are available to host the task, the user is removed
from the list and the inner cycle continues to the next user
in the list.

o Outer Cycle: If a match is found between a task’s resource
requirement and a node’s available resources, the user is

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 16:24:08 UTC from IEEE Xplore. Restrictions apply.

removed from the the inner cycle. At that time all users’
scheduling priority is recalculated and a new list is generated
for another round of scheduling through the inner cycle.

e End of Allocation: This process continues until all the
resources are allocated, or users do not have any pending
tasks, or no tasks can be fit into the available resources. At
this time, the allocation cycle ends. The cycle restarts after
a specified scheduling frequency.

IV. KUBESPHERE FAIRNESS SCHEDULING POLICIES

We have implemented three fairness based scheduling poli-
cies, which were introduced in previous work [3] with Apache
Mesos, to work with KubeSphere . The policies are DRF-
Aware, Demand-Aware, Demand-DRF-Aware. In the Back-
ground section (see II-B), we discussed how we calculate
Dominant Share (DS). In this section, we explain the Domi-
nant Demand Share (DDS) policy.

1) Dominant Share (DS): As previously discussed, we use
DS to calculate the demand of tasks before being dispatched
by KubeSphere in the cluster for a given user. For example,
assume that we have User-A executing 2 tasks each with a
resource consumption of < 2 CPU 8 GB of memory > and
User-B is executing 7 tasks each with a resource consumption
of <1 CPU,1 GB of memory >. User-A Eq. (2) and User-
B Eq. (3) presents how the DS for a pair of users (i.e., DSy
and DSp) is calculated. In the results, we have marked in bold
the highest demand for each user. User-A’s DS is memory and
User-B’s DS is CPU.

2x2 2x8 11

DSy — maz(252 — maz(+, = 2

Sa = maz(16 33) mam(4,2) (2)
Txl Tx1 T

DSp = max(w, W) = max(ﬁ, 33) 3)

2) Dominant Demand Share (DDS): We use DDS to cal-
culate the demand of tasks waiting in the queue for a given
user before they are dispatched by KubeSphere to the cluster.
Assume that we have User-A executing 8 tasks each with a
resource consumption of < 1 CPU 3 GB of memory > and
User-B is executing 4 tasks each with a resource consumption
of < 2 CPU,1 GB of memory >. Then, User-A Eq. (4)
and User-B Eq. (5) present how the DDS for a pair of users
(i.e., DS4 and DSpg) are calculated. In the results, we have
highlighted in bold the highest demand for each user. User-A’s
DS is memory and User-B’s DS is CPU.

8x1 8x3 13
DD = = - = 4
Sa = max(TREET) = max 2,4) %)
4%x2 4x1 1 7

A. DRF-Aware Policy

DRF Aware policy gives higher priority to the user that has
the lowest DS in a multi-tenant environment. Hence, a task
gets released from a user’s queue according to its dominant
share calculation. Upon dispatching a task, KubeSphere reg-
isters a cycle, which leads to the recalculation of dominant
share. Based on the results of each cycle,the preference for

this policy is given to the user that has the lowest dominant
share to release tasks.

B. Demand-Aware Policy

Demand Aware policy enables users that have higher de-
mands to dispatch tasks before other users. After calculating
DDS for each user, KubeSphere gives preference to the user
that has the highest DDS as it is based on demand.

C. Demand-DRF-Aware Policy

This policy combines DRF-Aware and Demand-Aware poli-
cies. Standalone Demand Aware Policy can enable a user with
higher demands to consume the total amount of resources,
which leads to unfairness in the cluster. By combining both
policies, KubeSphere avoids starvation and it enables users
with higher demands to work together while maximizing their
task dispatching rate. Essentially, it can dispatch a number of
tasks depending on a dispatch-decision value generated for a
given cycle for the combination. The value is calculated by
finding the maximum DS and minimum DDS, where DS is
based on the computing resources and DDS is based on the
task demands presented by each user.

V. EXPERIMENTAL SETUP, RESULTS, AND EVALUATION
A. Experimental Setup

For the KubeSphere experimental setup, we used namespace
as a synonym for user. So, each user’s identifier is paired
with a namespace, and each user can schedule all tasks in a
single namespace. The Kubernetes cluster consists of 4 nodes
each with 48 CPUs and 128 GB of memory. We implemented
KubeSphere to receive tasks in a client server model from all
the users created to launch tasks within the system. The tasks
submitted for execution, by each user, are homogeneous, with
each requesting < 1 CPU, 1 GB of memory >. As all the
tasks are identical and each one consumes about 1 CPU, the
execution peak is about 192 tasks.

B. Experiment 01: Users with Different Configurations of
Tasks and Constant Arrival Rates for Each Individual User.

Users User-First | User-Second | User-Third
Configuration-1 | 800 900 1000
Configuration-2 | 900 900 900
Configuration-3 | 1000 900 800
Arrival Rate (s) | 1 1.5 2

Table 1. Experiment 01 Default Configurations. These con-
figurations are aimed to extract the baseline for the different
order of the number of tasks per user.

In this experimental setup, we configured three users (User-
1, User-2, and User-3) launching a different number of tasks,
with different task arrival rates, into the Kubernetes cluster. In
configuration-1, we have different task arrival rate and User-
1 launches fewer tasks whereas User-3 launches more tasks.
User-2 launches 100 tasks more than User-1 and 100 tasks less
than User-3. In configuration-2, we have instrumented all three

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 16:24:08 UTC from IEEE Xplore. Restrictions apply.

users wherein they are launching the same number of tasks but
with different task arrival rates as mentioned in Table 1. In
configuration-3, we have the same arrival rate as the previous
configurations. However, User-1 launches a higher number of
tasks than User-2, and User-2 launches more tasks than User-
3. These configurations do not have any of the fairness policies
enabled.

In Figure 4a, User-First has the lowest number of tasks with
the highest arrival rate and User-Third has the largest number
of tasks with slowest arrival rate. We can observe that in such
a scenario the user with the lowest amount of tasks and the
highest submission frequency has an advantage over the other
users. For example, Figure 4a shows that the average number
of tasks being executed by User-First and User-Second are
close to each other as they are overlapping in some instances.
However, User-Third faces unfairness when compared to the
other users as most of its tasks are placed in the queue because
it has a slower submission rate. In Figure 4b, all users have
the same workload. User-First takes the lead, executing close
to 100 tasks on average along the run. This is due to the fact
that User-First has a large number of tasks and the highest
arrival rate. While User-Second and User-Third have 1.5 and
2 seconds arrival rate respectively, the high arrival rate enables
higher submission of tasks for User-First. In Figure 4c, we
can observe a similar trend as the one shown in Figure 4b.
User-First is ahead and maintains an average execution across
the run of about 100 tasks. In addition, it can be observed that
User-Second maintains an average execution of about 75 tasks.
However, the amount of resources available in the system
dictate the number of tasks that each user should execute at
any given point, which is 64.

C. Experiment 02: Lowest Number of Tasks paired with the

we enabled KubeSphere with each of the task dispatching
policies implemented in the cluster. For DRF-Aware policy,
User-First yields the highest waiting time in comparison to the
User-Second and User-Third. In addition, User-First yielded a
157.56% higher waiting time in comparison to the cluster’s
average for all tasks. However, for Demand-Aware policy
User-First yielded a 12.30% higher average waiting time than
the cluster’s waiting time. In addition, User-Second was below
1% and User-Third experienced 10.27% lower average waiting
time than the cluster’s total. Moreover, for Demand-DRF-
Aware policy both User-First and User-Second experienced
higher waiting time in comparison to the cluster of 6.38% and
8.76% respectively. For User-Third, the average waiting time
for Demand-DRF Aware encountered was 13.00% below the
cluster’s average waiting time.

For waiting time, Figure 6a shows the total waiting time of
each user when executed with the different policies. Figure 6b
has the average waiting time of each user for the different
KubeSphere policies. Lastly, Figure 6c compares the total
waiting time for each policy for all the tasks in the cluster.
In Table 3, we show average waiting time difference for all
the users and the different policy configurations compared to
the cluster’s average waiting time.

D. Experiment 03: Large number of tasks with higher arrival
rates, and lower number of tasks with slower arrival rates.

Users User-First | User-Second | User-Third
Number of Tasks | 900 900 900
Arrival Rate (s) 1 1.5 2

Table 4. Experiment 03 Task Configuration. Users with the
same number of tasks paired with increasing arrival rate.

. Users . .
Lowest Arrival Rates Policies User-First | User-Second | User-Third
Users User-First | User-Second | User-Third DRF Aware 54.23% 3.90% -58.13%
Number of Tasks | 800 900 1000 Demand Aware -0.14% 0.41% -0.26%
Arrival Rate (s) 1 1.5 2 DemandDRFAware | 3.22% 4.57% -7.79%

Table 2. Experiment 02 Task Configuration. Increasing number
of tasks for each user paired with increasing arrival rate.

.. Users User-First | User-Second | User-Third
Policies
DRF Aware 157.56% -30.41% -98.68%
Demand Aware 12.30% 0.48% -10.27%
Demand DRF Aware 6.38% 8.76% -13.00%

Table 3. Experiment 02 Results. Increasing number of tasks
for each user. The difference of average waiting time of each
user in comparison to the average waiting time of the entire
cluster for all KubeSphere policies.

In this experiment, we have fewer tasks being launched by
users with the fastest arrival rate. In Table 1, we show the
number of tasks and the rate at which each user launches its
workload.

The fairness exploration for the increasing number of tasks
for each user is presented in Figure 5a, 5b, 5c. In essence,

Table 5. Experiment 03 Results. The difference of average
waiting time of each user in comparison to the average waiting
time of the entire cluster for all KubeSphere policies

In this experiment, KubeSphere launches tasks for all the
users at a rate of 1, 1.5, and 2 seconds for User-First,
User-Second, User-Third respectively. In Table 4, we present
that all the users have the same workload of 900 tasks. To
guarantee the reproducibility of the experiment, we kept all
the resources fixed for all the tasks with the following resource
configuration: < 1 CPU,1 GB of memory >. At any given
point, the fair number of tasks, given the total amount of
resources, for each user is 64.

Our fairness exploration for the same number of tasks is
presented in Figure , , and . We enabled KubeSphere with each
of the task dispatching policies implemented in the cluster.
For DRF-Aware policy, User-First yields the highest waiting
time in comparison to the User-Second and User-Third. In
addition, User-First has a 54.23% waiting time in comparison

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 16:24:08 UTC from IEEE Xplore. Restrictions apply.

Configuration-1
== User-First == User-Second User-Third
200 ‘

150‘

Number of Tasks

0 V%%am

0 500 1000 1500 2000

Time (s)

(@)

Number of Tasks

Configuration-2
= User-First == User-Second
200

User-Third

150}

100 W
=/ ‘\N\.,g

0 500 1000 1500 2000

Number of Tasks

Time (s)

(®)

150‘

e V:»mv“"w\
50 \»-rv~\\
0 ~

Configuration-3

= User-First = User-Second = User-Third

200 ‘

0 500 1000

Time (s)

()

Figure 4. Experiment 01 Fairness. (a) Default for 800, 900, and 1000 tasks for User-First, User-Second, User-Third respectively.
(b) Default for 900, 900, and 900 tasks for User-First, User-Second, User-Third respectively. (c) Default for 1000, 900, and
800 tasks for User-First, User-Second, User-Third respectively. All runs were executed using 1, 1.5, and 2 seconds for each

user and its number of tasks respectively.

Demand DRF Aware

User-Third

100‘
® / '\%
0

DRF Aware Demand Aware
== User-First == User-Second User-Third == User-First == User-Second User-Third == User-First == User-Second

200 200 200
g P 2wl
] 150] 150] 150
3 3 3
ol ol ol
5 100 5 100 5
5 ‘ T e 5 ‘ 5
3 y 3 3
g % /l\ — \ g % €
5 5 5
= 0 = 0 \ z

0 500 1000 1500 2000 0 500 1000 1500 2000] 500
Time (s) Time (s)
(@) (b)

its number of tasks respectively.

Total Waiting Time by User

W UserFirst M User-Second

40000 User-Third
0

40

300,00
0

Time (5)
Time (5)

Average Waiting Time by User

W userFirst M User-Second

1000

1500

Time (s)

(©)

Figure 5. Experiment 02 Fairness. (a) DRF-Aware, (b) Demand Aware, and (c) Demand DRF Aware for 800, 900, and 1000
tasks for User-First, User-Second, User-Third respectively. All runs were executed using 1, 1.5, 2 seconds for each user and

User-Third 800,000

Time (s)

DRF Aware

200,00
0
100,00
0
0

DRF Aware Demand Aware DemandDRFAware

Policies

(a)

Demand Aware

DemandDRFAware DRF Aware

Policies

(®)

Total Waiting Time by Policy

0
600,000
300
400,000
200
- - -
0 o WEEEEEN T

Demand Aware DemandDRFAware

Policies

()

2000

Figure 6. Experiment 02 Results. (a) Total Waiting Time by User, (b) Average Waiting Time by User, (c) Total waiting Time
by Policy. KubeSphere receives a higher number of tasks from User-First at the higher arrival rate than User-Second and

User-Third.

to the cluster’s average for all tasks. However, for Demand-
Aware policy, all the users stay within 1% of the cluster’s
average waiting time. Moreover, Demand-DRF-Aware policy
for User-First experienced a 3.22% higher waiting time in
comparison to the cluster’s average. For User-Second, all the
policies waiting time stayed below 5%. However, User-Third
experienced the lowest waiting time for all the policies. Our
metadata collected from the experiment is presented in Figure
8a, 8b, and 8c. Figure 8a has the total waiting time of each
user when executed with the different policies. Figure 8b
has the average waiting time of each user for the different
KubeSphere policies. Lastly, Figure 8c compares the total
waiting time for each policy for all the tasks in the cluster.

Users User-First | User-Second | User-Third
Number of Tasks | 1000 900 800
Arrival Rate (s) 1 1.5 2

Table 6. Experiment 4 Task Configuration. KubeSphere re-
ceives a higher number of tasks and a faster rate from User-
First. Also, it receives a reduced number of tasks at a slower

rate from User-Third.

.. Users User-First | User-Second | User-Third
Policies
DRF Aware 57.06% -5.45% -65.19%
Demand Aware -9.80% 0.28% 11.93%
DemandDRFAware | 1.21% 1.86% -3.61%

Table 7. Experiment 04 Results. Difference average waiting
time of each user in comparison to the cluster’s average

waiting time for all the policies in KubeSphere.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 16:24:08 UTC from IEEE Xplore. Restrictions apply.

DRF Aware
== User-First == User-Second
200

User-Third
200
150 150 }

100

g AR

Number of Tasks
Number of Tasks

Demand Aware

= User-First == User-Second

100
|
50 __>._/ \
0 A

Demand DRF Aware
== User-First == User-Second User-Third

200

User-Third

'\50‘

100‘
© V:mw*
0

Number of Tasks

0 500 1000 2000 0

Time (s)

(a)

1000

Time (s)

(®)

500 1000 1500 2000

1500 2000 0

Time (s)

()

Figure 7. Experiment 03 Fairness. (a) DRF-Aware, (b) Demand-Aware, and (c) Demand-DRF-Aware for 900, 900, and 900
tasks for User-First, User-Second, User-Third respectively. All runs were executed using 1, 1.5, 2 seconds for each user.

Total Waiting Time by User
W User-First W User-Second
500,000

User-Third

400,000
300,000

200,000

Time (s)
Time (s)

100,000

0 0

DRF Aware Demand Aware DemandDRFAware DRF Aware

Policies

(a)

Average Waiting Time by User
W userFirst [User-Second

Demand Aware

Policies

(b)

Total Waiting Time by Policy

1,000,000
750,000
500,000

uIII

250,000
DRF Aware Demand Aware DemandDRFAware

User-Third

Time (s)

DemandDRFAware

Policies

(©)

Figure 8. Experiment 03 Results. (a) Total Waiting Time by User, (b) Average Waiting Time by User, (c) Total waiting Time
by Policy. KubeSphere receives a higher number of tasks from User-First at the higher arrival rate than the others.

E. Experiment 04: Highest Number of Tasks Paired with
Fastest Arrival Rate.

For this experiment, we assigned the workloads for each
user in descending order and the arrival rates in ascending
order for User-First, User-Second, and User-Third respectively
as presented in Table 6. In addition, the fairness observations
and the waiting time results are presented in Figure 9 and 10
respectively.

We have consolidated all the graphical representation of
our results in Figure 9 in Table 7. In Figure 10, we present
the different times presented by each user with the different
policies.

For completeness, we changed the User-First to have the
largest number of tasks, but with the fastest arrival rates. In
Figure 9a for DRF-Aware policy, we observe that despite
having the fastest arrival rate User-First faces an high average
waiting time of 57.06% in comparison to the average waiting
time of the cluster. While User-Second and User-Third fell
below the average waiting time of the entire cluster with
a 5.45% and 65.19% respectively. On the other hand, in
Figure 9b, User-First was able to capitalize on the fact that
the Demand-Aware policy focuses on the workload of each
individual user as a measure of fairness. The average waiting
time of User-First was 9.80% below average waiting time of
the entire cluster. In addition, for both User-Second and User-
Third the average waiting time overhead presented is between
1% and 12% respectively. The combination of both DRF-
Aware and Demand-Aware (see 9c) policies was able to keep
the overhead below 4% and the best fairness performance 2%
below cluster average waiting time.

VI. RELATED WORK

In this work, we implemented fairness policies within a
Kubernetes cluster. Khaled et al. [9] worked on improving
execution time of scientific workflows by implementing a
Resource Demand Aware scheduling mechanism. With RDAS,
Khaled et al. consider the structure of workflows and resource
demands, which in turn enables the optimization of the system
for better throughput. In the KubeSphere cluster, we have con-
sidered tasks from users and their requirements and scheduled
them based on the total current demand from each user.

In an attempt to increase overall throughput, Boyang et
al. [10] developed, R-Storm, a resource demand aware frame-
work. R-Storm proved that in the presence of Storm, applica-
tions’ performance can be improved.

Chowdhury et al. [11] identified tradeoffs between fixed
and elastic demands for multiple resources and introduced
High Utilization with Guarantees (HUG). In non-cooperative
runtime environments, HUG achieves maximum network uti-
lization, but not optimal isolation. In cooperative run time
environments such as private datacenter networks, it can
achieve optimal isolation guarantee. In our own previous
work [3][12], we implemented the same policies but in an
Apache Mesos setup. We have extended the work by re-
implementing the policies in Kubernetes, adding a two-level
scheduling mechanism, and quantifying the fairness benefits.

VII. CONCLUSION

Our work focuses on enabling resource fairness for con-
tainerized workloads on Kubernetes. We identified that the off-
the-shelf implementation does not consider overall resource
demands for all the tasks or the average waiting time of tasks

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 16:24:08 UTC from IEEE Xplore. Restrictions apply.

DRF Aware
== User-First == User-Second User-Third

200

Number of Tasks
Number of Tasks

Demand Aware

== User-First == User-Second

Demand DRF Aware

User-Third = User-First = User-Second User-Third
200 ‘

150

Number of Tasks

0 500

1000 1500 2000

Time (s)

(@)

Time (s)

()

1500

1000 1500 2000

Time (s)

©)

Figure 9. Experiment 04 Fairness. (a) DRF-Aware, (b) Demand-Aware, and (c¢) Demand-DRF-Aware for 1000, 900, and 800
tasks for User-First, User-Second, User-Third respectively. All runs were executed using 1, 1.5, 2 seconds for each user and

its number of tasks respectively.

Total Waiting Time by User
B User-First

400,00

Time (s)
Time (s)

Average Waiting Time by User
er-Third r-First [User

bhun

Total Waiting Time by Policy

Time (s)

= II II
100,00

Policies

(a)

Policies

(b)

(©)

Figure 10. Experiment 04 Results. (a) Total Waiting Time by User, (b) Average Waiting Time by User, (c) Total waiting Time
by Policy. KubeSphere receives a higher number of tasks from User-First at the higher arrival rate than others.

before execution in a cluster. Hence, we implemented Kube-
Sphere on top of Kubernetes to enable seamless scheduling
of tasks based on their resource demands and their waiting
time, before allocation of resources. Kubernetes provides a
monolithic scheduler where scheduling decisions are made at
a single point by Kube-Master. For a diverse set of tasks and
different resource requirements, a monolithic scheduler is not
suitable for multi-tenant environments. In contrast, Apache
Mesos provides two level scheduling where individual user’s
scheduling decision and resource constraints are honored.
However, due to user specific constraints and scheduling
properties, Mesos’ DRF based scheduling falls short to provide
fairness in a multi-tenant environment. We provide Kube-
Sphere, which incorporates another scheduling layer on top of
Kubernetes’ monolithic scheduler to improve resource fairness
based on DREF, user resource demand, and their combination.
Our results show how KubeSphere’s custom policies improve
the fairness over the default monolithic scheduling mecha-
nism. Our results show that KubeSphere’s scheduling provides
fairness among competing users. For instance DRF Aware,
yielded the lowest total waiting time for Experiment V-C.
Demand Aware and Demand DRF Aware both yield similar
total waiting time. KubeSphere shows that it is essential to
understand user demands to improve their average waiting
time. KubeSphere can be used by system administrators to get
insights on how a Kubernetes cluster performs and improve
the overall average waiting time for all users in a cluster.

REFERENCES

[1] P. Saha, A. Beltre, and M. Govindaraju, “Scylla: A Mesos Framework
for Container Based MPI Jobs,” in MTAGS17: 10th Workshop on Many-
Task Computing on Clouds, Grids, and Supercomputers, Denver, 2017.

20

[2] ——, “Exploring the fairness and resource distribution in an apache
mesos environment,” in 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), vol. 00, Jul 2018, pp. 434-441. [Online].
Available: doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00061
——, “Tromino: Demand and DRF aware multi-tenant queue manager
for apache mesos cluster,” in //th IEEE/ACM International Conference
on Utility and Cloud Computing, UCC 2018, Zurich, Switzerland,
December 17-20, 2018, 2018, pp. 63-72. [Online]. Available:
https://doi.org/10.1109/UCC.2018.00015

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011,
pp. 22-22.

P. Saha, M. Govindaraju, S. Marru, and M. Pierce, “Integrating apache
airavata with docker, marathon, and mesos,” Concurrency and Compu-
tation: Practice and Experience, vol. 28, no. 7, pp. 1952-1959, 2016.
——, “Multicloud resource management using apache mesos with
apache airavata,” arXiv preprint arXiv:1906.07312, 2019.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types.” in Nsdi, vol. 11, no. 2011, 2011, pp. 24-24.
M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek,
J. Wilkes, “Omega: flexible, scalable schedulers for
compute clusters,” in SIGOPS European Conference on
Computer Systems (EuroSys), Prague, Czech Republic, 2013,
pp. 351-364. [Online]. Available: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf

K. Almi’ani, Y. C. Lee, and B. Mans, “Resource demand aware schedul-
ing for workflows in clouds,” in Network Computing and Applications
(NCA), 2017 IEEE 16th International Symposium on. IEEE, 2017, pp.
1-5.

B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in Proceedings of the 16th Annual
Middleware Conference. ACM, 2015, pp. 149-161.

M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “{HUG}: Multi-
Resource fairness for correlated and elastic demands,” in 13th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 16). usenix.org, 2016, pp. 407-424.

P. Saha, A. Beltre, P. Uminski, and M. Govindaraju, “Evaluation of
docker containers for scientific workloads in the cloud,” in Proceedings
of the Practice and Experience on Advanced Research Computing.
ACM, 2018, p. 11.

[4]

[5]

[6]

[7

and
large

[8]

[9]

[10]

[11]

[12]

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 16:24:08 UTC from IEEE Xplore. Restrictions apply.

