2019 IEEE/ACM Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-
HPC)

Enabling HPC workloads on Cloud Infrastructure
using Kubernetes Container Orchestration
Mechanisms

Angel Beltre!, Pankaj Saha', Madhusudhan Govindaraju', Andrew J. Younge?, and Ryan Eric Grant?

'SUNY Binghamton University, Binghamton, NY
Email: {abeltrel, psaha4, mgovinda}@binghamton.edu
2Sandia National Laboratories
Email: {ajyoung, regrant}@sandia.gov

Abstract—Containers offer a broad array of benefits, including
a consistent lightweight runtime environment through OS-level
virtualization, as well as low overhead to maintain and scale
applications with high efficiency. Moreover, containers are known
to package and deploy applications consistently across varying
infrastructures. Container orchestrators manage a large number
of containers for microservices based cloud applications. How-
ever, the use of such service orchestration frameworks towards
HPC workloads remains relatively unexplored.

In this paper we study the potential use of Kubernetes on
HPC infrastructure for use by the scientific community. We
directly compare both its features and performance against
Docker Swarm and bare metal execution of HPC applications.
Herein, we detail the configurations required for Kubernetes
to operate with containerized MPI applications, specifically
accounting for operations such as (1) underlying device access,
(2) inter-container communication across different hosts, and (3)
configuration limitations. This evaluation quantifies the perfor-
mance difference between representative MPI workloads running
both on bare metal and containerized orchestration frameworks
with Kubernetes, operating over both Ethernet and InfiniBand
interconnects. Our results show that Kubernetes and Docker
Swarm can achieve near bare metal performance over RDMA
communication when high performance transports are enabled.
Our results also show that Kubernetes presents overheads for
several HPC applications over TCP/IP protocol. However, Docker
Swarm’s throughput is near bare metal performance for the same
applications.

Index Terms—Cloud Computing;
HPC; Performance;

Kubernetes; Container;

I. INTRODUCTION

Throughout the computing industry, the advent of contain-
ers has fundamentally shifted how computational workloads
are managed and orchestrated in distributed computing en-
vironments. Containers have emerged as a popular choice
for application deployments in many cloud computing en-
vironments. This is due to their relatively simple resource
management & isolation, high availability, portability, and
improved efficiency over more conventional environments,
including VMs. Containers are a natural fit with microservices
based architecture in the cloud due to its seamless integration
with cloud orchestrators and schedulers [1] [2] [3] for efficient
resource managements. Microservices are loosely coupled, and
independently maintained and deployed software modules that

978-1-7281-6028-3/19/$31.00 ©2019 IEEE
DOI 10.1109/CANOPIE-HPC49598.2019.00007

can also be auto-scaled as required. Given the paradigm shift
towards microservices, the notion of container orchestration
frameworks have quickly become of critical importance in
today’s distributed and cloud systems.

The deployment of container images is made possible
via container orchestrators. Container orchestration tools
have a mechanism to launch and manage containers as
clusters or pods. The default orchestrator for Docker is
Docker Swarm [4]. Other container orchestration tools include
Google Container Engine [5], Amazon ECS [6], Mesosphere
Marathon [7], Kubernetes, and Azure Container Service [8].
Among this list of container orchestrators, Docker Swarm and
Kubernetes are the most widely known competing software
platforms.

Concurrently, the use of High Performance Computing
(HPC) has grown from humble beginnings in high-energy
physics simulations to a wide variety of scientific endeavors
including astrophysics, meteorology, chemistry, bioinformat-
ics, and national security applications, to name a few. In this
same regard, HPC’s broader applicability towards advanced
simulations and data analysis for enterprise and industrial
applications has also grown. However, HPC applications have
historically struggled with gaining adoption in the cloud,
largely due to performance considerations at scale [9].

While Docker [4] is widely supported in cloud environ-
ments, it is not utilized in traditional HPC deployments
due to concerns of root-level escalation in such a shared
environment. However, a few other container technologies
have been designed specifically for HPC. Modified container
runtimes like Singularity [10], Shifter [11], and Charliecloud
[12], all attempt to enable Docker containers to run on shared
HPC resources. These mechanisms are meant to work with
traditional HPC job submission tools. There is little work so
far in studying container orchestration frameworks, specialized
to manage microservices deployments, for executing HPC
applications.

In this paper, we look to answer the question of whether
HPC can be supported through the use of microservices con-
tainer orchestration frameworks, rather than traditional batch
queuing systems. Effectively, we look to provide HPC-as-
a-Service using Kubernetes, a commodity service orchestra-

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

tion ecosystem. We compare the performance of container
orchestration with Kubernetes, Docker Swarm, and traditional
bare-metal, along with the options such as zero-copy RDMA-
enabled communication, and traditional TCP/IP protocol. We
use latency and throughput as comparison metrics and the
Chameleon cloud [13] infrastructure as the testbed. Our goal
is that these results, coupled with our detailed and optimized
framework, can be used to inform the HPC community’s
application developers and users on how to best leverage
and deploy their workloads using a combination of container
technologies and microservice orchestration mechanisms.
The following are the key contributions of our work:

o We identify and present the configuration and settings re-
quired to deploy Kubernetes to support HPC applications
with MPI based workloads. We explore the networking
aspects and provide guidance on how to setup a Ku-
bernetes cluster that can access the underlying hardware
device specialized for HPC workloads.

We evaluate the performance of Kubernetes and Docker
Swarm when using the TCP/IP protocol, comparing to a
bare metal deployment, using several characteristic HPC
workloads.

We present the design and evaluation for execution of
MPI workloads on Kubernetes using the RDMA protocol
and inter-pod communication.

We evaluate and present the performance of bare metal
versus containerized MPI applications orchestrated by
Kubernetes and Docker Swarm. We use the results to
identify the similarities and key differences between
Kubernetes and Docker Swarm.

II. BACKGROUND

We briefly summarize the key container and orchestration
technologies for use with HPC applications. Our focus in
this paper is on the Docker runtime engine. It is the leading
container solution, and along with CRI-O, it is the default con-
tainer solution for Kubernetes. Singularity, an HPC container
solution, is the first Container Runtime Interface (CRI) that
has been enabled in Kubernetes. In future work, we plan to
extend our experimentation approach to Singularity, Shifter,
and Charliecloud.

A. Containerization

1) Docker: Docker [4] containers are isolated applications,
which are broken into smaller lightweight execution environ-
ments while sharing the operating system (OS) kernel. Docker
creates a layer of abstraction to hide the underlying OS.
Docker’s networking capabilities support both virtual networks
on top of the host network and overlay networks, which are
commonly used to achieve a higher level of abstraction.

2) Singularity: Singularity [10] is a well known container
solution within the HPC community. Unlike most containers,
which focus on micro-service level virtualization (e.g., Rkt
and Docker), Singularity’s primary purpose is to provide
application portability through operating system virtualization

of namespaces, which is ideal for scientific computing ecosys-
tems.

3) Shifter: Shifter [11] is a research and development
(R&D) effort to bring containers into HPC ecosystems. Shifter
is implemented to provide filesystem isolation through chroot,
thus providing stricter security guarantees than the standard
Docker image. It pulls and converts Docker images into a
format known as squashfs, a compressed read-only file system
format.

4) Charliecloud: Charliecloud [12] is a research effort by
Los Alamos National Laboratory to execute Docker Containers
in HPC system with minimal deployment requirements (i.e.,
non-root level access) by leveraging user namespaces within
the Linux kernel.

B. Container Orchestrator

1) Docker Swarm: Docker Swarm can manage and or-
chestrate container deployment with in-built inter-container
communication and software-defined networks. Swarm can
optimize the underlying node’s resource usage and distribute
containers into different nodes to improve load balancing.
Docker Swarm provides three basic strategies to distribute
containers: Spread, BinPack and Random. Spread is the default
strategy, which distributes the containers into different host
nodes based on available resources. With BinPack, Swarm
places containers one node at the time until it is fully occupied.
The Random strategy places a container into a host node in a
random order.

2) Kubernetes: Kubernetes is a container orchestrator that
provides automation for running service containers. It provides
a flexible way of scaling services running inside a container
that require load balancing, fault tolerance, and horizontal scal-
ing. Kubernetes provides direct support for Docker containers.
Kubernetes uses Pods for better container management. A Pod
is a logical envelope around a single container or multiple
tightly coupled containers. The Kubernetes Pods are designed
to be used with other container solutions such as Docker,
Rkt [14], and runC [15]. There are two main requirements, (1)
inter-container communication and (2) hardware device access,
for supporting MPI based HPC applications on Kubernetes.
Flannel [16] provides a mechanism to create a Software
Defined Network (SDN) such that all pods created in any
physical host can reach each other via unique IP addresses.
Access to the host machines’ hardware devices is essential for
HPC specific network interconnects. Architectural components
for Kubernetes can be categorized into two major categories:
Master and Node Components. Kubernetes uses a Master node
to serve as the primary global decision maker in the cluster.
Four different components live in the master as presented in
Figure 1: (1) Kube-apiserver, (2) Etcd, (3) Kube-scheduler, and
(4) Kube-controller-manager. All the cluster data is stored and
backed up by the distributed key-value store, efcd. Etcd can
only be accessed through Kubernetes API server to prevent un-
secured cluster access. Kube-scheduler assigns pods based on
their resource requirements as well as general specifications.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

\ Attributes \ Kubernetes

\ Docker Swarm

Installation

OS specific setup, but cloud providers enable automatic
configuration for enterprise customers.

Docker CLI commands are used for de-
ployment

Device Access

System Pods must be provided as a resource with
vendors specific software configurations.

Containers in a Swarm can only access
devices running in privileged mode.

Overlay Network

Inter-Pod communication can only be enabled through
the deployment of an overlay network (i.e., Flannel).

A default overlay network can be enabled
for inter-container communication.

Shared Volume

Tightly coupled applications inside containers, can be
placed inside the same pod to share volumes.

Storage can be mapped to containers with
custom configurations.

‘ Platform Dependency ‘

Pods are created independent of the container solution. ‘ It is limited only to Docker containers.

TABLE I: Kubernetes and Docker Swarm Comparison of essential attributes offered by Docker Swarm and Kubernetes.

[Controller Manager J
Master

! !

Node Node

[kubelet J
Container
runtime

Node

[kubelet J

Container
runtime

Container
runtime

Fig. 1: Kubernetes Components. The Kubernetes setup has
at least three components: kublet daemon, Container runtime,
and Kubeproxy for communication across nodes. The Master
node contains the scheduling and administrative components.

C. InfiniBand Interconnect

The use of InfiniBand (IB) [17] interconnect can provide
high throughput and low latency across systems for distributed
and parallel applications. IB is a standardized technology
supported by major operating systems and vendors. IB com-
prises two channel adapters: Host Channel Adapter (HCA)
and Target Channel Adapter (TCA). To enable communica-
tion through particular IB devices, the HCA makes different
hardware visible at the user-level.

D. Network Instrumentation

Figure 2 shows a traditional network setup where each
host has a private network, which is the same across all host
machines. The IP addresses of each of the network interfaces
are the same on each host except for the host network
interface eth0. As illustrated in Figure 2 (Traditional Network),
Docker creates the docker0 network interface and every time
a container gets launched on a virtual network, veth{0 ... N}
gets created. On the other hand, Kubernetes consolidates the
network layout for a single host on a Kubernetes Pod over
multiple containers by only creating a single virtual network
that exchanges packets back and forth with the dockerO
interface. This approach provides a shared network interface

Gateway Gateway
102001 102004

Routing Rules

eth0 eth0
10.20.0.2 10.20.0.3

Custom Bridge
172.10.01

eth0 eth0
10.20.0.2 10.20.0.3

! !

Custom Bridge
dockerd dockerd it
1724701 172.47.01] T

I I veth0 veth0
172.47.02 1724702 072400 2 li220'2
Gontanion oty Container Container

Pod Pod Red Bl

Node A" NodaZ! Node -A Node - B

Traditional Network Overlay Network

Flannel Overlay Network

Fig. 2: Traditional Network to Overlay Network. In conven-
tional setups, each node in a cluster has its default docker
bridge network. Docker containers (or Pods) are connected to
the individual bridge of the host node and cannot communi-
cate with containers (or Pods) residing in other host nodes.
After applying an overlay network, across all the host nodes,
containers and Pods that are created in any of the host nodes
can communicate across the cluster.

with improved isolation, though at the cost of performance. In
order to enable Pod-to-Pod communication, Kubernetes uses
an overlay network as shown in Figure 2 (Overlay Network).
Inter-pod communication, independent of Pods’ physical lo-
cation, is enabled using the Flannel [16] network package.
The overlay network is deployed on Kubernetes cluster as a
Pod network, which enables each pod to communicate with
another through SDN with unique IP address over the overlay
network.

E. Kubernetes and Docker Swarm Attributes

In Table I, we highlight the values of attributes that are
required for both Kubernetes and Docker Swarm Cluster, to
execute HPC workloads in a cloud infrastructure.

III. KUBERENTES INFINIBAND SETUP

In Figure 3a, we present the configuration and setup of
a device Pod for IB support. The architecture enables auto
discovery of devices from Application Pods. The containers
have full installations of Open-fabric software to enable zero-
copy RDMA communication for the containers. For the pur-

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

Listing 1: A configuration yaml file for HCA device plugin

kind: ConfigMap
metadata:

name: rdma—devices

namespace: kube—system
data:

config.json: |

{
}

”mode” nhcan

Listing 3: yaml file to install and deploy a virtual network
device.

Listing 2: Integrating virtual network device as a resource.

resources:
limits:
rdma/hca: 1
cpu: 48

poses of this paper, InfiniBand RDMA refers to InfiniBand
send/recv data movement, not InfiniBand read/write methods
as the codes used make use of MPI functions that utilize
send/recv data movement. The steps to configure, install, and
deploy a Device Pod container can be described as follows:

o Device Configuration. The virtual network device is
configured using a ConfigMap, which is a Kubernetes
object. The ConfigMap object is placed in the kube-
system namespace along with its data as shown in Listing
1.

Device Deployment. The device deployment is executed
as a Kubernetes daemon object. It is also placed in the
kube-system to enable access of resources to Kubernetes
cluster nodes. The device plugin directories are mapped
and the configuration map is set as shown in Listing 3.
Application Pod Configuration. This particular Pod
configuration consists of bridging the device to the ap-
plication Pod. The application Pod demands at most
one virtual networking device. In the example yaml file
in Listing 2, we show the device being provided as a
resource. Also, Listing 2 shows an example of how other
resources (e.g. CPU, memory, GPU) can be specified.

Figure 3c shows the different networking levels that have to be
set to ensure a full Kubernetes cluster setup. The Kubernetes
Network is comprised of multiple layers of communication.
For this setup, we list the sub-components of the networking
layers that enable a Kubernetes cluster to work correctly.

Here, we describe the different Kubernetes networking
communication layers:

o Inter-container Networking. Kubernetes’ default con-
tainer communication makes use of localhost network on
default ssh-port network and the Pod’s network names-
pace. In Figure 3c, in order to avoid running the MPI
applications as a root user and on default ssh-port, we
created a user inside the container for which a non-
standard ssh-port was exposed to execute the application.
Inter-container networking level essentially enables a
container network interface for the communication.

kind: DaemonSet
metadata:
name: rdma—dev
namespace: kube—system

name:

— device—plugin
hostPath:
path: /var/lib/kubelet/device—plugins
— name: config
configMap:
name: rdma—devices
items:
— key: configuration.json
path: configuration. json

o Inter-Pod Networking. Pods residing on the same host
machines can communicate with each other as they are
created under the same sub-network. However, Pods from
different hosts are not reachable to each other as they are
part of different networks of their respective host nodes.
Inter-pod communication is enabled by using an overlay
network. In Figure 3c, we use Flannel as our overlay
network to enable inter-pod communication across host
machines.

Application Pod. In Figure 3c, the Application Pod
shows how Docker containers reside on them. It shows
how Device Pods, discussed in Figure 3a, connect with
each Application Pod. It also shows the overlay network
setup that ties Application Pods together across host
machines.

Network setup is a crucial step to launch pods within a
Kubernetes cluster. A Flannel network assigns a network to
all pods on all nodes. Then, Docker bridge interface uses the
Flannel provided network to create containers. Also, the latest
MOFED user-space drivers were installed inside the Docker
container to enable execution of MPI code from within the
container.

In Figure 3b, we show the IB setup architecture of Docker
Swarm. It presents the connections between nodes in terms of
network (e.g. overlay network) and devices (e.g. InfiniBand).
We list the necessary steps to get a Docker Swarm setup for
MPI execution:

o Overlay Network. Overlay attachable network was cre-
ated to maintain containers grouped together on a sub-
network. So, containers are physically located in different
host machines, but they share the same sub-net address
space and the same SDN.

Container SSH Communication. The communication
between containers is enabled using a non-standard ssh-
port and a unique IP address through the overlay network.
RDMA Enabled Containers. The RDMA protocol was
used to aid MPI execution of the containers residing
across different host machines. InfiniBand devices are

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

Infiniband
Ca=e-
N
Host Linux Kernel N
N

Infiniband device

/deviinfiniband /dev/deviceO /dev/device1

Bare Metal Node

(a) Device Pod

(b) Docker Swarm Cluster

1

| AoplcatonPod |

i Appication Pod |

(c) Kubernetes Cluster

Fig. 3: (a) Kubernetes provides a unique way of accessing host nodes’ hardware devices through vendor specific system pods.
(b) An overlay attachable network to group container in a sub-network. A custom ssh port is exposed to enable inter-container
communication across containers. All containers within the Swarm cluster have user-space IB drivers for MPI execution over
RDMA protocol. (c) An overlay network was setup using Flannel to enable inter-Pod communication across nodes. A device
Pod was created to allow device discovery from a container within a Pod.

Listing 4: Accessing container within Pod to execute MPI on a Kubernetes cluster.

$ kubectl exec —it <pod> — /bin/bash
$ mpirun —mca btl openib,self —mca btl_openib_if_include mlx4_0:1
—hostfile hostfile —map—by node —np 128 ./ osu_alltoallv
Listing 5: Accessing container and executing an MPI application on Docker Swarm cluster
$ ssh —i ssh/rsa mpi@localhost —p 9100
$ mpirun —mca pml ucx —mca btl openib,self —mca btl_openib_if_include mlx4_0:1

—hostfile hostfile —map—by node —np 128

./ osu_alltoallv

mapped to the container at the time of deployment.

IV. EXPERIMENTAL SETUP

For our experiments, we acquired six nodes from the
Chameleon Cloud to set up a bare metal environment and
also a container based environment. The purpose of these
experiments is to investigate the efficacy of HPC with Kuber-
netes and to identify opportunities and areas for improvement.
A full fledged scalability study is beyond the scope of this
paper, due to the small cluster size. In future work, we plan
to acquire larger clusters to perform scalability studies. In
our experiments, we measured bare metal performance as the
baseline for comparison with Kubernetes and Docker Swarm.
We used the software and hardware components discussed in
Table II. In addition, for all application execution, we selected
the best performing network interface provided within each
setup.

Software Version
CentOS 7.6.1810 (Core)
Docker 18.09.1
Kubernetes 1.13.2

Open MPI 4.0.0
MLNX_OFED 4.5-1.0.1.0
InfiniBand Adapter | ConnectX-3

TABLE II: Software, Hardware, and Network Stack

In order to study container orchestrated MPI workloads on
clouds such as Chameleon Cloud, we launched one container
per machine for the Docker Swarm cluster and one Pod per
machine for the Kubernetes cluster. We used a small cluster
of six nodes to conduct our experiments, with each node
consisting of 48 CPU cores, 128 GB of memory, 2TB of local
storage, and IB hardware devices.

For our performance evaluation, we first executed all the
benchmarks listed on Table III over an Ethernet interconnect
on Chameleon cloud. Then, we executed the same set of
benchmarks over RDMA protocol with the same settings. Both
interconnects were orchestrated with three different environ-
ment setups: Bare Metal, Docker Swarm, and Kubernetes.

V. PERFORMANCE EVALUATION

1) OSU AlltoAll Latency: To study multi-node latency,
we chose the AlltoAllv collective from the OSU benchmark
suite of MPI benchmarks. OSU AlltoAllv communication is
designed to have each MPI rank send a portion of its data
to every other MPI rank, which is a global transposition
operation acting on sub-portions of a particular data set. In
essence, AlltoAll spreads 128 MPI processes across six host
machines. Then, it performs a ping-pong between a sender
and receiver. In Figure 4a, Kubernetes shows an overhead
resulting in 4x performance loss in comparison to Docker
Swarm over TCP/IP. We observe that as the message size
increases from 8KB to around 1 MB for Docker Swarm, the

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

Benchmarks Description Metrics Measured
HPCG [18] High Performance Conjugate Gradient Throughput

MiniFE [19] Unstructured finite element solver Throughput and run time
OSU AlltoAllv [20] Latency test of a set of ranks sending and receiving data Latency

OSU Bi-directional [20] | Bandwidth test between two adjacent nodes Bandwidth

KMI-Hash [21] Evaluates hashing of architecture integer operations Memory

HPL [22] Computation of a dense n by n system of linear equations Throughput

SNAP [23] Discrete ordinates neutral particle transport Run time and Memory
MiniMD [19] Parallel molecular dynamics Run time

MiniAMR [19] Adaptive Mesh Refinement Memory

TABLE III: Benchmarks, descriptions, and metrics collected.

OSU AlltoAllv

«-- Bare Metal

OSU Bandwidth

Docker Swarm —— Kubernetes « Bare Metal

Docker Swarm — Kubernetes

[
s o B8
g 8 8
s s 8

Latency (bs)

Bandwidth MB/s
g
s

288
Message Size (Bytes)

Message Size (Bytes)

(a) Latency (Log scale) (b) Bandwidth

KMI-HASH MiniMD (500k Atoms)
600k 10
500k “ 8-
2 3t
o
400k g
© 300k F
= = 41
©200k £
= 2
100k
0 Bare Metal Docker Swarm Kubernetes o Bare Metal Docker Swarm Kubernetes
(c) Memory (d) Run time

Fig. 4: TCP over Ethernet (128 MPI processes, 6 hosts): Latency (a) and bandwidth (b) evaluation results for respective OSU
benchmarks. Queries/sec is evaluated for memory intensive KMI Hash (c) benchmark and runtime evaluation for MiniMD (d).
Kubernetes presents a latency bottleneck of 4x in comparison to bare metal. For bandwidth, Kubernetes presents a visible
overhead of 59.34% for a 8192-Bytes message in comparison to bare metal.

OSU AlltoAllv Latency Test

~e- Bare Metal

800k

OSU Bandwidth Test

-+ Bare Metal

Docker Swarm == Kubernetes Docker Swarm — Kubernetes

600k

400k

Latency (us)
Bandwidth MB/s
2

200k 2

0

204, %09, S19, 163, 925 655,13, 265, 924, 04, 20
95 96 192" N5, 65 "S5 10)291qv‘éggva5)59>,se

Message Size (Bytes) Message Size (Bytes) Efy

(a) Latency (b) Bandwidth

Fig. 5: RDMA over InfiniBand (128 MPI processes, 6 hosts): Latency (a) and bandwidth (b) evaluation results for respective

KMI-HASH MiniMD (500k Atoms)
10M 5
8M w4
3 P
& em €3
2]
o =
4Mm T 2
8
2M Fa
0 Bare Metal Docker Swarm Kubernetes 0 Bare Metal Docker Swarm Kubernetes
(c) Memory (d) Run time

OSU benchmarks. Queries/sec is evaluated for memory intensive KMI Hash (c) benchmark and runtime evaluation for
MiniMD (d). Both Docker Swarm and Kubernetes for all the benchmarks present a performance deviation of 1% in comparison

to bare metal.

latency overhead, when compared to bare metal, improves
from 66.77% (8 KB) to 15.95% (1 MB). However, in Figure 5a
for InfiniBand, we ran the benchmark for message size of 2MB
and it shows an average latency deviation of less than 1% for
all the message sizes for both container-based setups, when
compared to bare metal. This demonstrates the point at which
the communication becomes wire data rate limited rather than
host latency limited for Docker Swarm.

2) OSU Bidirectional Bandwidth: The OSU Bi-directional
Bandwidth test over Ethernet sends back-to-back messages
and waits for a response. It allows the measurement of the
aggregated bandwidth between two nodes. Figure 4b measures
and tests inter-node bandwidth using OSU Bidirectional Band-
width over Ethernet connection on bare metal, Docker Swarm,

and Kubernetes setups. Both Docker Swarm and Kubernetes
experience similar bandwidth for message sizes up to 4KB.
Docker Swarm achieves better performance as Kubernetes
stagnates. For message sizes greater than 4KB, Kubernetes is
outperformed by Docker Swarm, as Docker Swarm achieves
a bandwidth closer to the Bare Metal. For example, for 4
KB message size the results show that both Docker Swarm
and Kubernetes exhibit a slower performance in comparison
to bare metal of 67.39% and 64.97% respectively. For a larger
message of 8KB the overhead was about 42.14% and 59.34%
for Docker Swarm and Kubernetes respectively. However, in
Figure 5b, we can observe that bandwidth for both container-
based setups have an average overhead of about 2% in
comparison to bare metal for all messages.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

3) KMI-Hash Evaluation: We used the KMI-Hash bench-
mark to characterize the behavior of memory intensive applica-
tions running on Docker Swarm and Kubernetes over Ethernet.
We focused our attention on the number of queries that can
be executed per second. In Figure 4c, both Docker Swarm
and Kubernetes show a performance overhead of 16.58%
and 33.96% respectively in comparison to bare metal. This
performance variation is associated with the virtual network
interfaces created on Docker Swarm and Kubernetes. In Fig-
ure 5c the execution over InfiniBand, however, yields an
overhead of less than 1% for both container-based solutions
in comparison to bare metal.

4) MiniMD Evaluation: MiniMD is a parallel molecular
dynamics (MD) mini-application mainly used for testing pur-
poses across different HPC systems. For MiniMD, the results
in Figure 4d show the execution overhead using one thread
per communication between communicating ranks. Docker
Swarm and Kubernetes present overheads of 61.76% and
9.37% respectively in comparison to the bare metal execution
time. However, unlike MiniMD over Ethernet, we notice that
in Figure 5d the InfiniBand support amortizes the overhead
presented by Docker Swarm and Kubernetes, as they have an
average of just 1% overhead in comparison to bare metal.

5) MiniAMR Evaluation: MiniAMR is a mini-application
designed to carry out stencil calculations on a unit cube, which
can be emulated in different bodies in space. We modified
input parameters of two spheres to run on 128 cores for 100-
time steps with x=4, y=4, and z=8 in each direction (i.e.,
4x4x8=128). Over Ethernet, Figure 6a shows the results for
MiniAMR over the different environment setups. We show the
total execution time of the application where Docker Swarm
and Kubernetes environment setups yielded an execution time
overhead of 18.41% and 22.01% respectively in comparison
to bare metal setup. Then, in Figure 6b, we present the
interblock communication results (- -max_blocks = 10000
per processor), which is an essential metric to understand
the application’s overall performance as about 47% to 59%
of the overall execution time is spent executing communica-
tion tasks on all the environment setups. The results of the
interblock communication for 10000 blocks do not show a
large bottleneck. Kubernetes presented a 14.02% overhead in
comparison to bare metal, whereas Docker Swarm had negligi-
ble overhead. In Figure 6¢, we show MiniAMR’s throughput
with an overhead of less than 1% for both container-based
solutions in comparison to bare metal. Figure 6d shows that
Mesh Refinement’s (which handles the Block computations)
execution time on bare metal outperforms Docker Swarm and
Kubernetes by 96.17% and 70.41% respectively. Figures 7a,
7b, 7c, and 7d over InfiniBand show an overhead of less than
1% for all the metrics collected.

6) MiniFE Evaluation: To study the throughput perfor-
mance further, we evaluated MiniFE for two problems sizes
— (1) nx=ny=nz=512 and (2) nx=ny=nz=1024. The results
presented in Figure 8a for problem size (1) shows that the
amount of data transported across processes in MiniFE can
directly affect the application when using a low throughput

transport protocol such as TCP/IP. Docker Swarm environ-
ment performs within 2% of Bare Metal. Kubernetes has an
overhead of 54.29%. Docker Swarm also provides similar
interfaces as Kubernetes, but we only included the data for
the best performing interfaces within each setup. For problem
size (2), we observe that for Docker Swarm and Kubernetes,
the overhead was reduced to 1.24% and 15.70% respectively
in comparison to Bare Metal. We also observe that doubling
the problem size from 512 to 1024 yielded slightly better re-
sults for all environment setups, especially Kubernetes, which
yielded a 94.50% better performance than problem size (1). In
addition, in Figure 9b for MiniFE, the runtime results show
the overhead of Kubernetes for problem size (1) and (2). It
posts an overhead of 118.75% and 18.62% respectively in
comparison to the same problem sizes on bare metal, whereas
Docker Swarm shows a performance degradation of about 2%
for both problem sizes. Our results for MiniFE over InfiniBand
indicate that there is negligible performance overhead for the
two cloud container orchestrators. Figures 9a and 9b present
an overhead below 1% when compared to bare metal setup
for both problem sizes.

7) HPCG Evaluation: We chose HPCG as it provides
features that have a large impact on the application’s overall
performance. For HPCG, for a cube of 160 points, each
individual MPI process (128 MPI processes) is in charge of
performing computations for the 160 points. In addition, each
environment setup consumes 374.91 GB of memory (i.e., 2.92
GB of memory per process). In Figure 8c, we can observe that
over TCP/IP, Docker Swarm achieves close to Bare Metal
performance whereas Kubernetes has an overehad of about
13.15%. These results highlight the stress HPCG places on
network bandwidth and latency. In Figure 4, Kubernetes shows
a significant overhead over both individual network tests —
this trend can also be when executing HPCG as shown in
Figure 8c. In 9c, HPCG over InfiniBand yields interesting
results as Docker Swarm shows an overhead of 4.19%, which
is more than the 2.2% deviation it has with TCP. Also,
Kubernetes reduced its overhead by 2.84% (from 13.15% to
10.31%).

8) SNAP Evaluation: We executed SNAP with no
OpenMP threads and also with 4 OpenMP threads per process
with 128 MPI processes. In Figure 8d. with no OpenMP
threads, SNAP shows an overhead in runtime for Docker
Swarm and Kubernetes of 5.40% and 26.49% respectively.
Kubernetes performs better when no OMP threads are used as
there is a reduction in communication and computation. When
multiple OMP threads are used for a single process on a single
core, both Docker Swarm and Kubernetes present an increase
in runtime of 8.68% and 46.64% respectively in comparison
to bare metal (i.e., with 4 OMP threads per process or 512
threads total). In Figure 9d, SNAP achieves nearly bare metal
performance for InfiniBand.

9) HPL Evaluation: Due to the compute intensive feature
of HPL, with an Ethernet network connection we chose small
P and Q values (i.e., HPL grid) to test performance. Note
that the performance and scalability of HPL has limitations

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

Execution Time Interblock Communication Computational Performance Mesh Refinement

(10000 blocks)
1500 100 =
80 GE) 400
1000 ; 60 '; 300
40 g 200
; =
©100
20 2
0 0 0 0 Bare Metal Docker Swarm Kubernetes

Bare Metal Docker Swarm Kubernetes Bare Metal Docker Swarm Kubernetes Bare Metal Docker Swarm Kubernetes

o ®
o o
S o

IS
S
=]
GFLOPS

Total Time (s)
w
o
o

Maximum Time (s
5
o

(a) Run time (b) Communication (c) Throughput (d) Run time

Fig. 6: MiniAMR Evaluation over Ethernet (128 MPI processes, 6 hosts): Throughput and run time is evaluated for MiniAMR
benchmark. Runtime is evaluated considering interblock communication and mesh refinement.For Mesh Refinement, Kubernetes
has a performance overhead of 70.41%, whereas Docker Swarm presents an overehad of 96.17%.

Execution Time Interblock Communication Computational Performance Mesh Refinement
1200 200 (10000 blocks)

= 100 =

1000 L£600 100
O @ 80 o

o 800 £500 0 2
c e

£ 600 e 400 g 60 = 0
® 5300 E 4 £

8 400 E o0 o E 40
. g 20 %

200 2100 % 20

0 o 0 .

Bare Metal Docker Swarm Kubernetes Bare Metal Docker Swarm Kubernetes Bare Metal Docker Swarm Kubernetes Bare Metal Docker Swarm Kubernetes

(a) Run time (b) Communication (c) Throughput (d) Run time

Fig. 7: MiniAMR Evaluation over InfiniBand (128 MPI processes, 6 hosts): Throughput (c) and run time is evaluated for
MiniAMR benchmark. Runtime is evaluated considering interblock communication and mesh refinement. Both Docker Swarm
and Kubernetes for all the benchmarks present a performance deviation of 1% in comparison to bare metal.

MiniFE MiniFE HPCG SNAP

80k w150 " 60 E400

£ 60k o 5% g300
o] E100 T 40 £

I 40k = G5 200
= g 5 = 2

20k e’ 820 S 100

0 0 10 0

Bare Metal Docker Swarm Kubernetes Bare Metal Docker Swarm Kubernetes Bare Metal Docker Swarm Kubernetes

Bare Metal Docker Swarm Kubernetes
B 512x512x512 W 1024x1024x1024 B 512x512x512 B 1024x1024x1024 B No OMP Threads ® 4 OMP Threads

(a) Throughput (b) Run time (¢) Throughput (d) Run time

Fig. 8: TCP over Ethernet (128 MPI processes, 6 hosts): Throughput (a) and run time (b) evaluation for MiniFE benchmarks.
Throughput is evaluated for HPCG (c) benchmark and run time evaluation for SNAP (d) for 1 and 4 threads per process.
For a problem size of 512x512x512, the Docker Swarm environment performs within 2% of Bare Metal, whereas Kubernetes
environment has an overhead of 54.29%.

since the chosen grids are small. Another attribute that is traction in recent time into different communities such a way
important to run HPL is problem size (i.e., N) — the size of any that it enables the adoption of these cloud based solutions
problem should be the largest problem size that fits in memory, into their respective domains [24] [25]. The literature survey
without creating memory swapping limitations. Lastly, another in this paper is limited to related articles, as research on use
important variable for HPL is block size (i.e., NB), a flag used of Kubernetes in HPC is in its early stages.

for data distribution. In our HPL execution, we used a problem Younge et al. [26] evaluated the feasibility of different
size of 84000 and block size of 96, with memory consumption container mechanisms to improve the development effort and
of about 80% of the total across the 6-node cluster. For our P DevOps for MPI applications in HPC systems. According to
and Q, we chose a grid of 4 by 32 respectively. In Figure 10a, their results, virtual machines, and containerized applications
we present the performance of HPL over InfiniBand with both on cloud nodes (no bare metal nodes were used) present a
container-based setups performing within 1% of bare metal. ~ substantial performance overhead compared to high end HPC
clusters. However, the the performance of MPI applications
on a Cray supercomputer using Singularity containers demon-

The cloud and HPC convergence has gained a lot of traction strated near bare metal performance.
as a topic of research. Cloud technologies has gained enough Saha et al. [27] evaluated the performance of HPC ap-

VI. RELATED WORK

18

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

MiniFE

Bare Metal Docker Swarm Kubernetes

MiniFE

111

Bare Metal Docker Swarm Kubernetes

100k

80k

£ 60k
o
T

T 40k

20k

0

W 512x5612x512 ™ 1024x1024x1024 W 512x512x512 ™ 1024x1024x1024

(a) Throughput (b) Run time

SNAP
(OMP Threads = 512)
30

25
5
0

Bare Metal Docker Swarm Kubernetes

& 501
40
9 30
20/

Ol
]
]

]

Solve Time (s)
—
G

tal

[
15}

<]

T

Bare Metal Docker Swarm Kubernetes

(c) Throughput (d) Run time

Fig. 9: RDMA over InfiniBand (128 MPI processes, 6 hosts): Throughput (a) and run time (b) evaluation for MiniFE
benchmarks. Throughput is evaluated for HPCG (c) benchmark and run time evaluation for SNAP (d) for 4 threads per
process. Both Docker Swarm and Kubernetes for MiniFE and SNAP present a performance deviation of 1% in comparison to

bare metal.

HPL (N=84k)

Bare Metal Docker Swarm Kubernetes

160

(a) Throughput

Fig. 10: HPL Evaluation over Ethernet (128 MPI processes,
6 hosts): Throughput is evaluated for a small problem size.
Both Docker Swarm and Kubernetes present a performance
deviation of 1% in comparison to bare metal.

plications in a cloud setup wherein containerized applications
were run with MPI ranks distributed across multiple containers
using Docker Swarm. The results showed that the performance
deviation of Docker Swarm was negligible compared to bare
metal performance. In this paper, we explained the components
of Kubernetes and compared its HPC workload performance
with Docker Swarm and bare metal setups.

Saha et al. [28] showed how MPI applications can be
orchestrated in an Apache Mesos cluster with just the use of
Docker Swarm as the container orchestrator. They provided
insights regarding how cloud based resource managers like
Apache Mesos [1] can be used for HPC workloads using a
policy based approach [28] for scheduling of MPI ranks based
on the nature of tasks (Network or CPU intensive). InfiniBand
performance versus TCP in the context of bare metal solutions
has been evaluated for HPC. Grant et al. [29] evaluated
different RDMA options versus TCP and demonstrated its
impact on commercial data center applications [30]. Balaji et
al. have evaluated traditional TCP versus IB alternative com-
munication sockets-compatible libraries for 10G Ethernet [31].
Rashti et al. performed a an evaluation of TCP versus IB
and Myrinet networks [32]. In this paper, we focus on the
architecture, configuration, and evaluation of Kubernetes for
use with scientific workloads in clouds such as Chameleon.

Another related work is an effort to enable HPC workloads
execution on Kubernetes is kube-batch [33]. It is designed to
support scheduling and OpenMPI execution. In our work, we

19

focused on understanding the performance of Kubernetes for
HPC workloads using its default scheduler.

VII. CONCLUSIONS

In this paper, we used a diverse set of MPI applications to
evaluate their performance and determine the feasibility of ex-
ecuting them in two different cloud configurations: bare metal
and container-based. Our container-based setups consisted of
Docker Swarm and Kubernetes. Our metrics included memory
usage, bandwidth, and latency.

For TCP/IP, both container solutions show substantial over-
head for memory, network bandwidth, and latency. For la-
tency, in Figure 4a, OSU AlltoAll latency test execution on
Kubernetes shows an overhead of 4x compared to Docker
Swarm. For bandwidth, in Figure 4b, OSU Bi-directional
bandwidth test execution on Kubernetes and Docker Swarm
for a message size of 8192 Bytes, show an overhead of
42.14% and 59.34% respectively. In Figure 8, we observe that
a throughput execution of HPCG over TCP/IP with Kubernetes
results in an overhead of 13.15% in comparison to bare metal.

For InfiniBand, we learned that for applications with low
complexity such as OSU latency, OSU bi-directional band-
width, SNAP, and MiniAMR the performance is within 1% of
bare metal. For applications such as HPL, which is compute
intensive and also low complexity, we observe for both Docker
Swarm and Kubernetes a similar performance overhead of
less than 1%. However, in Figure 9c for HPCG, InfiniBand
transport reduces the overhead presented by Kubernetes in
comparison to bare metal from 13.15% (55.29 GFlops) to
10.31% (58.26 GFlops).

We observed that there are opportunities when enabling
a high performance transport in all the setups. We attribute
the Kubernetes overhead to the fact that its whole network
stack is virtualized. In a Docker Swarm setup, users have the
flexibility to choose between virtualized and non-virtualized
interfaces. We identified that it is crucial for HPC developers
and architects to use an evaluation framework, such as the one
we have developed, to study and make informed decisions
on the configurations and setups to use for executing their
workloads.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. DOE
National Nuclear Security Administration under contract DE-
NA-0003525. This research was partially supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

In addition, this work was supported in part by NSF grant
OAC-1740263.

[1]

[2

—

[3]

[4

=

[5]
[6]

[7

—

[8

[t}

[9]

[10]

(1]

[12]

[13]

[14
[15]

[16]
(17]

(18]

[19]

REFERENCES

P. Saha, A. Beltre, and M. Govindaraju, “Exploring the fairness
and resource distribution in an apache mesos environment,” in
2018 IEEE 1l1th International Conference on Cloud Computing
(CLOUD), vol. 00, Jul 2018, pp. 434-441. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00061

A. Beltre, P. Saha, and M. Govindaraju, “Kubesphere: An approach
to multi-tenant fair scheduling for kubernetes clusters,” in /EEE Cloud
Summit: 3rd IEEE International Conference on Cloud and Fog Com-
puting Technologies and Applications, August 2019.

P. Saha, A. Beltre, and M. Govindaraju, “Tromino: Demand and drf
aware multi-tenant queue manager for apache mesos cluster,” in 2018
IEEE/ACM 11th International Conference on Utility and Cloud Com-
puting (UCC). 1EEE, 2018, pp. 63-72.

D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.
[Online]. Available: https://cloud.google.com/kubernetes-engine/
“Amazon ecs - run containerized applications in production.” [Online].
Available: https://aws.amazon.com/ecs/

“Marathon: A container orchestration platform for Mesos and DC/OS.”
[Online]. Available: https://mesosphere.github.io/marathon/

Seanmck, “Choose the cloud platform designed for your
container needs.” [Online]. Available: https://azure.microsoft.com/en-
us/overview/containers/

L. Ramakrishnan, P. T. Zbiegel, S. Campbell, R. Bradshaw, R. S.
Canon, S. Coghlan, I. Sakrejda, N. Desai, T. Declerck, and A. Liu,
“Magellan: Experiences from a science cloud,” in Proceedings of
the 2Nd International Workshop on Scientific Cloud Computing, ser.
ScienceCloud °11. ACM, 2011, pp. 49-58. [Online]. Available:
http://doi.acm.org/10.1145/1996109.1996119

G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific containers for mobility of compute,” PLOS ONE,
vol. 12, no. 5, pp. 1-20, 05 2017. [Online]. Available:

https://doi.org/10.1371/journal.pone.0177459

D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
hpe,” Proceedings of the Cray User Group, 2015.

R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers
for user-defined software stacks in hpc,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2017, p. 36.

J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn),” in
2015 International Conference on Cloud Computing Research and
Innovation (ICCCRI). 1EEE, 2015, pp. 73-79.

“Coreos.” [Online]. Available: https://coreos.com/rkt/

Opencontainers, “opencontainers/runc,” Oct 2018. [Online]. Available:
https://github.com/opencontainers/runc

“flannel.” [Online]. Available: https://coreos.com/flannel/docs/latest/

T. Shanley, Infiniband. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

J. Dongarra and P. Luszczek, “Hpcg technical specification,” Sandia
National Laboratories, Sandia Report SAND2013-8752, 2013.

M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

20

[20]
[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]

[31]

[32]

(33]

[Online]. Available: http://mvapich.cse.ohio-state.edu/benchmarks/

M. Leininger, “Benchmark codes.” [Online]. Available:
https://asc.llnl.gov/CORAL-benchmarks/

J. Dongarra, “The linpack benchmark: An explanation,” in Proceedings
of the Ist International Conference on Supercomputing. London,
UK, UK: Springer-Verlag, 1988, pp. 456-474. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647970.742568

R. J. Zerr and R. S. Baker, “Snap: Sn (discrete ordinates) application
proxy,” Online: https://github. com/losalamos/SNAP. Accessed: Sep,
2014.

P. Saha, M. Govindaraju, S. Marru, and M. Pierce, “Integrating apache
airavata with docker, marathon, and mesos,” Concurrency and Compu-
tation: Practice and Experience, vol. 28, no. 7, pp. 1952-1959, 2016.
“Multicloud resource management using apache mesos with
apache airavata,” arXiv preprint arXiv:1906.07312, 2019.

A. J. Younge, K. Pedretti, R. E. Grant, and R. Brightwell, “A tale of
two systems: Using containers to deploy hpc applications on supercom-
puters and clouds,” in 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), Dec 2017, pp. 74-81.
P. Saha, A. Beltre, P. Uminski, and M. Govindaraju, “Evaluation of
docker containers for scientific workloads in the cloud,” in Proceedings
of the Practice and Experience on Advanced Research Computing.
ACM, 2018, p. 11.

P. Saha, A. Beltre, and M. Govindaraju, “Scylla: A Mesos Framework
for Container Based MPI Jobs,” in MTAGS17: 10th Workshop on Many-
Task Computing on Clouds, Grids, and Supercomputers, Denver, 2017.
R. E. Grant, M. J. Rashti, and A. Afsahi, “An analysis of qos pro-
visioning for sockets direct protocol vs. ipoib over modern infiniband
networks,” in 2008 International Conference on Parallel Processing-
Workshops. 1EEE, 2008, pp. 79-86.

R. E. Grant, P. Balaji, and A. Afsahi, “A study of hardware assisted ip
over infiniband and its impact on enterprise data center performance,”
in 2010 IEEE International Symposium on Performance Analysis of
Systems & Software (ISPASS). 1EEE, 2010, pp. 144-153.

P. Balaji, H. V. Shah, and D. K. Panda, “Sockets vs rdma interface
over 10-gigabit networks: An in-depth analysis of the memory traffic
bottleneck,” in In RAIT workshop, vol. 4, 2004, p. 2004.

M. J. Rashti and A. Afsahi, “10-gigabit iwarp ethernet: comparative
performance analysis with infiniband and myrinet-10g,” in 2007 IEEE
International Parallel and Distributed Processing Symposium. 1EEE,
2007, pp. 1-8.

kubernetes sigs, “kube-batch,” https://github.com/kubernetes-sigs/kube-
batch, 2019.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on August 21,2020 at 17:06:33 UTC from IEEE Xplore. Restrictions apply.

