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Abstract

We propose an offline algorithm that simultaneously estimates discrete and continuous components of a hybrid system’s state.
We formulate state estimation as a continuous optimization problem by relaxing the discrete component and using a robust
loss function to accommodate large changes in the continuous component during switching events. Subsequently, we develop a
novel nonsmooth variable projection algorithm with Gauss-Newton updates to solve the state estimation problem and prove
the algorithm’s global convergence to stationary points. We demonstrate the effectiveness of our approach by comparing it
to a state-of-the-art filter bank method, and by applying it to simple piecewise-linear and -nonlinear mechanical systems
undergoing intermittent impact.
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1 Introduction

This paper considers the problem of using noisy mea-
surements from a piecewise-continuous trajectory to
estimate a hybrid system’s state. A hybrid dynamical
system switches between dynamic regimes at time- or
state-triggered events. The state estimation problem has
been extensively studied in classical dynamical systems
whose states evolve according to one (possibly time–
varying) smooth model. This problem is fundamentally
more challenging for hybrid systems since the set of dis-
crete state 1 sequences generally grows combinatorially
in time.
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1 The state of the hybrid system is specified by the discrete
and continuous components. We refer to the discrete com-
ponent of the hybrid system state as the discrete state, and
refer to the continuous component as the continuous state.

When the discrete state sequence and switching times
are known a priori or directly measured, only the con-
tinuous state needs to be estimated, yielding a classical
state estimation problem; this approach has been ap-
plied to piecewise-linear systems [37, Chap. 4.5] and to
nonlinear mechanical systems undergoing impacts [32].
When the discrete state is not known or measured,
estimating both the discrete and continuous states si-
multaneously improves estimation performance. One
approach uses a bank of filters, each tuned to one dis-
crete state, and selects the discrete states as the filter
with the lowest residual [10, §4.1]. This filter bank
method has been applied to hybrid systems with linear
dynamics [8, §4.1] [25], nonlinear dynamics [11], and
jumps in the continuous state when the discrete state
changes [9]. Likewise, particle filter methods for hybrid
systems [14, 19, 36] use a collection of filters, identified
as particles, and are applicable to more general nonlin-
ear process dynamics. Particle filters and filter banks
are effective when the number of discrete states and
dimension of continuous state spaces are small.

Another approach formulates a moving-horizon estima-
tor over both the continuous and discrete states, result-
ing in a mixed-integer optimization problem [13]. The
inherently discrete nature of the problem formulation
enables estimation of the exact sample when the dis-
crete state switches, at the expensive of combinatorial
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growth of the set of discrete decision variables as the
horizon increases. Multiple methods have been devel-
oped to mitigate the challenge posed by this combinato-
rial complexity. One approach entails summarizing past
measurements and state estimates with a penalty term
in the the objective function [22]. Another approach, ap-
plicable to systems with bounded noise, entails restrict-
ing the set of possible discrete state sequences using a
priori knowledge of the system [1,2].

An alternative approach to circumventing the combina-
torial challenge entailed by exactly estimating the dis-
crete state sequence involves relaxing the discrete state
estimate to take on continuous values as in [7, 28]. The
latter reference uses a sparsity-promoting convex pro-
gram whose objective incorporates a nonsmooth penalty
across all possible discrete state sequences, and guar-
antees the estimate converges to the true continuous
and discrete states. Both approaches are formulated for
piecewise-linear systems whose continuous states do not
jump when switching between subsystems; in the lan-
guage of hybrid systems, the continuous states are reset
using the identity function.

Our approach and contributions

We propose an offline algorithm for estimating the state
of hybrid systems with nonlinear dynamics, non–identity
resets, and noisy process and observation models. Al-
though prior work accommodates aspects of our problem
formulation, to the best of our knowledge no work simul-
taneously allows nonlinear dynamics and non–identity
resets: [9] does not allow nonlinear dynamics, [14] and
[23] do not allow non–identity reset, and [7] does not al-
low either nonlinear dynamics nor non–identity resets.
Our starting point is the optimization perspective on
generalized and robust state estimation [3,4]. To formu-
late state estimation as a continuous optimization prob-
lem, we relax the discrete state to take on continuous
values as in prior work. Unlike prior work on state esti-
mation for hybrid systems, we model process noise using
the Student’s t distribution, which allows large innova-
tions and makes the method applicable to systems with
non–identity resets.

In combination, these elements yield a nonsmooth non-
convex continuous optimization formulation for offline
state estimation (Sec. 2). We develop a Gauss-Newton
type algorithm to solve this problem and prove the al-
gorithm globally converges to stationary points (Sec. 3).
The algorithm is compared to a class of state-of-the-art
algorithms (Sec. 5) and evaluated on piecewise-linear
and -nonlinear hybrid system models (Sec. 6).

2 Problem formulation

We consider observational data periodically sampled
from a continuous-time hybrid dynamical system [24]

that undergoes occasional jumps in continuous state,
such as a mechanical system undergoing intermittent
impacts [27]. We utilize a discrete-time switched system
as the process model for this sampled data. The pro-
cess model is chosen to capture the salient features of
a hybrid dynamical system model, e.g. the continuous-
time dynamics differing between discrete states, while
shifting the challenge of non–identity resets to the pro-
cess noise. As we explain below, combining this process
model with a Student’s t distribution for the process
noise captures the salient features of the underlying
system dynamics while enabling our derivation of a
computationally efficient state estimation algorithm.

2.1 Process and observation models

We use a discrete-time switched system

xt+1 =

M∑
m=1

Fm(xt)wt[m] + σt

yt = Ht(xt) + δt

(1)

where m ∈ {1, ...,M} indexes the continuously-
differentiable process model Fm : Rn → Rn, M ∈ N
is the number of process models, Ht : Rn → Rd is
the continuously-differentiable observation model that
generates observations yt ∈ Rd of the hidden continu-
ous state xt ∈ Rn, σt, δt are process and measurement
noises, and wt ∈ DM is a one-hot vector 2 that indi-
cates which process model is active at time t. Note
that the observation model does not depend explicitly
on the active model Fm, which must be inferred from
measurements of the continuous state xt.

The model Fm that is active during each time step may
be determined by an exogenous signal, prescribed as a
function of time or state, or some combination thereof.
Thus, the equation in (1) can represent the process and
observation models of a wide variety of hybrid systems.
Appendix A provides an overview of the construction
of a switched system by sampling a general hybrid dy-
namical system. We are motivated theoretically and ex-
perimentally to focus on cases where the active model
Fm is constant for many time steps, only occasionally
switching to a new model. When the sampling rate of a
continuous-time hybrid dynamical system is much faster
than the dwell-time [26], consecutive measurements will
often be from the hybrid system in the same discrete
state.

The problem of when measurements from a switched-
system as in (1) with no process noise σt ∼ 0, and no
measurement noise δt ∼ 0, can reconstruct the true dis-
crete and continuous state (i.e. when is the system is

2 w ∈ RM is one-hot if w[i] ∈ {0, 1} for all i ∈ {1, . . . ,M}
and 1Tw = 1; DM ⊂ RM denotes the set of one-hot vectors.
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observable) is well studied continuous time switched lin-
ear systems [38] [28, Chpt. 2]. For the more general lin-
ear hybrid system, when the continuous state undergoes
occasional jumps, observability tests with particular as-
sumptions have been proposed [8]. To the best of our
knowledge there is not a general observability test that
applies to nonlinear hybrid systems with non–identity
resets; a class of hybrid systems considered in this paper.

When the discrete state changes in a hybrid system, the
continuous state may change abruptly according to a
reset map. As an example, the velocity of a rigid mass
changes abruptly when it impacts a rigid surface [31].
Empirically, these discrete reset dynamics are much
more poorly characterized than their continuous coun-
terparts. For instance, whereas the ballistic trajectory of
a rigid mass is well-approximated by Newton’s laws, the
abrupt change in velocity that occurs at impact is not
consistent with any established impact law [21]. Includ-
ing such a reset in the system model (1) will introduce
bias into the state estimate because the model will gen-
erate erroneous predictions at resets, diminishing the
accuracy of estimated states at nearby times. This ob-
servation motivates us in the next section to account for
the effect of unknown resets as part of the process noise.

2.2 Process noise and observation noise models

Instead of incorporating continuous state resets explic-
itly into the model (1), we introduce a distributional
assumption on the process noise σt that accepts large
instantaneous changes in the continuous state estimate.
Specifically, we assume that process noise σt follows a
Student’s t distribution. However, we emphasize that
this is a modeling assumption. It does not imply that
process noise from real hybrid system has to follow this
distribution. Compared with the commonly-used Gaus-
sian distribution, the heavy-tailed Student’s t is tolerant
to large deviations in the estimate of the hidden contin-
uous state xt [6]. Hence, the Student’s t error model al-
lows an instantaneous change in the state that is consis-
tent with (1) before and after the change. The negative
log-likelihood of the Student’s t (as a function of σt) is
given by

r log

(
r +

Q−1/2σt

2)− C(r), (2)

where r is the degrees-of-freedom parameter of the Stu-
dent’s t, and Q is the covariance matrix, and C(r) is a
term independent of σt.

If the continuous state xt was known, then any residual
between the predicted observations Ht(xt) and actual
measurements yt at time t is due to measurement noise;
in particular, the residual does not exhibit large devia-
tions due to continuous state resets at switching times.
Thus, we assume the measurement noise δt follows the

usual Gaussian distribution, with negative log-likelihood

1

2

R−1/2δt

2 , (3)

where R is the covariance matrix. The plots below
provide a comparison between the probability den-
sity (left) and the negative log-likelihood (right) for
the scalar Gaussian (solid blue) and Student’s t dis-
tributions (dashed red; degree-of-freedom r = 1).

probability density negative log-likelihood

2.3 State estimation problem formulation

We derive the objective function for estimating states
of (1) using maximum a posteriori (MAP) likelihood. In-
cluding the constraint on w, we obtain the optimization
problem

min
xt∈Rn,wt∈Dm

T−1∑
t=0

lmeas(xt, yt) + lproc(xt, yt, wt) (4)

where

lmeas(xt, yt) =
1

2

R−1/2 (yt −Ht(xt))
2

and

lproc(xt, yt, wt) =

r log

⎛⎝r +

Q−1/2

(
xt+1 −

M∑
m=1

Fm(xt)wt[m]

)
2
⎞⎠ .

Problem (4) is a nonlinear mixed-integer program with
respect to both the continuous (xt) and discrete (wt) de-
cision variables, with the discrete variable constrained to
be a one-hot vector (wt ∈ DM ).We can significantly sim-
plify the structure by establishing the following lemma.

Lemma 1 (Formulation Equivalence) Given w ∈
DM , any vectors x1, x2, models Fi, and any penalty
functional g, we have

min
w∈DM

g

(
x2 −

M∑
m=1

w[m]Fm(x1)

)

= min
w∈DM

M∑
m=1

w[m]g (x2 −Fm(x1))
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and

argmin
w∈DM

g

(
x2 −

M∑
m=1

w[m]Fm(x1)

)

=argmin
w∈DM

M∑
m=1

w[m]g (x2 −Fm(x1)) .

Proof:

Since w ∈ DM for both problems, there are only M
possible values for both objective functions, i.e.

g(x2−F1(x1)), g(x2−F2(x1)), . . . , g(x2−FM (x1)).

Hence, the minimum objective value for both problems
will be minm g(x2 − Fm(x1)) and every minimizer is a
one-hot vector that selects a minimum value. □

Based on Lemma 1, an equivalent formulation to (4) is
given by

min
xt∈Rn,wt∈DM

T−1∑
t=0

(
1

2

R−1/2 (yt −Ht(xt))
2 +

M∑
m=1

wt[m]r log

(
r +

Q−1/2 (xt+1 −Fm(xt))
2)).

(5)
Although still a mixed-integer program, this reformula-
tion exhibits linear coupling between the discrete vari-
ables wt and continuous variables xt. We will leverage
this linear coupling when we develop our estimation al-
gorithm based on the relaxed problem formulation in-
troduced in the next section.

2.4 Relaxed state estimation problem formulation

Ultimately, the discrete state estimate will be spec-
ified as a one-hot vector, wt ∈ DM ⊂ RM . To for-
mulate a continuous optimization problem that ap-
proximates the mixed-integer problem formulated in
the previous section, we relax the decision variable wt

to take values in the convex hull ∆M of DM .We use
∆M := {w ∈ [0, 1]M : 1Tw = 1} to denote the simplex
in RM . The optimal relaxed wt will generally lie on the
interior of the simplex, so we project the result from our
relaxed optimization problem to return the one-hot dis-
crete state estimate. Since this relaxation-optimization-
projection process tends to induce frequent changes in
the discrete state estimate, we introduce a smoothing
term on wt,

ν∥wt+1 − wt∥22,

yielding the continuous relaxation of (5) given by

min
xt∈Rn,wt∈∆M

f(x,w) :=

T−1∑
t=0

(
1

2

R−1/2 (yt −Ht(xt))
2

+

M∑
m=1

wt[m]r log

(
r +

Q−1/2 (xt+1 −Fm(xt))
2)

+ ν∥wt+1 − wt∥22
)
,

(6)
where x is the concatenated variable containing all xt,
w is the concatenated variable containing all wt, and
ν is a parameter controlling the strength of smoothing.
The optimal relaxed discrete state estimate wt ∈ ∆M

is projected onto DM by choosing the (unique) one-hot
vector whose argmaxm wt[m] component is equal to 1.

3 State estimation algorithm

In this section, we derive an algorithm to solve the re-
laxed state estimation problem formulated in (6) using
two key ideas:

(1) nonsmooth variable projection;
(2) Gauss-Newton descent with Student’s t penalties.

These two ideas are explained in the next two subsec-
tions, followed by a convergence analysis in the third
subsection.

3.1 Nonsmooth variable projection

The first idea is to pass to the value function, projecting
out (partially minimizing over) the w variables, so as to
reduce the number of variables to optimize over. Define

v(x) := min
w

f(x,w) (7)

with f(x,w) as in (6). The objective f(x,w) is convex in
w, but not strictly convex. To guarantee differentiability
of v(x), we add a smoothing term and consider

vβ(x) := min
w

f(x,w) +
β

2
∥w∥2. (8)

where β is usually taken to be a very small number (e.g.
10−4 or smaller) so that the added term has minimal
effect on the original value function. (The minimizer of
vβ is different from that of v.) The function vβ(x) is a
Moreau envelope [34, Def 1.22] of the true value function
v; we refer the interested reader to [5] for details and
examples concerning the Moreau envelope specifically
(and nonsmooth variable projection more broadly). The
unique minimizer w(x) can be found quickly and accu-
rately since the minimization problem with respect to w
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is strongly convex: projected gradient descent converges
linearly and can be accelerated using the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [12]. With
the minimizer w(x), the gradient of vβ is readily com-
puted as

∇vβ(x) = ∂xf(x,w)|w=w(x). (9)

Plugging w(x) back into (6) we obtain the problem

min
x

vβ(x) =
1

2

T−1∑
t=0

∥yt −H(xt)∥2R−1 + ν∥wt+1(x)− wt(x)∥22

+

M∑
m=1

wt,m(x)r log

(
1 +
∥xt+1 −Fm(xt)∥2Q−1

r

)
+
β

2
∥w(x)∥2,

(10)
where wt,m(x) ≡ wt[m](x).

3.2 Gauss-Newton descent with Student’s t penalties

We derive a Gauss-Newton descent algorithm to
solve (10) based on a line search method first proposed
in [17] for convex composite problems. To apply the
method we first cast the objective in (10) into a convex
composite function, let vβ = ρ ◦ F , where

F (x) =

(
f1(x)

f2(x)

)

with

f1(x) =
1

2

T−1∑
t=0

M∑
m=1

wt,i(x)r log

(
1 +
∥xt+1 −Fm(xt)∥2Q−1

r

)
+ ν∥wt+1(x)− wt(x)∥22 +

β

2
∥w(x)∥2

f2(x) =H(x)− y

and

ρ

(
c

u

)
= c+

1

2
∥u∥2R−1 + δ[0,+∞](c).

At each iteration, we choose a search direction d∗(x) that

d∗ ∈ argmind ρ(F (x) + F (1)(x)d) +
1

2
dTU(x)d

∈ argmind f1(x) +∇f1(x)d+
1

2
∥f2(x) +∇f2(x)d∥2R−1

+
1

2
dTU(x)d

∈ argmind
1

2
dT
(
U(x) +∇H(x)TR−1∇H(x)

)
d

+∇vβ(x)T d
(11)

where the equivalence is obtained by dropping terms
independent of d. In general U(x) can be any positive
semidefinitematrix that varies continuously with respect
to x, but for our particular objective function involv-
ing Student’s t penalty, U(x) is chosen to be a Hessian
approximation of the Student’s t term in f1(x). There-
fore the update can be interpreted as a Gauss-Newton
style update. This approximation, proposed in [6, (5.5),
(5.6)], is employed here because of its significant com-
putational advantage; it is of the form

U =

⎡⎢⎢⎢⎢⎢⎣
U1 AT

2 0

A2 U2 AT
3 0

0
. . .

. . .
. . .

0 AT UT

⎤⎥⎥⎥⎥⎥⎦ (12)

with

At = −r
M∑

m=1

wt−1,m(x)
Q−1∇Fm(xt−1)

r + ∥xt −Fm(xt−1)∥2Q−1

,

Ut =r

M∑
m=1

wt,m(x)∇Fm(xt)
TQ−1∇Fm(xt)

r + ∥xt+1 −Fm(xt)∥2Q−1

+
wt−1,m(x)Q−1

r + ∥xt −Fm(xt−1)∥2Q−1

for 1 ≤ t ≤ T − 1, and

UT =
rwT−1,m(x)Q−1

r + ∥xT −Fm(xT−1)∥2Q−1

.

We can rewrite U(x) as

U(x) =
∑
m

Fm(x)T Q̃m(w(x))−1Fm(x),
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where

Gm(x) =

⎡⎢⎢⎢⎢⎢⎣
I 0 0

−∇Fm(x2) I 0 0

0
. . .

. . .
. . .

. . . 0−∇Fm(xT ) I

⎤⎥⎥⎥⎥⎥⎦
and

Q̃m(w(x))−1 = diag(Q̃m,t(w(x))
−1)

Q̃m,t(w(x))
−1 =

rwt−1,m(x)Q−1

r + ∥xt −Fi(xt−1)∥2Q−1

.

Clearly U(x) is positive semidefinite; we show in
Lemma 3 that U(x) is actually positive definite, so prob-
lem (11) reduces to the block tridiagonal linear system(

U(x) +∇H(x)TR−1∇H(x)
)
d+∇vβ(x) = 0.

Given d∗(x), the new x+ is of the form

x+ = x+ δd∗,

where δ is a step size selected using the Armijo-type [33,
Sec. 3.1] line search criterion.

δ = max{γl : ρ(F (x+ γld∗)) ≤ ρ(F (x)) + cγl∆(x; d∗)

and c ∈ (0, 1)}
(13)

with

∆(x; d) = ρ(F (x) + F (1)(x)d) +
1

2
dTU(x)d− ρ(F (x)).

When d = 0, we have ∆(x; 0) = 0 3 , and since we choose
the minimizing

d∗ = argmin
d

ρ(F (x) + F (1)(x)d) +
1

2
dTU(x)d,

we have ∆(x; d∗) ≤ 0. Further,

∆(x; d∗) = 0⇔ 0 ∈ argmin
d

ρ(F (x) + F (1)(x)d) +
1

2
dTU(x)d

⇔ 0 ∈ ∂ρ(F (x))F (1)(x)

by [17, Thm. 3.6]. In other words, stationarity is achieved
when ∆(x; d∗) = 0. When ∆(x; d) < 0, we are guaran-
teed to have descent

ρ(F (x) + F (1)(x)d) < ρ(F (x))

3 We overload ∆ here to match the notation in [6, 17];
∆(x; d∗) should not be confused with ∆M , which is used to
denote the simplex containing relaxed state estimates.

since U(x) is positive semidefinite. This condition en-
sures that the line search step (13) is well-defined [17,
Lemma 2.3].

Our approach is summarized in Algorithm 1. The posi-
tive parameter ϵ in the algorithm specifies the stopping
condition. Finally, we project the relaxed discrete state
estimate wt ∈ ∆M to obtain a discrete state estimate in
DM as described in Section 2.4.

Algorithm 1 Variable Projection for (6).

Require: x,w,Q,R, r, ν, β, ϵ
1: for k = 1, 2, 3, ... do
2: d(k) ← Gauss-Newton direction for x(k)

3: x(k+1) ← x(k) + δd(k)

4: w(k+1) ← InnerSolverΠt∆(w
(k))

5: lossk ← f(x(k+1), w(k+1))
6:

Iterate till ∆(x(k); d(k)) ≥ −ϵ.

3.3 Convergence of state estimation algorithm

In this section we show the convergence of the proposed
algorithm. The convergence of Algorithm 1 to a station-
ary point for a general class of convex composite objec-
tive functions is established in [17] and [6]. In particu-
lar [6, Theorem 5.1] establishes the possible outcomes
when applying this type of algorithm; informally, either
the algorithm converges or the search direction dk di-
verges. In the remainder of this section we provide two
technical results needed to formalize this intuition and
to apply the aforementioned theorem:

• Lemma 2 establishes a set of sufficient conditions that
prevent divergence (∥d(k)∥ → ∞);

• Lemma 3 proves that the sufficient conditions are sat-
isfied.

Lemma 2 Let Λ = {y|ρ(y) ≤ vβ(x
(0))}. If F−1(Λ) =

{x|F (x) ∈ Λ} is bounded and U(x) is positive definite for
all x ∈ F−1(Λ), then the hypotheses in [6, Theorem 5.1]
are satisfied and the sequence of search directions {d(k)}
is bounded.

Proof: The hypotheses in [6, Theorem 5.1] require that
F (1) to be bounded and uniformly continuous on the set
S = c̄o(F (−1)(Λ)) where c̄o stands for the closed convex

hull. F (1) is continuous on S since f
(1)
1 exists and is con-

tinuous by property of Moreau envelope and proximal

operator, and f
(1)
2 is continuous trivially. Further, given

that S is closed by definition and bounded by assump-
tion, it is compact. Hence F (1) is bounded and uniformly
continuous on S.

Now we need to show that the sequence of search direc-
tion is bounded. At any iteration, the search direction d

6



we choose satisfies

0 ≤ ρ(F (x)+F (1)(x)d)+
1

2
dTU(x)d ≤ ρ(F (x)) ≤ ρ(F (x0))

where the first inequality relies on ρ ≥ 0 and on the pos-
itive semidefinite property of U(x); the second inequal-
ity comes from ∆(x; d) ≤ 0; the third inequality results
from the line search condition that creates a decreasing
sequence {ρ(F (x(k))}.

Since ρ(F (x0)) is finite, dTU(x)d <∞ for all iterations.
Because Λ is closed by closedness of ρ and F is continu-
ous, F−1(Λ) is also closed. Along with its boundedness
by assumption,F−1(Λ) is compact. Since x ∈ F−1(Λ) ↦→
λmin(U(x)) is continuous, its image is bounded, hence
given that U(x) is positive definite there exists some
λmin > 0 for all x ∈ F−1(Λ). Therefore 0 < λmin∥d∥2 ≤
dTU(x)d < ∞, which implies that d(k) cannot be un-
bounded. □

Lemma 3 F−1(Λ) is bounded for problem (10) and
U(x) is positive definite for all x ∈ F−1(Λ).

Proof: First note that Λ is bounded by the coercivity of
ρ. This implies that for an unbounded sequence ∥x(k)∥ →
∞, we still have f1(x

(k)) <∞ and ∥f2(x(k))∥ <∞.

If ∥x(k)∥ → ∞, then we can find some t + 1 and a sub-

sequence J such that limk∈J ∥x(k)
t+1∥ = ∞. By the defi-

nition of f1 and f1(x
(k)) < ∞, limk∈J ∥Fi(x

(k)
t )∥ = ∞,

which further implies that limk∈J ∥x(k)
t ∥ = ∞. Itera-

tively this means that limk∈J ∥x(k)
t ∥ = ∞ for all t, in

particular for the given starting point x0, but that is not
possible.

To show that U(x) in (12) is positive definite, recall that
we can rewrite U(x) as

U(x) =
∑
m

Gm(x)T Q̃m(w(x))−1Gm(x) ⪰ 0.

If there exists some d such that dTU(x)d = 0, then

dT

(∑
m

Gm(x)T Q̃m(w(x))−1Gm(x)

)
d

=
∑
m

dTGm(x)T  
zm(x)T

Q̃m(w(x))−1 Gm(x)d  
zm(x)

=
∑
m

zm(x)T Q̃m(w(x))−1zm(x) = 0,

⇒zm(x)T Q̃m(w(x))−1zm(x) = 0 ∀i
⇒zm,t(x)

T Q̃m,t(w(x))
−1zm,t(x) = 0∀t ∀i

since Q̃m(w(x))−1 = diag(Q̃m,t(w(x))
−1), and

Q̃m,t(w(x))
−1 =

rw(x)t,mQ−1

r + ∥xt+1 −Fm(xt)∥2Q−1

are positive semidefinite. However because each wt ∈ ∆,
there has to be some Q̃−1

m,t ≻ 0 for each t. Therefore U(x)

must be positive definite for all x ∈ F−1(Λ). □

4 Parameter Tuning for Proposed Algorithm

Before we present numerical results, we include a general
guidance on parameter tuning for the new algorithm.
We discuss both standard parameters (e.g. Q, R) that
must be tuned by any algorithm for this application, as
well as the parameters ν and r which are specific to our
approach. We first give a rough outline of steps we have
taken to tune the parameters, followed by more detailed
guidelines to tune each individual parameter.

(1) Start with large r for Student’s t, i.e. distribution
close to Gaussian.

(2) If Q and R are unknown, they are tuned such that
the smooth part of trajectories can be well approx-
imated.

(3) Decrease degrees of freedom r of Student’s t so that
the nonsmooth part of trajectories can be captured.

(4) Adjust smoothing coefficient ν to reduce number of
switches.

For degrees of freedom r, one can start with a large
value, meaning that the distribution is close to Gaussian,
and decrease it later to capture jumps in the continuous
state.

For covariance matrices Q and R, if empirical estima-
tions are available, they can be supplied to the model
directly. There is existing literature on estimation meth-
ods for noise covariance matrices [20]. When such esti-
mations are not available, we usually assume the matri-
ces to be diagonal for simplicity, in which case the inverse
of diagonal entries can also be interpreted as weights.
The diagonal values of R represent variance for mea-
surements. When choosing R, we consider the relative
scale of measurements, e.g. measurements with smaller
magnitude usually have smaller variance. For choices of
diagonal values of Q, we usually assign smaller variance
for observed states, e.g. positions in our examples,and
larger variance for unobserved states.

The choice of smoothing coefficient ν depends on mod-
eler’s belief in frequency of switches. One can start with a
small value of ν (i.e. little penalty on frequent switches),
and gradually increase it, till the pattern of switches is
close to modeler’s belief.
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We recommend having a short piece of manually labeled
trajectories as a training set for the purpose of param-
eter tuning. After tuning, the user can apply the same
parameters on larger dataset collected from similar sce-
narios.

In terms of sensitivity of estimation results on param-
eters, we had the following observations when running
our experiments:

• The estimation result is not very sensitive to r. We
were able to decrease r fairly aggressively during pa-
rameter tuning.
• For the diagonals of Q and R, we found that it was
important to have values in the correct ranges, but
the exact values taken were not crucial.

• For smoothing coefficient ν, we noticed that the
switching times were sensitive to ν when ν was very
small relative to the diagonal entries of Q−1 and R−1.
Since we assumed that the discrete states should not
change too frequently, we used a slightly larger ν.

5 Comparison with the Interacting Multiple
Model (IMM) method

We compare the nonsmooth variable projection algo-
rithm (Algorithm 1) 4 with the Interacting Multiple
Model (IMM) [15] algorithm implemented in the open-
source package filterpy [30]. We consider two exam-
ples, in both cases the continuous state x is a scalar, and
there are two discrete states. In the first example, the
continuous state x undergoes no jumps, i.e. the reset is
the identity function. In the second example, the con-
tinuous state x undergoes an instantaneous jump when
the discrete state changes; i.e. a non–identity reset. The
dynamics of the two discrete state process models are:

ẋ = −1 Fw=1,

ẋ = 1 Fw=2.

For the second example with non–identity resets, when
a discrete state switch occurs, the continuous state de-
creases by 5. In both examples the discrete state switches
at t = 1 and t = 2. Additionally, the measurement noise
has a variance of R = [.0001], which is used as the mea-
surement noise covariance for all models. IMM1 uses a
process noise model with covariance Q = [.001] for both
the internal Kalman filters while IMM2 uses a process
noise model with covariance Q = [.2].

In the first example, Algorithm 1 (VP) and IMM per-
form nearly identically (Figure 1). Both methods accu-
rately recover the continuous state and discrete state.
When the system undergoes instantaneous jumps in the

4 We provide an implementation of Algorithm 1 at https:
//github.com/jizezhang/hds-state-estimation.

Time (s)

x

ẋ = 1 ẋ = −1

Fig. 1. Algorithm 1 (VP) performs comparably to
IMM when the continuous state does not undergo
any resets. The top plot shows the true state w and the
simplex estimate of the true state from both methods w̃V P ,
w̃IMM1 . The simplex estimate is shown in color and the prob-
ability estimate of the discrete state being w = 1 is super-
imposed as a black line. The middle plot shows the actual
value of the continuous state of the simulation and the es-
timates. The bottom plot shows the residual between true
continuous state and the estimated continuous state.

continuous state at discrete state changes, Algorithm 1
outperforms IMM (Figure 2). For IMM, there is a clear
trade–off exists between recovering the continuous state
and recovering the discrete state. When using a pro-
cess noise model with large covariance, as in the case
of IMM2, the continuous state can be recovered at the
expense of the discrete state. In the top subplot of Fig-
ure 2, w̃IMM2 is nearly the same value for the duration of
the simulation, with slight separation between the two
modes. With a smaller covariance, as in IMM1, the dis-
crete state can be recovered. From t = 1 to near t = 1.25,
IMM1 incorrectly identifies the discrete state due to the
continuous state jump direction being opposite of the
continuous state dynamics for discrete state w = 2.

Both Algorithm 1 and IMM require a similar number of
parameters from the user. For both methods, covariance
matrices for the process error modelQ and measurement
error modelR need to be provided. IMM adjusts the esti-
mated frequency of switching between the discrete states
via a probability transition matrix while Algorithm 1
uses the smoothing parameter ν, Sec. 2.4. Algorithm 1
has one additional parameter r due to the process noise
model being Student’s t distribution, which is crucial for
obtaining accurate estimates with non–identity resets,
Sec. 2.2.

6 Experiments with hybrid system models

To evaluate the proposed approach to state estimation
for hybrid systems, we apply our algorithm to linear and
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Time (s)

x

ẋ = 1 ẋ = −1

Fig. 2. Algorithm 1 (VP) outperforms the IMM when
there are jumps in the continuous state. The plots fol-
low the convention laid out in Figure 1.

(a)

q[1]

q[2] g

(b)

k1, k2

q[1]

q[2] g

(c)

Fig. 3. Jumping robot and impact oscillator hybrid
system models (Sec. 6.1). (a) Photograph of the physical
robot (one leg from a Minitaur [29]) that inspired the simu-
lation models. (b) Nonlinear model consisting of two masses
coupled with a linear spring and a nonlinear pantograph
mechanism. (c) Linear model consisting of two masses cou-
pled with a linear spring.

nonlinear impact oscillators. In addition to being well-
studied ( [18, §1.2], [35]), these mechanical systems were
chosen since they are among the simplest physically-
relevant models that have non–identity reset maps. The
parameter and trajectory regime considered in what fol-
lows is representative of a jumping robot constructed
from one limb of a commercially-available quadrupedal
robot [29] and controlled with an event-triggered stiff-
ness adjustment; Figure 3a contains a photograph of the
limb. The jumping robot’s hip and foot are constrained
to move vertically in a gravitational field, so the rigid
pantograph mechanism depicted in Figure 3b has two
mechanical degrees-of-freedom (DOF) coupled through
nonlinear pin-joint constraints. These two DOF are pre-
served, but their nonlinear coupling is neglected, in the
piecewise-linear model illustrated in Figure 3c. The hy-
brid dynamics of these linear and nonlinear impact os-
cillators are specified in Section 6.1

We perform two sets of experiments. The first set of ex-
periments in Sec. 6.2 concern the piecewise-linear model
depicted in Figure 3c and explore the consequences of
our modeling assumptions and the efficacy of our pro-
posed algorithm:

• Sec. 6.2.1 demonstrates the advantage of employing a
Student’s t distribution for process noise as compared
to a Gaussian distribution;

• Sec. 6.2.2 demonstrates the superior convergence rate
yielded by Gauss-Newton descent directions as com-
pared to gradient (steepest) descent;

• Sec. 6.2.3 demonstrates the advantage of smoothing
the relaxed discrete state estimate; and

• Sec. 6.2.4 demonstrates the algorithm’s performance
when onboard measurements are used instead of
offboard measurements.

The second set of experiments in Sec. 6.3 evaluate our
proposed approach using the nonlinear model depicted
in Figure 3b.

Since this section is devoted to comparing estimated
states to ground truth simulation results, and since our
approach entails the determination of a relaxed discrete
state estimate en route to obtaining the discrete state
estimate, we now introduce notation that distinguishes
these quantities:

• wt ∈ DM denotes the ground truth discrete state;
• w̃t ∈ ∆M denotes the relaxed discrete state estimate;
• ŵt ∈ DM denotes the discrete state estimate.

This notational distinction was not introduced previ-
ously in the interest of readability since there was no
ambiguity entailed by overloading notation in the prob-
lem formulation and algorithm specification.

6.1 Impact oscillator hybrid system models

The continuous state x = (q, q̇) ∈ R4 for the jump-
ing robot hybrid system model consists of the two-
dimensional configuration vector q ∈ R2 and corre-
sponding velocity q̇ ∈ R2, where q[1] and q[2] denote
the vertical height of the hip and foot, respectively. The
foot is not permitted to penetrate the ground, q[2] ≥ 0,
so the first part of the discrete state indicates whether
this constraint is active: A (air) if q[2] > 0, (ground)
if q[2] = 0. To compensate for energy losses at impact,
an event-triggered controller stiffens or softens a spring
based on which direction the hip is traveling, so the
second part of the discrete state indicates the direction
of travel for q[1]: ↑ if up, ↓ if down. With q̈m(q, q̇) ∈ R2

denoting the acceleration of the hip and foot in discrete
state m ∈ {A↓,G↓,G↑,A↑}, 5 formula for this accel-

5 To simplify exposition we identify m = A ↓ with m = 1,
m = G ↓ with m = 2, m = G ↑ with m = 3, and m = A ↑
with m = 4.
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eration are given in Table 1. At the moment of impact
(when the discrete state changes from wt ∈ {A ↓,A ↑}
to wt+1 ∈ {G ↓,G ↑}) the foot velocity q̇[2] is instan-
taneously reset to 0, corresponding to perfectly plastic
impact. An example of the jump in continuous state
when transitioning from A↓ to G↓ on the foot velocity
q̇[2] is shown in Figure 4 near time 17.5s.

Discrete state w Icon q̈w(x)

w = A↓

⎡⎣ 1
mh

(−k1(q, q̇))− g

1
mt

(k1(q, q̇))− g

⎤⎦

w = G↓

⎡⎣ 1
mh

(−k1(q, q̇))− g

0

⎤⎦

w = G↑

⎡⎣ 1
mh

(−k2(q, q̇))− g

0

⎤⎦

w = A↑

⎡⎣ 1
mh

(−k2(q, q̇))− g

1
mt

(k2(q, q̇))− g

⎤⎦
Table 1
Discrete states and continuous dynamics for impact
oscillator hybrid systemmodels (Sec. 6.1). Note that the
continuous dynamics q̈ have the same general form for both
the piecewise-linear and -nonlinear models, with the spring
law k being a linear or nonlinear function of the continuous
state x = (q, q̇) depending on which model is considered.

6.2 Piecewise-linear impact oscillator experiment

In this subsection, we employ the linear spring laws

k1(q, q̇) = 10(q[1]− q[2])− 3,

and
k2(q, q̇) = 15(q[1]− q[2])− 3,

with parameter values mh = 3,mt = 1, g = 2.

In our first demonstration the observed states are q[1]
and q[2], position of the hip and foot, leaving the veloc-
ities unobserved:

Hpos(x) = q. (14)

State estimation results for this system are shown in
Figure 7.

In the remainder of this subsection, we demonstrate the
effects of the choices we made in our problem formula-
tion (Sec. 2) and algorithm derivation (Sec. 3) using the
piecewise-linear model as a running example. We also
consider a variation where the measurements correspond

16.0 16.5 17.0 17.5 18.0

Time (s)
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0
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o
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ty
q̇[

2]
(m

/s
)

Student’s t Process Noise

Gaussian Process Noise

Simulation

Fig. 4. The Student’s t distribution process noise
yields better estimates of instantaneous changes in
continuous state (Sec. 6.2.1). In this plot, estimates of the
foot velocity are shown near two impacts (≈ 16.6s, 17.5s).

to the leg length and velocity, which are more represen-
tative of the onboard measurements available to an au-
tonomous robot operating outside of the laboratory.

6.2.1 Student’s t versus Gaussian process noise

Figure 4 compares the estimation of foot velocity using
Student’s t with r = 0.01 versus using Gaussian for the
process noise distribution; in both cases the true discrete
state is given. The estimated trajectory for both distri-
butions match the true simulated trajectory away from
jumps, while near jumps, such as around times 16.6s and
17.5s, using the Student’s t distribution enables closer
tracking of the instantaneous change in the true foot ve-
locity q̇[2] than when using a Gaussian distribution.

6.2.2 Gauss-Newton versus gradient (steepest) descent

We empirically compared convergence rates for contin-
uous state xt updates obtained using Gauss-Newton
and gradient (steepest) descent directions (Algorithm 1,
line 2). Figure 5 shows the log loss versus algorithm
iteration for the two methods; the actual discrete state
wt was taken as given to perform this comparison. As
expected, the objective value decreases significantly
faster when the search direction is determined by the
Gauss-Newton scheme as compared to the direction of
steepest descent, reaching the stopping criterion in ten
times fewer iterations in our tests.

6.2.3 Smoothing the relaxed discrete state versus not

If the continuous states are given, the discrete state
estimate returned by our algorithm (skipping lines 2
and 3 of Algorithm 1) is very close to the true discrete
state regardless of whether a smoothing term is included
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Fig. 5. Gauss-Newton descent directions yield
faster convergence than gradient (steepest) descent
(Sec. 6.2.2). In this plot, the discrete state variables w are
given and the second line of Algorithm 1 is modified to use
either Gauss-Newton descent directions or gradient (steep-
est) descent to estimate the continuous state variables x by
minimizing the relaxed objective function f(x,w) (6).

in the relaxed problem formulation. When simultane-
ously estimating both the continuous and discrete states,
the smoothing term becomes crucial, as illustrated by
comparing the discrete state estimates (ŵt) in Figure 6
(without smoothing) and Figure 7 (with smoothing). In
particular, the estimated discrete state switches rapidly
without smoothing, whereas with smoothing the discrete
state tends to remain constant for many samples and
change mostly near ground-truth switching times.

6.2.4 Onboard versus offboard measurements

In the laboratory, the positions of the robot hip and foot
can be directly measured offboard, e.g. with an exter-
nal camera system. Outside of the laboratory, only the
relative position of the hip and foot can be directly mea-
sured onboard our robot. Thus, we are motivated by this
practical consideration to evaluate our algorithm’s per-
formance in the case where only the relative position and
velocity of the hip and foot are measured,

Hrelative(x) =

[
q[1]− q[2]

q̇[1]− q̇[2]

]
. (15)

Although the full hybrid system state is formally un-
observable with these relative measurements, our algo-
rithm nevertheless yields good estimates of the discrete
state as shown in Figure 8; due to large errors in the esti-
mate of (unobservable) continuous states, we omit those
results from the figure.

Time (s)

q̇[2] velocity (m/s)

q̇[1] velocity (m/s)

q[1], q[2] position (m)

A↓ G↓ G↑ A↑

Fig. 6. Without smoothing (ν = 0), the discrete state
estimate switches frequently (Sec. 6.2.3). The top plot
shows the true discrete state of the system w ∈ DM , the re-
laxed discrete state estimate w̃ ∈ ∆M , and the discrete state
estimate ŵ ∈ DM for a simulation of the piecewise-linear
system. The subsequent plots show the estimate, simulation,
and error ϵ values for position and velocity of the hip q[1]
and foot q[2].

6.3 Piecewise-nonlinear impact oscillator experiment

To test Algorithm 1 on a nonlinear model, we included
the kinematic constraints depicted in Figure 3b, result-
ing in a nonlinear spring force. In this model we set the
two spring laws to be the same k1 = k2, decreasing the
number of discrete states from four to two: w = A when
q[2] > 0 and w = when q[2] = 0. State estimation results
compare favorably with the analogous results from the
piecewise-linear system when using either absolute po-
sition measurements Hpos (14) (compare Figure 9 with
Figure 7) or relative measurements Hrelative (15) (com-
pare Figure 10 with Figure 8).
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Time (s)

q̇[2] velocity (m/s)

q̇[1] velocity (m/s)

q[1], q[2] position (m)

A↓ G↓ G↑ A↑

Fig. 7. With smoothing (ν > 0), the discrete state esti-
mate mostly switches near the true switching times.
(Sec. 6.2.3). This plot shows results from the piecewise-linear
system; the notational and plotting conventions are adopted
from Figure 6.

Time (s)

A↓ G↓ G↑ A↑

Fig. 8. Estimated discrete state using onboard
(relative position and velocity) measurements
Hrelative (15) for the piecewise-linear system closely
matches true discrete state. (Sec. 6.2.4). Continuous
state estimates are not shown since they are formally unob-
servable using only onboard measurements (in practice, they
drift away from ground truth over time).

Time (s)

q̇[2] velocity (m/s)

q̇[1] velocity (m/s)

q[1], q[2] position (m)

A

Fig. 9. Continuous and discrete states estimated for
the piecewise-nonlinearmodel (Sec. 6.3). Notational and
plotting conventions are adopted from Figure 6; note that
this model only has two discrete states (Sec. 6.1).

In Figure 9 we see that the model can estimate continu-
ous and discrete states in the nonlinear setting. However,
we do notice that the estimated trajectories are not as
close to ground truth as in the linear case. In particular,
when q[2] has a value only slightly greater than 0 (e.g.
between times 3s and 4s), the algorithm fails to detect
the transition between w = A and w =.

7 Conclusion

We proposed a new state estimation algorithm for
hybrid systems, analyzed its convergence properties,
compared with IMM, and evaluated its performance
on piecewise-linear and -nonlinear hybrid systems with
non–identity resets. The algorithm leverages a relaxed
state estimation problem formulation where the decision
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Time (s)

A

Fig. 10. Estimated discrete state using onboard
(relative position and velocity) measurements
Hrelative (15) for the piecewise-nonlinear system
closely matches true discrete state. (Sec. 6.2.4). As
with Figure 8, continuous state estimates are not shown since
they drift from the true values over time; note that this non-
linear model only has two discrete states (Sec. 6.1).

variables corresponding to the discrete state are allowed
to take on continuous values. This relaxation yields a
continuous optimization problem that can be solved
using recently-developed nonsmooth variable projec-
tion techniques. The effectiveness of the approach was
demonstrated on hybrid system models of mechanical
systems undergoing impact.

A Switched and hybrid dynamical systems

A hybrid dynamical system is a tuple H = (D,F,G,R)
[16,24] where

D =
∐
j∈J

Dj , F : D → TD, G ⊂ D, R : G→ D.

With ϕ : [0,∞)×D → D the flow of H, then a discrete-
time switched nonlinear system is obtained by sampling
H with timestep ∆ > 0:

x+ = ϕ(∆, x).

This equation may not immediately appear to be
“switched”, but the function ϕ is only piecewise-
continuous; the switching structure can be exposed
with reference to the flows ϕj : [0,∞) × Dj → Dj and
time-to-guard τj : Dj → [0,∞), τj,k : Dj → [0,∞)
functions associated with each discrete state j ∈ J and
pair of discrete states (j, k) ∈ J × J :

x+ =

⎧⎨⎩
ϕj(∆, x), τj(x) > ∆;

ϕk (∆− τj,k(x), Rj,k (ϕj(τj,k(x), x))) ,

τj(x) = τj,k(x) ≤ ∆.

This piecewise-defined equation, equivalent to (but
much more explicit than) x+ = ϕ(∆, x), is a discrete-
time switched nonlinear system (in particular, each
function in the piecewise definition is continuously dif-
ferentiable) with model set indexed by M = J ∪ (J ×J)

and switching rule determined as a function of x:

m(x) =

{
j, τj(x) > ∆;

(j, k), τj(x) = τj,k(x) ≤ ∆.
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