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Geometric Deep Learning for
Shape Correspondence in
Mass Customization by
Three-Dimensional Printing

Many industries, such as human-centric product manufacturing, are calling for mass cus-

Jida Huang

Mechanical and Industrial Engineering,
University of Illinois at Chicago,
Chicago, IL 60607

e-mail: jida@uic.edu

Hongyue Sun

Industrial and Systems Engineering,
University at Buffalo, SUNY,

Buffalo, NY 14260
e-mail: hongyues@buffalo.edu

Tsz-Ho Kwok

Mechanical, Industrial and Aerospace
Engineering,

Concordia University,

Montreal, QC H3G 1M8, Canada
e-mail: tszho.kwok@concordia.ca

Chi Zhou'

Industrial and Systems Engineering,
University at Buffalo, SUNY,
Buffalo, NY 14260

e-mail: chizhou@buffalo.edu

Wenyao Xu

Computer Science and Engineering,
University at Buffalo, SUNY,
Buffalo, NY 14260

e-mail: wenyaoxu@buffalo.edu

tomization with personalized products. One key enabler of mass customization is 3D print-
ing, which makes flexible design and manufacturing possible. However, the personalized
designs bring challenges for the shape matching and analysis, owing to the high complexity
and shape variations. Traditional shape matching methods are limited to spatial alignment
and finding a transformation matrix for two shapes, which cannot determine a vertex-to-
vertex or feature-to-feature correlation between the two shapes. Hence, such a method
cannot measure the deformation of the shape and interested features directly. To
measure the deformations widely seen in the mass customization paradigm and address
the issues of alignment methods in shape matching, we identify the geometry matching of
deformed shapes as a correspondence problem. The problem is challenging due to the
huge solution space and nonlinear complexity, which is difficult for conventional optimiza-
tion methods to solve. According to the observation that the well-established massive data-
bases provide the correspondence results of the treated teeth models, a learning-based
method is proposed for the shape correspondence problem. Specifically, a state-of-the-art
geometric deep learning method is used to learn the correspondence of a set of collected
deformed shapes. Through learning the deformations of the models, the underlying varia-
tions of the shapes are extracted and used for finding the vertex-to-vertex mapping among
these shapes. We demonstrate the application of the proposed approach in the orthodontics
industry, and the experimental results show that the proposed method can predict corre-
spondence fast and accurate, also robust to extreme cases. Furthermore, the proposed
method is favorably suitable for deformed shape analysis in mass customization enabled
by 3D printing. [DOL: 10.1115/1.4046746]

Keywords: additive manufacturing, computer-integrated manufacturing, design for
manufacturing, rapid prototyping and solid freeform fabrication

1 Introduction

Mass customization is an emerging paradigm to achieve variety
and customization in product geometry, functionality, and property
at near mass production price [1]. The customized products are
challenging to be mass-produced in traditional manners due to
high geometric variation and product functionality. As an emerging
disruptive technology, 3D printing, also known as additive manu-
facturing, can rapidly fabricate complex physical object and there-
fore enables profitable mass customization [2]. For instance, in the
orthodontics industry as shown in Fig. 1,% highly mass-customized
transparent dental aligners are fabricated by 3D printing to allow the
patient to wear on the teeth and progressively move the misplaced
teeth to the desired position and orientation. The patient typically
receives a pair of aligners for upper and lower teeth every 2
weeks during the 6-month to 12-month treatment period. It is
reported that the company runs the 3D printers 24 h and produces
40,000 unique aligners per day [3]. The need for a large amount
of different complex shapes in a short period requires mass custom-
ization techniques for aligner production.

To promote the broad applications of 3D printing and fully
realize mass customization, one needs to guarantee the product geo-
metric accuracy during design and manufacturing. This is
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challenging to achieve due to the high geometric complexity and
large variations. One can imagine that the teeth model of different
people is totally different, though the general structure looks
similar. One of the most common practices of geometry operation
in mass customization is the shape geometry matching. For the
teeth aligner example, the shapes of the patient’s teeth during the
whole treatment period have to be systemically tracked and
recorded for the aligner design. The dentist first needs to manually
mark several “feature points” on the scanned teeth model. Then, the
caD software is used to match these marked points of the newly
scanned teeth model with the initial one (template), based on
which each individual tooth can be extracted, marked, and num-
bered, allowing them to be individually adjusted to a preferable
position and orientation. Besides, the scanned teeth model (patients’
teeth imprint) will be matched and compared with the most recently

Fig.1 Teeth aligners for orthodontic treatment. Left-top: aligner
before treatment; Left-middle: aligner during treatment; Left-
bottom: aligner after treatment; Right: digital models for the pro-
gressively fabricated transparent aligners.
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used aligner model to check the effectiveness of the treatment in the
prior period.

Based on the similarities of the customized models, algorithms
have been proposed to address the computational reuse problem
[4,5]. These algorithms tend to utilize the existing geometry and
topology for information-reuse in the mass customization applica-
tions. However, these algorithms assume the matching between
the target model and the template model is given, which may not
be available in real practice. What is more, the printed aligner
needs to be compared with the target model (prescription from
the dentist) to evaluate the quality of the printed product, which is
again based on the matching result. It is therefore very desirable
to design an effective shape matching procedure to capture the
geometry variations (e.g., structure deformations, local feature
changes) for mass customization.

For shape matching, the most intuitive way is to find a trans-
formation to align two shapes together, also known as rigid registra-
tion. The registration method tends to find a spatial transformation
between the input shapes. Based on the transformation, one can
align one shape to the other and observe the overall spatial differ-
ence of two shapes. However, the rigid shape registration is not
an appropriate approach to depict the deformation and variance
between the models in the mass customization applications in
two folds:

(1) The rigid registration approach minimizes the error of the
Euclidean distance between the closest points from the
current model to the target model. For the global deforma-
tion, the two models cannot be spatially well-aligned regard-
less of the effectiveness of the optimization algorithm. As
shown in Figs. 2(a)-2(c), the two teeth models with global
deformation need to be well-mapped through the corre-
sponded individual teeth features; however, they cannot
be well-aligned spatially due to the large deformation. For
the local deformation, the rigid alignment algorithms tend
to align the locally deformed features by sacrificing the non-
deformed features, which otherwise can be perfectly aligned.
As shown in Figs. 2(d)-2(f), the two teeth models with local
deformation (the right-side wisdom tooth is moved) can be
well matched based on the maximum correspondence
(d)—(e); however, the traditional alignment algorithms opti-
mize the Euclidean distance error between the two models
and result in mismatched alignment (f).

(2) The rigid alignment algorithms tend to align the individual
vertices from the two models by optimizing the spatial trans-
formation matrix, and it cannot find a vertex-to-vertex and

Fig.2 Shape alignment versus shape correspondence: (a) teeth
model with wider opening; (b) teeth model with narrower
opening, the dash lines show the correspondence between the
two models; (c) the alignment between the two models in
(@) and (b); (d), (e) alignment between two locally deformed
teeth models based on maximum correspondence level in both
3D and 2D views; (f) alignment between the two models in
(d)—(e) based on minimum distance error
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feature-to-feature mapping between the deformed shapes,
thus cannot make further analysis of the deformation beha-
vior in the application of mass customization.

Therefore, instead of finding an optimal spatial transformation,
we need to determine the mapping relation between the deformed
shapes in mass customization. Such a mapping relation is usually
represented as a vertex-to-vertex correspondence, i.e., finding a
corresponding vertex on one shape to the given vertex on the
other shape. So, this problem is called shape correspondence
problem. The problem is challenging because the solution space
is big and nonlinear. It has O(N!) possibilities for mapping N verti-
ces on both shapes. What is more, in the scenario of mass custom-
ization, the number of deformed shapes to be matched is enormous,
which makes the problem even more challenging. Currently, in the
teeth aligner industry, the common approaches still primarily rely
on manual operations (such as marking the feature vertices on the
teeth model and mapping the patients’ teeth models in different
periods) based on the dentists’ expertise and experience, which is
extremely tedious and inefficient, and the time spent on such man-
ually marking tasks could be 10 min to 2 h and without guarantee of
finding the perfect matching to the reference model.® This hugely
hinders the digital model prepossessing, especially for a large
number of models, which is common in the application of mass
customization.

To address this challenge, this paper investigates an automated
way of finding the shape correspondence with an ultimate goal of
integrating mass customization with 3D printing. The optimization
for finding the shape correspondence of a large number of complex
shapes is challenging. In practice, we observe that the massive data-
bases of the well-established correspondence results for the treated
teeth models provide valuable resources for us to predict the corre-
spondence features of the new teeth models. Thus, we hypothesize
that the highly similar yet complex teeth models share the intrinsic
correspondence relation, which can be learned from the existing
models in the databases, and the learning results can be used to auto-
matically map the corresponded features between the new models to
the existing models. The objective of this paper is to investigate an
effective machine learning approach to solve the shape correspon-
dence problem in mass customization. We will explore the emerg-
ing deep learning techniques to extract the intrinsic relation for the
shape correspondence. In particular, we will focus on a geometric
deep learning approach owing to its potential to extract invariant
features among the customized models. The input data are the
vertex coordinates of the teeth models, the output data are the ele-
ments of the canonical label set, and a new convolution operation
is designed based on the metric of geodesic distance, which captures
the shape variation. The main contributions of the work can be sum-
marized as follows:

(1) We identify the shape matching problem in mass customiza-
tion as a correspondence problem, which is more suitable to
depict the relation of deformed shapes and conduct further
analysis of the shape deformation behavior.

(2) Based on the problem property, in which the established
database of shape correspondence already exists in mass
customization, a learning-based method is proposed for the
correspondence problem.

(3) A geometric deep learning method is used for correspon-
dence learning. Experimental results verify that the proposed
method can predict new shape correspondence for deformed
shapes. Also, the proposed method is robust to extreme cases
and efficient for making new predictions.

We will use the teeth aligner in the orthodontic industry as an
application example to present the proposed approach, and it
should be noted that the approach is generic and can be easily
extended to other applications in mass customization, including

3htlp://www.youtube.com/walch?v:L2Jij8JgUk
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medical industry (hearing aid),* entertainment industry (movie
characters),” jewelry industry (customized rings),” and toy indus-
try.% The rest of the paper is organized as follows. Section 2 will
briefly review the related works. The correspondence problem
will be discussed in Sec. 3. Section 4 will introduce the architecture
of the proposed deep neural network, and it is followed by the
experimental results in Sec. 5. Section 6 will conclude the paper.

2 Literature Review

In this section, we first review the related work on traditional
shape alignment in design and manufacturing, the correspondence
problem, and then summarize the 3D deep learning models applica-
ble for shape matching.

2.1 Shape Alignment in Design and Manufacturing. Shape
matching is naturally associated with a classical problem, shape
alignment. Shape alignment is a process to align different three-
dimensional (3D) shapes. Many research works have been explored
in diverse aspects, and interested readers are referred to a survey
paper [6]. In shape registration, the input includes two partial
scans of the same object.

However, in many practical applications, the matching objects
are different or include a certain degree of deformation, even for
the same object. In Ref. [7], similar but different shape matching
problem is considered. The shape matching is also widely used
for geometric variation modeling in the manufacturing area. The
majority of the matching problems treat the product as a rigid
body. For instance, Tootooni et al. performed a classification
study for the fused deposition modeling printed part geometric
integrity variation using 3D vertex cloud data, which are matched
with the CAD design [8]. These methods did not consider the defor-
mation of the products. In contrast, many other studies imply the
necessity to investigate the non-rigid bodies in manufacturing
[9,10]. For instance, Camelio et al. studied the geometrical variation
propagation at the discrete measurement vertices in the automotive
body assembly process with a compliant assemble system [9]. Other
than just focusing on the limited discrete measurement vertices,
Zhou et al. proposed the morphing of geometry from stage to
stage and learned the mapping between complex surfaces via
affine and non-affine transformations for the surface quality
control [11].

2.2 Shape Correspondence Problem. In general, the non-
rigid matching can be solved by shape correspondence problem.
The goal of the classical correspondence problem is to find a vertex-
wise matching between the vertices of two shapes. For example, a
theoretical and computational framework is proposed for isometry
invariant recognition of point cloud data in Ref. [12]. Mateus
et al. proposed an articulated shape matching using Laplacian eigen-
functions and unsupervised point registration. A convex optimiza-
tion and game theory-based method is used in Refs. [13,14],
respectively. Typically, the computational complexity of such
methods is high, but the scalability is an essential issue for mass cus-
tomization. These methods are thus not suitable within the context
of mass customization.

Rather than vertex-wise correspondence, other works used a soft
correspondence approach to assign a vertex on one shape to more
than one vertex on the other. For instance, a soft mapping
between surfaces is proposed in Ref. [15], while Ovsjanikov et al.
used a function map to represent the correspondence between
shapes [16]. In Ref. [17], a matrix completion method is proposed
for solving the shape correspondence problem.

“Siemens. http:/www.siemens.com/
SEnvisiontec Inc. http:/envisiontec.com/
“Digital Forming. https:/home.digitalforming.com/
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Geodesic distance ~ =---- Euclidean distance

Fig.3 Geodesic distance versus Euclidean distance: (a) and (b)
the comparison between the geodesic distance and Euclidean
distance for globally deformed teeth models; (c) and (d) the com-
parison between the geodesic distance and Euclidean distance
for locally deformed teeth models

2.3 Deep Learning Beyond Euclidean Data. As an emerging
machine learning technique, deep learning has been widely used in
image analysis, computer vision, and manufacturing areas [18,19]
and achieved remarkable breakthroughs. In order to extend the
deep learning method from 2D learning to 3D learning, many
attempts have been made to extend the convolution operation to
3D problems. The most direct way is to use a voxel representation
of 3D shapes. Wu et al. represented a geometric 3D shape as a prob-
ability distribution of binary variables on a 3D voxel grid, using a
convolutional deep belief network to learn the distribution of
complex 3D shapes and achieved object recognition [20]. Similarly,
Brock et al. trained voxel-based variational autoencoders for object
classification [21]. Balu et al. used voxel data to learn salient fea-
tures from a CAD model of a mechanical part and determined the
part manufacturability [22]. Qi et al. used point cloud as input to
deep net architecture for 3D classification [23].

However, the main drawback of such approaches is representing
the geometric data in a Euclidean structure. First, for complex 3D
objects, the Euclidean representations such as depth images or
voxels may lose significant parts of the object or its fine details,
or even break its topological structure. Second, the Euclidean repre-
sentations are not intrinsic and vary as the result of the pose or
deformation of the object. Extracting the invariance to shape defor-
mations is extremely difficult with such methods and requires
complex models and massive training data sets due to a large
number of degrees-of-freedom involved in describing non-rigid
deformations. In order to extend the convolution operation for
intrinsic geometric deep learning, Bronstein et al. proposed geomet-
ric deep learning, which goes beyond Euclidean data [24]. Masci
et al. first considered convolutional neural networks (CNN) in
non-Euclidean domains (surfaces) by using the geodesic CNN
model [25]. The method is improved by Boscaini et al. [26] and
further generalized by Monti et al. [27].

For the teeth aligner application, the geodesic distance (distance
between geographic vertices along the path conforming to the
surface) has little or no changes, though the Euclidean distance
(straight-line distance between two vertices in Euclidean space)
has large changes under the non-rigid deformation. As shown in
Figs. 3(a) and 3(b), under global deformation, the Euclidean dis-
tances between the corresponded vertices are quite different
(JlAB|| > ||A’B'||), while the geodesic distance are almost the same
(d(A, By=d(A’, B')). Similarly, under the local deformation (Figs.
3(c) and 3(d)), the Euclidean distances are different due to shape
stretching (]|CD|| <||C'D’||), while the geodesic distance are
almost the same (d(C, D)=d(C', D')). Therefore, the geodesic dis-
tance will be used as the metric to capture the invariant features
among the shape variations of the mass-customized models in this

paper.

3 Problem Definition

The shape matching includes two different problems: shape
alignment and shape correspondence. In this section, the shape
alignment problem is firstly introduced, then the shape correspon-
dence problem is defined. In both problems, the input is two 3D
shapes X’ and ), typically modeled as Riemannian manifolds.

JUNE 2020, Vol. 142 / 061003-3
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3.1 Shape Alignment Problem. In the shape alignment
problem, the objective is to find a spatial transformation T € R>:
T(X) — ), to align two shapes. This transformation usually
includes the rotation and translation components. Furthermore,
the alignment is normally solved through minimizing a specific dis-
tance function:

T* = arg minE(T (X), V) (1
TeR?

The distance function E can be Euclidean distance or any other
application-based distance matrices.

From Fig. 4(a), it can be seen that the spatial transformation can
provide a rough estimate of the similarity between the two models,
but from such rough alignment we cannot tell the vertex or feature
relation between the two shapes, i.e., given a vertex on one shape,
we cannot tell its corresponding vertex on the other shape. Thus,
within the deformation, it cannot determine how a vertex on the
shape is moved. Thus, a method to extract the vertex-to-vertex or
feature-to-feature relation (mapping between two models) is
needed.

3.2 Shape Correspondence Problem. Figure 4(b) shows the
correspondence of two models, in which each vertex on one
model is mapped to a corresponding vertex on the other model.
In this case, we extract the vertex-to-vertex relation between two
models rather than finding a spatial transformation between them.
Once we determined such a relation, we can further identify how
each vertex on the model is deformed by comparing the spatial
position of the corresponded vertices. Furthermore, we can also
compare a vertex and its neighboring vertices with the correspon-
dent one on the other model to see how a local structure is
deformed. Thus, shape correspondence is more suitable for depict-
ing the mapping relationship between two deformed models.

In shape correspondence problem, the goal is to find a meaning-
ful vertex-wise correspondence ¢: X — ). Specifically, shape X
and ) contain the number of m and n vertices respectively. Here,
the number m and n can be selected as the vertices on the triangu-
lated mesh model or through a uniform sampling on the shape. The
correspondence of two shapes (mapping relation) can be described
as finding a mapping ©: {xy, ..., X,,} = {¥1, ..., ¥, }. Such a mapping
is represented as a permutation matrix IT € {0, 1}"". Denoting the
space of mxn permutation matrices as P, the shape matching
approaches frame the correspondence problem as,

n* = arg min F(IT) 2)
neP
where F is the fidelity term intended to align a set of vertex-wise
descriptors encoding the similarity between the vertices [28].
An optimal vertex-to-vertex correspondence is usually challeng-
ing to find because the solution space is big and nonlinear, espe-
cially when the m and n are large. In practice, the problem can be

(b)

Fig. 4 Different shape matching method: (a) minimizing spatial
transformation distance (shape alignment) and (b) mapping via
shape correspondence
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transformed into a soft correspondence problem, that is for a
vertex x on a shape X, the goal of the problem is to find a
m-dimensional output which can be interpreted as a correspondence
probability of vertex x to the vertices on shape ). Thus, each vertex
on shape X would have m outputs indicating the probability of
the vertices corresponding to point x. The output of all the vertices
of the shape can be arranged as a m x n matrix with the element of
the probability of vertex x mapped to vertex y.

Theoretically, it is very time-consuming to find the optimal solu-
tion of the correspondence problem because the problem cannot
be solved in polynomial time. Practically, finding the desired cor-
respondence solution for the mass customization problem is very
challenging. First, the number of vertices on the shape is big.
For example, an approximated triangulated teeth aligner model
usually has more than 8 K vertices. Second, in teeth aligners indus-
try, the number of teeth models that need to be extracted for the cor-
respondence to the template or previous treatment model is vast.
This hugely hinders the computational efficiency of the correspon-
dence extraction. Therefore, a fast and automated way of finding
the correspondence between shapes is urgently needed in mass
customization.

4 Correspondence Learning

As discussed in Sec. 3, the shape matching in mass customization
is modeled as a correspondence problem. Inspired by the fact that
most of the models are similar despite the deformations in the appli-
cation of the mass customization paradigm, a learning-by-examples
approach is introduced to find the correspondence of similar shapes
in the same category. In such a scenario, we assume the correspon-
dence of a set of training shapes in the same category is already
known and collected. Our goal is to learn from these examples on
how to match two deformed shapes with a vertex-to-vertex corre-
spondence. In order to extract the underlying intrinsic information
among these deformations, a deep learning method is introduced
for such information extraction.

4.1 Opverview of the Proposed Learning-Based Method. In
the learning-based method, the assumption is that the vertex-to-
vertex correspondence of a set of samples is already collected,
i.e., the ground-truth correspondence of such a group of shapes
are already known. From the given data set, the intrinsic correspon-
dence property of the shapes is learned from these examples. More-
over, for the learning-based method, CNN is introduced for
correspondence learning in this paper.

Figure 5 depicts a brief overview of the proposed learning-based
method. It can be seen that given the ground-truth correspondence
of shapes n*: X — ) in the training examples, our objective is to
learn how to match two new shapes from these ground-truth corre-
spondences. During the learning stage, the relation between each
vertex x on a query shape X to its corresponding vertex m*(x) on
the reference shape ) in the collected training dataset are learned.

(a)

Fig. 5 Overview of correspondence leaning. A CNN is used for
the correspondence learning. The goal is to find a n-dimensional
output, which can be interpreted as a correspondence probabil-
ity of vertex x from the query shape to vertices on the reference
shape: (a) query shape and (b) reference shape.
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Accordingly, the vertex-to-vertex correspondence function fg(x)
needs to be solved and extracted. Here, © is the network parameters
to be optimized, fis the network which outputs a corresponding ver-
tices vector by giving an input vertex x.

Once the leaning stage is completed, the correspondence function
fcan be learned. Based on the optimized network parameters, ©, we
can directly use fg(x) to infer the vertex correspondence on the new
shapes. During the stage of inference, we assume there are n verti-
ces on the reference shape ). By passing the vertex x as input into
the learning-based function fg(x), the output will be an
n-dimensional metric, which represents the probability of vertex x
corresponding to vertices on the reference shape ).

Jo() = (fo(x), ..., fon(x)) 3

In summary, the deep learning method, CNN, is introduced for
the shape correspondence learning in the mass customization appli-
cation. In the following sections, the details of how to solve the
leaning function fg(x) and the detailed steps of CNN in the learning
stage will be introduced.

4.2 Convolution Operation on Mesh Data. One of the key
elements for feature learning in CNN is the convolution operation.
However, most of the existing works are limited to image data, in
which the convolution operation is well defined in Euclidean grid-
like data. For the data in the correspondence problem, the shapes are
represented as a Riemannian manifold with the format of mesh in
the 3D non-Euclidean domain. Given such mesh data, the convolu-
tion operation in the image domain is no longer suitable for
non-Euclidean manifold data learning. Hence, to utilize the CNN
for mesh data learning, a new convolution operation should be
designed in 3D non-Euclidean domain.

In order to design such a convolution operation and represent the
intrinsic variations of the deformations of the manifolds, Masci
et al. [25] proposed a generalization of convolution operation to
mesh data. In this generalized method, the operation is based on
the definition of a local charting procedure in geodesic polar coor-
dinates, named as patch operator.

Patch operator is initially designed for constructing an intrinsic
shape context descriptor by Kokkinos et al. [29]. It mainly considers
the local neighboring area around a given vertex on the manifold to
describe such a vertex. The definition of the patch operator is

(DO )(p. 0) = pr,ooc, £ @©)de 4

The patch operator maps the values of a function f at a neighbor-
hood of the vertex x € X into the local polar coordinates p, 6.
Here, d& denotes the area element induced by the Riemannian
metric and wyp(x, §) is a weighting function localized around
vertex x with geodesic radius p and angle 0. Figure 6 shows exam-
ples of the construction of local geodesic patches with two different
types of weights w,, and wy.

Fig. 6 Patch operator construction: (a) local geodesic patch
examples, (b) geodesic radial weight w,, and (c) angular weight
wy (image courteous of Ref. [25])
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Intrinsic convolution. D(x)f can be regarded as a patch on the
manifold and (D(x)f)(p, 0) is interpolating f'in the local coordinates,
which can be used to define the convolution operator for manifold
data.

27 (Pmax
(f * a)x) =j j a(p, O)D@))(p, B)dpdd (5)
0Jo

Here, the convolution operation can be thought of as matching a
template a(p, 0) with the extracted patch at each vertex. In angular
coordinate, the patch can be rotated at any angle, which would lead
to angular ambiguities [27]. A maximum is taken over all possible
rotations of the template to eliminate such ambiguity.

27 Pimax
(f * )= _max j j a(p. 0+ AOYD(XY)(p. O)dpdd  (6)
a0el0.2m | Jo

The above operator is used to define an analogy of traditional
convolution operation. For discrete triangulated mesh data, it can
be implemented through a discrete local system of geodesic polar
coordinates containing Ny and N, radial bins [30].

4.3 Non-Euclidean Convolutional Neural Networks. With
the defined non-Euclidean convolution operation for mesh data, it
can be directly used in the convolution layer to learn the templates
of a in Eq. (6). The templates represent different local features of
each vertex on the mesh. The proposed network consists of various
subsequent layers. The architecture of the proposed network mainly
consists of the following different type of layers.

Intrinsic convolution (IC) layer uses the operator from Eq. (6) to
replace the classical Euclidean convolution. The layer is specified
by a certain number of filters, a,,, along with additive biases b,
and it operates by computing the convolution of the previous
layer with each of those filters, afterward adding the biases. The
IC layer contains PQ filters arranged in banks (P filters in Q
bank), each bank corresponds to an output dimension.

P
g =Y (f" * ag)®) +bys p=1,....P g=1,...,0
p=1

()

where a,, is the learnable coefficients of the pth filter in the gth filter
bank. The IC layer is mainly used to extract the hierarchy compos-
ites of the feature associated with the vertex on the mesh data.

Fully connected (FC) layer is a linearly connected layer to adjust
the input and output dimensions. Given a P-dimensional input
X" =(x",...,xi), the fully connected layer produces a
Q-dimensional output Y = ({",..., y3") by using a learnable
weight vector w,

.
£0(x) =f7<2 quﬁf"(X)>; g=1,...,0 ®
p=

The output is optionally passed through a non-linear function
such as the ReL.U [31], n(f) = max{0, ¢}. The ReLU is an activation
function which can have a better gradient propagation and
scale-invariant and also have the effect of sparse activation for the
network [32].

Softmax layer is used to classify the output from the previous
layer. In this paper, the output of vertex j is a n-dimensional prob-
ability vector, whose element represents the probability of vertex j
corresponding to vertex i on the other shape.

exp (")
i exp (£
where i=1,...,n; j=1,...,m are the number of vertices on each
shape, respectively.

Dropout layer is a fixed layer to prevent overfitting [33]. The
term “dropout” refers to dropping out units (hidden and visible)

(82" = softmax(f") = ”
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in a neural network. Dropping a unit out means we temporarily
remove the unit from the network and also remove all of incoming
and outgoing connections of the unit. The selection of which units
to drop is random.

Batch normalization layer is another fixed layer to reduce the
training time of large network [34]. It normalizes each mini-batch
during stochastic optimization to keep zero mean and unit variance,
and then performs a linear transformation of the form:

in

out P —H
=Ly + (10)
8 c52+eY P

where u and 62 are the mean and the variance of the training dataset
by using exponential moving average method, respectively. To
avoid numerical errors, a small positive constant € is used here.

4.4 Learning the Correspondence. Once the non-Euclidean
CNN is constructed, we can apply it to the collected ground-truth
data to train the network. When training the network, a cross-
entropy function is used as the objective function to be minimized
for obtaining the optimal network parameters.

Let m and n denote the number of vertices of shape X and ),
respectively. For a vertex x on shape X, the network produces a
n-dimensional output as described in Sec. 4.1, which can be inter-
preted as a correspondence probability on the reference shape ).
The output of the network is arranged as a m x n matrix. For each
matrix element fg(x,y), it means the probability of vertex x
being mapped to y. And y*(x) denotes the ground-truth corres-
pondence. The ground-truth correspondences are collected as
T ={(x, y * (x))}, the optimal parameters of the network ® are deter-
mined by minimizing the following logistic regression loss function.

(@ == Y logfelx y*x) (11

ey ()ET

which represents the divergence between the probability distribution
produced by the network and the ground-truth distribution.

5 Experimental Study

In this section, several different types of experiments are con-
ducted to evaluate the performance of the proposed geometric deep
learning method for the correspondence problem. The method is
tested with a set of non-rigid shapes with various degrees of
deformations.

For the training dataset, we collect 100 teeth aligner models from
ten different patients with ten different treatment stages. Since the
correspondence is in pair-wise, i.e., any two shapes can form a cor-
respondence relation. Therefore, there are C,, = 4950 correspon-
dences of shapes in total for the training dataset. Hence, the set of
models includes a variety of near-isometric deformations in the
same model category. Each teeth aligner model has 9202 vertices
on the shape of the mesh, and the vertex-wise ground truth corre-
spondence, i.e., the vertex-to-vertex correspondence is already
known between all of the shapes among the dataset. The CNN is
implemented in Theano [35]. The ADAM stochastic optimization
algorithm [36] is used with initial learning rate of 107, f; =0.9,
B, =0.999, and the dropout probability is 0.5. The input of each
vertex in the network uses a local SHOT descriptor with 544 dimen-
sions [37]. The output is a soft correspondence matrix, which can be
interpreted as the probability of the vertex corresponded to each
vertex on the reference shape, and the loss function is shown in
Eq. (11) for network training. Typically, the training time on the
teeth aligner shapes is approximately 40 s for one epoch. Forward
propagation of the trained model takes approximately 0.5s to
produce the dense, soft correspondence for all the vertices.

5.1 Correspondence Learning Results. A suitable learning-
based method should have a good learning ability in which the
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trained model can represent the intrinsic statistical properties of
the training data and also can fit well the new data. The learning per-
formance of the proposed Non-Euclidean CNN for mesh data is
studied in the first experiment to investigate the effectiveness of
the proposed method. In this experiment, for each vertex on the
query shape, the output of the network is a soft correspondence
with 9202-dimensional vector, which was then converted to the
vertex correspondence. Since the correspondence is in pairs, i.e.,
the shapes of two models form a correspondence relation. Here,
we use the correspondences of first 80 models for training, there
are C3,=3160 correspondence shapes in total in the training
dataset.

Inspired by Ref. [26], the network structure in this experiment
is set as FC64+I1C64+I1C128 +1C256+FC1024 +FC512 +
Softmax. That is, the network architecture begins with a fully con-
nected layer with 64 neuron nodes, followed by three convolution
layers with 64, 128, and 256 filter bank sizes, two fully connected
layers with dimensions of 1024 and 512, respectively, and lastly,
a softmax layer is included. The main rationale of designing such
a structure is based on the fact that the depth of the network dom-
inantly determines the training time of the network. Figure 7
shows the convergence curve of the network training process,
from which it can be seen that after 50 epochs, the network is con-
verging to a small loss (~0.016) for both training and validation
set. It reveals that the proposed geometric deep learning method
can learn the shape correspondence of the ground-truth data and
archive a good fitting performance.

It is worth to mention that in this work, we use a machine learning
method to transform a traditional optimization problem, which is
challenging to solve in polynomial time, into a fast and solvable
problem. The prediction time for finding a correspondence between
two shapes is approximately 0.5 s. This is very significant for iden-
tifying the shape correspondences in the mass models and satisfying
the time requirement of mass customization.

Figure 8 visualizes some typical samples of correspondence pre-
dicted by the geometric deep learning method using colorized
mapping, where colors are transformed using raw vertex-wise cor-
respondence as the input to the functional maps. That is, the corre-
sponded vertices are coded with the same color, for example, the ith
vertex on shape X corresponds to the jth vertex on shape ), then
these two vertices are assigned the same color on both shapes.
The alignment results of shapes by the registration method are
also presented in Fig. 8. It can be seen from Fig. 8(a) that in the
shape registration approach, it attempts to minimize the distance
between the shapes and aims to find an optimal spatial transforma-
tion to transform two models as close as possible. However, a close
alignment can only represent the rough spatial similarity and cannot
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Fig. 7 Convergence curve of the proposed learning method
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(b)

Fig. 8 Comparison between shape alignment and shape correspondence. The level of corre-
spondence is coded with intensity, i.e., the same intensity on the two models represent the cor-
responded vertices, and the prediction time for a correspondence between two shapes is
approximately 0.5 s. (a) shape alignment by ICP and (b) shape correspondence. (Color version

online.)

represent the corresponding vertices relationship between two
models. Thus, the shape registration method cannot reflect the
deformation for deformed shapes. On the other hand, the shape cor-
respondence method can find vertex-wise correspondence as in
Fig. 8(b). Based on such vertex-wise relationship, one can easily
map the information on one model to the other, which is much
more utilizable for deformed shapes analysis, especially for a
large number of shapes in the application of mass customization.
The shape registration method is used as a comparison to demon-
strate the effectiveness of the proposed method. For the registration
method, the classical iterative closest vertex (ICP) algorithm is
applied in the experiment. Figure 9 shows the comparison results
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Fig. 9 Shape matching accuracy with geometric deep learning
method and registration method on teeth aligner models
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of the Non-Euclidean CNN and the registration method for
shape matching. The protocol in Ref. [38] is applied to plot
the percentages of correct correspondence matches under at most
r-geodesically distant from the ground-truth correspondence on
the reference shape. In this protocol, when the network predicts a
correspondence of one vertex to its corresponding vertex on the
other shape, we compute the geodesic distance between this pre-
dicted vertex and the ground-truth corresponding vertex. If this
distance d is smaller than or equal to a predefined threshold of r,
i.e., d<r, we consider the vertex is correctly corresponded. The
threshold value of r can be determined according to the practical
quality requirement.

It can be seen from Fig. 9 that the performance of the proposed
geometric deep learning method is much better than the registration
method for shape correspondence matching. It can be seen that
when the threshold geodesic distance is 5% of the diameter of
teeth aligner model (3.11 mm), the correspondence of models in
testing achieves a high accuracy of 99% correct matching to the
ground-truth while the registration method can only find appro-
ximately 40% of the correct correspondence. The main reason is
that the registration method can only find a spatial alignment
between shapes, which cannot represent the variation of the defor-
mations among different shapes. On the contrary, the geometric
deep leaning method learns the vertex local features and matches
these features under different degrees of deformations on the
model. Besides, from this experiment, it can be seen that the corre-
spondence method is more suitable for shape matching among non-
rigid deformations, since it can find a vertex-wise correspondence
between models, and such a correspondent relationship between
models can be further utilized for deformation analysis and topol-
ogy comparison and reconstruction. Due to this characteristic of
the proposed method, it can be easily applied to shape matching
in mass customization.

Figure 10 shows three sample models of predicted shape corre-
spondence by the trained network. Three randomly chosen
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Fig. 10 Examples of shape correspondence predicted via the
proposed geometric deep learning method. The level of corre-
spondence is coded with color, i.e., the same color on the two
models represents the corresponded vertices. For example, the
ith vertex on shape X’ corresponds to jth vertex on shape ),
and then these two vertices have the same color on both
shapes. (Color version online.)

models are matched to a reference model. The trained network can
predict the vertex-wise correspondences, and the matched results of
different aligner models are coded with colors as presented in the
figure, among which the same color on the two models represents
the corresponding vertices. From the results, it can be seen that
the trained network can find a well-matched vertex correspondence
between the selected model and the reference model. This experi-
ment reveals that the proposed learning method is effective
for shape correspondence matching, especially for models with
deformations.

5.2 Robustness to Extreme Cases. It is desired that a corre-
spondence method is robust and stable, however, due to the limita-
tion of the scanning resolution and the reliability of the digital data
transfer and processing, the digital shapes always suffer from infor-
mation missing, resulting in incomplete models. To validate the

robustness of the proposed method and test its performance on
the incomplete models, in this section, we use the trained network
to predict the correspondence of the incomplete models to a com-
plete reference model.

In the experiment, two incomplete models are used, as shown in
Fig. 11. In these two models, the first one (Case 1) has a small hole,
while the second one (Case 2) only has a portion of the original
model. Then, we attempt to match these two incomplete models
to a randomly selected complete reference model in the database.
The color-coded results are represented in Fig. 11. It can be seen
that the proposed method can predict well-matched correspon-
dences for the two incomplete models (Case 1 and Case 2) to the
reference model. It indicates that the proposed method can predict
the correspondence of the incomplete model to the complete
model. It also reveals that the network can learn the underlying fea-
tures of the 3D model to predict the correspondence which does not
rely on the completeness of the mesh data. This is mainly because
the network is trained on the correspondence directly based on the
intrinsic shape descriptor (input SHOT descriptor) of the vertex on
the shape and output a vertex-to-vertex relation. This experiment
demonstrated that the proposed geometric deep learning method
is effective and robust to extreme cases such as predicting shape
correspondence of the incomplete models to a reference shape.

Table 1 shows the results of using the trained model from Sec. 5.1
to predict the correspondence of the above two models. It can be
seen that the prediction process is fast by propagating the trained
model, which only takes 0.3-0.4 s. It is worthwhile to mention
that the low computation cost does not sacrifice the accuracy of
the prediction, specifically both cases achieved around 90% of the
ground-truth correspondence within 2% of the model diameter.
The high efficiency and accuracy demonstrate that the proposed
geometric deep learning method is robust and resilient to extreme
cases, which enables broader practical applications such as those
with severe data noises.

5.3 Application in Mass Customization. Based on the exper-
iments discussed in Secs. 5.1 and 5.2 that the geometric deep learn-
ing method can learn the intrinsic variety of deformation among a
collected set of deformed shapes. The correspondence can be effi-
ciently predicted through the trained CNN. The proposed method
is particularly suitable for mass customization applications as the
trained network takes only 0.5 s to predict a full vertex-to-vertex

Reference model (a)

Fig. 11

Correspondence result

(b)

Correspondence result on two incomplete models: the top row shows the reference

model and two incomplete models, the bottom row shows the correspondence result. The
level of correspondence is coded with color, i.e., the same color on the two models represents
the corresponded vertices: (a) Case 1 and (b) Case 2. (Color version online.)
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Table 1 Prediction results for incomplete models

Number of vertices Prediction accuracy (%) Time (s)
Case 1 8756 91.2 0.4
Case 2 6171 89.6 0.3

Table2 Time comparison of different correspondence methods

Model Vertices Manually marking (min) Time (s)
Teeth 127,189 ~90 ~2
Aligner 9202 ~30 ~0.5

correspondence of two shapes. In mass customization, we need to
process a large number of deformed yet similar shapes. In this
section, we will study a practical application of the proposed geo-
metric deep learning method for mass customization in the ortho-
dontics industry.

One common practice in the orthodontics industry is that the
dentist needs to manually choose several landmark vertices on
the patient’s teeth model. When a new patient’s teeth model (or
aligner model) arrives, the dentist needs to select several landmark
vertices on this new model manually, then, according to these
selected vertices, matches the new model to the template (or previ-
ous) model. Furthermore, the selected landmarks are mapped to a
reference model to determine a suitable alignment treatment
strategy. This process is manually operated and mainly based on
the experience of the dentist. The time spent on such manually
marking tasks could be 10 min to 2 h and without guarantee of
finding the perfect matching to the reference model.”

Because of the effectiveness and robustness of the geometric
deep learning method, it can be used for automatically identifying
the shape correspondences. Hence, through this shape correspon-
dence, the dentist can identify all of the vertex-to-vertex relations
on the two shapes and does not need to select the landmarks to
find a mapping manually. From the previous experiments, when
using the proposed geometric deep learning methods, it takes
approximately 0.5 s to predict a soft correspondence to a reference
model for a given model with 9.2 K vertices. Table 2 shows the pre-
diction time for generating the full correspondence of a new model
based on the trained network. Assuming there are a batch (1000) of
teeth aligner models, and they all need to be marked and matched to
the reference model. The total time for manual marking would be at
least 1000 x 0.167 =167 h. However, with a trained network, the
forward propagation for prediction only needs 1000 x 0.5 =500 s.
This can significantly reduce the landmark marking and mapping
time for massive models.

It is worth to remark that our method not only produces a corre-
spondence of all vertices on the model but also output a soft-
correspondence matrix. Indeed, our method can predict a vector
for each vertex, i.e., each vector element representing the pro-
bability of the vertex corresponding to all of the vertices on the ref-
erence model. According to this information, we can output several
optional vertices for dentists rather than only one according to the
ranking of the probability of the reference model. This would
provide more choices for the dentist to select the desired landmark.
Based on the above analysis, it can be seen that the proposed geo-
metric deep learning is excessively suitable for the orthodontics
industry and can provide an efficient tool for mass customization
applications. Furthermore, the proposed method can be used for
the geometry integrity and quality investigation, for example, we
can use the method to predict a shape correspondence between

’See Note 3.
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two shapes, then based on this vertex correspondence relation to
measure the deformation of the vertices. In particular, we can deter-
mine whether the critical vertices on the shape are deformed within
an acceptable distance.

6 Conclusions

The movement toward mass customization poses significant
challenges to product design and manufacturing. 3D printing is
becoming more and more mature to fulfill the mass customization.
The product’s geometric integrity is essential to guarantee the
proper product design and manufacturing. To investigate the geo-
metric integrity, the shape matching is the pillar-stone, where
researchers propose various rigid or non-rigid body matching algo-
rithms. However, these algorithms do not address the deformation
problem. In this paper, we extend the conventional shape matching
problem to shape correspondence problem, which includes the
larger size of manifold correspondence, to extract the intrinsic
deformations. A geometric deep learning method is introduced to
learn the correspondence relation among the models. The experi-
mental results show the effectiveness and robustness of the pro-
posed method.

This work is a pioneering work for correspondence based geo-
metric integrity investigation. In the future, several directions
will be explored. First, quantifiable assessment of the design
and manufacturing after learning the correspondence would be
studied. Second, how to get interpretable and semantics results
for dentists/practitioners to understand the meaning of correspon-
dence results will be explored. Third, incorporation of dentists/
practitioners’ knowledge in deep learning will be studied.
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