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Abstract

Motivated by the connection to 4d N = 2 theories, we study the global behavior of fam-
ilies of tamely-ramified SLy Hitchin integrable systems as the underlying curve varies
over the Deligne-Mumford moduli space of stable pointed curves. In particular, we de-
scribe a flat degeneration of the Hitchin system to a nodal base curve and show that the
behaviour of the integrable system at the node is partially encoded in a pair (O, H) where
O is a nilpotent orbit and H is a simple Lie subgroup of Fp, the flavour symmetry group
associated to O. The family of Hitchin systems is nontrivially-fibered over the Deligne-
Mumford moduli space. We prove a non-obvious result that the Hitchin bases fit together
to form a vector bundle over the compactified moduli space. For the particular case of
MOA; we compute this vector bundle explicitly. Finally, we give a classification of the
allowed pairs (O, H) that can arise for any given N.
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1. Introduction

1.1. The setup

Four dimensional superconformal theories have been a subject of study for many years.
Since the work of Seiberg-Witten [1,2], it has been understood that the low energy physics
at a generic point of the Coulomb branch of 4d N = 2 theories is succinctly encoded in
the geometry of a complex integrable system [3-5]. Integrable systems that arise in this
fashion are sometimes called Seiberg-Witten integrable systems.

Recently, a class of N = 2 theories that admit a uniform geometric construction from
six dimensions have received greater attention [6-8]. One of the important features
shared by all such theories is the fact that their associated Seiberg-Witten integrable
systems are isomorphic to particular instances of Hitchin’s integrable system [9]. This
includes several familiar theories with UV Lagrangians and more mysterious theories for
which there is no known UV Lagrangian.

In this realization from six dimensions, the Hitchin system plays an important role.
Specifically, the Coulomb branch associated to the four dimensional theory can be de-
scribed as the base B of Hitchin’s integrable system associated to a simply laced Lie alge-
brajand the UV curve Cg ,,. The choice of the Lie algebra j parameterizes the available 6d
(2,0) theories and the choice of C,, determines the 2d surface on which we compactify
the 6d theory (together with a partial twist). At the locations of the n punctures, we insert
four dimensional defects of the 6d (2,0) theory. The insertions of these defects affects the
behaviour of the Hitchin system at these punctures. For the present discussion, we are
interested in “tame defects”. These are the defects that induce a simple pole for the Higgs
field in the Hitchin system at the location of the punctures,

O = g + (regular terms). (1)



In order to obtain superconformal field theories (SCFT) using tame defects, we addi-
tionally require that Res(®) = a be a nilpotent element in the Lie algebra j. What really
matters is the j-conjugacy class to which the element a belongs. So, it is helpful label the
Hitchin boundary condition by the nilpotent orbit O, to which the element a belongs. We
will sometimes call this nilpotent orbit the Hitchin orbit Oy associated to the defect.

When j is not of type A, one needs to further enhance this using some discrete data
associated to the defect. The absence of such discrete data for defects in type A is related
to the fact that component groups of centralizers of nilpotent orbits are always trivial in
type A. Let us define

A(0,) = Cy,,(a)/CY (a) (2)

to be the group of components of the centralizer of nilpotent orbit O,. Here, C; ,(a) is the
centralizer of exp(a), the unipotent element associated to 4, in the adjoint group J,; and
C })a ,(a) is its connected component. The above statement is equivalent to saying that

A(0,) =1

for every nilpotent orbit in type A (see [10, 11] for more details). In the discussion below,
we confine ourselves to examples from type A Hitchin systems.

1.2. Weakly coupled gauge groups

An important feature of this geometric realization from six dimensions is that the space
of marginal parameters associated to the SCFT is identified with the Deligne-Mumford
moduli space Mg,n of complex structures on C,,. Moving/restricting to a (complex)
codimension-one irreducible component of the boundary of M, , in Mg,n corresponds to
the appearance of a weakly coupled gauge group with an associated gauge coupling that
is related to plumbing fixture parameter q by

o eZmT

q

Further /-fold intersections of the boundary correspond to loci where I simple factors
in the gauge group become weak. The (3¢ — 3 + n)-fold intersection of the boundary is
zero-dimensional. Each point corresponds to a choice of pants-decomposition of C ;.
Each such pants decomposition furnishes a presentation of the class-S theory as a “gauge
theory” with semi-simple gauge group with 3¢ — 3 + n simple factors, coupled to 2¢g -2 +
n (free or interacting) isolated SCFTs corresponding to 3-punctured spheres. Different



pants decompositions furnish different (“S-dual”) presentations of the same family of
SCEFTs as such a gauge theory.

“Generically,” each factor in the gauge group is just J, the compact group' associated
to the complex ADE Lie algebra j. Interestingly, there are cases where the weakly cou-
pled gauge group that arises on an irreducible component of the boundary is a proper
subgroup H of J. This striking feature was first noticed in [12] where S-duality of the
SU(3),Ny = 6 theory was studied. More general examples were studied using the six
dimensional framework in [7,13].

The emergence of a proper subgroup H as the weakly coupled gauge group has man-
ifestations for all aspects of the theory. Take, for instance, the Higgs branch of a Class
S[j, Cq,u] theory. It can be described as a hyperKahler quotient of the product of Higgs
branches of the 2¢ — 2+ n SCFTs by the action of the 3¢ — 3 +n simple factors in the gauge
group. The reduction of the gauge group from J2$3*" to a subgroup has an obvious man-
ifestation here. We will not be studying the Higgs branch in this paper, though we will
return to this subject briefly in §6.

We will instead study the appearance of the proper subgroups H from the point of
view of the Coulomb branch. The Coulomb branch of a Class S[j, C ,,] theory is the base
of a Hitchin integrable system of type j on the punctured curved C,,. We would like to
understand the implication of the reduction from | to H for the corresponding Hitchin
systems. To do this, we will need to elaborate a theory of Hitchin systems on nodal curves
which behaves well in families. In this paper, we will study only the j = s[(N) case. There
are additional complications that arise beyond type-A, which we will leave for a future
work.

1.3. From Hitchin systems to Good, Ugly and Bad theories

In studying connections between tame Hitchin systems and 4d N = 2 theories, it is useful
to understand which Hitchin systems correspond to good, ugly or bad [14] 4d NV = 2 the-
ories. This trichotomy of 4d N = 2 theories was suggested by [15] and it can be thought
of as a 4d analog of a similar trichotomy arising in 3d A = 4 theories [16]. In [15], this tri-
chotomy was proposed using the properties of the Higgs branch. However, for 4d N/ =2
theories with Coulomb branches described by the tame Hitchin system, this trichotomy
can also be understood purely in terms of a Hitchin system with base B = EBk HY(C, L)
for some line bundles, Lk, to be defined below. With this goal in mind, we introduce the
following definitions for any tame Hitchin system on a smooth Riemann surface Cg , :

At the moment, we do not fix the global form of the group J. Much of the discussion below will not be
sensitive to the exact global form of J.



* Bad: These are Hitchin systems with hl(C, L) > 0, for some k, on the smooth curve
C. These are precisely the Hitchin systems where the graded Coulomb branch di-
mension h°(C, L) is not given by deg(Ly) + 1 — g for some values of k. When we
have h!(C,L;) = 0 for all values of k, we say that the corresponding Hitchin system
is OK [17].

* Ugly: Consider the space of all local mass deformations of the Hitchin system along
the lines of [18]. From this space of the deformations, one can define a map « to the
space of mass deformations of the global Hitchin system :

K {M;}iocal = {Mi}globals (3)

where {m;}g]5bal is the space of mass deformations of the spectral curve.

Ugly Hitchin systems are those which are OK but have a non-trivial kernel for the
map k. Correspondingly, we will call a Hitchin system with dim(ker(x)) > 0 “ugly."
An extreme case of an ugly theory is one consisting of free hypermultiplets. The
corresponding Hitchin moduli space is a point and hence there are no global mass
deformations of the Hitchin system in this case, whereas the SCFT has relevant
deformations corresponding to turning on hypermultiplet masses.

* Good: These are Hitchin systems which are OK and not ugly.

For the purposes of this paper, we will mostly consider Hitchin systems that are OK
on Cg . For all such theories, the Deligne-Mumford moduli space Mg,n can be identified
with the space of marginal parameters of the corresponding SCFT and we will rely on
this identification to study the weakly coupled gauge groups in §7. Much of our paper
treats the good and ugly cases on an equal footing, so we do not dwell on the differences
between the two cases.

However, to understand certain aspects of the story, we will need to include some bad
Hitchin systems on Cj, in the discussion. We discuss this briefly in §7.5 and Appendix
B and leave a more detailed analysis to a future work. These theories also happen to be
the ones for which the relation between our terminology and its physics interpretation is
subtle. For certain bad Hitchin systems, it will turn out that the corresponding 4d theory
is a theory of free hyper-multiplets or a perfectly good 4d SCFT. There is, however, a
point of view proposed in [19] according to which one should think of the corresponding
compactified 6d theory (with finite area for the Riemann surface C) as being a bad theory
in these cases. Our OK/Bad dichotomy for Hitchin systems is more directly related to
this point of view.



1.4. Outline of the paper

The paper is structured in the following way. We review properties of the tame Hitchin
system on a smooth underlying curve in §2. We then build a global model for the Hitchin
system over Mg 4 in §3. In particular, in §3.2 we note that the Hitchin bases fit together
to form a nontrivial vector bundle over M, 4 . We compute that bundle explicitly in §3.3.
We then use this model to take a first look at the Hitchin system on nodal curves in §4.
In this section, we also define what it means for a node to be standard (§4.1) or restricted
(§4.2). The restricted nodes are labeled by a pair, (O, H), where O is a nilpotent orbit in
sl(N) and H is an SU(!) or Sp(I) subgroup of SU(N). We should emphasize that the pair
(O,H) is not a complete invariant of the singular spectral curve which covers the node.
Examples 3 and 4 of §4.3 have the same (O, H) = ([4], SU(2)), but the singularity structure
of the spectral curve is different.

In §5, we take the results of §4 as motivation to build a general framework for the
Hitchin system on a nodal curve such that the family of Hitchin systems on a family of
smooth curves is flat in the limit as the smooth curve degenerates to the nodal one. Over
the interior of the moduli space, the £ fit together to form line bundles over the uni-
versal curve C — M, ;.. In extending them to the boundary, we encounter an interesting
phenomenon. For a restricted node, in which “O" is not the regular nilpotent, the £; ex-
tend to line bundles £, which are the “naive" £; twisted by a (negative) power of a line
bundle whose divisor is a component of the boundary in 7w: ¢ — M, ,. For any given C,
the Hitchin base is B = @kHO(C, L). These vector spaces fit together (see Theorem 5.1)
to form a nontrivial vector bundle B = P, 7.L;, over M, ,,.

The possible restricted nodes are strongly constrained by physics considerations aris-
ing from the role of the flavour symmetry, as we show in §6. In §7, we provide a classi-
fication of the allowed nodal degenerations using the methods of §5. This classification
is summarized in Theorem 7.1. We also show that the results of §7 are compatible with
those in §6.

In Appendix A, we provide a proof of Theorem 5.1. In Appendix B, we discuss the
close relationship between our OK condition and the semi-stability condition for Higgs
bundles. We also state a conjecture relating the OK condition to a corresponding Deligne-
Simpson problem.

1.5. Further directions

As motivation for future work, we mention here some further directions in which our
work could be extended or applied.

1. Other approaches to Higgs bundles on nodal curves

6



There has been considerable prior work on studying the moduli of bundles and
parabolic bundles on nodal curves (see, for example, [20-23]). There has been
some recent progress on extending some of these results to Higgs bundles on nodal
curves [24-26]. See also [27,28] for some earlier work in this direction. For our pur-
poses, it is important to understand how the family of integrable systems behaves
in the nodal limit. This appears to not have been addressed previously in the math-
ematical literature. So, we develop this from the basics. Relating our work to the
framework of [24-26] is an interesting direction for future work.

. Solutions to Hitchin’s equations in the nodal limit

Solutions to Hitchin’s equations in the nodal limit of the base curve have also been
studied recently in [29] for the s[(2) case with no punctures. Our classification of
restricted nodes should also have interesting consequences for a higher-rank tame
analog of [29].

. Global topology of the character variety

Another direction in which our framework could be used is in the study of the char-
acter variety. The character variety is defined to be the space of maps m,(Cg,,) —
SL(N,C) and it is related to the moduli space of Higgs bundles through the non-
abelian Hodge correspondence [30,31]. Unlike the geometry of Higgs bundles, the
geometry of the character variety is independent of the choice of a complex struc-
ture on C. In particular, this means we could choose to work with any complex
structure on C and then use the non-abelian Hodge correspondence to obtain the
character variety.

A specific application in this direction would be to study the global topology of the
character variety [32] from the point of view of Higgs bundles on a nodal curve.
This is similar in spirit to the work in [33] where the Verlinde formula (in the s[(2)
case) was proven by studying the factorization properties of the generalized theta
divisor in the nodal limit [34].

. Higher Fenchel-Nielsen coordinates

Our results could also be of use in the study of natural Darboux coordinates on the
moduli space of flat connections and/or the character variety and the behaviour of
these coordinates under different choices of pants decompositions of the underlying
Riemann surface. In the sl(2) case, for every choice of a pants decomposition of the
Riemann surface, there is a natural set of Darboux coordinates on the character va-
riety called the Fenchel-Nielsen length and twist coordinates (see [35] for a review).



In the sl(2) case, we get (3¢ — 3 + n) pairs of length and twist coordinates - one pair
each for every closed curve in C, ;. In the higher rank cases, it is again possible to
define analogous coordinates for every choice of a pants decomposition. It turns
out that complex higher Fenchel-Nielsen coordinates arise from N = 2 theories as a
natural system of Darboux coordinates on the Hitchin moduli space [36,37]. In this
context, they have recently been studied in specific higher rank examples employing
different points of view [38-42]. Closely related real Fenchel-Nielsen coordinates
for higher Teichmuller spaces’ go back to the work of [43] for the s[(3) case and
have recently been studied in [44] for the s[(N) case.

Independent of the methods used, a new feature that one notices in the higher
rank cases is that there are non-trivial coordinates associated to a thrice punctured
sphere. These coordinates are sometimes denoted as internal Fenchel-Nielsen coor-
dinates [44,45]. And as in the sl(2) case, we continue to have coordinates attached
to the nodes themselves. In the case of a standard node, the number of coordinates
attached to the node is 2rank(G). But, in the case of a restricted node, there is a re-
duction in this number to 2rank(H). The existence of restricted nodes (see examples
in §4.3) also makes it clear that the number of internal and nodal (or center) param-
eters need not be separately invariant under changes of pants decompositions. It
is an interesting problem to study the precise relationship between the coordinates
arising from different choices of pants decompositions. For the classical Fenchel-
Nielsen coordinates, this has been done in [46,47]. We believe our results on the
allowed restricted nodes (in §6.2 and §7) will be helpful in finding such relation-
ships in the higher rank cases.

5. The Deligne-Simpson problem

Finally, we would like to mention a conjectural application of our results to the exis-
tence problem for tame, irreducible SLy character varieties. When the underlying
Riemann surface is a n-punctured sphere C ,, this problem has been studied by
Deligne and Simpson [48]. To solve this problem, one needs to provide conditions
under which tame, irreducible SLy character varieties are guaranteed to exist. For
a particular class of examples, Simpson [48] obtained a pair of geometric conditions
that achieve this goal.

Interestingly, we find that our OK condition on tame Higgs bundles (with nilpotent
Higgs fields) has a close connection to the existence problem for the correspond-

2These correspond to subspaces in the character variety where we only consider representations of the
form 1, (C,,,) = SL(n,R)



ing character variety. Specifically, we prove in Appendix B that the OK condition
is necessary and sufficient for Simpson’s conditions (from [48]) to hold for the cor-
responding character variety. This result is, however, limited to the case where at
least one of the punctures has a regular residue for the Higgs field. In Appendix B,
we outline a conjecture for the more general cases.

2. Tame Hitchin Systems on Smooth Curves

In this and subsequent sections, we will be relying on many standard results about the
moduli space of curves and linear systems on families of curves. We refer the reader
to [49,50] for an exposition of these results.

Recall that the total space of the Hitchin system is the moduli space Higgs of Jo-Higgs
bundles which are defined to be moduli space of pairs (V,®) where V is a principal J¢
bundle and ® € H%(C,ad(V)® K) in the case without ramification. In this paper, we
will mostly take Higgs to also obey an appropriate stability condition with the exception
being the discussion in §7.5. Hitchin observed [9] that there is a natural map which is
now called the Hitchin map :

y:Higgse@Ho(C,K@‘) (4)
k

where k runs over the degrees of J-invariant polynomials on j (k = 2,3,...,N forj=An_1).
We denote the image (P, H(C,K®*) as the base B of the Hitchin system. The fibers ! (b)
over some generic point b € B are complex Lagrangian tori. In other words, (Higgs, )
defines a complex integrable system. The fibers of y admit succinct descriptions in terms
of Jacobians/Prym varieties associated to the spectral/cameral curves built out of ® [51,
52].

There is a further generalization where we replace K by a more general line bundle.
We are, in particular, interested in the case where K is replaced by K(D) where D is a
divisor of marked points on C. Such a replacement leads us to the meromorphic Hitchin
system. In this setting, we have Higgs field ® € H(C,ad(V)®K(D)). The resulting moduli
space Higgsp of pairs (V,®) is a Poisson manifold. If we restrict the residues of @ at the
marked points to be fixed conjugacy classes of j, then we restrict to a particular symplectic
leaf in the Poisson manifold. The Hitchin map p, when restricted to this symplectic leaf,
again describes a complex integrable system [53, 54].

When the Hitchin system is associated to a 4d N = 2 theory, one can deduce the
geometry of the integrable system by formulating the 4d N = 2 theory on R"> x S} and
studying how the resulting moduli space is fibered over the 4d Coulomb branch [55,

9



56]. This argument is based on constraints from supersymmetry and the nature of the
R — 0 limit which corresponds to a dimensional reduction of the 4d N = 2 theory to
a 3d N = 4 theory. These arguments also carry over to the case where the base curve C
develops a nodal singularity. In particular, we expect the Hitchin map y to be Lagrangian.
There is, however, one important new feature and this has to do with the fact that the
Hitchin map p could fail to be proper when C is singular. This means that some of
the fiber directions of y may no longer be compact. Physically, this is to be expected
since the spectral curve ¥, is singular in the limit where we take Im(7yy) — oo and the
fibers of the Hitchin map are the generalized Jacobians associated to singular curve. The
base directions which are symplectic dual to the noncompact fiber directions become
additional Casimir parameters in the sense of [53]. For reasons that will be explained in
§4 and §5, we will denote these additional Casimir parameters as center parameters. These
center parameters will turn out to play an important role in our discussions.

2.1. Nilpotent orbits and spectral curves: local story on a smooth curve.

We work with the Hitchin system for /¢ = SLy on a smooth curve C with marked points
in a reduced divisor D =} ; p;.

At each point p;, we insert a regular four dimensional defect of the 6d (2,0) theory
Z’|An_1]. The effect of this defect is to produce a simple pole in the Higgs field

o=+ (5)
Z

where Res(®) = a is an element of the complex Lie algebra j associated to J. Since we
want to study tame Hitchin systems corresponding to conformal theories, we additionally
assume that a is a nilpotent element in j. There is a natural j action on the adjoint valued
Higgs field ®@. Inequivalent boundary conditions are labeled by the conjugacy class O,
to which the residue a belongs. In type A, nilpotent orbits can be classified by using the
Jordan normal form and counting the sizes of the Jordan blocks. We label an orbit by
a partition of N, which we can equally-well think of as the heights of the columns of
a Young diagram. The partition (or Young diagram) is called the Hitchin label for the
defect in the physics literature. There is a related, dual label called the Nahm label which
is more directly associated to the Higgs branch. For type A Hitchin systems, the Nahm
label is just given by the transpose partition. Since our study here will be confined to the
Coulomb branch, we will privilege the Hitchin label over the Nahm label for most of the
paper. However, in §6, we will discuss the flavour symmetry and the Higgs branch and
for those discussions, the Nahm label is more natural.

10



The spectral curve is now given by wN = Zi\iz arwN k. Here ay is a pluridifferential on
C i.e. a section of (K)®* with allowed pole of order up to 7. Alternatively, it is a section
on C of (Ko (D))®* with a zero of order > xj, where 7y + xi = k.

For a given nilpotent orbit O; inserted at p;, the order of the zero )(g) of ay at p; is the
column-number of the column containing k™" box in the Young diagram corresponding
to O; (where the boxes of the Young diagram are labeled consecutively, starting with
the first box of the first column and proceeding vertically and then to the right). This

determines ni{i) =k- )(;(i). For example, the regular nilpotent orbit (partition [N]) gives

orders of vanishing )(il) =1 for all k, the subregular orbit (partition [N —1,1]) gives )(;(Z) =1
for k < N and xj = 2. At the opposite extreme, the minimal nilpotent orbit (partition
[2,1N1]) gives )(;;) =k-1.

Note that the orbit O determines a generic form of the spectral cover . The actual
cover could be any specialization of the generic form, i.e. the orders of vanishing of the
coefficients are allowed to go up but not down.

More precisely, the orbit determines not the type of singularity of the spectral curve
but the local structure of the spectral sheaf on it. For example, a matrix is regular if
and only if it has a one dimensional eigenspace per eigenvalue. In the Hitchin moduli
space, this implies that an orbit at p is regular if and only if the spectral sheaf has rank
1 everywhere above p, i.e. it is a line bundle on the spectral curve ¥ near the inverse
image of p [51]. If ¥ is non-singular then all spectral sheaves on it are line bundles, so the
Hitchin fiber (= the Jacobian J(¥) ) consists only of line bundles. On a singular spectral
curve ¥ , most spectral sheaves are still line bundles, but some are not. For example,
when ¥ is an irreducible nodal curve, the fiber is the compactified Jacobian @ This
has the Jacobian J(X) as a dense open subset, but the other (closed, lower dimensional)
stratum consists of sheaves that are not line bundles - they have rank 2 at the node, arising
instead as direct images of line bundles on the normalization of ¥. So the regular orbit
can correspond to (line bundles on) either smooth or arbitrarily singular spectral curves,
the subregular orbit corresponds to a spectral curve with at least a node (and a sheaf that
has rank exactly 2 at one point above the singularity) and so on.

Conversely, a given spectral cover ¥ determines a smallest orbit Oy. The actual orbit
obtained from some sheaf on ¥ may be any orbit containing Oy in its closure. If v: N — ¥
is the normalization of spectral curve, then the smallest orbit Oy, corresponds to the sheaf
v,(0), while the largest (= regular) orbit corresponds to the structure sheaf Oy. If the
spectral curve were to have a nodal singularity, then Oy is the subregular orbit and so on.

11



2.2. Nilpotent orbits and spectral curves: global story on a smooth curve

Now consider the global situation, taking C := P!. The coefficient a; is a section of a line
bundle, L, of degree:

deg(Ly) = k(-2 + deg(D Z X =2k + Z il (6)
pieD pieD

The space of all such sections is a vector space of dimension:

by := max(1 + deg(Lg),0). (7)
As an example, consider the case when )(;j) =1 for all i,k. We then have deg(L;) = -2k +
deg(D)(k —1), k = 2,3,...N. If we have deg(D) > 3 then deg(Ly) > —1. So, the dimension
by of the Hitchin base B in degree k is just given by

b = k(deg(D) - 2) +1 —deg(D) (8)

Summing over degrees, we get

N
dim(B) = Zk deg(D)—-2)+1—deg(D)
k=2 (9)
— (—1)(N2 _ 1) + deg(D)(N2 _N)

2

The dimension of the total space Higgsp in this case can be easily computed using
Riemann-Roch, cf. [53, 54]. Alternatively, this can be evaluated using the non-abelian
Hodge correspondence and the realization of the Hitchin moduli space as the character
variety 711 (Cox) — SLy with fixed regular holonomy around each puncture ( [57]) :

deg(D
dim(Higgsp) = (-2 Z dim(O reg (10)
= (-2)(N*~ 1) +deg(D)(N* - N)

where we have used the fact that the dimension of a regular orbit in SLy is dim(O,eg) =
(N?-N).
Comparing (9) and (10), we see that

dim(Higgsp) = 2dim(B). (11)

This is in keeping with our expectations since (Higgsp, #), where yu is the Hitchin map
restricted to a symplectic leaf of Higgsp, defines a complex symplectic integrable system.

12



3. Global Interlude I : Hitchin System over WOA

In this section, we will study global aspects of the Hitchin system on family of curves by
specializing to the case of a four punctured sphere. We will then use this global model in
§4.1 to take a first look at the Hitchin system on a nodal curve.

3.1. A global model for the universal curve C 4

Let the locations of four punctures be z1,2,,23,24 and let A be their cross ratio

(z1 —23)(20 — 24)

A= (21 —24)(22 — 23)

We use the following global model for the universal curve 7: C — Mg 4.

Consider CP? blown up at four points : E; — (1,0,0), E; — (0,1,0), E3 — (0,0,1), E; —
(1,1,1). Let us denote the blown up surface as CP’. Let A1, A, be homogeneous coordi-
nates on MOA = CP!. The cross ratio A = A;/1,.

We identify the universal curve, C =~ €P” and the projection 7t: P - M, 4 is defined
as the solution to

AMx(y—2z)+ Ay(z—-x)=0 (12)

which determines A; ; up to a common scaling. Here x,7,z are (the pullbacks to P’ of)
the standard projective coordinates on CP?. As a function on CP?, the ratio A = 1,/1,
is well defined except at the four points E;. It extends to give a well defined morphism
7:CP° — CP' on the blowup C = P’

For generic, A = A;/, the fiber, C; = ©~!(1), is smooth. But at the three boundary
points of MOA; corresponding to A = 0,1,00, C, degenerates into a pair of lines

Co=1{v(z—x)=0}, (withthenodeatny;=(1,0,1))
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Cy ={z(x-y)=0}, (withthenodeatn; =(1,1,0))
1 3
4

Coo ={x(y—2)=0}, (with thenodeatn, =(0,1,1))

3.2. The bundle of Hitchin bases

Pick a collection of 4 nilpotent orbits, O; in s[(N). We will interchangeably consider
two models for the spectral curve ¥, — C,. In both cases, it is the vanishing locus of a
homogeneous polynomial

N
0 = det(wl - ®) =w - Z(j)kwN_k
k=2

in the total space of a line bundle L — C. One model is to take L = K¢ and allow the
¢ to have poles of order n;f) = (k- )(;(i)) (dictated by the choice of O;) at the punctures.
In the second model, we take L = KC(Z E,-) and demand that the ¢, have zeroes of order
)(;j) at the punctures. The latter model is more convenient for our global discussion, as it
naturally produces ¥ as a compact curve.

Let
£ =0k (- x'E)
i
On each curve, C), the ¢ are holomorphic sections of Li|c,. These fit together to form
¢ € HO(C, Li) = HO(Mo4, 70.Ls)
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We now proceed to compute the direct image sheaves, 7,Ly on ﬂm.

3.3. Computing the direct image bundles

We are interested in various line bundles, £ = O(k)(-}_;n;E;) on 6[!52 and their direct-

image sheaves 7L on My 4. A-priori, the direct image is torsion-free and hence (since

we are in complex dimension-1) a vector bundle, V. The fiber of V over A € M, is

HY(C,,L). Over the boundary points, the dimension of H%(Cj—( 1 ,£) can sometimes

jump. If it does then the fiber is H? (C)_q 1 00, £) C H?(C)-0,1,00, £) for £’ defined in (22).
Any vector bundle on CP! splits as a direct sum of line bundles. So we have

nO(k( Z ) Y mOp(i) (13)

ieZ
for some collection of m; > 0. We thus get one relation,

Zm,- =h%(Cy, L)

1

among this infinite number of unknowns. To find more relations (and, ultimately, to solve
for the m;), the trick is to tensor (13) with Op1(-I).

n*(O(k)( S niE)@mn*(Opi (- ) S miOpi(i~1) (14)

i ieZ

and use

7 (Op1 (1 ZE (15)

Putting (14) and (15) together, we have

Otk =21)(= ) (i~ DE)) =) miOpi(i 1) (16)

i ieZ
for each [ € Z. Taking H® of both sides and using that, for any f: X — Y and /F a sheaf on
X, HO(Y,ﬂ]-") = HO(X,]:), we get for each [ a relation on the m;.
For | > n; we have, by Hartog’s Theorem,

ho(ﬁgzjo(k_ 21)(2(1 3 ”i)Ei)) _ {(k—221+2) k> 2l (17)

- 0 otherwise
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When the n; = 1, the conditions imposed by demanding that the sections vanish to some
order at the E; are independent. In that case, we can generalize (17) to

ho(&:‘[ﬁz,O(k ~an(Y (- 1)13,-)) — max((¥-2+2),0) - 4max(L(1-D(2-1,0)  (18)

i

More generally, if the n; are “small enough” so that the vanishing constraints at the E; are
independent, we have

ho(@‘[ﬁz,O(k - 21)(Z(l - ni)Ei)) = max ((¥%3+2),0) - 4 Z(ni —1+1)max(n;—1,0) (19)

i i

The requisite condition” is

ZniS2k+l

i (20)
nij+n; < k+1,V pairsi,j

When this holds, (16) yields

Zmimax(O,i -1+1)= max((k‘zz”z),O) -3 Z(ni —I+1)max(n; - 1,0) (21)
i i
foralll e Z.
When there’s a pair n;,n; which violates (20) — say n; + n; =k + 1+ p, for some p > 0
— then we replace

£— L =Le(01)(E +E))” (22)

This preserves ho((f[ISZ,[I’) = ho((f[ISZ,,C) (and it preserves the inequality for the other pairs)
while making n; + n; “small enough.” Computing 7.L” produces a vector bundle on Mo
of the same rank and the same first Chern class as m,£. Moreover, since £’ is a subsheaf
of £, m, L is a subsheaf of m,L. Since they are vector bundles of the same rank and
first Chern class on MOA — CP', and the former is a subbundle of the latter, they are
isomorphic.

To see how this works, let’s specialize to setting all the n; = 1. Then (21) becomes

3The actual condition is (1; — ) + (nj—1) < (k—2I)+1, but the I's cancel, yielding (20).
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L(k+(3-4Dk+6(1-1)) 1<0
my 4 2mp g + 3mpg =4 (k—-21 4 2)(k - 21+ 1) 0<I<k (23)
0 >4

To solve this system of equations, there are two cases
* k=2p=even

— We have m; = 0 for I > p+1. Then clearly, m, =1 and hence 4 =m,_; =m

p-1 p-2

---=my. Then my=0and m; =0, for [ <O0.
* k=2p+1=o0dd

— We have m; = 0 for I > p+1. Then clearly, m, = 3 and hence 4 =m, | =m,_, =
---=m;. Then my=0and m; =0, for [ <0.

To summarize:

10(1)@40(2)® - ®40(p-1)®O(p) fork=2p

0, O(k)(- ZEi) = (24)

z- 10(1)®40(2) @ ®40(p - 1)®30(p) fork=2p+1

Extending this to 1 < n; < k—1 (subject to ) ;n; < 2k + 1) will be useful in the following,
so let us tabulate the results. We mark in red the cases where we had to apply (22).

For k = 2, there’s only one case, (11,1n,n3,14) =(1,1,1,1) = m; = 1. For k = 3,4,5, the
results are summarized in Table 1.

4. Global Interlude II : Standard and Restricted Nodes

In this section, we will use the global model developed in §3 to study the kinds of nodes
that can arise for a tame Hitchin system on a four punctured sphere. To illustrate the
main points, we will pick the Hitchin system for j = s[(4).

4.1. The standard node

We are interested in the behaviour of the spectral curve when the base curve, C develops a
node. There is a “generic” behaviour that we will call “the standard node.” This is when
the number of Casimirs (or “center parameters”, in the nomenclature to be introduced
below) on the Hitchin base is equal to the rank of j (N —1 for sI(N)).
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(ny,mp,n3,ny) | my | my

(1,1,1,1) 3| 4

(2,1,1,1) 313

(2,2,1,1) 3| 2

(2,2,2,1) 3|1

(2,2,2,2) 310

(3,1,1,1) 2 |3

(3,2,1,1) 2 |2

(3,2,2,1) 2 |1

(3,2,2,2) 210

(3,3,1,1) 1 2

(3,3,2,1) 1 1

(3,3,2,2) 1 0

(nq,ny,n3,ny) | My | my (3,3,3,1) 0 1

(1,1,1,1) 1 4 (3,3,3,2) 010

(2,1,1,1) 1 3 (4,1,1,1) 0| 4

(2,2,1,1) 1 2 (4,2,1,1) 0| 3

(2,2,2,1) 1|1 (4,2,2,1) 0| 2

(2,2,2,2) 10 (4,2,2,2) 0| 1

(3,1,1,1) 0|3 (4,3,1,1) 0|2

(nq,n,,n3,n4) | My (3,2,1,1) 0| 2 (4,3,2,1) 0 1
(1,1,1,1) 3 (3,2,2,1) 0 1 (4,3,2,2) 010
(2,1,1,1) 2 (3,2,2,2) 00 (4,3,3,1) 010
(2,2,1,1) 1 (3,3,1,1) 0 1 (4,4,1,1) 0 1
(2,2,2,1) 0 (3,3,2,1) 0] o0 (4,4,2,1) 0] o0

k=3 k=4 k=5

Table 1: The values of m; fork=3,k=4,k=5

When the Hitchin orbits at the punctures are sufficiently big, when the number of
punctures is sufficiently large or if the genus of each component of the nodal curve is > 1,
then every node is a standard node. Similarly, in the A; theory, all nodes are standard.

On the 4-punctured sphere, we can ensure that we get a standard node by taking the
residue of the Higgs field to lie in the regular nilpotent orbit, Res(®) = a € [N] at each of
the punctures. This corresponds to requiring that each ¢ has a simple zero at each of the
four punctures E;,i =1,2,3,4.

We will be particularly interested in the behaviour of the family of spectral curves (or
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equivalently, of Hitchin bases B) as we approach a boundary of M, ;. In M, 4, the three
boundary points look similar, so let us focus on one of them: the A = 1 boundary. For
simplicity, we will specialize to s[(4). The generalization to arbitrary s[(N) is straightfor-
ward.

We list the contributions to dim(3) from each degree. Each of the ¢ have the form
of certain homogeneous polynomials of degree k in x,y,z. That is, ¢ is a holomorphic
section of the line bundle £, = O(k)(-)_;E;) on Q?[ISZ. We computed the direct images
1. Ly in §3.3. For each k, the results are summarized in the first line of the corresponding
sub-table of table 1 or equivalently in (24).

1.Ly = Opi1(1). So the space of ¢;s is 2-dimensional. We can think of it as being spanned
by

Co=v(z—x),C; =z(x—-v), Cop =x(y —2)

subject to the relation

Co+Cy+Cyp=0 (25)

Restricted to any given C,, there’s an additional relation (12),

CooA1 +CoAy =0 (26)

which means that, restricted to C,, the space of ¢,s is 1-dimensional. But notice that
Op1(1) is nontrivial. Any global holomorphic section has a zero for some A € P!.
We will choose a trivialization which is good everywhere except at A = co and write

P2 = up,cx(y —2)
Near A =1, this ¢, does not vanish either on the right component (the line x —y = 0) nor
on the left component (the line z = 0) and thus belongs to the center (equivalently the
node itself). Hence the “C” subscript.
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1.L3 = 30p1(1). So the space of ¢3s is 6-dimensional. We can view this as being spanned
by

Cox, Coy, Coz, C1x, C19, C12,Cux, Cooy, Cooz,
subject to the relation (25). Restricting to any given C,, we get the additional relation

(26), which cuts the dimension of the space of ¢3s down to 3. Again, we’ll choose a
trivialization of 7t,£3 which is good everywhere but at A = co and write

P35 = x(y —2)(uzx + uspY + Us;32)
At A =1, us,; = usz, is supported only on the left component of the curve (the line z = 0),
u3,g = U3,3 is supported only on the right component of the curve (the line x —y = 0), and
Us.c = U3, + U3, is supported on both.
1. L4 =40p1(1)®Op1(2). So the space of ¢ys is 4 x 2+ 3 = 11-dimensional. Restricting to
any given C), reduces the dimension to 5. For any A # oo, we can take this 5-dimensional
space to be spanned by

Gs = x(v—2)[ugr, 1 (x = V)(z2 = X) + tug;p (X = V)Y + tg;r 1 2(Z = X) + Ug;r RZY + UgycX(Y — 2)]

up to terms which vanish by (12). Here, the first L(R) subscript pertains to sections sup-
ported on the left(right) component of the nodal curve at A = 1 and the second L(R)
subscript pertains to sections supported on the left(right) component of the nodal curve
at A = 0. Moreover, in this parametrization, uy,c is the parameter which transforms as
a section of Opi1(2) (with a double pole at A = o0), whereas the other four parameters
transform as sections of Op1(1).

Taken together, we have the following family of spectral curves

Det(® - wl) = w* - x(y - z)[uz;cw2 +(Uz,1 X+ U3,) + Uz32)W

+ (gL (x =) (z2—X) + ug,p R(X = V)Y + Uy, 1 2(2 — X) + Ug,g RZY

(27)
+ugex(y - 2))]
=0
And we have following graded base dimensions bi’C’R,k =2,3,4:
br=1{0,1,2)
by =(1,1,1) (28)
bR =1{0,1,2}
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We have trivialized the bundle of Hitchin bases on the complement of A = co. If we want
a description that extends to A = oo, we could choose (say) a trivialization which was good
everywhere except at A = 0 and set u;, = Cq (and similarly for the rest of the u’s). Clearly,
these are related by

/ _ 1
Upy.c = —qHzC

That is, the bundle of Hitchin bases is nontrivial over MOA. It splits as a direct sum of
line bundles, as we computed in §3.3. Reading off the results from table 1 or (24),

k=2 k=3 k=4
B=0(1) ®30(1)®40(1)+ O(2) = 80(1)O(2) . (29)

Remark 1. More generally, for j = s[(N), and 4 regular nilpotents on C 4,

0 & EHO(m)®*  for k =21+1

m=1

This gives a new stratification of the Hitchin base, finer than the decomposition into By,
even for smooth C. We do not understand its mathematical significance. From a physical
perspective, this stratification gives the transition functions needed to relate the Coulomb
branch parameters in different S-duality frames. The precise physical significance of the
transition functions implied by (30) remains to be explored.

When C approaches the nodal limit, the Lagrangian fibers of the Hitchin map u ac-
quire certain non-compact directions. The non-compact directions in the fiber are sym-
plectic dual * to the center parameters. If we quotient out the non-compact directions,
we are then left with a Poisson integrable system in which the center parameters act as
Casimir parameters. So, the label “C” in u;.c could equally-well stand for Casimir.

For generic values of the center parameters, @ has a simple pole with semisimple
residue at the node (for A = 1, this is the point x =y = 1, z = 0). The fiber over the node
on C, consists of N nodes of the spectral curve, which is otherwise smooth.

“Let u;,0; be a system of coordinates on the base and fibers of the Hitchin integrable system such that
Qj =) ;du; AdO;. In the nodal limit, some of the u; correspond to the center parameters u;,c. Their
(symplectically) dual directions parameterized by 6;,c are the non-compact directions.
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If we focus our attention on just the right component of C (the line x —y = 0), we get
the following spectral curve

wh - x(x - z)[uz;cw2 + (uz,cx + Us,rZ)W + (Ug,cX(X — 2) + Ug,R RXZ + Ug;r 1 2(2— X))] = 0
where, as above, u3.c = u3, + 3., t3.r = 3,3 and u3 = us,;. On the left component (the
line z=0)

wt - x}/[uz;cw2 + (UL (x —p) + uzcp)w + (1g;cXY — gy 1 X(X = Y) + gy, R (X — 3})?)] =0

Setting the center parameters to zero (and freezing the corresponding non-compact
fiber directions), we obtain a symplectic integrable subsystem. Since the normalization
of the nodal curve is disconnected, the integrable system is the product of an integrable
system associated to the 3-punctured sphere on the left with an integrable system associ-
ated to the 3-punctured sphere on the right. On C; the spectral curve for the symplectic
integrable subsystem is

w4—xy(x—y)[u3;LW+ (—ugrLx+ “4;L,R3/)] =0 (31)

and on Cp we obtain

w* - xz(x - 2)[uspw + (g RX — Ugr L (x—2))] =0 (32)

Each of these is the spectral curve for the Hitchin integrable system associated to Cj 3
with 3 regular Hitchin punctures.

The physics of this degeneration is well-understood: the theory contains an SU(4)

N = 2 vector multiplet which becomes weakly coupled as we approach the nodal limit.

The center parameters are the VEVs of (gauge-invariant polynomials in) the scalar fields

in the vector multiplet. These are in 1-1 correspondence with the independent Casimirs

of SU(4). This vector multiplet gauges a diagonal SU(4) subgroup of the product of the

two SCFTs (associated to the 3-punctured spheres) which are called Ty (for N = 4) in [7].

4.2. Restricted nodes

So far, we have assumed four punctures with residues in the regular Hitchin nilpotent
orbit. If we were to choose the residues to be in some smaller nilpotent orbit, then the
zero orders would go up. For example, if we choose the residue at the puncture E; to be
in the Hitchin orbit [2?], this forces ¢3 and ¢4 to have double zeroes (instead of simple
zeroes) at E;. That is, it changes the vector ! from (1,1,1) to (1,2,2) where the entries of
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Hitchin orbit | Zero orders
(4] (1,1,1)
[3,1] (1,1,2)
[2,2] (1,2,2)
[2,17] (1,2,3)

Table 2: The zero orders ¥ for the non-zero nilpotent orbits in s[(4)

On E; E, Ej Ey4
[3,1] ugr =0 ugpr=0 ugrr =0 ugrr =0
[22] l/l3;1 =0 M3;2 =0 l/l3;3 =0 M3;1 + M3;2 + l/l3;3 =0
Ugr, =0 Ug,r =0 Ugrr =0 Ugrr =0
u3;1 =0 M3;2 =0 1/[3;3 =0 M3;1 + M3;2 + 1/[3;3 =0
ugr =0 ugrr=0 ugry =0 ugrr =0
2
[2,17] | (ugrp+ Usc) (tgr R + Usc) (tgr,r — ta,c) (tg;1,R — Us;c)
+AMugrr —ugry) | +AMugrr —ugrr) | +AMUgrR —Ugr ) | FAMugRr L — U R)

Table 3: Conditions imposed on Coulomb branch parameters in the sl(4) Hitchin system
on Cy 4 with three regular nilpotent and one non-regular nilpotent residue

X correspond to k = 2,3,4. This, in turn, imposes linear relations among the coefficients.
These relations can be deduced by looking at the (27). We see that the only terms in ¢3
and ¢4 that don’t have a double zero at E; (which is the locus y = 0,z = 0) are the terms
with coefficients u3,) and uy,; ;. If we set these coefficients to zero, we force the residue
at E; to live in the nilpotent orbit [2?]. One can deduce similar constraints for all other
nilpotent orbits and the locations E;. For the reader’s convenience, we tabulate the zero
orders x for the various nilpotent orbits in s[(4) in table 2. When we have three regular
nilpotents and one non-regular nilpotent inserted at E;, the constraints obtained in this
way are summarized in table 3.

Replacing one of the residues with a non-regular nilpotent changes the bundle of
Hitchin bases (29). For example, if one of the residues is in the orbit [2,12] and the other
three remain regular, the space of ¢4s is the kernel of a map

40p1(1) ® Op1(2) = Op1(1) ® Op1(2)
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where the image of u4,c is nonzero. Hence the kernel is isomorphic to 30p1(1), as follows
from the analysis of §3.3 (see the entry for (ny,n,,n3,14) =(3,1,1,1) in the k = 4 subtable
of table 1). Similarly, the space of ¢3s is 20p1(1). Assembling all the pieces together, we
get

k=2 k=3 k=4
B=0(1) ®20(1)®30(1) = 60(1) . (33)

In replacing one of the regular nilpotents by [2,12], we had to impose three linear con-
straints from table 3. This reduced the dimension of the Hitchin base, 5, from 9 to 6. And
indeed (33) is a rank-6 sub-bundle of (29).

Proceeding as we did in the case with four regular nilpotents, we would now like to
study the behaviour of the spectral curves when the base curve C develops a node while
allowing for some of the residues to be non-regular. We will see that the specialization of
the spectral curve, implied by imposing the constraints of table 3, changes its behaviour
when the base curve, C, degenerates.

The first type of change is a reduction in the number of center parameters (that is,
the residue of @ at the node is no longer a generic semisimple) - rather than forming the
Casimirs of SU(N), it will turn out that they form the Casimirs of some simple subgroup
H c SU(N). We will give a mathematical proof of this claim in §7. This is also guaranteed
by certain physics considerations which we recall in §6.

A second type of change that could occur is that when the center parameters are set
to zero, the Res(®) at the node need not be in the regular nilpotent orbit. When we
set the center parameters to zero in the standard node (27), the coefficients of w™N=* for
k =3,...,N vanish linearly at the node (x —y =z = 0). So, we conclude that the orbit O at
the node is [N], the regular nilpotent. For O # [N], some of these coefficients vanish to
higher order. When the orbit at the node is non-regular, the center parameters then live
in the closure of the sheet’ that contains the orbit O at its boundary.

In §7, we prove that the vanishing orders uniquely determine such a O and also char-
acterize the nilpotent orbits that could occur in this way. To capture these two phenom-
ena, we will label a restricted node by the pair (O, H). Even though our proofs appear in
§7, to simplify the presentation, we have adopted the notation (O, H) to label restricted
nodes through out the paper. In this notation, the standard node would be ([N],SU(N)).

>We refer the reader to [18] for an introduction to sheets in complex Lie algebras and further background
references.
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4.3. Examples

Let us illustrate the above considerations with some examples. For brevity, we’ll focus on
the behaviour near the A = 1 degeneration of C.

Example 1

Ei |Ou | ¢2| P3| P4
E,|[31] |1 |1 |2
E, |[2,1%]]|1 |2 |3
E; | [4] 1 |1 |1
Ey | [4] 1 |1 |1

Using the results from table 3, for placing [3,1] at E; and [2, 12] at E,, we get the con-
straints

uzp =0, ugrr =0, wugr=0, uge=(A-1ugyrr
Plugging these into (27), we get the following family of spectral curves in this example

(dropping a term proportional to uyg rC)):

wh— x(y — z)[u2;cw2 + (Uz,cx + uz.pz)w + (Ugr 1 2(2 — X) + Ug.r gX2)] = 0 (34)

From this, we deduce the graded base dimensions b,I;’C’R fork=12,3,4:

bk =10,0,0)
bt ={1,1,0} (35)
bR =1{0,1,2)

With the center parameters turned on, the spectral curve still has 4 nodes covering the
node on C. But, rather than being free parameters (controlled by the uy,c), the location
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of one of the nodes is fixed to w = 0. Setting the center parameters to zero, the Hitchin
integrable system on the 3-punctured sphere on the right is unchanged; it governs the
Coulomb branch of the T theory, as above. But, on the left, the symplectic integrable
system is just a point. The physical theory on C; is “ugly”: consisting of 6 free hypermul-
tiplets, transforming as 2 copies of the defining representation of SU(3).

The gauge group has been reduced from G = SU(4) to H = SU(3) and the center
parameters are the Casimirs of H. The restricted node is thus ([4],SU(3)).

Example 2

$2 | P3| P4
E; [[22]]1 |2 |2
E, [[22]]1 |2 |2
Es|[4] |1 |1 |1
Eq|[4] |1 |1 |1

Using the results from table 3, for placing [22] at E; and at E,, we get the constraints
ug;p =uzp =0, ugrp =uyr=0
Plugging these into (27), we get the spectral curve:
wh = x(y - 2)[ug,cw’ + uggzw + (ugycx(y - 2) + Ugr 1 2(2 = X) + Uy rzy)| =0 (36)

So the graded base dimensions bi’C’R for k =2,3,4 are:

bk =10,0,0)
bt =1{1,0,1} (37)
bR =1{0,1,2)
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Again with the center parameters turned on, there are 4 nodes on the spectral curve
covering the node on C. This time, they are symmetrically-distributed about w = 0.

The Hitchin system on the right remains that of the T, theory, while on the left, it is a
point. The theory on the left is “ugly”: 8 free hypermultiplets, transforming as 2 copies
of the 4-dimensional defining representation of Sp(2).

The center parameters are the Casimirs of the gauge group, H = Sp(2) and we label
the restricted node as ([4], Sp(2)).

Example 3

This example is, in a sense, a combination of Examples 1 and 2.
The orders of the zeroes of the ¢ are:

E; | Oy b2 | P3| P4
E,|[31] |1 |1 |2
E, | [2,1%]]|1 |2 |3
Es [ [2°] |1 |2 |2
Ey|[2°] |1 |2 |2

The punctures on the left component of C impose the constraints

uzn =0, wugrr =0, ugpr=0, ugc=(A-1)ugrr

while the punctures on the right component of C impose the constraints

Uzz =uz; +uzn =0, ugrp =ugrr="0

Putting these together, we get the spectral curve

wz[u/Z—uz;Cx(y—z)] =0 (38)
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There’s just one center parameter, corresponding to H = SU(2) = SU(3)NSp(2). Turning it
off, the Hitchin integrable systems on both the left and the right are trivial. The restricted
node is thus ([4],SU(2)).

Note that this theory is globally an ugly one: the 14 hypermultiplets (6 from the left
and 8 from the right) transform as 4 copies of the defining representation of SU(2) and 6
copies of the trivial representation. That is, 6 hypermultiplets remain free, everywhere on
M, 4. In addition to the free hypermultiplets, we have the Hitchin integrable system for
SU(2) with N¢ = 4, whose spectral curve is the component of (38) in square brackets.

Example 4

The orders of the zeroes of the ¢ are:

Ei |Ou | ¢z | ¢35 ¢a
E; [[2°] |1 |2 |2
E, [ [2,1%]|1 |2 |3
E; | [4] 1 |1 |1
E, | [4] 1 |1 |1

Using the constraints from table 3, the spectral curve (again dropping a term propor-
tional to ug,r rC,) is

0=w*- x(y - z)[uz;cw2 + U3,RZW + (Ug,r 1 2(Z — X) + Ug;R RZX)]

and graded base dimensions bi’C’R fork=12,3,4:
bk =10,0,0)
bt =1{1,0,0}) (39)
bR =1{0,1,2)

The singularity of the spectral curve, covering the node on C is different from that in

Example 3, but the restricted node is again ([4], SU(2)). The constraint on H is coming
entirely from the left.
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Turning off the center parameter, the integrable system on the right component is the
same 3-dimensional Hitchin integrable system as in Examples 1 and 2. On the left, we
have the trivial theory, with no degrees of freedom.

Example 5

The orders of the zeroes of the ¢ are:

E; | Oy b2 | P3| P4
E, |[2,1%]]|1 |2 |3
E, |[2,1%]]|1 |2 |3
E; | [4] 1 |1 |1
E, | [4] 1 |1 |1

Using the constraints from table 3, the spectral curve (dropping a term proportional
to uy,r RCy, and defining uy.r | = tg;g g = Ugr) 1S

4

0= w* - x(y — 2)[Up,cw? + Uz,pzw + tig,z2°]

The graded base dimensions b]I;’C’R fork=2,3,4:

bk =10,0,0)
bt =1{1,0,0}) (40)
b =1{0,1,1}

Now the constraints imposed by the punctures on the left have forced a change in
the sub-integrable system on the right. It is no longer the 3-dimensional Hitchin system
associated to the sphere with 3 regular Hitchin punctures.

Res(D),, ., € [4] as before but now Res(®),, € [3,1], where 2z’ is the third puncture on
C& (the right component in the normalization of the nodal curve). We can see this di-
rectly by looking at the spectral curve on the right component. With the center parameter
turned off,

4

0=w"—x(x—-2z)[usprzw + u4;Rzz]
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At two of the punctures (x = 0 and x = z), the coefficients of u3,z and uy,r vanish to linear
order, as expected for the Hitchin nilpotent, [4]. At the node (z = 0), the coefficient of u3.
vanishes to linear order, but the coefficient of 14,z vanishes to quadratic order. This is the
behaviour at the Hitchin nilpotent [3,1]. On the left, we have the ugly theory, consisting
of two free hypermultiplets. The Hitchin sub-integrable system on the right is the one
associated to the 3-punctured sphere with Hitchin nilpotents [3,1], [4] and [4]. It governs
the Coulomb branch geometry of the SCFT named R 4 in [13].
The restricted node is thus ([3,1],SU(2)).

Example 6

So far, all of our examples of restricted nodes have been accompanied by a trivial sub-
integrable system on one (or both) of the components of the nodal curve. This need not
be the case, but the first nontrivial example occur in s[(5).

Here is the table of zero orders of ¢y for this example

Ei |Ou | $2| P3| Pa| ¢5
E; | [31%]|1 |1 |2 |3
E, [[3,1°]|1 |1 |2 |3
E; | [5] 1 |1 |1 |1
E, | [5] 1|1 |1 |1

The spectral curve is
_ 5 3 2
0=w’—x(v—2z)[up,cw’ + (Uz,1 X + U309 + Uz.32)W

+ (tg,cX(V — 2) + Ug;r 1 2(2 = X) + Ug,R RZV)W (41)

2 2
+Us,r RYZ" + Us;r (2= X)z° + us,p cX(V — 2)2]
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The graded dimensions b]I;’C’R for k=2,3,4,5 for the base are

bt =1{0,1,0,0}
by ={1,1,1,0} (42)
bR =1{0,1,2,3}

Turning off the center parameters, the sub-integrable system on the right is the 6-
dimensional Hitchin system corresponding to the three-punctured sphere with three reg-
ular punctures, [5]. On the left, the spectral curve is

O=w- [w4 - Xy (uz;cw2 + (U3, (x —v) + us.cy)w + u4;cxy)]
which, upon turning off the center parameters, becomes
0=w? [w® - uzrxy(x-y)| (43)

The restricted node is ([5], SU(4)). Physically, the neighbourhood of A =1 is described
as a weakly-coupled N =2 SU(4) gauge theory, gauging a diagonal SU(4) subgroup of
the Eq global symmetry of the Minahan-Nemeschansky theory and one of the SU(5)s in
the SU(5)% global symmetry of the T theory.

The factor in square brackets of (43) is the spectral curve of the one-dimensional in-
tegrable system governing the Coulomb branch of the Eq Minahan-Nemeschansky the-
ory [58]. This integrable system does have (more than one) realization as a Hitchin inte-
grable system. For instance, it can be realized as the 3-punctured sphere with 3 regular
nilpotents, [3] of s[(3). In the present case, we are seeing it appear as a (limit of the) SLs
Hitchin system. There is, however, a crucial difference. Unlike in its SLj realization, there
is no semistable SLs; Higgs bundle moduli space on the 3-punctured sphere with (43) as
its spectral curve. Any SLs Higgs bundle on Cy 3 with residues in ([3,1%],[3,1?],[5]) is
necessarily unstable (see §7.5 and Appendix B).

Example 7

Finally, let us close this section with an example that combines the features of examples
5 and 6: the sub-integrable systems on the left and right are both nontrivial and the
restricted node is not the regular nilpotent.

Consider the 4-punctured sphere
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for sl(6).
The zero orders of ¢y are

Ei |Oy | ¢2| O3] Pa| b5 | b6
E, | [31%]]1 |1 |2 |3 |4
E, | [3,1°]]1 |1 |2 |3 |4
E; | [6] 1 (1 |1 |1 |1
E, | [6] 1 (1 |1 |1 |1

The spectral curve is

0=wb—x(y- z)[uZ;Cw4 + (U3, X+ UzY + Us32)W1
2
+ (1g;cx(y — 2) + ugr 12(2 — X) + UyR RZY )W
+ (us;R RYZ + Us;R (2 — X)Z + Us;R cX(Y — 2)) 2w

2
+ (Ug;R RYZ + Ug,R (2= X)Z + Ug;r cX(V — 2))27]

(44)

which yields the graded dimensions b,f’c’R for k = 2,3,4,5,6 for the Hitchin base :

bt =1{0,1,0,0,0}
by =1{1,1,1,0,0} (45)
bR =1{0,1,2,3,3)

On the left (z=0), we get
0=w?-[w! - xp(upcw® + (u3,cy + s (x— P)w + ugcxp)|
which, upon turning off the center parameters becomes
0=w’- [w3 — U3, xy(x — y)]

We recognize, again, the irreducible component in square brackets as the spectral curve
of the E4 Minahan-Nemeschansky SCFT. Again, this SCFT is not obtained as the Hitchin
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system on a 3-punctured sphere, with punctures ([3,13],[3,13], X) for any choice of nilpo-
tent X.
On the right (x —y = 0), the spectral curve is

6 4 3
—x(x = 2)[up,cw” + (u3,cy + uz,rZ)W

O=w

+ (ug;cx(x —z) + ugr2(z—x) + u4;Rley)w2
))zw
)z

z’]

+(Us,pR RXZ+ Us,r (2= X)Z2+ Us.R cX(X — 2

+ (u6;R,sz + u6;R,L(z — X)Z + u(,;Rlcx(x 4

Setting the center parameters to zero, this becomes

6 3

0 =w"—x(x — z)[uz rzw
+(ugrpz(z—x)+ u4;R,sz)w2
+ (Us,r RXZ + Us.R [ (2= X)Z + Us,R cX(X — 2))ZW

+ (R RXZ + Ug;R 1 (2 — X)Z + U cX(x — 2))2°]

Here, we see that ¢¢ has a double zero at the node, rather than a simple zero, implying
that O = [5,1]. The center parameters are the Casimirs of H = SU(4). So the restricted
node is ([5,1],SU(4)).

We saw that the tame Hitchin system on Cj 4 may have a standard node or a restricted
node depending on the residues of the Higgs field at each of those punctures. So, it is
natural ask what are the general conditions under which restricted nodes could occur and
how does one characterize or classify restricted nodes. We now take up these questions
in a systematic way in §5, §6 and §7.

5. Tame Hitchin Systems on Nodal Curves

In §4, we found a family of Hitchin integrable systems, with base B — M 4, which ex-
tended as a flat family to the boundary of the moduli space where C develops a node.
Over the boundary, we found symplectic sub-integrable systems, with bases B; @ By <— B.

We would like to extend this story to ﬂg’n. Let C be the normalization of the nodal
curve C. The complex structure moduli space of C is a component of the boundary of
M, .. More specifically, there are two qualitatively different cases,

Mq = Mg, 11 X Mgy nes1 where gg +gp=gandnp+ng=n (46)

Mg—l,n+2
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In each case, this a codimension-1 divisor in Mg,n. The former is called a “separating
node”; the latter is called a “non-separating node.”®

Our aim, in this section is to sketch the construction of a family of Hitchin integrable
systems with base B — ﬂg,n and a symplectic sub-integrable system with base B <
Bl We further want to exhibit, in the case of a separating node, a decomposition
B = B, ® Bg where B; — g +1 and Bg = Mg 001

In most cases, the resulting sub-integrable system will, again, be a semistable J-Hitchin

system on C. The exception will echo what we saw in §4 in the case of M 4: when the
node is restricted — something we will see happens only in the case of a separating node
when one or both of the components has genus-zero — that genus-zero component will
yield a complex integrable system which is not a semistable J-Hitchin system.

5.1. Hitchin system on a nodal curve

Replace the smooth base curve C by a Gorenstein curve: roughly, it can be singular, as
long as there is still a good canonical line bundle (also called the dualizing sheaf) K¢. Any
curve that is a divisor in a smooth surface will do. The canonical line bundle is given by
the adjunction formula. This includes any curve whose only singularities are nodes. On a
nodal curve, the sections of the canonical bundle are 1-forms on the normalization with
first order poles allowed at the (inverse images of) the nodes, with opposite residues at
the two inverse images of each node.

As in the smooth case, the Hitchin system for C and a reductive group G is the space
Higgs of (isomorphism classes of) Ko-valued G-Higgs bundles on C. A G-Higgs bundle
is a pair (V,®) where V is a principal G-bundle on C and ® € H%(C,ad(V)®K¢). For now
we will focus on the case G = GL(N), so V is a vector bundle and ® : V — V ® K¢; or
G =SL(N), where det(V) is required to be O¢ and the trace of @ is required to vanish . As
in the smooth case, one can consider a GIT version where the Higgs bundles are subject
to a stability condition; or one can allow all Higgs bundles and work with the resulting
stack.

Also as in the smooth case, the spectral curve of (V,®) is the curve in the total space
of K¢ defined by the vanishing of the characteristic polynomial of the endomorphism ®.
The Hitchin base B is defined to be the space of all spectral curves. This can be identified
with the vector space:

®In §5.5, we will be interested in higher-codimension components of the boundary of Mg ., where C
has multiple nodes. It will still make sense to ask whether normalizing a given node splits the curve into
disconnected pieces. This will always be the case when g = 0. That is, all of the irreducible components of
the boundary divisor of M, are of the form ﬂornlﬂ X mo,nﬁl: with ny + n, = n.
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B:= @HO(C, K& (47)
k

where k runs over the degrees of the G-invariants. For G = SL(N), these degrees are
k = 2,...,N. The Hitchin map h : Higgs — B sends (V,®) to (the coefficients of) the
characteristic polynomial of .

When the Higgs field has poles along a divisor D consisting of distinct smooth points
of C, one can again define a Hitchin map whose image is now given by

B:= (P H(C, (Kc (D)) (48)

k
In the conformal case, the residue of @ at each of the marked points, p;, must lie in
some specified nilpotent orbit, O;. Correspondingly,

B:= @HO(C, Ly) (49)
k
where ok 0
Ly =(Ke(D)” @0(- ) x'pi) (50)
pieD

The line bundles Ly over each fiber fit together to form a line bundle £; over the
universal curve 1t: C — M, ,. The Hitchin bases (49) fit together to form a torsion-free

sheaf
N
B =Ly (51)
k=2

For M4, we computed these direct images rather explicitly in §3.3.
By Riemann-Roch’, the graded dimensions of B, when C is smooth, are

be=(g-1)2k=1)+ ) (k-x;) (52)
pi€D

These are necessarily non-negative for g > 0. For ¢ = 0, we assume that the {O;} are such
that the by are non-negative for each k (i.e. that the SCFT is “OK”). For a stable nodal

7For ¢ > 1 and no marked points, £; = K&, which has vanishing H'. Adding marked points increases
deg(L;) and again H! = 0. For g = 1, stability requires at least one marked point. This ensures deg(L;) > 0
and hence H! = 0. It is only for g = 0 that a nonzero H' is possible and we just impose by hand that
deg(Ly) > -1.
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Figure 1: A Riemann surface C of genus g develops a separating node. The nodal curve
has two components whose genera g;, gg obey ¢ = g; + gr.

curve, the same holds true except when C is reducible and one (or more) of the compo-
nents is genus-0. In that case, H°(C,L;) and H'(C, L) can jump in dimension (though
the difference remains constant). In that case, as we shall see in §5.2, the definition of the
Hitchin base (49) will need to be modified to (61), so that its graded dimensions are still
given by (52). Globally, this will mean modifying (51) to

N
B={Pmn.c; (53)
k=2

so that B is actually a vector bundle over Mg,n. The global definition of the £, as line
bundles over the universal curve will be given in §5.6. We will first work out what they
have to be, fiber-by-fiber, starting with curves with a single node, and progressing to more
singular nodal curves in §5.5.

We now proceed to study the behaviour at the codimension-1 boundaries of M, ,,
i.e. where C is smooth apart from a single node. We will see that the behaviour of the
Hitchin system in the nodal limit is that dictated by the “standard node” described in §4,
except when C has two components, one (or both) of which is genus-0. When this is the
case, and when a certain condition on the collection of marked points on that component
is satisfied, we obtain a restricted node, (O,H). As will be clear from the analysis, the
same conclusion applies if we further degenerate surface. We obtain a restricted node
only in the case where one (or both) side(s) of the node consists of a tree of P's (with the
same condition on the marked points on that side).

5.2. Hitchin system on a reducible nodal curve

Let us first consider the case of a separating node. The base curve C,, of the Hitchin
system has a single node at the point p and is reducible. The normalization v: C; LI1Cg —
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Cg,n, where Cp and Cy have genus g; r respectively, satisfying

SL+8rR=8

In this subsection, we will only consider degenerations where C; and Cy are themselves
smooth stable curves.

Let C; and Cg be the corresponding divisors in C. Then O(-C;) and O(-Cg) are line
bundles on C. Restricted to each component of the fiber,

deg(Oc, (-Cp)) =1 (54a)
deg(Oc, (~Cr)) = 1 (54b)
Oc, (=Cr)) = Oc, (-p) (54c)
Ocy(—CL)) = Ocy(-p) (54d)
Using the restriction maps to C; and Cg, we define the sheaves on C

Ly =ker(rg : Ly — Llcy) = L ®Oc, (-p) (55)

Lir =ker(ry : Ly — Lilc,) = L ®Oc,(-p)

These fit into a short exact sequence

0= Ly ®Lxr— Ly —>Sp -0 (56)

where S, is a skyscraper sheaf supported at p.
First, let us assume that Hl(C,,Ck) = 0. Then, since HO(C, SP) = C, the long exact
sequence associated to (56)

0— H(C, L1 )@H(C, Lir) — HY(C, L) S HO(S,) > H'(C, Ly, )®H" (C,Lir) = 0 (57)
splits, either as

0— HC, L )®H(C,Lrr) » H(C, L) S C— 0 (582)
HY(C, Ly, )®H'(C, L) =0

Oor as
HO(C,.Ck) = HO(C,‘C}(,L) EBHO(C;[:](,R)

HI(C,ﬁk,L)EBHl(C,[:k,R) =C

depending on whether the residue map « is nonzero.
If H(C, L, ® Oc,) # 0, then it follows from the long exact sequence associated to

(58b)

0_>£k,R_)£k_)£k®OCL_)O (59)
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that H!(C, £;) # 0. Since this vanished on the smooth curve, we are in the situation where
the cohomology groups of £; jump in the nodal limit.

To fix this, we tensor with an appropriate power of the line bundles defined in (54).
Let n% be the smallest non-negative integer such that Hl(CL, Ly ®OCL(n£p)) =0and let nf

be the smallest non-negative integer such that H! (CR,.Ck ® OCR(nfp)) =0.
As we shall see in §5.3 below,
ng = max(0,—dg —1) (60a)
ng = max(0,—dgf — 1) (60b)

where d,]; and d,lf are defined in (68). Our "OK" assumption is that H!(C, L) = 0 on the
smooth curve. If that is the case, then at most one of ni and nllf can be nonzero®. Set

L, =L ®O0(-n;Cp —niCr) (60c¢)
Then, as before, we define

L; =L ®0c,(-p) = Lt ® O((ng —ny)p)

) ) (60d)
Ly g =L ®0c,(—p) = Li g ® O(=(ny — n)p)

It is important to note that, for n,% > 0, the twisting (60d) does not introduce’ a nonzero
Hl(C,,C,'( R). To see this, note that, from the definitions of £ gz and ni, we can write .C,'( R
in terms of the canonical bundle of the normalization

L= KEOO((k-nf-1)p+ Y (k-xi")pi)
pi€DR
~ K& ®O(min(k “L-legk-D+ Y k-x)p+ Y (k- X}(”)p,.)
p]'GDL piEDR

To show that H! (CR,,C,'( R) = 0, we need to consider a few different cases.

e For gg > 1, Kg]: has vanishing H! and the line bundle we twist it by has positive
degree.

8The argument is used repeatedly in this section, so let us spell it out here. 1, can be nonzero only if the
component has genus-0. If both components have genus-0, then the OK condition is that the total degree
of Ly is > —1. If the degree of £y is < -2 on one component (the condition for #; to be nonzero on that
component), then it must be positive on the other component.

9Similarly, for nf > 0, we do not induce a nonzero Hl(C,El’{'L).
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* For g =1, Ka’: is trivial but, again, we are twisting by a positive line bundle. In

both cases, this leads to vanishing H'.

» For gg = 0, Dg must consist of at least 2 marked points and the nilpotents located
there must be such that H'(C,£;) = 0. This, again, is sufficient to ensure that

deg(L} ) = -1 and hence H'=0.

As we shall see shortly, the twist (60a) is only nontrivial when g; = 0, in which case,

deg(ﬁk ®OCL(n£p)) = -1 and hence HO(C,[Zk ®OCL(n£p)) =0 as well.

Finally, we can give our definition for the Hitchin base on the reducible nodal curve.

The Hitchin base is N
B:=(HH(C L})

k=2
Or, globally, the family of Hitchin bases is

N
B:=(Pmn.L;
k=2

On each component of the nodal curve, we define the Hitchin bases

By construction, we have the inclusion
H(C, L, )®H (C, L z) = H(C, L)

which is characterized by the following properties

(61)

(62)

(63)

(64)

« HO(C, L:;(,L) and H°(C, ﬁ;{,R) are disjoint subspaces of H(C, .C,'() and hence the map in

(64) is injective.
* For each k, the quotient in (64) is either 0 or 1 dimensional.

— When the twist, ni is nonzero then we have

H%(C,£;;)=0 and H°(C,L})=H°(C, L} )
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Conversely, when nllf is nonzero, we have
H%(C,L; z) =0 and H(C,L;)=H’(C, L} ;)

In either case, the quotient vanishes, as it also does when the map « in (58a) is
Zero.

The space of center parameters,
Bc = B/(BL @ Bg) (65)

is the direct sum of these 1 dimensional spaces. The Hitchin fibers which are symplectic-
dual to B¢ are the ones which become noncompact in the nodal limit.
Denoting the graded dimensions of these spaces as bf, by b,f and by, we obviously

have
by = by + bX + b (66)

The case where b,? = 1 for all k corresponds to what we called a standard node in §4.
Conversely, when some of the bkc = 0, the node is restricted.
The dimensions in (66) are given by

b,% = max(d]f - max(—d,lf -1, O),O), bllf = max(d,lf - max(—d]f -1, O),O) (67)

where the index of £ | and £y are
db= (g -Dk-1)+(k=-1)+ ) (k—x})
pi€Dy

af = (ge-1)2k-D+(k-1)+ Y (k—x})
pi€Dg

(68)

If g; and gg are both positive, then d]f and d,lf are both > k-1 and hence, combining (68)
with (52), b,? =1 for each k. So we get the standard node.

Only if one or both of C; r are genus-0, will a separating node be restricted. Without
loss of generality, let C; have genus-0. In this case (68) simplifies to

db=—k+ Y (k-x)

pieDL

where, for stability, we must have deg(D;) > 2. So if

Y k-xh <k (69)



for some k, then we have the corresponding b]f = 0, and hence a restricted node, as dis-
cussed in §4.2.

Our definition of restricted node amounted to asserting that b,? = 0 for some k. It will
prove useful in §7 to have some alternative formulations of this condition. To this end,
we prove the following Proposition.

Proposition 1. The following conditions are equivalent.
: 1,C _
i. by =0.
ii. Either
HY(C,L,;)=C, H%C,L,p)=0
or
HYC,L;;)=0, HY(C,L,p)=C
(but not both).
iii. H(C,L£,®0¢,)=0o0r H(C, L, ® Oc,) = 0 (or both).
iv. HY(C, Ly ®O¢,)=0o0r H'(C,L, ®Oc,) = 0 (or both).

Proof. To prove the equivalence of (i) and (ii), consider the short exact sequence (equation
(56), but for £, instead of Ly):

0Ly ®Lg— L —S,—0 (70)
and the corresponding long exact sequence

0— H(C, L}, ) @H"(C, L} ) » HY(C,L}) = H"(S)) » H'(C, L}, )@ H'(C, L}, ) — 0

(71)
The latter splits, either as
0— HO(C, £},)® HY(C, £}, ) — HY(C, £}) 5 € — 0 722)
HY(C,Ly )@H'(C,L; z)=0
e HY(C,L;)=HC, L, )®H(C, L} )
‘ ’ (72b)

HY(C,L;)®@H'(C,Ly ) =C

depending on whether the residue map a’ is nonzero. The former corresponds to bkc =1;
the latter to blg = (. But the latter holds if and only if (ii).
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To prove the equivalence of (ii) and (iii), we note that deg(£; ® Oc,) > k(2g; —1). So
if g > 1 then H'(L} ) = H' (£, ®Oc, (-p)) = 0 and H*(L;, ® Oc,) # 0. To get H' (L} ;) # 0
or H'(L;, ® O¢,) = 0, we must have g, = 0. But if gy = 0 then H (£, ® O¢,(-p)) # 0
H%(L, ®Oc,) = 0. The same applies to £}, p.

Finally, let us consider (iv). If ni = nllf =0, then £; = £} and (iii) is equivalent to (iv).
So, without loss of generality, consider the case gy = 0 and ni > 0. Then

deg(Ly ®Oc,) =deg(L;, ®Oc,) —nf = -1 —nf < -2,

in which case HY(£; ® O¢,) = 0=H%(L, ® O, ). O

5.3. The nilpotent at the node

Proposition 1 gives us the conditions under which we have a reduction in the number of
center parameters. One observes that these condition obtain only if at least one of the
components is a genus zero curve. For this section, let us imagine we are in one of these
situations and without loss of generality, let us take C; to be the genus zero component.
We prove in §7 that the non-zero center parameters can always be identified with the
invariant polynomials for some simple Lie subgroup H C J. This determines the H in the
pair (O, H) with which we label restricted nodes.

We now turn to the other entry in the pair. To understand its role, we will need to
look in more detail at the behaviour of sections of £; at a node.

If d]f and d}f in (68) are both > —1, for each k, then O = [N]. If, for some values of k,
d,f < -2, then the corresponding L, ® Oc, has higher cohomology.

h'(C, Ly ®Oc,) = max(-1 —dy,0) = nf (73)
That component of the Hitchin base, Bg, is given not by HO(C,,Ck,R), but rather by
HO(C, L}, ) = H*(C, L, @ O(~nfp)) (74)

That is, ¢, has a zero of order ni + 1, rather than a simple zero, at the node. This is the
Hitchin base associated to Cg, where the nilpotent, O, at the node has vanishing orders
of the ¢ given by

Xk =1+ng (75)

We show in §7 that x; as defined above is the set of vanishing orders for some nilpotent
orbit O. Since the vanishing orders uniquely identify nilpotent orbits in s[(N), this gives
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us the other entry in the pair (O, H). We also give a different prescription for determining
O in §6.2 based on properties of the Higgs branch.

Let us, however, pause to follow the intuition we developed using global methods
in examples 5, 7 of §4.3 to see if it matches the prescription in (75). In each of those
examples, when we turn off the center parameters, some of the ¢, on Cy have higher-
order zeroes (instead of simple zeroes) at the node. We claim that these higher order
zeros are precisely accounted for by the twist in (74).

Let’s check these assertions. Specializing to g = 0 and deg(D;) = 2, (68) simplifies to

(i
df=k-) x

pi€Dy
For both examples, d}f =k-2.

2
* For example 5, )(][(2’1 I k-1, so d]f = 2 —k. Hence b,% =(0,0,0), bf =(0,1,1), bkc =
(1,0,0) and hl(C, Ly ®OCL) =(0,0,1). This agrees with our previous analysis, where
we found that (after turning off the center parameters) ¢4 had a double zero at the
node.

3
* For example 7, )(,[(3’1 = max(k—-2,1), so d,f =(0,1,0,—1,-2). Hence blf =(0,1,0,0,0),

bf =(0,1,2,3,3), b]f =(1,1,1,0,0) and hl(C,,Ck ®0O¢,) =(0,0,0,0,1), which agrees
with our previous analysis, where we found that (after turning off the center pa-
rameters) ¢4 had a double zero at the node.

5.4. Hitchin system on an irreducible nodal curve

Finally, let us consider the case where C has a non-separating node. Here, the normaliza-

tion of the nodal curve, v: C — C, is a curve of genus g = ¢ — 1 with two points, (q;,4>)
covering the node p.
As before, define

Ly =Ly ®O0(=q1 - q5) (76)

The degree

degly=2kgc+ ) (k—x;)
pieD

is in the stable range so that HY(C,L;) = 0. (This also means that H'(C,£;) = 0.) The
Hitchin base for the normalization is

B:@HO(C,Ek) (77)
k
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Figure 2: A Riemann surface C of genus g develops a non-separating node. The normal-
ization C is a Riemann surface of genus g — 1

which has graded dimensions

be=(g-2)2k-1)+2(k-1)+ Y (k-x) (78)
pieD

We have the natural inclusion, B < B, and (with a slight abuse of notation), we will call
the quotient
B =B/B

the space of center parameters, as before.
Combining (52) and (78), we have

be =bp—bp =1 (79)

for each k. So a non-separating node is always the standard node and x; =1 for each k.

5.5. Further degeneration

So far, we have assumed that the curve C is smooth, except for a single node. We have
seen that only when the nodal curve has two components and when at least one of those
components (say, C;) is genus-zero is it possible for the node to be restricted: (O,H) #
(IN], SU(N)).

Without loss of generality we can take C; to be the genus-zero component, and the
twists nf = 0, so that the vanishing order, xj, at the node is determined by the twists

ni. As we shall see, in §7, the collection of x; determine the nilpotent O at the node
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Figure 3: The basic “tree move”. Fixing the locations of the three points, 1,2,3, on P! and

letting the attachment point e roam over the P!, we interpolate between the three trees.

and moreover that if, for any k, ni # 0 the all of the nf = 0 (and vice versa). So O is (in
fact) entirely determined by the data on C;. With one exception noted in §6.2, H is also
entirely determined by the data on C;. Here, we will not assume this. We will study what
happens for a fixed value of k. Hence we will use the pair (xy, bf) as our stand-in for
(O,H).

In this subsection, we would like to inquire what happens upon further degeneration
of C; and Cp. Let us first consider degenerating C;. Since it has genus-zero, the degener-
ation has the form of a tree of Pls, with the root node being the one we started with. For
the present discussion, we only need to focus on the vanishing orders yx; at the root of the
tree and graded dimension b,? of the space of center parameters at the root node.

First, we wish to show that all such trees give the same x; at the root node. To see
this, it suffices to note that we can pass from one tree to any other tree, via an elementary
move on 4-punctured spheres. This is depicted in figure 3.

Let’s compute the vanishing order x; at the root of the tree on the left. Here, “1” and
“2” tuse first, yielding the vanishing order

Xe=1 +max(0,)(§(1) +)(;<2) -k-1)

at the node labeled in blue. This then combines with “3” to yield the vanishing order

. (3)
Xr=1+max(0,Xr+x, —k-1)
¢ (80)

=1 +max(0,max(0lx;<1) + X;f) —k—1)+ X;f) B k)

at the root of the tree. There are two cases to consider

a) If )(;(1) + )(;(2) <k, then we have

Xr=1 +max(0,)(;<3) —k)

=1
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b) If )(;(1) + )(;(2) >k + 1, then we have

xr=1 +max(0,)(;<1) +)(;(2) +)(;(3) -2k-1)

In the latter case, if )(;(1) + )(;(3) <kor )(;(2) + )(;(3) < k then we again have y; = 1. Of course,

it also gives x; =1 for )(;(1) + )(;(2) < k. Hence this formula subsumes case (a) and we can
write

i = 1+max(0, x\" + x P+ x -2k -1) (81)

This result is clearly invariant under permutations of 1,2,3 and hence applies to all three
trees. Thus, we get the same y at the root of the tree, regardless of which tree we choose.
Performing this move locally, we can transform an arbitrary tree of Pls into any other
tree. Thus x; at the root of the tree depends only on the )(;:) on C;, and not on how C;
degenerates.

We can perform the same analysis for bkC. With the exception noted in §6.2, the num-

ber of center parameters bkc is determined by the data on C;. We have
bkc :min(l,max(O,d,f+1)) (82)

where, in the case at hand,

db=—-k+ Y (k-x;)

pi€DL
Applying this to the tree on the left,

1+d,f:1+k—)2k—)(§<3)

) (1)

:k_Xf —max(0, x, +)(§<2)—k—1)

Again, we have two cases
a) If )(;(1) + )(;(2) <k, then 1+ d,f =k- )(;(3) and hence bkC =1.

b) 1 x4 27 > k+1, then 1+dL = 2k +1— ¢\ = x1¥ — ¥V and hence

blg = min(l,max(o,zk +1— X;cl) B X;f) _ X;f)))-

In the latter case, if either )(;(1) -+ )(;(3) <kor )(;(2) + )(;(3) <k, then 2k +1 - )(;(1) - )(;(2) - )(;(3) >2

and hence blf = 1. As before, this formula subsumes case (a) and we can write
b¢ = min(1,max(0,2k+1 - x} — ;" ~ k) (83)
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As with (81), this is manifestly symmetric under permutations of 1,2,3 and hence invari-
ant under the “tree move”. Thus the pair (x, b,f) at the root of the tree depends only on
the O; on C;, and not on how C; degenerates.

Equations (81),(83) ensure that (xy, bkc) at the node is independent of how C; further
degenerates. The upshot is that ( )(k,bkc) depends only on the puncture data and is com-
pletely independent of the complex structure of C;. In fact, we can read off the general
answer for an arbitrary number of marked points on a genus-zero C; from (68), (75), (60),
(66) and (67):

X =1+max(0,k—1- Z(k—xf))) (84a)
pi€Dy
blf = min(l,maX(O,l —k+ Z (k - X;f)))) (84b)
pi€Dy

independent of the complex structure of C; and, in particular, of whether C; is smooth or
degenerate. While we arrived at (84) through manipulations which preserved the number
of components of C;, the final result is independent of the complex structure of C; and
holds for both C; smooth or nodal, with an arbitrary number of irreducible components.

As alluded to above, there is one case where a contribution to b,f comes from both C;
and Cg. This occurs (see §6.2) only when both C; and Cy are genus-zero. In that case, we
can replace (84b) by

bC = min(l,max(O,l ~k+ Y (k=i max(0,1-k+ Y (k- X}j')))) (84c)

pi€DL pi€Dg

Similar considerations apply to degenerations of Cy. If gz > 1, then there are no con-
straints coming from Cg, whether smooth or degenerate. If gz = 0, then our assumption
that H!(C,£L;) = 0 implies that the only possible constraint coming from Cg is embod-
ied in (84c), and (repeating the arguments of this subsection) this persists under further
degenerations of Cg.

5.6. The global story

In §5.2, we sketched the construction of a family of Hitchin bases that extended to the
boundary of the moduli space, where the curve C develops a node. Here we will sketch
the general story, leaving most of the details to a followup [59].

For simplicity, let us first consider the genus-0 case, where all nodes are separating
nodes. The components of the boundary of M, are labeled by subsets S C {p1,py,---, Py
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such that both S and its complement, SV contain at least two points'’. The corresponding
nodal curve C has two irreducible components Cs and Cgv (previously, we called these
Cr and Cg), such that the marked points in S lie on Cg and the marked points in SV lie
on Cgv.

For each S and k = 2,..., N we assign a non-negative integer, n,f as follows. Let £ — C
be the Hitchin line bundle over the universal curve, obtained by fitting together the line
bundles (50) over each fiber. As in (73),

0 = max(O,k - Z(k—;(}j))) . (85)

p,‘ES

When Cg is a smooth genus-0 curve, h!'(Cs, £;) = nf.
Let Cs be the Cartier divisor in C corresponding to Cs. We define the line bundle
L, — C to be
L) = £k®0(—zngcs) (86)
S

B=Pmn.L; (87)
k

The family of Hitchin bases

is a vector bundle'! over MO,H.

The generalization to higher genus is straightforward. The Deligne-Mumford com-
pactification, Mg,n, now contains boundary components corresponding to both separat-
ing and non-separating nodes. At the former, C is a reducible curve C = C5 U Cgv, where
Cs has genus gc, and contains a subset S C {py,p»,...,p,} of the marked points'? and Cgv

has genus ¢ — gc, and contains the complementary set of marked points. We define

ni = max(O,k—l—ng(Zk—l)— Z(k_X;("))) (88)
pi€S

such that, when Cg is smooth, h'(Cg, L) = nf. For gc, > 0 and Cg smooth, we are in the
stable range, where h!(Cg, L) = nf = 0. Similarly as we saw in §5.4, when C is smooth
except for a non-separating node, we also have h!'(L;) = 0. So we might as well restrict

10Since there is no invariant distinction between left and right, exchanging S <> SV yields the same
component of the boundary.

The astute reader will note that this is a generalization of the procedure developed in §3.3 for the case
of ﬂo,zl- The twist (86) is a direct generalization of (22).

!2For stability, S must contain at least two points when gc, = 0. When g¢, > 0, there’s no condition on
the number of points in S. Similarly, for g —gc, > 0, there’s no condition on the number of points in SV.
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ourselves to the case where Cg has genus-0. For each such S, let Cg be the Cartier divisor
in C corresponding to Cg. As in the genus-0 case, £; is defined by (88), (86). In Appendix
A, we prove (see also [59]):

Theorem 5.1. The family of Hitchin bases

B = 0L} (89)

is a vector bundle over Mg,n.

6. Flavour Considerations and the Higgs Branch

We have argued for the labeling of restricted nodes by a pair of the form (O, H), where O
is a (Hitchin) nilpotent orbit in j = s[(N) and the center parameters associated to the node
are the Casimirs of the compact simple Lie group H C SU(N). From a purely Hitchin
system/Higgs bundles standpoint, it is not obvious why the center parameters should be
the Casimirs of a subgroup (in particular a simple subgroup) H C J. It is equally unclear
which simple subgroups can arise in this way.

The purpose of this section is to use Higgs branch considerations to answer the ques-
tion “What are the possible pairs (O, H) that could conceivably arise in the nodal limit?”
In §7, we will use the results on Higgs bundles on nodal curves that we obtained in §5 to
study the same question from a purely Coulomb branch point of view.

In the physics, the meaning of H is clear. In the nodal limit, the SCFT becomes a
weakly coupled gauge theory, with gauge group H, where the symmetry that is gauged
is an H subgroup of the flavour symmetry group of the SCFT associated to the normal-
ization of the nodal curve C. This flavour symmetry group is the group of hyperKahler
isometries of the Higgs branch of that SCFT.

6.1. Flavour symmetry

To see the flavour symmetry, it is more natural to consider the “Nahm” nilpotent orbit
Oy, rather than the “Hitchin” nilpotent orbit Oy which is the residue of ®(z).

In type-A, the Nahm partition is just the transpose of the Hitchin partition. For types
D and E, the map between Oy and Oy is more nontrivial [10,11]. In type-A, all nilpotent
orbits are special (the map between Nahm and Hitchin orbits, given by the transpose, is
an involution), beyond type-A there are non-special orbits. When Oy is non-special, the
image on the Hitchin side is a pair (Oy,I') where O is special and the finite group I' is
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a subgroup, I' C A(Op), of Lusztig’s canonical quotient [60] of the group A(Oy) defined
in (2). That is, the Hitchin system data is enriched by a finite group associated to each
non-special Nahm orbit at a puncture.

For this reason, the physicists prefer to label punctures by their Nahm nilpotent orbit.
Since, in this paper, we have restricted ourselves to type-A, where all nilpotent orbits are
special, we have labeled punctures by their Hitchin nilpotent orbit.

By Jacobson-Morozov, each choice of nilpotent, X, corresponds to a distinguished
triple — an embedding p: sl(2) < j. A nilpotent orbit O 5 X thus corresponds to an
s[(2) embedding up to conjugacy. For Ay _, such an embedding up-to-conjugacy defines
a partition of N which we denote by [q",4,°,...] where q; > g, > ... and ¥ ;n;q; = N.
Associated to this partition is an N-box Young diagram with n; columns of height g;, 1,
columns of height ¢,, etc.

Let £ C j be the subalgebra that centralizes the embedding p (i.e. fixes every element
of im(p) C j) corresponding to a given Nahm nilpotent, X € Oy. We denote the flavour
symmetry F to be the corresponding compact Lie group (which depends only on the

orbit, Oy). Forj=An_1,
[ Tum)
i

For each simple subgroup, F; = SU(n;) C F, we assign a level k; € N, as follows. De-
compose j under sl(2) xf; asj =&, V,, ®R; , where V), is the n-dimensional irrep of s[(2)
and R; , is a (possibly reducible) representation of f;. Let /; ,, be the index'? of R; ,,. Then

ki=) lin

For An_y, the level k; of SU(n;) is just twice the total number of boxes in the first g;
rows of the Young diagram. For example consider Oy = [32,22]. This has F = S(U(2)?) ~
SU(2)*xU(1) (where we ignore a discrete quotient), and the two SU(2)s have levels k = 20
and k = 16.

For later reference, we define the complementary level, for any simple H C F;

F=S

k/(H) = 4hY(H) - k; (90)

1

where hV is the dual Coxeter number.

3For a highest-weight representation R with highest weight A, I(R) = %(AJ +26), where 6 is the

Weyl vector. The normalization is such that the defining representation of SU(N) has [ = 1.
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6.2. Restricted nodes

A restricted node is a pair, (O,H), consisting of a Hitchin nilpotent orbit and a simple
(SU(I) or Sp(l)) subgroup, H C F; C Fp, of its flavour symmetry group. We could de-
note the standard node as ([N],SU(N)) but will refrain, so as not to unduly clutter the
notation.

With the preliminaries of §6.1, we can state the algorithm (which was first used in [13],
though the differences of notation would make that hard to discern) for determining the
restricted nodes that can appear.

For any given O, the allowed Hs are those simple subgroups H C F; for which the
complementary level is non-negative'*, k’(H) > 0.

For example, given O = [N], the allowed Hs are

. SU(I), 2N>2I>N
Sp(l)) N2>=22I>N-2
More generally, H can arise either as

* an SU(!) or Sp(l) subgroup of the SU(n) associated to a Nahm partition of the form
[...,1"], with [ large enough so that k’(H) > 0 or

» the SU(n) associated to the Nahm partition [2"].

By Theorem 7.1(C), the latter case does not occur in the untwisted A,,_; theory. It does,
however arise in the collision of punctures from the twisted sector [61]'°.

14 k(H) and k’(H) are the levels of the current algebras for the H-flavour symmetry of the SCFTs associated
to Cg and Cj, respectively. The vanishing of the g-function for H requires k(H) + k’(H) — 4h¥(H) = 0,
where k(H) and k’(H) are the contributions to the -function from the “matter” sectors while —4h" is the
contribution from the vector multiplet for gauge group H. Unitarity of the SCFTs requires k(H),k’(H) > 0.

15The astute reader might object that there appear to be two more possibilities for (O, Hy) that are not on
this list. You might think that ([2n], SO(2n—1),) (for ] = SU(2n)) or ([2n—1],SO(2n-1),) (for ] = SU(2n—-1))
are allowed by the k’(H) > 0 condition. As we shall prove in Prop 2 of §7, there’s a unique case where the
Casimirs E)C =(1,0,1,0,...,1) arise at the node: namely, when C; contains two marked points with Hitchin
partitions [2"],[2"]. But that uniformly leads to the theory on C; being two hypermultiplets in the defining
representation of Sp(n) — yielding (O, Hy') = ([2n], Sp(n)4). There’s no collision of punctures that yields
EC =(1,0,1,0,...,1) and an empty theory on C;. For ([2n—1],SO(2n —1),), the story is even simpler. For
n > 3, there’s a lower bound on the level of an SO(2n — 1) current algebra in a unitary N = 2 SCFT. This
lower bound is k” > 4 and is saturated by a free hypermultiplet in the vector representation. So there’s no
candidate for the theory on Cj.
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In the former case, let the Hitchin partition be O = [py,py,...], with p; —p, = m. Then

(91)

H- SU(l), 2m=>2l>p;
Sp(l), m>2l>p;-2

In particular, for (91) to have solutions, we must have p; > 2max(p,,1).
The next concept we need to introduced is the partial-ordering on the set of nilpo-

tent orbits, induced by orbit-closure. This ordering is typically captured by the Hasse
diagram. Here is the Hasse diagram for As:

w
—
(O8]

N

—
—_
N

W

N
-
%

— /NS No
»
p—

=
N
N/

where we have denoted in green the possible Os, whose flavour symmetry group admits
a subgroup H satisfying k’(H) > 0.
This leads to 13 possible'® restricted nodes for As:

161n the table, (7o) = k — (xo)k as usual. m, =2k —1—7m; - bkc and the twisting n; = max(rm; - k,0).
(ny,n,) are the contributions from the branch of the node to the effective number of hypermultiplets and

the effective number of vector multiplets for the SCFT associated to C;. Note, for instance, that n; depends
only on O and not on H.
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(O, Hy) 0 5 (np, 1)
([61,SU()g) |(1,2,3,4,5)|(1,2,3,4,6) | (140, 136)
(61,Sp(3),) |(1,2,3,4,5)|(1,3,3,5,5) | (140, 139)
(61,SU4), |(1,2,3,4,5)|(1,2,3,5,6) | (140, 145)
([6],Sp(2),) |(1,2,3,4,5)|(1,3,3,5,6) | (140, 150)
([6],SU(3),) |(1,2,3,4,5)|(1,2,4,5,6) | (140, 152)
([5,1],SU4),) | (1,2,3,4,4)|(1,2,3,5,7) | (156, 156)
(5,11,Sp(2),) | (1,2,3,4,4)|(1,3,3,5,7) | (156, 161)
(511,SU(3),) |(1,2,3,4,4)|(1,2,4,5,7) | (156, 163)
([4,2],SU(2)y) | (1,2,3,3,4)|(1,3,4,6,7) | (168,177)

*([32],SU@3),) |(1,2,2,3,4)|(1,2,5,6,7) | (176,179)
(4,12],SU@3),) | (1,2,3,3,3) | (1,2,4,6,8) | (180, 183)
([4,12],SU(2),) | (1,2,3,3,3) | (1,3,4,6,8) | (180, 188)
([3,1°],SU(2),) | (1,2,2,2,2) | (1,3,5,7,9) | (210, 215)

Which restricted node occurs at a given degeneration of C can now be summarized by
the following algorithm.

1. Let 7o be the vector of pole orders, corresponding to the Hitchin nilpotent orbit O
(recall that these are related to the ¥ by (7o)x = k= (xo)k)- For the regular Hitchin
nilpotent, T_f[N] =(1,2,3,...,N-1)fork=2,3,...,N.

2. Consider a separating node, where punctures Oq,...O,, appear on the (genus-0)
curve on the left. Form the vector @ =) I, 70,

3. Among the allowed (O, H), find the largest O (the one lowest on the Hasse diagram)
such that

(a) 7 - 7o has only non-negative entries.

(b) H C Fp is the highest-rank simple subgroup of the flavour symmetry of O
whose independent Casimirs correspond to a subset of the positive entries of
7 —To. For a generic curve (and collection of punctures) on the right, these are
the center parameters.

(c) If 7— ﬁ[N] has all positive entries, then the node is the standard node.

With one exception, this pair (O, H) is the restricted node. The exception occurs when
both the left and right components of the nodal curve impose such a restriction. In type-
A, this occurs when C has genus-0 in the A,,_; theory. If the Hitchin nilpotents at the
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punctures consist of two copies of [2"] and some number of “hook partitions" of the form
[I; + 1,12"7li71] with

L>1, Zli:n—l (92)

then, when C degenerates in such a way that the two [2"] punctures end up on one com-
ponent (w.l.o.g, Cr) and the hook partitions end up on the other component (C;), then
C; picks out the restricted node ([2n],SU(2n — 1)) and Cy picks out the restricted node
([2n],Sp(n)). The actual restricted node is ([2n], Sp(n —1)). L.e., H = H; N Hg. We saw an
example of this in example 3 of §4.3.

For the purposes of this paper, we will refer to the above algorithm to find (O, H) as
the Higgs-Coulomb algorithm due to the fact that the algorithm actually involves proper-
ties of both the Higgs and Coulomb branches. We choose this terminology primarily to
distinguish it from the discussion in §7 where the Higgs branch does not play any role.
There is an alternative proposal to find H purely from the Higgs branch geometry due
to [19]. We comment on the relationship between our work and this proposal in §7.6.

Note that, since the Hasse ordering is only a partial-ordering, one might worry that
the procedure for selecting O is ambiguous. For instance, in the A5 theory, might we be
unable to choose between [4,1%] and [3?]? Fortunately, this ambiguity never arises. In the
case at hand, if 77— 774 2] and 7T - 7[32] are both non-negative, then so is 7 — 7[4,]. More
generally, if both 77— 775 and 7@ — 7o, are non-negative, then either one orbit lies in the
closure of the other, or both orbits lie in the closure of O,, which also satisfies 7@ — ﬁ’oc
non-negative.

Carrying out this procedure for j = A5, we find that every pair (O, H) except ([32],SU(3)o)
is indeed realized at the restricted node for some set of defects O; on the left. We will see
in §7 that one can actually give an a priori explanation for why this pair does not occur
from a Coulomb branch perspective.

Fairly obviously, this procedure yields the same result for O as the twisting procedure
described in §5.3 (replacing £y r by [Z;(]R = Ly r ® O(—ngp), where ny = max(k — 1 — 11y, 0)).
The procedure for arriving at H seems rather divorced from the cohomological computa-
tion of the center parameters in §5.2. We shall see in §7.6 that these two rather different
looking approaches also yield the same answer for H.

7. Classifying Restricted Nodes

In this section, we would like to classify the possible restricted nodes from a purely
Hitchin system perspective. Our starting point will be the conditions derived in §5
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(equivalently, any of the conditions in Proposition 1) for a reduction in center param-
eters (69) and the condition (73) for the occurrence of non-zero h!(£; ® Oc,)-
We now state our main results as a theorem and then prove them below.

Theorem 7.1. In any tame SLy Hitchin system that is OK in the sense of §1.3, the following
statements are true for every restricted node :

(A) The integers xy = 1 + ny are the vanishing orders corresponding to a nilpotent orbit O in
sl(N). We call this the Hitchin orbit at the node.

(B) The graded dimension of the center Bc is of the form b¢ = (1,1,1,...,1,0,0...,0) (or)
b¢=(1,0,1,0,1,0...,0,1,0,0,...,0), where k = 2,3,4,...N.

(C) Recall that b© =Y bkc and [p;] are the parts of the Hitchin orbit O. The allowed orbits
obey p, > 2p, and furthermore, we always have p; —2 < 2b¢ < 2(p; —p, —1).

In the process of proving Th 7.1, we will show that the following useful proposition
also holds.

Proposition 2. There is a unique choice of marked points on Cy for which the graded dimen-
sion of the center B¢ is of the form bkc =(1,0,1,0,...,0,1),k = 2,3,...N and N is even. The
corresponding Cy is a P! with deg(Dy) = 2 and the residues of the Higgs field at the two marked
points live in the nilpotent conjugacy class [2N/?].

7.1. Proof Strategy

First, recall from §5.4 that every non-separating node is standard. So, we only need to
consider separating nodes to prove Th 7.1. Let us denote a separating node to be one sided
if either h°(L; ®0Oc,) = 0 for some values of k or ho(llk/®OCR) = 0 for some values of k’ but
not both. We will denote a separating node to be two sided if both h°(L; ®Oc,) = 0 and
ho(ﬁk@OCR) = 0 for some values of (k,k’) with k # k’.!7 It will turn out that a vast majority
of restricted nodes arise from one sided separating nodes. For one sided separating nodes,
the problem of classifying the allowed nodal degenerations is symmetric between the left
and right. So, without loss of generality, we will assume that a one sided separating node
has h(L; ® O¢,) = 0 and h°(L; ® Oc,) > 0.

We can now outline our proof strategy.

1. First, we prove Th 7.1 for one sided separating nodes with deg(D;) = 2.

7Such a possibility for some k = k’ is ruled out by the fact that we are only considering nodal degenera-
tions of OK Hitchin systems.

55



2. As a second step, we extend the proof to the deg(D;) > 2 cases by appealing to §5.5
and reducing the the problem to the deg(D;) = 2 case.

3. In the third and final step, we treat the two sided separating nodes.

7.2. One sided nodes with deg(D;) =2
7.2.1. Proof of 7.1(A)

Let us begin by recalling (from §2.1) how to obtain the vanishing orders xj associated to a
Hitchin orbit whose partition label is [p;]. We represent the Hitchin partition as a Young
diagram by using its parts as column sizes. We fill the first column with ‘1’s, the second
column with ‘2’s and so on. We then write down the numbers in the diagram column by
column, dropping the leading ‘1’. The string of numbers so obtained are the vanishing
orders. For the purposes of this section, we will include the leading ‘1’ (corresponding to
k = 1) and form a vector ¥ whose entries are (x1, x2,... Xn)- We choose this convention,
which is at variance with the choice in §6 since it simplifies some of the combinatorial
formulae. With this choice, the multiplicity of any integer i in X is given by the part p;.

It also follows that any non-decreasing sequence of integers ¥ with multiplicities p;
obeying the conditions

(@) p1>p2=2p3>py...
(b) Lpi=N-1

will correspond to the vanishing orders of some nilpotent orbit.

In what follows, we will need the following combinatorial fact. If there is some entry i
in ) occurring with multiplicity p;, then conditions (a), (b) imply that the minimum value
of k for which xj =1 is given by

kmin:pi(i_l)+1- (93)

And the minimal k is achieved when py =p, =p3=---=p;i_1 = p;-

In order to prove a statement like Th 7.1(A), we need to show that the vanishing orders
Xnodal Of ,C]’C]R at the node p (obtained from Eq (75)) correspond to the vanishing orders
arising from some nilpotent orbit. Let us take multiplicity of an integer i in X,,04a to be
some a;. We need to show that the sequence ¥,,,4,; from Eq (75) is non-decreasing and the
multiplicities a; obey the conditions (a),(b) above. Henceforth, we will drop the ‘nodal’
subscript and refer to the sequence of nodal vanishing orders as just x.
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In this section, we want to restrict to the cases with deg(D; ) = 2. Let the residues of the

Higgs field ¢ at the smooth points of D; live in conjugacy classes corresponding to par-

titions [p;]") and [p;]!?). Let the corresponding vanishing orders be x

respectively.

The component Cy is taken to be sufficiently generic that we have h°(£; ® Oc,) > 0 for all

k.

Let us now assume that this degeneration leads to a restricted node with ni > 0. This
implies that h!(L} ®0Oc,) > 0 for some values of k. From (73), we know that this happens

iff d,f < —2. This reduces to (upon using (68))
)(21) +)(§(2) >k+1.
The modified vanishing orders x; =1 + ny from Eq (75) reduce to

1 2
Xk = max(l,)(;c ) +)(§< )—k).

We immediately see that x, = x3 = 1. So, ¥ is a sequence of the form
=(1,1,1,...)

Proof that ) is non-decreasing

Let us assume that there exists some k for which

Xk > Xies1 > 1.
This is possible iff
n _ 1)
Kke1 = Xk
2) _ (2
Xk+1 = Xk
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Using (93), this implies that

k>2()(;<1)—1)+1

2) (99)
k>2(x, -1)+1

Adding the two inequalities, we get )(;(1) + )(5(2) —k <1 which contradicts our original as-

sumption in (97) that xj > 1. It follows that ) is a non-decreasing sequence.

Proof of conditions (a), (b)

We still need to understand the multiplicities @; of the integers occurring in }. What are
the allowed values of a;? We will study the possibilities case by case.

The cases a; = N and a; = N —1 can clearly occur and they correspond to the regular
orbit [N] and the sub-regular orbit [N —1,1] respectively. The case a@; = 3,a, =1 can also
occur. This occurs for the extreme case where )?,il)’(z) =(1,2,3,4,...,N —1). This corre-
sponds to the case where the two Hitchin orbits at E; ;, are both the minimal nilpotent
orbits and the corresponding xX=(1,1,2,3,4,...N - 2). This is nothing but the vanishing
orders for the Hitchin nilpotent [3,1N~3]. This is the smallest nilpotent orbit that can
occur at the node. The generalization to @y > 2,a, = 1 is straightforward and leads to the
vanishing orders for a hook type Hitchin orbit [a; + 1,1V~ ~1]. This covers all instances
with a; = 0,1. We clearly get vanishing orders xj corresponding to a nilpotent orbit in
each of these cases.

Let us now turn to cases with a, > 1. If 2" occurs exactly at the locations k =1,/ +1,] +
2,1+ a, in }, then it follows that there is a repeated entry in either ¥'!) or ¥’®) (but not
both) at the locations k = 1,1+ 1,1+ 2,...,] + a,. Let this repeated entry be the integer i
and let M) contain these repeated entries. Now, max()(gz)) =1-1. So, if x; =2, then > 3.
From Eq (93), we have I,,,;,, = a,(i —1). This implies that a; > 1,,,;,—2 = a,(i—1)—2. When
i>3,a, > 1, we see that a; > @,. So, we have shown that ¥’ always satisfies condition (b).

We are finally left with checking condition (a) for ¥ in cases with @, > 1. Let us say
that (a) is violated. In other words, we have a; > a; for some j > i > 2. Now, examining the
possibilities (we omit the details), one can see that this is possible only if ¥!) or ¥?) itself
were to violate condition (a). So, we arrive at a contradiction. Hence (a) always holds for
Xk- This completes the proof of 7.1(A).

7.2.2. Proof of 7.1(B)

Having deduced the Hitchin nilpotent O at the node, we now turn to constraining the
possible non-zero center parameters. We have already seen that b¢ = 0,1 in §5. Can any
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string of ‘0’s and ‘1’s occur as values of b]f? It turns out that the answer is no. The allowed
set of values are quite tightly constrained. Let us recall from Eq (69) the condition for a
reduction in the number of center parameters at a reducible node :

ZX" > k(deg(Dy)—1) = bC =0
D

(100)
) xic>k(deg(Dg)-1) = bf =0
Dr
Specializing to the case of a one sided node with deg(D;) = 2, we get
)(;cl)+)(;<2)>k<:>bkczo. (101)

First, note that )((21)’(2) =1 and hence bg = 1 always. Next, we consider the two possi-
bilities : (1) b$ =1 or (2) b§ = 0.

Case 1 : b3C =1

Let the first occurrence of a reduction in center parameters be for k = [ > 3. This
implies that we have blc_2 = blc—l =1and blc =0,

v¢ =(0,1,...,1,1,0,...), (102)

where we have defined blc =0.

This translates to the following conditions on )(;(1)’(2) :

1 1 2 2
x> xith o) x> 112

1) 1) (2)

L (103)
X > xp-y (and) x> x5

: e 1) (2 .
In other words, if a repeated part were to occur in this piece of )(;( ) )(;( ) , then it can

only occur for one among them and only for the entries at k = -2,/ -1. Let the vanishing
orders without a repeated part be )(;(1) =(...,1,i+1,i+2,...) where we have set )(92 =i. This
clearly shows that the multiplicity p;;; = 1 and it follows (from condition (a) in §7.2.1)
that p; =1 for every j > i+1.

Now, let us further assume that bkc =1 for some k > I. Let the smallest such k be m.

This implies that b}i_l =0, b% =1:

b€ =(0,1,...,1,1,0,...,0,1,...). (104)

From (101), it follows that both )(f),)(;(z) have repeated parts at k = m —1,k = m. This,

)

. . L .
however, contradicts the statement that p; = 1 in )(;( for all j > i+ 1. So, our assumption
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that b]f =1 for some k > [ is wrong. So, the only possible set of bkc with b3c =1 are given
by

v =(0,1,1,...,1,0,0,...,0) (105)
Case 2 : b3c =0
Let us turn to the case where bg = 0. From (101), this implies that )((31) = )((32) = 2. This
) = 2. From condition (b) in §7.2.1, we then have p(zl)’(z) =1 (or) 2. Even
) (2)

if one among p(21 ,P, equals 1, then a simple calculation shows that b¢ =0 for all k > 3.
)

forces p(ll) = P(12

It remains to consider the case where both p(zl) = p(22) = 2. In this case, both xil) and )(;(2
have the following form

¥W=1,1,2,23,...),

(106)
@ =(1,1,2,23,..).

and we have
b¢ =(0,1,0,1,0,...) (107)

) )

1 2) .
Let us now assume that b$ = 0, then at least one among pg or pg is equal to 1. Let

us take p(31) = 1. This forces p(l) =1 for all j > 3. From this, it follows that bkC =0 for all

j
k>6.

On the other hand, if dg =1, then p(31) = pgl = 2. The multiplicities can’t be bigger
(1) _ (2

since p; < @, for j > 2 and we are in the case where p, ' = p,” = 2. So, we have

)

¥M=(1,1,2,2,3,3,4...),
P?=(1,1,2,2,3,3,4...), (108)
b€ =(0,1,0,1,0,1,0,...).

We then repeat the same procedure for the two cases bgc = 0,1 and find that bkC is
always of the form

¢ =(0,1,0,1,0,1,0,...,0,1,0,0,...,0) (109)

This proves 7.1(B).
Furthermore, we see that in each of these cases, d,f is always of the form

2 1
di =k~ x

=-3(1-(-1)).
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Consequently, we have that
deg(Lyr) = -1-3(1-(-1)). (111)
We also see that we have 5€ = (0,1,0,1,...,0,1) for some N = 2n iff

D = (1,1,2,2,3,3,...n,n), (112)

7
¥ = (1,1,2,2,3,3,...n,n). (113)

This corresponds to the case where the two residues at the marked points on C; live
in the nilpotent conjugacy class [2"]. This proves Prop 2.

7.2.3.  Proof of 7.1(C)

Given a non-regular nilpotent O at the node, we would now like to understand the con-
straints on the allowed non-zero values of blf. Let the vanishing orders at the node be of
the form

=(1,1,1,...,2,2,...,2,3,...). (114)

Let the (Hitchin) partition label of O be [p;]. Having proven Th 7.1(A), we know that
ai = Pi-

We would like to arrive at a constraint on the total number of center parameters b®
given a partition nilpotent O at the node. Now, bkc = 0 for every k such that x; > 1 since
the condition for h!(L; ®Oc,) > 0 (94) is stronger than the condition for the vanishing of
bkc (101). So, it is straightforward that b® < p; — 1. But, we will see that there is actually a
stronger upper bound and that there is also a lower bound on b°.

In the proof of Th 7.1(B), we saw that p; — p, > 1 for every allowed nilpotent at the
node. Assume p, > 1. We then have

1 2
AP =k+2 V ke(pLp+pa—1). (115)

This is possible iff one among )(;(1),)(;(2) were to also have repeated parts for this range

of values of k. We take )(;(1) to have the repeated part j. Since max()(;cz)) = k-1, we see that
j > 3. It follows that
1 1
p;-_)l 2p§- '=p,. (116)
This imposes a strong constraint on the allowed O at the node. To understand this
constraint, let us ask what are the allowed values of p; given that (116) is always true. The
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smallest possible value of p; will occur when we have j = 3 and p(ll) =p, and p(zl) =p,—1.
In this case, we have p; = 2p, — 1. More generally, we always have

p1 > 2ps. (117)

This condition rules out nilpotent orbits with Hitchin partition of type [n?] as possible
nodal nilpotents. Recall that these nilpotents occurred in the list of allowed nodal nilpo-
tents in analysis using constraints on flavor central charges in §6.2. If one had carried out
an exhaustive enumeration of nodal nilpotents by brute force calculation for any fixed N,
one would have seen that orbits of type [(N/2)?] do not occur. But, as we just showed, it
is possible to give a general proof for all N using the nodal Hitchin system.

Let us now try to understand the range of values of k for which we could have b¢ = 0
but ' (L ® Oc,) = 0. This would be the range of values of k for which the following
relation holds :

P =k (118)

The smallest value of b® is reached when this range is the largest. And this range

would be the largest when p(ll) is minimal and )(;(2) =k —1. In this case, every instance

where x, =1 and bkc = 0 arises from )(;(1) = 2 and the only non-zero center parameters

) 1 ) )
exist for those k where X;( ) = 1. In this scenario, we have

(1)

1
Py +P(2)

=p, -1 (119)

We have already argued that min(p(ll)) = p(zl). When this minimal value of a(ll) is

reached, we have p(ll) = [(py — 1)/2]. Tt follows that b¢ > |(p;/2—1)].

At the other end, the maximum allowed value of b€ is reached when the range of k for
which (118) holds is the smallest. Note that we have already assumed that )(;(1)+ )(5(2) =k+2
for p, values of k and that the corresponding repeated entry in )(il) is j with p}l) = p,. This

implies that a;_; > a; = p;. And in the range of k for which )(;cl) =j-1,if X;f) were to also

have repeated parts, then it is easy to see that the resulting ¥ would have a decreasing sub-
sequence. This violates Th 7.1(A). So, Xf) does not have repeated parts for these values
of k. If take p;_; = py, then this implies that (118) holds exactly for k € (p; —p,,p1 —1) and

we have b = p; — p, — 1. To summarize, we have

L(p1)/2]-1<b" <p;—-p,-1. (120)

which is equivalent to
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p1—2<2b° <2(p;—pr—1). (121)
This proves Th 7.1 for one sided nodes with deg(Dy) = 2.

7.3. One sided nodes with deg(D;) > 2

When we have a one sided node with deg(D; ) > 2, we first pick a stable degeneration of C;
which will be a tree of P!s with the end points of the tree being P's with two punctures.
We now normalize each node in C; starting from the the ends of tree. At every step,
we use Th 7.1(A) for the deg(D;) = 2 case and insert the nodal nilpotent on the right
component of the normalized curve.

The final result of this procedure will be a one sided node with deg(D;) > 2 with some
partitions [p;]"),[p;]?). The arguments in §5.5 ensure that the resulting [p;]"),[p;]*) do
not depend on the choice of the stable degeneration or the subsequent choice of the order
in which we choose to do the normalizations. As a final step, we can now use Th 7.1(A)-
(C) for deg(Dy) = 2. This extends Th 7.1 to all one sided nodes with deg(Dy) > 2.

7.4. Two sided nodes

We now take up the case of two sided nodes. These are nodes in which the constraints
on the space of center parameters arise from both the left and right components of a
separating node. In other words, we have h(L; ®0Oc,) = 0and ho(Ly ®0Oc,) = 0 for some
values of (k,k’) with k # k’. This can occur only in cases where both C; and Cg are P's.
Let the first constraint on the left component occur at k = I and the first constraint on the
right occur at k’ =1’. Let us take I’ > [. This implies that on C;, we have

h(L;®0¢,) =0

0 (122)
h (£1/®OCL) >0

By our proof of Th 7.1(B) for one sided nodes (110), this is possible iff dk=(0,-1,0,-1,...).
And since we are only considering nodal degenerations arising from OK theories, this im-

plies that d,lf < -1 in any two sided node. So, we have né’R

= 0 for all values of k. So, it
follows that any two sided node necessarily has O = [2n].

The allowed set of center parameters arise from a combining the constraints from the
left and the right components. On the left component, we have a pattern of constraints
that is of the type that leads to a b¢ = (1,0,1,0,...,1). On the right, we have a pattern of

constraints that leads to a bkc =(1,1,1,...,1,0). It is clear that the combined application
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of both sets of constraints also leads to a set of non-zero center parameters that obeys the
conditions in Th 7.1(B)-(C).
This completes the proof of Th 7.1.

Corollary 1. The center parameters can be interpreted as the H-invariant polynomials for
H = SU(n) (or) H = Sp(n) for some n < N such that rank(H) = b®. Combined with the
Hitchin nilpotent O, this completes the association of a pair (O,H) for every restricted node
where H is always a simple Lie group.

Proof From the allowed possibilities for bkc in Th 7.1(B) and an inspection of the de-

grees of invariant polynomials in simple Lie algebras (see Appendix C), it is clear that the
center parameters can always be interpreted as being the invariant polynomials for either
a SU(n) subgroup or a Sp(n) subgroup'® of SU(N).

Remark 2. It is interesting to ask if the converse of Th 7.1(C) holds. In other words, for
a given Lie algebra j = sl(N), does every pair of (O, H) obeying Th 7.1(C) actually occur
at a restricted node? The physics computations indicate that this is true, but we have not
been able to provide a proof for arbitrary N.

7.5. Restricted Nodes vs Semistable Higgs bundles

As we have seen, the nodal limit of a symplectic Hitchin integrable system on C gives rise,
in a canonical way, to a symplectic integrable system on the normalization C. Our main
interest, in this paper, has been the appearance of restricted nodes. In that case, the sym-
plectic integrable system that arises on one of the components (C;) of the normalization
is not a semistable j-Hitchin system.

But the “generic" behaviour is that the degeneration leads to a standard node. In
that case, the integrable system is a semistable Hitchin system on C; with n+ 1 marked
points (where n = deg(Dy)), where the (n+ 1) point is the pre-image of the node, and the
conjugacy class of the residue there is the regular nilpotent. A necessary and sufficient
condition for this is that h'(L; ;) = 0, Yk. As we explain in Appendix B, this is also a
necessary and sufficient condition for the corresponding irreducible character variety to
exist. When h!(L; ) # 0 for some k, the irreducible character variety does not exist and
hence there is no moduli space of semistable Higgs bundles on C;.

8There is also the possibility that b,f could be the invariant polynomials for an H = SO(2n + 1). This
can be ruled out using the flavour considerations discussed in footnote 15. In light of this, it is interesting
to wonder if one could obtain a stronger version of Theorem 7.1(B) which directly constrains the group H
from a Hitchin system point of view. The present version can be thought of as constraining the Weyl group
W (H), which is not sufficient to distinguish Sp(n) from SO(2n +1).
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7.6. Compatibility of Coulomb and Higgs branch considerations

As we already discussed in §6.2, the existence of a superconformal N = 2 theory as-
sociated to a tame Hitchin system allows us to constrain the data (O, H) from either the
Coulomb branch or Higgs branch perspectives. While we used the Higgs-Coulomb algorithm
in §6.2, we used purely Coulomb branch considerations to constrain (O, H) in the present
section. By this seemingly different route, we have arrived at the same set of allowed pairs
(O,H).

While the procedure for determining O was essentially the same, the procedure for
determining H looks quite different. To see that they are the same, note that the vector 77—
7o of the algorithm is just equal to the sum of the left and center Hitchin base dimensions,
bt + bC, Proposition 1 relates bkc =0 to hl(CL,,C,'(’L) > 0. Since C; has genus-0, b,]; =
ho(Cy, Ly ;)>0and h'(Cy, L, ;) > 0 are mutually-exclusive. Hence if b,% + bkc > 0, we must
have bkC =1. So H, as determined by Theorem 7.1(B) really is the highest-rank subgroup
of F whose Casimirs are a subset of the positive entries of 7 — 7. Of the allowed pairs
obtained in §6.2, only ([n%],SU(2n),) was excluded (in the untwisted A,,_; theory) by
Theorem 7.1(C). As already noted it does appear in the twisted version of the theory [61].
We also note that the constraints on rank(H) obtained from Th 7.1(C) is exactly the same
as the one obtained in (91) by flavor considerations.

In instances where the Higgs branch geometry, including the hyperKahler metric, is
known, one expects to see the smaller groups H as the subgroups of ] that continue to act
as isometries of the 4d Higgs branch [19] appearing on the C; component of a restricted
node. In the particular case of the restricted node arising in the SU(3), Ny = 6 theory, the
investigation of this question goes back to the work of [62].

More generally, for every pants-decomposition of C, there is a different realization of
the Higgs branch as a hyperKahler quotient. When the corresponding boundary point
of Mg,n involves only (3¢ — 3 + 1) standard nodes, the quotient is by J3$-3*". When some
of the nodes are restricted nodes (O, H), the quotient is by H rather than | and one of
the 3-punctured spheres which meet at the node has an insertion of O, rather than the
regular nilpotent. Hiraku Nakajima has informed us that he has been able to provide a
mathematical proof of the existence of these different realizations of the Higgs branch in
certain cases [63].
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Appendices

A. Proof of Theorem 5.1

As in the text, £ = K?k ®O(_Zp,- n;;)), where n;;) =k - )(;(Z) satisfies 1 < n;cl) <k-1. Our
OK condition is that H!(C, £;) = 0 for C smooth. But we need to consider arbitrary nodal
degenerations of C.

So let C be a nodal curve with irreducible components C,. Each C, has geometric
genus g,, t, > 1 branches of nodes and a set of marked points S, C {p1,p2,...p,}-

We easily compute

deg(Kc ® L' ®0c,) = —[(k—=1)(2g, -2 +1t)+ ) 7 | (123)
piesa

Definition 1. We will call a component C, blighted if
* 9= 0
* t,=1
(i)
® Zpiesa T(k <k-1

For a blighted component C, define the positive integer

n=k-1-) (124)
piesa

From (123), deg(Kc ® £;' ® Oc, ) > 0 if and only if C, is blighted.
Lemma 1. Restricted to a blighted component,
L, ®0c, =L ®0¢ (nyp) (125)
where p is the node.
Proof. This follows from the fact that deg(O¢ (-C,)) = 1 and our definition (86) of £;. [
Lemma 2. If C has no blighted components, then
a) L, =Ly

b) HY(C,L;)=0.
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Proof. For (a), we note thatif k—1-3_ g ngj) >0, thenk-1-} g n;f) > 0 for any subset

S, C S. So if there’s a (possibly reducible) genus-0 component of C contributing to the
twist (86), then it has an irreducible subcomponent C, on which n} > 0.

For (b), we note that, by Serre duality, h!(£;) = h%(K¢ ®£];1). In the absence of blighted
components, the degree of Ko ® ,C;l is non-positive when restricted to every component
C, of C. The OK condition implies that the total degree is strictly negative; hence it must
be negative on at least one component. Therefore any global section of K¢ ® [Z;l on C
vanishes. O

Our goal is now to reduce the problem of computing H*(C, £, ) on a curve with blighted
components to the same computation on a simpler curve with no blighted components.

Definition 2. Consider a blighted component C,. By definition, it intersects the rest of
C (which we will denote by C) at the node p. Our pruning operation consists of removing
the component C, and replacing the branch of the node on C by a marked point with
Xk =1+ng (or mp =k —1-nj).

The degree of the twist, n}, was chosen precisely so that HO(C,, L)= H'(C, L) =0.
The long exact sequence associated to

0L, ®0x(-p) = L, = L,®0c, =0 (126)

splits and we find
(127)

Let us denote the irreducible component of C which contains p as C;. Note the following:

* Let C. be any other component of C, except C,. We have L (-p)®0Oc. =L, ®0c..

* Since Ox(-n;C,) = Ox(-nyp), the pole order of L, (-p)® O, at p is 1t =k—1-nj.

e Let S D S,US, be a subset of the marked points on C. Let S = {p} U(S\S,). Set

ni =k —1-ng. Since
p (i) _ (i)
) m= ) om
Pi€Sy Pi€S,USy

the coefficient, —nlf, of C¢ in [:;( = [l,’( ® Ox(—p) is the same as the coefficient, —nf, of
CS in ﬁ;{

67



The upshot is that the line bundle £, (-p) on C is exactly the line bundle [vll’c that we
would construct by the recipe (86) for the curve C with marked points S and an additional
marked point at p with x; =1+ nf.

By the pruning procedure, we have constructed a new curve C and a line bundle £}
with exactly the same cohomology groups (127) as (C, £;). Now we drop the “s and repeat
the pruning operation. Eventually, we arrive at a curve with no blighted components. We
then apply Lemma 2 to conclude that Hl(C,,C,Q) =0.

Thus we have shown that H!(C, L) = 0 for every fiber of C— Mg,n. Hence

By =L, (128)

is locally-free.

B. OK theories and semistable Higgs bundles

We begin by recalling the nonabelian Hodge theorem for tame Hitchin systems due to
Simpson [30]. The NAH theorem sets up a correspondence between the moduli space of
semistable parabolic Higgs bundles and the character variety of irreducible representa-
tions p : 111(Cy,,) = SLy with parabolic structure.

Let us recall the local dictionary from Simpson [30]. As in [30], let (E, D) be a filtered
Higgs bundle, (V, V) be the flat connection with V a filtered vector bundle, (L, ) a filtered
local system with p being an endomorphism of L. For any Lie algebra element a, we can
write its Jordan decomposition as a = ay + a; where ay is nilpotent, a; is semisimple
and [ay,as] = 0. Since our residues are elements of the Lie algebra j, a similar Jordan
decomposition exists for Res(---). We use (Res(--+))y to denote “nilpotent part of the
residue”. Then the local dictionary can be described in the following way:

1. The weights and eigenvalues of the semi-simple parts of the residue are permuted
according the following table (from p. 720 of [30])

(E,®) | (V,V) (L, p)
weights a a—-2p -2p
eigenvalue(s) | f+iy | a+2iy | exp(—2mia +4ny)

2. The fibers at each puncture of E, V and L have a refined decomposition given by the
triple (a, 8, y) at that puncture. These decompositions are invariant under the re-
spective operators @, V, u. On matching pieces of this decomposition, the nilpotent
parts of the endomorphisms coincide: (Res(®))y = (Res(V))y = (Res(p))y -
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Our arguments apply most directly to instances of NAH where Res(®P) at each of the
n punctures is strictly nilpotent, i.e. =y = 0. From the above table, it follows that the
eigenvalues of the holonomy are exp (—2mia). The boundary conditions for the gauge field
encode the parabolic weights a at each puncture. The parabolic weights must be chosen in
a way that is compatible with the nilpotent residues of the Higgs fields. The idea (see [64]
for an exposition) is that the fiber of E at each puncture admits a filtration

El,=FDF_1D>F_3,2>--2F D0 (129)

where F; = ker(Res(®)/). To this filtration, we assign a set of parabolic weights, a;(p) €
[0,1) with a;(p) < a;_i(p). To each a;(p) we assign a multiplicity!'? q;j = dim(F;/F;_;). The
partition [q1,4>,...,q;] of N is the Nahm partition which is the transpose of the Hitchin
partition for the nilpotent orbit Oy > Res(®). The datum (E,®,a) defines a strongly
parabolic Higgs bundle. By NAH, the multiplicities of the eigenvalues of the holonomy u
are given by the same Nahm partition, [q1,9>,...,4;].

Let us further specialize to the case of a Higgs bundle on a genus zero curve Cy 4
with n+ 1 punctures such that Res(®d) is regular nilpotent at (at least) one of the punc-
tures (say the (n + 1) puncture). We will refer to these as the regular cases. In these
regular cases, Simpson has derived necessary and sufficient conditions for the irreducible
character variety to be non-empty [48]. Let us define D := Z”+1 dim(C,) - 2(N?-1) and

= N —m, where C, are the SLy conjugacy classes in which the local holonomies live,
a labels the punctures and m, denotes the largest multiplicity for the eigenvalues of the
holonomy matrix at the puncture a.

In terms of these quantities, Simpson’s conditions are:

(@) D>0,
B) X' r.>N.

When the irreducible character variety is not empty, the quantity D is equal to its
complex dimension and it matches the dimension of the Higgs moduli space computed
using Riemann-Roch (as in §2).

Proposition 3. In the regular case, Simpson’s two conditions (a),(B) above are equivalent to
the “OK” condition which we introduced for the line bundles in Ly in §1.3.

Proof. As explained earlier in this section, m, can be identified with the first part of the
Nahm partition g, at the puncture a. From the algorithm (in §2.1) for the zero orders xy,

!"Since we are in SLy, we further require }_;g;a; =0 mod 1.
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we see that the value of xy = g;. With this translation, we see that condition (f) is the

same as
n

Y (N-x)=N. (130)

a=1

By a simple rearrangement, this is equivalent to demanding

n+l
(1N =) x\'2-1, (131)
a=1
where we have used the fact that x};! = 1 since we have a regular nilpotent residue for the

Higgs field at the (n+1)% puncture. From (6), we recognize this to be exactly the condition
that deg(Ly) > —1! It follows that demanding (p) holds is the same as demanding that
h'(Ly) = 0 which is one of our conditions for the tame Hitchin system to be OK.

What about condition (a)? To study this, we first note that the quantity D has a simple
relationship to the indices of the line bundles £,

D= ZZind(/Lk). (132)
k

If h'(Ly) = 0 for all k, it is straightforward that (a) holds. It is also clear that if k(L) >
0 for all k, then both («a), () fail to hold. The interesting situations are the ones where («)
might be violated but () holds. Such cases could occur if h!(Ly) > 0 for some k < N but
h'(Ly) = 0. What can we say about D in such cases?

To approach these cases, imagine we have a one sided separating node (see §7.1 for the
definition) with O = [N] and deg(D;) = n. Now, the conditions h!(Ly) = 0 and h' (L) >0
(for some k < N) are equivalent to demanding that b$, = 1 while bkc = 0 for some k < N.
From our proof of Th 7.1(B), the only such possibilities occur when bC = %(1 + (—l)k). In
these cases, we showed that deg(Ly) is necessarily of the form (111)

deg(Ly) =-1-3(1-(-1)) (133)

By Prop 2, such a scenario can occur when N is even, n = 2 and the residues of the
Higgs field at the two marked points live in the nilpotent conjugacy class [2V/2]. In these
cases, an explicit calculation shows that D < 0. And Th 7.1(C) implies that [2V/?] is not
an allowed nodal nilpotent. This guarantees that there is no other scenario with n > 2
for which (133) could hold. This guarantees that (a) is violated whenever h!(Ly) = 0 and
h'(Ly) > 0 for some k < N. O
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In the regular case, demanding that the strongly parabolic Higgs bundle be OK is nec-
essary and sufficient for the corresponding irreducible character variety to be non-empty.
By the NAH theorem, this is the same as demanding the existence (i.e. non-emptiness)
of the corresponding moduli space of semistable Higgs bundles. The novel feature here
is that semi-stability (in the Higgs sense) admits a translation to a condition on the line
bundles £ appearing in the description of the Hitchin base.

If we relax the assumption that one of the residues of the Higgs field is regular,
then Simpson’s two conditions are known to be necessary, but not sufficient for the non-
emptiness of the character variety (see, for instance, the discussion in Kostov’s survey
[65]). A natural guess is that the OK condition on the line bundles £, which is stronger
than Simpson’s conditions in this case, might be sufficient. To this end, we would like to
propose two conjectures. The first is that the OK condition on strongly parabolic Higgs
bundles is sufficient to ensure the non-emptiness of the corresponding character variety.
The second, more optimistic, conjecture is that the OK condition is both necessary and
sufficient.

We hope to study these conjectures further in a later work. We note here that some of
the best known results towards the general problem of providing necessary and sufficient
conditions are in Crawley-Boevey [66] which follows the earlier work of [67]. A beautiful
survey emphasizing the connection to Higgs bundles is in [68]. Additional recent results
are in [69].

C. Degrees of Invariant Polynomials

We tabulate here the degrees of invariant polynomials of finite irreducible Coxeter sys-
tems.

Coxeter type | Degrees of invariant polynomials
A, 2,3,4,...,n+1
B, C, 2,4,6,...,2n
D, 2,4,6,...,2n—2,n
Eg 2,5,6,8,9,12
E; 2,6,8,10,12,14,18
Eg 2,8,12,14,18,20,24,30
F, 2,6,8,12
G, 2,6
H, 2,6,10
Hy 2,12,20,30
I(m),m >4 2,m
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Note that I,(6) =~ G, and I,(5) is sometimes denoted as Hj.
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