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a b s t r a c t

deal.II is a state-of-the-art finite element library focused on generality, dimension-

independent programming, parallelism, and extensibility. Herein, we outline its primary

design considerations and its sophisticated features such as distributed meshes, hp-

adaptivity, support for complex geometries, and matrix-free algorithms. But deal.II is

more than just a software library: It is also a diverse and worldwide community of

developers and users, as well as an educational platform. We therefore also discuss some

of the technical and social challenges and lessons learned in running a large community

software project over the course of two decades.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical software has been collected in packages for almost as long as computers have been around. The first

of these packages were collections of loosely connected subroutines for specific purposes. In the earliest days, most of

these were related to linear algebra problems such as the solution of linear systems, or computing eigenvalues, but also

to numerical integration and differentiation. Few of these packages survive to this day, but the BLAS and related LAPACK

interfaces [1,2] are still widely used, despite the fact that BLAS was developed and standardized already in the 1970s.
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Since then, mathematical software has seen the emergence of ever more sophisticated and connected libraries. This
includes software for sparse linear algebra in the 1980s; support for parallel sparse linear algebra based on MPI [3] in the
1990s; and, since the late 1990s and early 2000s, libraries that provide the tools to build numerical solvers for partial
differential equations (PDEs) using finite element, finite difference, or finite volume methods. Many of the libraries in this
category are discussed in articles in this issue.

Among the largest of the libraries supporting numerical PDE solvers is deal.II, whose architecture, feature set, user and
developer community, and applications we discuss herein. The origins of this library lie in the Numerical Analysis Group
at the University of Heidelberg, Germany, where a predecessor library called DEAL (short for the ‘‘Differential Equation
Analysis Library’’) was developed since the mid-1990s. deal.II is a re-write of DEAL using more modern software design
principles; it was started in late 1997 by Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat who, at the time, were
all members of the same group in Heidelberg. Since then, deal.II has grown into a truly worldwide project with more
than one million lines of C++ code, to which more than 250 people have contributed, and that is managed by a dedicated
group of Principal Developers located at universities, research institutes, and companies across continents.

This paper discusses aspects of the deal.II project. Specifically, Section 2 is concerned with design considerations that
dictate the functionality that deal.II provides. Section 3 then covers specific functionality provided within this framework.
As will become apparent there, our goal is to cover essentially everything that can be provided in a generic way to codes
that want to solve specific partial differential equations using the most modern aspects of the finite element method,
all while supporting modern hardware. Section 4 discusses some of the lessons we have learned running a large and
complex software project, while Section 5 covers how deal.II supports our views on and activities in education in the
Computational Science and Engineering arena. Section 6 briefly outlines some of the complex applications that have been
built atop deal.II over the years and showcases new parallel scalability results. In Section 7 we comment on the vision
and future directions of the project. We conclude in Section 8.

We end this introduction by stating that an earlier review of deal.II was previously published in [4], and that individual
releases and new features are discussed in a series of papers of which the most recent ones are [5–8]. Specific features
of deal.II, along with details of their implementation, are discussed in a large number of papers [9–23]. For more details
and an updated list, see https://dealii.org/publications.html or the summary in [8].

2. Design considerations

Any nontrivial software package needs (written or unwritten) design principles to guide its development. Such
principles provide a mental backdrop for expectations on how its components are used and interact with each other.
Design principles also enable users to learn a software package efficiently, build a foundation for the evolution of the
software, and aid developers in gauging an appropriate and idiomatic implementation of new features.

In the following subsections, we outline the design principles upon which deal.II is built today. Some of these principles
were already present at the start in 1997 – as explicit design goals of what we wanted to achieve at the time –, whereas
others developed over time: implicitly at first, and explicitly codified as part of our development practices later on.

2.1. A complete toolbox for finite element codes

Finite element codes are often large and complex. They use many pieces of functionality, including meshes, geometry
descriptions, shape functions, mappings, quadratures, linear algebra representations and algorithms, and more. As a
consequence, such codes can run into tens or hundreds of thousands of lines of code when written from scratch.

deal.II strives to provide all functionality related to the finite element discretization of partial differential equations: an
extensive collection of tools that are generic with respect to the discretization of any one partial differential equation, while
leaving the decision about how to put these pieces together to the user who can combine them freely in their application
codes.

2.2. No hidden magic: deal.II is a library, not a framework

Computational software packages can roughly be categorized as either libraries or frameworks. A library is a collection
of building blocks (data structures and algorithms that work on them) that can be combined in more or less arbitrary ways
in a user program that builds on the library and that typically provides the overall logic and outer loops. One can think of
MATLAB as an examplar of a library in this sense; BLAS and LAPACK are more traditional examples. On the other hand,
frameworks provide the overall logic and let users fill in specific pieces. Many solid mechanics software packages are of
this kind: they implement the overall solution algorithms and users only have to describe specifics such as the geometry,
boundary conditions, loading forces, and the details of the material constitutive laws. Frameworks are therefore often easy
to use but are restricted to specific purposes: It is easy to replace one material description by another, but it might be
impossible to implement a dual-weighted error estimator requiring the solution of an adjoint problem since this would
require changing the outermost logic, which may not be accessible to users.

deal.II is a library in this dichotomy. It strives to provide all tools our users may need to write efficient and flexible
finite element programs, but it does not dictate the overall structure of the program. As a consequence, users have been
able to solve problems far outside the application range originally anticipated by the deal.II authors, by combining building
blocks in unexpected and creative ways. On the other hand, a number of tutorial programs (see Section 2.9) illustrate how
the parts of deal.II can be assembled into typical finite element programs.
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2.3. Do not reinvent wheels

Building efficient finite element codes requires tools from a remarkably broad range of disciplines, ranging across
(i) continuous mathematics, such as in the analysis behind the derivation of error estimators or approximation results;
(ii) discrete and combinatorial mathematics, e.g., in the graph algorithms used to partition meshes for parallel computa-
tions; (iii) geometry, for example in the description of meshes with curved boundaries or on surfaces; (iv) linear algebra
for the formulation and solution of linear systems; (v) computer science concepts related to parallel computing as well as
the design of software as a whole. Other areas also show up, for example the visualization of data, along with questions
of how to best present data.

No scientific computing project has the manpower and breadth of expertise to address all of these areas with equal
attention to the state of the art. Thus, a project has to decide to either use only rudimentary algorithms in some areas,
or to use external packages for certain tasks. deal.II has chosen the second route, relying on other software for pre- and
post-processing (i.e., for mesh generation and visualization) and interfacing with a large number of other software libraries
for linear algebra operations, parallelization, I/O via XML and HDF5, and many other tasks. The latest deal.II version (9.1
at the time of writing) lists 26 other packages with which it interfaces [8].

This approach has advantages and disadvantages: It allows providing much more state-of-the-art functionality than we
could otherwise. On the other hand, it requires writing wrappers that may not always expose all options an underlying
package may offer. Furthermore, dealing with large numbers of dependencies has a substantial cost to both developers
and users and is generally not very well liked. We comment on this in Section 4.2.

2.4. Dimension-independent programming

The way we write partial differential equations today is generally independent of the dimension we are in. For example,
the definition of the bilinear form for the weak formulation of the Laplace equation is commonly written as

a(u, v) := (∇u, ∇v)Ω =

∫
Ω

∇u · ∇v dx, (1)

in which the gradient is a d-dimensional vector, the dot product represents a sum over d components, and the integral
stretches over a d-dimensional domain Ω ⊂ R

d. The actual value of d does not matter.
It would be nice for many reasons if we could reflect this independence in implementations of the finite element

method. For example, such a scheme makes it easier to read code because there is a 1:1 relationship with mathematical
notation; it also allows writing code only once, so that it can be tested using relatively cheap 2d simulations and then
used for production runs in 3d without having to develop and debug a second version. Earlier finite element libraries,
such as DiffPack [24], did so by equipping essentially every class with a member variable that represents the dimension.
Several modern finite element libraries, such as libMesh [25], implement a hybrid approach where some classes, such
as libMesh::FE, are templated on the spatial dimension but others, like libMesh::FEMap, are not. These approaches
work but have two disadvantages: (i) Finite element codes contain an incredible number of loops over i = 1, . . . , d,2

and many of these are in the hot paths of typical execution scenarios; since the dimension d is a run-time variable in
this system, none of these loops can be unrolled by the compiler. (ii) Memory allocation for d-dimensional vectors (such
as the gradients in (1)) must either occur on the heap using dynamic addressing or use a fixed-size array that is large
enough for all supported spatial dimensions. Other libraries have made the dimension d a single global constant selected
through the build system to avoid these issues; however, such a system does not allow mixing 2d and 3d simulations,
for example for coupled bulk-surface models.

deal.II instead equips many classes with an integer-valued template argument, in a technique called ‘‘dimension-
independent programming’’ [26]. For example, points in d-dimensional space are represented by a class that can be
thought of as follows (with many details omitted):

template < int dim> class Point {
private : double coordinates [dim ] ;
public : double operator [ ] ( const unsigned int i ) ;

} ;

Here, the dimension of the object is known at compile time, allowing the compiler to unroll and vectorize loops, as well
as to allocate the coordinates array on the stack without wasting space in lower dimensions. Furthermore, it is possible
to use both Point<2> and Point<3> in the same program.

As most deal.II classes have such template arguments, it is possible to write code that describes things such as the
bilinear form of a partial differential equation in a way that almost exactly resembles mathematical notation, and compiles
to the appropriate code in whatever dimension is eventually selected. The following code snippet is taken from the tutorial
program step-43 and assembles the matrix corresponding to a(·, ·) and the vector corresponding to a right-hand side term
l(v) :=

∫
Ω

v f dx on one cell:

2 For example, deal.II has some 3000 loops that are terminated in some way by a condition that depends on a constant expression involving d.
3 https://www.dealii.org/current/doxygen/deal.II/step_4.html.
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for (unsigned int q = 0; q < n_q_points ; ++q)
for (unsigned int i = 0; i < dofs_per_ce l l ; ++ i )

{
for (unsigned int j = 0; j < dofs_per_ce l l ; ++ j )

ce l l_matr ix ( i , j ) +=
fe_values . shape_grad ( i , q ) ∗

fe_values . shape_grad ( j , q ) ∗

fe_values . JxW(q ) ;
const Point <dim> x_q = fe_values . quadrature_point (q ) ;
ce l l _ rhs ( i ) += fe_values . shape_value ( i , q ) ∗

right_hand_side . value ( x_q ) ∗

fe_values . JxW(q ) ;
}

The code runs in any dimension and is a literal translation of the mathematical notation obtained by substituting ϕi(xq)
with fe_values.shape_value(i, q), ∇ϕi(xq) with fe_values.shape_grad(i, q), and noting that (with numerical
quadrature) fe_values.JxW(q) corresponds to the dx in the integral. Here, xq denotes the location (in real space) of
the qth quadrature point.

2.5. Iterator-based programming

deal.II provides access to cells, faces, and vertices via iterators. Indeed, iterators are flexible because they do not have
to point to an object that has member variables (e.g., a cell that stores the indices or coordinates of its vertices, its material
and subdomain id, etc.); rather, iterators can point to ‘‘accessor’’ objects that store nothing except whatever information
is necessary to retrieve pieces of data about a cell or face.

In particular, accessors enable the use of far more complicated data structures than simple arrays of structures. Indeed,
the way deal.II stores data is generally in the form of structures of arrays, rather than arrays of structures, as this leads
to substantially better cache locality [27]: Loops over all cells rarely access all of the information that is available for each
cell, but typically access the same pieces of data for each cell visited one after the other.

Furthermore, iterators and accessors avoid having to expose the internal data structures used in deal.II classes – a
benefit in maintaining and optimizing software over the course of many years. As a consequence, deal.II also uses iterator-
and accessor-based designs for many other classes, including sparsity patterns, matrices, index sets, and others. This design
paradigm enables both the now idiomatic use of C++11-style range-based for loops, but also the notion of applying a
kernel (often a lambda function) to all elements of a collection.

deal.II supports accessing the subobjects of a cell, such as its faces or (in 3d) its lines, by returning iterators with
different template parameters:

template < int dim , int spacedim>
class Cel lAccessor : public TriaAccessor <dim , dim , spacedim> {
public :

T r i a I t e ra to r <TriaAccessor <dim- 1 , dim , spacedim>>
face ( const unsigned int i ) const ;

} ;

The dimensionality of the current structure (structdim, here equal to dim-1), the topological dimension of the mesh
(dim), and the dimension of the space in which the mesh is embedded (spacedim) are all described by compile-time
constants. One can write cell->face(0) to obtain an iterator for accessing the first face of the given cell (so the structure
dimension, the first template argument, is decremented by one). This technique provides a dimension-independent way
of accessing the faces of an element without the need to construct a proxy element or, in fact, storing any information in
a face-based data structure.

2.6. Large-scale parallelism

With the demise of the exponential increase of computing speed of individual processor cores in the early 2000s, it has
become clear that the numerical solution of complex, three-dimensional PDEs will only ever be possible by using parallel
computing. Hence, deal.II supports serial computations for prototyping as well as parallelization on both workstations
and clusters, and provides an upgrade path between the two.

Many operations inside deal.II are parallelized using task-based programming (currently via the Threading Building
Blocks library [28]), with higher level abstractions building on these concepts [21]. This approach already makes efficient
use of shared-memory systems for many common operations. Beyond this, deal.II also provides distributed memory
parallelization of essentially all operations, using MPI [3] and libraries built on top of MPI [12,29–34]. This has allowed for
the creation of programs that make efficient use of machines with hundreds of thousands of processor cores, see Section 6.
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2.7. Interoperability of all features

As outlined above, we see deal.II as a library with flexible and re-usable building blocks. From a practical perspective,
these ought to all work together: If a user wants to switch from a sequential to a parallel mesh, they expect that the finite
element class used before will continue to be usable.

In practice, providing this kind of interoperability leads to a combinatorial matrix of features that need to be
implemented, tested, and documented if, for example, different triangulation classes had different requirements of finite
element classes. Other examples include supporting both CPU and GPU computations on both h- and hp-refined meshes,
and providing every finite element class with the necessary interfaces for hp-adaptivity. Despite these difficulties, one
of our design goals is to allow all combinations of features. We place great emphasis on early design, code review, and
finding the right abstractions in the development of new features, as these steps make interoperability substantially easier
in the long run.

At the same time, deal.II does have combinations of features that do not (currently) work together. In most of these
cases, poor planning can be attributed to it in retrospect. We will comment on this in Section 4.

2.8. Design for extensibility

The object-oriented design of deal.II enables large features to be added to the library without making invasive
changes to existing classes or functions. This permits users to replace fundamental parts of the library with their own
implementations.

All finite element classes are ultimately derived from an abstract base class that specifies the public interface required
by the rest of the library. This is more general than some other libraries such as libMesh, where libMesh::FEFamily
is an enumeration provided by the library and cannot be changed by the user. Indeed, users have contributed new and
sophisticated elements, such as a new Nédélec element that supports arbitrary approximation orders [35]. Implementa-
tions of mappings and geometry descriptions are done in a similar manner: users can implement these by inheriting from
the Mapping or Manifold classes, respectively.

In other cases, extensibility is provided by template-based generic programming. In addition to its own linear algebra
data structures and solvers, deal.II has wrappers for the linear algebra components of PETSc [32], Trilinos’s Epetra and
Tpetra subpackages [29], cuSPARSE [36], and Ginkgo [37]. All of these classes are assumed to conform to a standard inter-
face that permits the use of, e.g., any vector type in the library with any function that takes a vector argument. For example,
functions that take a finite element coefficient vector, such as VectorTools::integrate_difference(), leave the
vector type as a template argument and expect each vector class to implement a member function
extract_subvector_to().

Finally, classes often have nontrivial data dependencies or interdependencies. For example, GridTools::Cache stores
computationally intensive information about a triangulation. A GridTools::Cache object will register itself with its
associated Triangulation via a signal/slot mechanism: That is, if the triangulation is changed, it will inform the cache
object, which will then invalidate relevant information. This pattern is commonly used in deal.II and permits users to
express new data dependencies without changing the implementation of classes in the library.

2.9. A tool for a large community

deal.II started in 1997 as a tool for one, and shortly after that for three user-developers, but now serves as the basis
for the work of hundreds, maybe thousands of scientists, producing more than 200 publications per year [38], in almost
any area of science and engineering one can think of (see also Section 6). It also has far more developers: 30–50 people
have contributed in each of the most recent releases, and generate 5–10 pull requests per day. To ensure quality, we
require every change to pass various continuous integration steps and to undergo rigorous peer review by at least one of
the principal developers.

The sizes of these communities imply very different requirements than those that were applied in the early years. For
example, we place great emphasis on compatibility between releases. Likewise, we have built a test suite with more than
12,000 tests that is run many times a day. Development versions are almost universally as stable as releases, and the
number of bugs reported on mailing lists and forums is quite small for a project of this size.

A large user community has many other, often more important, consequences for a project. In particular, we have
long lost the ability to answer everyone’s questions if even a small subset of our user community does not understand
certain concepts or features: If every user had only five questions per year, we would have a dozen or more questions
each day, consuming resources no volunteer open source project can provide. Rather, we have placed great emphasis on
documentation that guides users through the process of learning such a tool. This includes the obvious function and class
documentation processed by doxygen [39]. But, it is also important to explain higher level concepts, and so deal.II also
uses doxygen ‘‘modules’’ discussing related groups of classes, as well as a ‘‘tutorial’’ of currently more than 60 programs
[40] that show how the different parts of the library can be combined in typical finite element codes. The tutorial is also
a teaching tool that illustrates many numerical techniques: Each tutorial program consists of an extensive introduction
that discusses the theoretical background and motivation for the methods used, along with a thoroughly documented
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Fig. 1. Core components of deal.II and interplay with some external libraries.

implementation. In the same spirit, we have also recorded more than 40 h of video lectures4 (see also Section 5) that
provide a complementary perspective as well as interactive demonstrations.

Finally, the ‘‘code gallery’’ [41] provides a repository of codes contributed by the user community. They are typically
not as well documented as tutorial programs, but nevertheless can serve as starting points for others’ research. A curated
list of publications based on deal.II [38] serves a similar purpose: To showcase what kinds of applications can be solved
using the library.

2.10. A way to build a community itself

Indeed, our approaches to managing a user community can also be seen as an attempt at building a community of
learners, users, and developers. Computational Science and Engineering (CS&E) is not an established discipline with a
broad base of degree programs, books, tools, and methods that newcomers to the field can rely on — rather, it is a dynamic
and new field [42] in which many are recent entries and most are self-taught. Providing concrete, well-documented use
cases for others to learn from, as well as nuclei for learning communities (for example through forums where people
can ask questions of their own and find answers to others’) are important tools to broaden the knowledge base of CS&E
practitioners.

3. Features

Having discussed what we want to achieve with deal.II, let us now turn to a discussion of the features the library offers.
Fig. 1 provides an overview of the biggest building blocks of deal.II and their interplay. Each box references a concept that
is, in most cases, implemented in several different ways — either as classes derived from a common base class (e.g., in
the case of the finite elements, mappings, and quadrature classes), as independent classes using a generic interface (as is
the case for the DoFHandler and linear algebra concepts), or a combination thereof. The figure also references a few of
the external libraries deal.II can interface with.

Rather than discussing each of the components of this graph in detail (this is done in the technical documentation of
deal.II), we focus instead on several overarching themes and considerations.

3.1. Sequential, shared, and distributed triangulations

A key concept in all finite element codes is the mesh, i.e., a collection of cells that cover the domain in question. For
historical reasons, meshes are often called ‘‘triangulations’’, even if – as is the case in deal.II – they consist of line segments
(in 1d), quadrilaterals (in 2d), or hexahedra (in 3d).

4 https://www.math.colostate.edu/~bangerth/videos.html.
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deal.II’s restriction to quadrilaterals and hexahedra was originally motivated by the observation that, for equal numbers
of degrees of freedom, finite element solutions with tensor product elements tend to be more accurate than those using
the same approximation order spaces on triangles or tetrahedra (the additional accuracy comes from the extra cross terms,
e.g., the xy basis function in a 2d Q1 element).

This limitation simplifies a large number of algorithms: For example, many common elements and quadrature formulas
can be implemented in a dimension-independent way with arbitrary approximation order by exploiting a tensor-product
structure. Similarly, (isotropic) h-adaptive mesh refinement is executed in essentially the same way in 2d and 3d by
splitting parent cells into 2dim child cells. This kind of adaptive mesh refinement in turn provides a convenient setting
for implementing geometric multigrid algorithms: the construction of prolongation and restriction operators (as well as
level construction) is greatly simplified in the case of hierarchical mesh refinement. Finally, a large number of topological
quantities become compile-time constants: The number of faces, edges, and vertices of cells are all fixed and known if all
cells with spatial dimension dim are the same shape. At the same time, it is true that it is often difficult to generate good
quadrilateral or hexahedral meshes (other than the trivial subdivision of a triangle or tetrahedron into 3 or 4 quadrilaterals
or hexahedra, using a tool such as tethex). This clearly limits the applicability of deal.II in some applications, though
our experience is that this really only significantly affects the use of complex, 3d geometries. In many other, practical
situations, relatively coarse meshes can either be generated by hand or by mesh generators and then refined automatically
to fit the geometry of the object using the techniques described in Section 3.2.

deal.II currently has three triangulation classes: sequential, (parallel) shared, and (parallel) distributed. The latter
two partition the mesh among MPI processes, making the parallel solution of partial differential equations possible.
The difference between the shared and the distributed triangulation is what each process stores: In the shared case,
each process stores the entire triangulation — wasteful in terms of memory and only scalable to around 100 processes,
but useful when dealing with problems that require knowledge of the entire mesh on each process (as in boundary
element methods). In contrast, the distributed triangulation stores the coarse mesh everywhere, which is then refined
hierarchically, and each process only stores the subset of locally owned cells of this refined mesh, along with ghost cells
surrounding the locally owned cells.

The parallel distributed mesh implementation in deal.II is algorithmically much more involved than the parallel shared
mesh [12]. On the other hand, it provides a distributed data structure that has been shown to scale to very large numbers
of MPI processes and unknowns: We have demonstrated computations on up to 304,128 processes and up to 2 × 1012 [43]
unknowns, far beyond what is necessary to solve most problems in practice today.

For all three of the triangulations mentioned above, the dimensionality of the mesh may differ from the dimensionality
of the space in which it lives. This allows for the solution of equations on surfaces embedded in higher-dimensional spaces.
Examples where this is useful are the use of boundary element methods, but also modeling surface processes on solids
and fluids (possibly coupled to models of the enclosed bulk medium) such as surface tension, erosion, or diffusion on
membranes.

3.2. Geometry abstractions

A key feature of deal.II is support for adaptive mesh refinement and coarsening. Refining cells in highly distorted or
curved domains is a challenging problem that requires both a description of the underlying geometry and algorithms for
using this information to create child cells that are no more distorted than their parent cell. It is also often necessary
to propagate information from a curved boundary into the interior of a triangulation to achieve a well-conditioned
discretization. These problems are especially important when computing solutions on surfaces embedded in higher
dimensional surfaces since, in this context, all cells will usually be curved. Accurate geometry descriptions are also critical
for higher-order discretizations because they enable one to use a boundary description whose order of accuracy matches
that of the finite element space (e.g., isoparametric and isogeometric finite elements).

The implementation of this functionality in deal.II is based on the language of differential geometry and resides in
classes inheriting from Manifold. These manifold descriptions are used in (i) placing new vertices upon mesh refinement,
(ii) computing normal and tangential vectors to the boundary, and (iii) defining the mapping from the reference cell to a
concrete cell of the mesh; they also appear in a number of other operations. Isoparametric finite elements use Manifold
objects to compute the coordinates of support points that lie along curved faces as well as support points on the interior of
the cell (through the MappingQ andMappingFEField classes). Similarly, the abstraction provided by manifolds enables
the use of isogeometric mappings (through the MappingManifold class), where the exact geometry is used directly to
define the mapping from the reference cell to a concrete cell of the mesh.

When a volumetric description of the geometry is not available, CAD models can be used to represent the geometry of
the boundaries, and transfinite interpolation [44] may be used to extend surface geometry descriptions into the interior
of the domain. A complete discussion of these issues is provided in [23]; an example is shown in Fig. 2.

3.3. h and hp adaptivity

deal.II was originally designed as a library supporting adaptive mesh refinement, i.e., h-adaptivity, using hanging nodes
as a means to deal with differing cells sizes. It was later extended to also support hp-adaptivity whereby one can also
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Fig. 2. A mesh adaptively refined from 3 coarse cells with hanging nodes and curved faces. The geometry description represents the boundary as an
exact circle. This geometry is extended into the interior using transfinite interpolation. Cells are colored based on a partitioning onto four processes.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

individually select the finite element, and therefore the polynomial degree, on each cell [13]. While technically difficult
to implement – in particular for continuous elements, in 3d, and in parallel – supporting hp-adaptivity has also enabled
a host of other, unexpected applications if one allows for different cells to use entirely different kinds of finite elements.
In particular, the introduction of the FE_Nothing element that represents a space with no degrees of freedom (i.e., only
consisting of the zero function), has allowed representing multiphysics applications in which some equations are only
posed on parts of the domain.

3.4. Finite elements, mappings, and evaluating them

Over the past few decades, an entire zoo of finite element spaces has been described in the literature. The publication
by Arnold and Logg in [45] and references therein summarizes the most commonly used ones, but there are many others
(a subset illustrating the breadth of elements can be found in [46–50]). deal.II implements a substantial fraction of
these, starting with the common continuous and discontinuous Lagrange elements, but also the Nédélec, Raviart–Thomas,
Arnold–Boffi–Falk, Brezzi–Douglas–Marini, Bernardi–Raugel, Bernstein, P1-nonconforming, Rannacher–Turek, and other
spaces. There are also implementations of more specialized cases: Finite element spaces enriched by bubble functions or
using additional weights (as necessary for the XFEM approach); monomial bases; unmapped non-parametric bases; and
finite element spaces defined only on the faces of cells. Almost all of these are available with arbitrary polynomial degree.

Most of these spaces are defined on the reference cell [0, 1]d and need to be mapped to each cell of the triangulation.
This is done using one of several implementations of the Mapping base class: The usual polynomial mappings based on
Lagrange interpolation points; a specialized mapping that can be used in case all cells are rectangles/boxes with axes
parallel to a Cartesian coordinate system; and mappings that are ‘‘exact’’ in the sense that they respect the underlying
manifold description of the domain’s geometry.

An important realization, explored in more detail in [4, Section 3.3], is that while finite element spaces and mappings
describe functions, in practice they only need to be evaluated at individual points because the integrals used in the finite
element method are approximated by quadrature. The FEValues class provides an interface that allows querying shape
functions, transformed to the current cell, at a set of evaluation points. Furthermore, because the quadrature points (in
reference coordinates) are typically the same for a loop over all cells, FEValues pre-computes and caches as much
information as possible, substantially accelerating the computation on a sequence of cells in a transparent manner. Similar
classes exist for evaluating shape functions and derivatives on faces.

For problems with multiple solution components – say, a flow problem whose solution consists of d vector components
for a velocity plus one for the pressure – it is often convenient to either consider the combined finite element space of
all components (e.g., to correctly size the linear system); or to only consider its restriction to a scalar component, the d
components of a vector, or the d2 (or d(d+ 1)/2) components of a (symmetric) tensor (e.g., when assembling the bilinear
form). In deal.II, the latter is facilitated by ‘‘extractor’’ objects that, when applied to an FEValues object, yield a ‘‘view’’
of the selected finite element space.

3.5. Geometric multigrid

The ability to solve large linear systems stemming from finite element discretizations requires solvers that are both
optimal in complexity (i.e., O(N) where N is the number of unknowns) and scale well in parallel. Only multigrid methods,
either algebraic or geometric, are known to fulfill this requirement for elliptic problems.
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deal.II has long supported and successfully used algebraic multigrid (AMG) methods as a preconditioner through
Trilinos’ ML/MueLu packages and PETSc’s hypre interfaces; for examples, see [12,51]. However, AMG setup costs become
prohibitive for very large problems and core counts [52]. Consequently, deal.II also supports geometric multigrid methods;
originally written for sequential computations on adaptive meshes in 1999, it now also supports parallelization via
multithreading and MPI [11].

While algebraic multigrid methods can often be treated as black-box preconditioners, the implementation of the
geometric multigrid algorithm consists of a flexible framework with various options and customization points: First,
it integrates seamlessly with existing linear algebra classes (PETSc, Trilinos) or matrix-free smoothers and transfer
operators (see Section 3.6). Second, there is a large collection of smoothers that can be used, from matrix-based operations
(e.g., Jacobi or SSOR, including various parallel variants), to Schwarz smoothers that allow local smoothers on cells
or patches of cells. Similarly, coarse solvers can be provided through various means, including switching to algebraic
multigrid.

This framework has been shown to scale to extremely large problems, see Section 6. Customization points and block
composition of solvers allows using the multigrid framework for a wide variety of PDEs.

3.6. Matrix-free operators

It is well-understood that matrix-based linear solvers can no longer adequately use the computational power of
modern CPUs or GPUs because of the disparity between the high cost of transferring data from memory and the speed of
floating point operations. Consequently, for computational efficiency, linear solvers need to find a better balance between
precomputing and storing data, versus computing more information on the fly.

To this end, deal.II contains functionality for matrix-free computations that merges the assembly and solver steps. In
this paradigm, a global sparse matrix is never built and linear systems are only solved by the action of the underlying
linear operator on a vector via the integrals in the weak form, such as (∇v, ∇u)Ω from Eq. (1). Since the information
needed to compute the integrals in terms of the geometry and possibly some coefficients is much smaller in memory
than a sparse matrix that encodes the coupling of every unknown to the others, a matrix-free approach has the potential
to avoid the limitations of slow memory access. It also often allows one to fit bigger problems into memory. Matrix-free
setups offer more optimization possibilities than sparse matrices because one can choose what should be pre-computed
and stored; the fundamental question being whether any increase in arithmetic operations costs less than what one can
win from the reduced memory transfer. On today’s hardware, it turns out to be particular useful if one can exploit the
tensor-product form of shape functions [15,16]. In deal.II, we provide matrix-free capabilities on a subset of element
types; currently, these are in particular the tensor-product continuous and discontinuous elements.

To map these arithmetically intensive operations efficiently onto modern hardware, deal.II supports
single-instruction/multiple data (SIMD) instructions, such as SSE, AVX, and AVX-512 on x86 hardware or AltiVec on IBM’s
Power. Given that the compilers’ auto-vectorization is typically only applicable to operations in the innermost loops,
which are often operations over the components of a tensor in d spatial dimension, loop reorganization towards array-of-
struct-of-array data layouts promise much better performance [16]. In deal.II we provide such layouts by a single class
called VectorizedArray that internally applies intrinsics for the various instruction set extensions. To the user code,
the usual operator overloading infrastructure makes it behave similarly to the built-in types double or float, while
abstracting away the detail of the innermost array dimension. All use cases can transparently invoke the most beneficial
SIMD array width for the hardware, without compromising code portability among CPU architectures.

3.7. Support for graphics processing units

Similarly, deal.II also supports operations on Graphics Processing Units (GPUs), due to their superior floating point
capabilities and memory bandwidth for a given power consumption. Multiple programming models are available for
running code on a GPU, e.g., CUDA [53], Kokkos [54], RAJA [55,56], OCCA [57], and OpenMP [58]. deal.II builds on CUDA,
due to the maturity of the language; while this limits the use of these features to Nvidia GPUs, the extension to AMD
GPUs using hipify [59] is underway. GPU capabilities in deal.II consist of matrix-based classes wrapping functionality of
the cuSPARSE and cuSOLVER libraries [36,60], and matrix-free support.

For matrix-based computations, the linear system needs to be assembled on the host first. The data is then moved
to the device, converted to a format usable with cuSPARSE, and finally handed to the preconditioners and direct solvers
from cuSOLVER. deal.II’s own iterative solvers can also be used, with all linear algebra operations performed on the GPU.

In contrast, deal.II’s CUDA matrix-free framework evaluates the finite element integrals directly on the device. This
implies that users will need to write part of their code in CUDA. Given most users’ lack of CUDA experience, we have
minimized the amount of necessary CUDA code by only requiring a user interface with a single functor that can be
implemented using code close to what the user would write when doing matrix-free implementations on the host. While
we have striven to have the interface for GPU matrix-free framework to be as close as possible to the CPU matrix-free
framework, they are not identical. Aside from the obvious difference of having the user writing a functor annotated with
__device__, the more fundamental difference is due to the way the parallelization is done. On the CPU, each thread
works on a separate chunk of cells while on the GPU, each thread works on a different degree-of-freedom. This is due to the
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fact that the GPU has much more parallelism available but not as much memory per thread. Details of the implementation
are discussed in [61].

The matrix-free framework can also take advantage of multiple GPUs through the use of MPI via deal.II’s own data
structures and solvers. Data can be transferred between different GPUs on different systems either via the host’s memory
or, if an implementation supports it, without this detour.

3.8. Assisted differentiation and linearization

Many realistic applications use formulations derived from complicated energy functionals or residuals. Examples are
large deformation formulations of materials with nonlinear constitutive laws, fluid–structure interaction problems, or
chemically reacting flows. In such cases, deriving and consistently implementing the bilinear forms and right hand
sides that characterize each nonlinear step is often fraught with opportunities for error. Additionally, validating an
implementation with no analytical solution or verifying that the convergence rate of a nonlinear solution scheme is
optimal also becomes extremely challenging.

In many such cases, workflows can be substantially simplified by integrating tools for automatic differentiation (AD).
To this end, deal.II leverages ADOL-C [62,63] and Sacado [64–66] to automatically compute first and second derivatives.
On the finite element level, this approach allows computing the Newton matrix from a residual (‘‘linearization’’), or both
the residual and its linearization can be determined from an energy functional. The same can analogously be done on
the quadrature point level. This framework abstracts away the specialized function calls and operations that each of the
supported automatic differentiation (AD) libraries (and the underlying number types) requires and offers a clear and
unified interface to the users.

Complementing the AD framework is an interface to the high performance Computer Algebra System (CAS) and
symbolic toolbox SymEngine [67] that performs symbolic calculations on scalar types using common C++ syntax through
operator overloading. Valid operations not only include standard mathematical operations and symbolic differentiation,
but also comparison, logical, and conditional operations. Having integrated the scalar SymEngine wrapper class, called
Expression, into the pre-existing Tensor and SymmetricTensor classes, we have also equipped the framework to
perform tensorial computations and, subsequently, symbolic tensor differentiation as tensors are commonly used in
the definition of residuals and energy functionals. Its flexibility makes the symbolic framework well suited to perform
specialized tasks that have a complex code path and require either partial or total derivatives to be computed.

The framework above lays the foundation to include other exciting features in the future. In particular, opportunities
include offloading symbolic computations to a just-in-time compiler for more rapid execution of computed operations,
and symbolic finite element level assembly and linearization in a similar spirit to that previously described for the AD
framework.

4. Lessons learned from the development of complex software

Having discussed design goals and available functionality in the previous two sections, it may be interesting to also put
all of this development into perspective: What have we learned about the development of a complex scientific software
library intended for a large user community?

In [68], we have previously given some answers on what we think makes scientific software libraries successful. Let
us here summarize some of the points made there and explain how they relate to deal.II specifically, but also – and in
particular – discuss a few of the things we know are difficult or for which we do not know how to do them well.

4.1. A success: Testing

As mentioned in Section 2.9, having an extensive testsuite is essential to providing stable functionality. This is in
particular true in view of the continuous growth in the number of possibilities to configure the library, using different
compilers, different dependencies, and hardware platforms. To this end, deal.II’s test suite with more than 12,000 tests is
run continuously with a wide cross-section of all configuration combinations. Compiling and running a substantial fraction
of the test suite is part of the continuous integration hook for each patch, and success is required before a patch can be
merged.

4.2. A challenge: Dependency hell and installation support

A consequence of the design decision to not implement functionality for which specialized external libraries exist (see
Section 2.3), is that deal.II relies on many other packages. Almost all of these (and their corresponding wrappers) are
optional, but most advanced deal.II-based projects likely still depend on some. Thus, users are required to install these
external projects by hand, rely on pre-installed versions made available by their system administrators, or use tools that
facilitate building scientific software such as Spack [69].

Configuration management is notoriously complicated. Many scientific packages, to this day, use installation proce-
dures based on Makefile snippets or autoconf, neither of which export the details of their installation for downstream
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packages. Many also have broken installations in which, for example, shared libraries do not record which other shared
libraries they depend upon, leaving it to downstream projects to figure out what to link with. Furthermore, every system
seems to be different: Not just between Linux, macOS, and Windows, but even within each of these operating systems,
there are substantial differences in what is available, where, and how. Finally, the projects deal.II can interface with make
incompatible changes between versions, either requiring supporting multiple versions at once, or requiring users to use
a specific version.

All other scientific software projects we know of struggle with this ‘‘dependency hell’’ and ‘‘version hell’’; no particular
good and widely usable solutions appear to exist. We try to address these issues by providing installation scripts
that automatically download optional dependencies, such as candi [70], and by working through package managers
(of package repositories such as Debian or Ubuntu, or source based installers such as Spack [69] and the xSDK [71]
environment that builds on it).

4.3. A success: Backward compatibility issues

Just like other packages, deal.II carries legacy functionality for which we have found better solutions over time. This
is particularly relevant because libraries such as deal.II expose such large interfaces to users: hundreds of classes and
thousands of functions are accessible to users. Replacing or changing any of them would break downstream codes, and
prevent upgrade paths for our users from one version to the next.

We have always tried to minimize incompatible changes that would impact users. Where this cannot be avoided,
we deprecate functionality in one version and remove it in the next. Using compiler features, the use of deprecated
functionality is possible, but triggers a compiler warning alerting users to the need to eventually update their code. This
appears to be working: We very rarely hear complaints about lack of backward compatibility.

4.4. A challenge: Support for changing architectures

Computer architectures are changing and, with the advent of GPUs and Xeon Phis, also more diverse. Some archi-
tectures have multiple levels of heterogeneity: Nvidia’s Volta GPU architecture is itself accelerated by ‘‘tensor’’ cores.
Any open source project will struggle with natively supporting all of them. deal.II does support a limited number of
architectures (x86, POWER, and Nvidia GPUs) natively. For other architectures, deal.II will need to rely on third-party
libraries such as the Tpetra package of Trilinos [29] that uses Kokkos [54] for performance portability.

4.5. A challenge: Supporting ‘‘different’’ discretizations

Not all discretizations considered widely useful are as simple as standard isoparametric Lagrange finite elements
mapped to each element via a polynomial mapping. Isogeometric analysis (IGA), finite elements based on Catmull–Clark’s
subdivision surfaces, the extended finite element method (XFEM), and certain types of enriched finite elements all do not
fit into this scheme. In those cases, the degrees of freedom cannot be thought of as being associated with a specific mesh
object, but rather a collection of such objects (for example, a patch of cells). For these, shape functions may not be defined
based on some ‘‘reference cell’’, they may extend beyond just one cell and its immediate neighbors, and the number of
shape functions supported on a given cell may depend on the topology of the mesh around that element (as is the case
for Catmull–Clark’s finite elements).

Some of these schemes are difficult to press into the current design of the FiniteElement class, and of the FEValues
class that provides point values and derivatives (see Section 3.4). Similarly, enumeration of degrees of freedom (DoFs)
poses challenges. To address these issues, the description of the finite element space, represented by the FiniteElement
class, will have to learn to provide information on how many of those ‘‘non-local’’ DoFs there are on a given mesh. This
information will then need to be used by the DoFHandler class responsible for globally enumerating DoFs. Additional
complications arise in the MPI-parallel context where ownership of a non-local DoF can no longer be determined based
on which cells each process owns because these degrees of freedom are no longer associated with a particular cell. One
might also need to have a ghost layer thicker than a single cell.

No library can support everything, but there is an ongoing effort to add basic support for such ‘‘non-local’’ DoFs to the
deal.II library.

4.6. A challenge and a success: Interoperability of ‘‘single-use’’ features

Some of deal.II’s features have turned out to not to be interoperable with other parts of the library. They were typically
written for a single use case, and often only implemented or understood by a single person. Their focus on specific topics
hinders adoption by a larger number of users; those who do use them find themselves frustrated by lack of support for
these features in other parts of the library. These features are also often poorly documented, and are overrepresented
among questions on the online forums.

In hindsight, these features were contributed with good intentions, but became a maintenance problem especially if
the contributor later walked away from the project. We have learned from this: The modules in question predate the
time when every patch had to pass peer review, and large patches are now often extensively discussed for design choices
and interoperability before they are accepted. Our standards for documentation are also far higher today than they were
before every patch was reviewed.
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4.7. A success and a challenge: Organizing large volunteer projects

A scientific project with hundreds or thousands of users, and dozens of contributors to each release, can be considered
a success. We also know of some 1500 publications from essentially all areas in the sciences and engineering that use
deal.II [38]; only a small fraction of these was authored by the principal developers of the project.

Getting to these numbers required a lot of deliberate work and thinking about how best to use our human resources:
A substantial fraction of our effort is spent on supporting users via online forums,5 but importantly also on providing
extensive documentation and other supports to avoid having to answer everyone’s questions on the public forums. It
also includes taking the perspective of users into consideration during the development process. Finally, we consciously
focus on growing users into developers, by encouraging them to contribute and providing them with mentoring on their
patches.

At the same time, there are also challenges when dealing with actual humans. These include dealing with ‘‘difficult’’
community members, not burning any one person in the project out by overloading them with answering forum questions,
giving newer project members space to find a niche, and not expecting new contributors to write perfect patches with
extensive documentation or tests before a pull request can be merged. An important distinction from other projects
appears to be that among the deal.II principal developers, none seem to be particularly territorial about their code and
all are quite happy to let others reshape the code they wrote. This enables newcomers to contribute without having to
fear that they step on old-timers’ feet, and has allowed us to avoid the tendency of projects to balkanize into individual
developers’ territories that only they are allowed to touch.

5. Education

As already mentioned in Sections 2.9 and 2.10, libraries such as deal.II do not exist in a vacuum. Rather, they are
surrounded by user communities requiring education: Help and documentation resources at varying levels, and basic
training in the underlying numerical methods and software development. But, a project such as deal.II also enables
educational opportunities: It is a tool to reach communities who may be interested in computational science. Finally,
it is also a tool to research how best to teach CS&E.

Indeed, many of us have leveraged deal.II for educational purposes: We know that it is used in teaching finite
element courses at many universities around the world, and several of us have taught short courses based on it on many
continents. Even more broadly used is a collection of currently 67 video lectures that one of us has recorded at KAMU, a
professional television studio. These videos — hosted on YouTube6 as well as the Chinese bilibili video hosting platform7

– have collectively received more than 140,000 views, indicating robust user-community interest in learning about the
computational science concepts discussed, as well as in the interactive demonstrations showing how to build, use, and
develop software based on deal.II.

The original purpose of the video lectures was to facilitate flipped classroom teaching in which students learn the
material before class, allowing the instructor more time for interaction with students. We have found that this approach
works well, both anecdotally from the perspective of those who have used this approach in their own teaching, but also
backed up by rigorous educational research [72,73].

6. Applications

deal.II is used by hundreds or thousands of researchers in essentially every field of the sciences and engineering,
as shown by the large number of publications that build on it [38] — too many to even try and summarize. Most of
these publications use codes written for a specific purpose but not publicly available. However, the project website at
https://www.dealii.org also links to a number of large projects built on deal.II in the geosciences, radiation transport,
the material sciences, fuel cell modeling, wave propagation, and multiphysics modeling, that have themselves grown
substantial user communities — in some cases with hundreds of users of their own. Finally, we are aware of on the order
of 10–20 industry projects that build on deal.II, and believe that this is likely a substantial underestimate. Several of the
principal developers have industry projects themselves, ranging from the simulation of ship hulls, wave propagation in
the aerospace field, resonances of industrial membranes, to 3d printing.

Many of the papers referenced in the list of papers that use deal.II [38] provide excellent examples of the breadth
and depth of applicability of deal.II. Furthermore, the publications mentioned at the end of the Introduction also discuss
in great detail individual features. Rather than duplicate this information, let us here only summarize one example of
large-scale computations in the following sub-section.

6.1. Large-scale computations

The computations shown in this section are based on [43,74]. Fig. 3 shows a scaling experiment of a geometric multigrid
V-cycle on the SuperMUC-NG machine in Garching, Germany, with up to 304,128 Intel Xeon Platinum 8174 cores. The

5 An overview of resources for help is available at https://www.dealii.org/participate.html, including links to the help forum, issue tracker, and
the project’s GitHub repository.
6 https://www.youtube.com/playlist?list=PLdy04DoEepEwRGMbxwmPTmNBD5jFvhlZM.
7 https://www.bilibili.com/video/av57103047/.
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Fig. 3. Parallel scaling of a GMG V-cycle on up to 304,128 cores and up to 2 × 1012 unknowns. Dashed lines show ideal scaling.

equation being solved here is the three-dimensional Laplace equation; however, solving this or related equations also
serves as the basis for block preconditioners for more complicated equations such as the Stokes and Navier–Stokes
equations, as well as for elastic and plastic models, and the performance shown here is therefore indicative also of solvers
for more complex problems. The example shown uses a symmetric interior penalty discontinuous Galerkin discretization
with polynomial degree p = 4 on a hyper-rectangle. The multigrid hierarchy involves a switch from the discontinuous
space to the associated continuous finite element space with p = 4 on the same mesh [75] and then progresses to
coarser mesh levels until a coarse solver is invoked on a 2 × 1 × 1 mesh. Chebyshev smoothing of degree 6 for pre- and
post-smoothing is used on all levels. For operator evaluation, the matrix-free infrastructure (Section 3.6) with AVX-512
vectorization is used. The multigrid V-cycle is run in single precision to increase throughput, which is the typical usage
setting when combined with some double-precision correction [76].

This setup achieves a multigrid convergence rate of about 0.03, i.e., the residual is reduced by 3 orders of magnitude
with just two V-cycle applications. The largest problem with 2.15 × 1012 unknowns runs with (single-precision) arith-
metic throughput of 5.9 PFlop/s and a memory throughput of 1.2 PB/s (187 GB/s per node), and is primarily limited by
the memory bandwidth. The combination of these features then leads to a solver for the Laplace equation that can solve
a problem with trillions of unknowns in just a few seconds — opening the door for solving much more complex problems
that use the Laplace equation as one block in the preconditioner.

7. Vision and future directions

Like many volunteer projects, deal.II does not have a formal roadmap that drives development. Rather, most new
features stem from individuals’ need that arise in their research. That said, we have the following aspirational goals:

• To provide state-of-the-art tools for a broad variety of PDEs.
• To have excellent documentation to enable anyone to use the library.
• To enable fast and scalable algorithms from laptops to the largest supercomputers, including new architectures.
• To create an open, inclusive, participatory community providing users and developers with the resources they need.

In support of these goals, there are a number of technical areas in which concrete work is currently ongoing and that we
will discuss briefly in the following.

Efficient computations on the largest machines. As the results of the previous section show, deal.II-based codes have been
used on the full scale of some of the biggest machines available today, with more than 1012 degrees of freedom. Another
example, among several others, is the code discussed in detail in [77]; in both of these cases, computations are run on
more than 100,000 cores. Yet, experience shows that every time one goes to larger numbers of cores or more degrees of
freedom, one encounters new bottlenecks. We continue to address these by carefully timing parts of our code base, but
also by addressing algorithms that we know cannot scale indefinitely. An example is the implementation and optimization
of matrix-free methods, and their current incorporation into multigrid methods that scale to very large problems [11].

GPU support. Similarly, we know that for the foreseeable future, the largest compute clusters will draw the majority of
their compute power from GPUs and similar devices. Yet, supporting this very different programming model is difficult,
and needs to be hidden from user code wherever possible. deal.II has supports for GPUs, and strives to make it available
more broadly.
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Parallel hp adaptivity. hp refinement has been part of deal.II for the past 15 years, and parallel distributed meshes for
more than 10. Yet, the combination of these two features has only been available for the last year or so. We continue to
work on making the necessary connections, and in particular devising practical strategies for ensuring that the resulting
computations are well load-balanced.

Tutorials and other pieces of the documentation. Providing users with adequate documentation is a continual challenge.
There are never enough tutorial programs to cover all of the applications our users have in mind, nor do the existing
ones cover the changing programming models we use in view of large-scale parallelism, GPUs, or evolving discretization
methods. Likewise, despite 20 years of work, function and class documentation never seems to be adequate to answer
all user questions. As a consequence, a substantial fraction of commits over the years has always been to improve the
documentation, and there are 2–4 new tutorial programs every year. This trend will surely continue indefinitely.

8. Conclusions

In this contribution, we have outlined the design criteria and functionality of the deal.II finite element library. Like
many other scientific software projects, deal.II started as a small project within one lab, with no intention of reaching
beyond that point; however, it has now grown into a successful and world-wide project that is used in hundreds or
thousands of research projects, with nearly a dozen principal developers who spend a substantial fraction of their time
on the continued development of the package. This change from a project for a few user-developers to a community
project brings with it not only an explosion in functionality (as discussed in Section 3), but also a reckoning on how such
software can be developed: It requires an agreement on the design principles that guide continuing development (see
Section 2) but also a focus on the technical and social challenges a project of this size brings with it (Section 4). At the
same time, it also opens up opportunities as a widely used teaching tool (Section 5).

As this article, and especially Section 6, made clear, deal.II is no longer a hobbyists’ project, but a professionally
managed enterprise whose continued development has, over the years, been supported repeatedly by a multitude of
funding agencies and that has not only built more than a million lines of C++, but also a vibrant and active user and
developer community.
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