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Abstract—Localization and tracking of a moving target arises
in many different contexts and is of particular interest in the
field of robotic networks. One important class of localization
schemes exploits the time-difference-of-arrival (TDOA) of a signal
emitted by the target and detected by multiple sensors. In this
work, we propose a fully distributed approach to TDOA-based
localization and tracking of a moving target in 3D space by
a group of mobile robots. We utilize a networked extended
Kalman filter to estimate the target’s location in a distributed
manner, and guarantee successful localization under fixed and
time-varying undirected communication topologies if every agent
is part of a network with a minimum of 4 connected, non-
coplanar agents. Since localization performance under TDOA-
based schemes degrades as the target moves away from the
convex hull formed by the agents, it is important for the network
to track the target as it moves in space. We thus further propose a
movement control strategy based on the norm of the estimation
covariance matrices, with a tuning parameter to balance the
trade-off between estimation performance and the total distance
traveled by the robots. A numerical example involving robots with
simplified three-dimensional dynamics is provided to illustrate
the performance of the proposed approach.

Index Terms—Distributed localization, time-difference-of-
arrival (TDOA), Networked extended Kalman filter, robotic
networks, structural observability

I. INTRODUCTION

VER the past two decades, wireless sensor networks

(WSN:s), often enabled by mobile robots, have received
increasing attention due to their potential application to a
number of diverse areas [1], such as environmental monitoring,
space exploration, military applications, target tracking, and
health care. Time-difference-of-arrival (TDOA)-based algo-
rithms are widely used for precise localization of a target,
examples of which include wireless ranging radar systems,
cellular positioning systems [2], and acoustic telemetry in
fishery research [3]. This paper considers the problem of
TDOA-based localization and tracking of a moving target
with a robotic network in a distributed manner. We propose a
networked extended Kalman filter, and derive the conditions
for successful localization under fixed and time-varying com-
munication topologies.
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A. Related Work

Generally speaking, TDOA algorithms rely on a target
emitting a signal periodically, which is detected by special
receivers deployed either at fixed locations or on mobile
robots. If multiple receivers detect the same signal, it is
possible to infer the target’s location using the differences
among detection times at these receivers.

Much of the work on TDOA-based localization in the
literature adopts a centralized approach, in which a reference
node is chosen and the times of arrival (TOA) of the emitted
signal for all other nodes in the network are subtracted from
the reference node’s TOA, generating TDOA measurements at
fusion hub. If the propagation speed of the signal is known,
the TDOA measurements can be converted to range-difference
measurements, which are then used to estimate the location
of the target [4], [5]. This centralized approach has a long
history and is widely used in aerospace systems [6]. Geometric
treatment of the problem for a stationary target was considered
in [7] and [8], where the target location is inferred from the ge-
ometric relations imposed by the TDOA measurements. When
the target’s location changes with time, dynamic approaches
are generally used for localization, in which a filter is used
to estimate the target’s location. Examples of these methods
include utilizing an Extended Kalman Filter (EKF) in [9], or
an Unscented Kalman Filter and Particle Filters in [10].

Due to power and bandwidth constraints in WSNs or robotic
networks, centralized information processing is often infea-
sible, particularly for a large-scale and unreliable networks.
Moreover, some sensors cannot transmit their measurements to
the reference node due to their limited communication ranges.
These drawbacks motivated the investigation of distributed
strategies for TDOA-based localization. In [11], decentralized
source localization in multihop networks was considered,
where a connected dominating set of nodes work as the
network backbone to collect the measurements, and a leader
node of that set is selected to estimate the target’s location,
essentially acting as a centralized estimator of the target’s
position. The need for a common reference node is alleviated
in [12], where a network of paired sensors is utilized while
requiring all such pairs to be able communicate with one
another. As we discuss later in Section III, this decentralized
approach can be improved upon by exchanging estimate
information between nodes, allowing for successful estimation
without requiring all agents in the network to be connected.

In this work, structural observability is used to investigate
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the network topology conditions for distributed localization
of a moving target. Structural analysis deals with system
properties that do not depend on the numerical values of
the parameters, but only on the underlying structure (zeros
and non-zeros) of the system matrices [13]-[15]. It turns out
that if a structural property holds for one possible choice of
non-zero elements as free parameters, it is true for almost
all choices of non-zero elements and, therefore, is called
a generic property of the system. Furthermore, it can be
shown that those particular (non-admissible) choices for which
the generic property does not hold, lie on some algebraic
variety with zero Lebesgue measure [16]. While this work is
similar to [14] and [17] in that it employs structural analysis
on the system matrices, there is a significant difference. In
particular, the results reported in [14] and [17] treat all non-
zero elements as free parameters, which in turn disguises the
importance of the number of TDOA measurements used in this
localization scheme. In Section III, we explicitly consider the
role played by using more TDOA measurements, and prove
that the system can be rendered generically observable when
a sufficient number of TDOA measurements are used.

B. Contributions

The main contribution of this paper is the introduction of
a fully distributed solution to target localization under fixed
and time-varying undirected communication topologies. This
approach does not require a common reference node or data
fusion center, nor does it require each agent to be heavily
connected to estimate the target’s location on its own. Instead,
we show that every agent in the network can successfully
localize the target if it is part of a network that has a minimum
of 4 connected, non-coplanar agents.

The TDOA-based estimation performance relies on the
relative positions between individual robots and the moving
target. As the target moves away from the convex hull formed
by the agents, estimation performance begins to degrade
and it becomes paramount to track the target as it moves
through space. Rather than continuously tracking the target,
we further propose an adaptive movement strategy, where the
robotic network moves only when the norm of the estimation
covariance matrix exceeds a certain limit, to balance the trade-
off between estimation performance and distance traveled by
the entire mobile network.

While preliminary versions of some results of this work
were presented at conferences [18]-[20], this paper presents an
integrated framework of TDOA-based target localization and
tracking control for mobile robots and represents several sig-
nificant improvements over [18]-[20]. First, [18] was focused
on a particular distributed extended Kalman filtering-based es-
timation scheme with TDOA, the convergence of which relies
on assumptions that are difficult to verify. In contrast, this
work treats a more general class of distributed estimators and
exploits structural observability to derive explicit convergence
conditions in terms of the network topology. Second, [19] dealt
with the formation-based target-tracking control in the two-
dimensional (2D) space, while in this paper both localization
and tracking control (including the simulation results) are

treated in the 3D space. Compared to [20], this work offers
more integrative treatment of the problem by incorporating
target tracking, extension to time-varying topologies, and
presentation of more extensive simulation results.

C. Organization of this paper

The remainder of this paper is organized as follows. We
first present the target movement model and the TDOA mea-
surement model in Section II. In Section III, we discuss the
problem of distributed localization and derive the convergence
condition in terms of network topology via structural observ-
ability analysis. Section IV is focused on tracking control
to balance the estimation performance and traveled distance.
Finally, we provide a numerical simulation in Section V
to illustrate these results before discussing some concluding
remarks and future research directions in Section VI.

II. PROBLEM SETUP

We consider a moving target in the 3D space with p(t) =
[p“(t) p¥(t) p*(t)] denoting its coordinates at time ¢. The
target moves randomly in space according to

{gm - {8 I(ﬂ B;m + Li] w(t), (1)

where I3 is the 3 x 3 identity matrix and w(t) € R? is
the process noise, which is assumed to be zero-mean, white
Gaussian noise with covariance matrix ).

The target emits a signal periodically that gets detected
by a group of IV robotic agents, or nodes, at different times
depending on each agent’s relative distance to the target. At
each detection, agent 7 records the signal’s TOA and acquires
the TOAs of all other agents that can communicate their
information to agent 7. These agents form the set of neighbors
of agent 7, which is denoted as N;. Each agent then subtracts
the TOAs of its neighbors from its own TOA, generating
a list of time-difference-of-arrival (TDOA) measurements.
Assuming that the propagation speed of the signal is known,
the measurements available for each agent are given by

where
hia(t)
hi(t) = : ; (3
hi,|./\/i| (t)
with
hi;(t) = [[p(t) — pi O — lp(t) — pi; ()] 4)

Here, T is the period at which the signal is emitted, v;(t) €
RWil is the measurement noise, assumed to be zero-mean,
white Gaussian noise with covariance matrix R;, p;(t) is the
position of agent i, and p; ;(t) is the position of the j-th
neighbor of agent i.

Denoting the target’s state as z(t) = [p/(t) p/(t)]’, and
discretizing the model in (1) with sampling time 7', with slight
abuse of notation, we can write the discrete-time model of the
target as

z(k+1) = Az(k) + Bw(k), (5)
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where
1 00T 0 0 [Z 0 0]
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oo 10 0T e o0
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0000 1 0 0O T 0
00 0 0 0 1 _OOT_

(6)
The time-varying measurement matrix H;(k) can be ob-
tained from (2), where

b ehm ey 000
Hi(k)= | : A
Tt St T 00 0
and
Ohij(k) _ p"(k) —pi(k) _ P"(K) —pi;(K) ®
op=(k) — lIp(k) — ( 0 lIptk) = pis (W)
Ohig(k) _ pY(k) —pY(k)  p'(k) —pj;(K) ©)
opv(k) — llp(k) — ( 0 lip(k) =iy ()
Ohij(k) _ p*(k) —pi(k)  P*(K) —pi;(K) (10)
op*(k) — llp(k) = pi(R)Il— llp(k) — pis(R)II”

III. DISTRIBUTED ESTIMATION

In this section, we look into the problem of distributed
localization of a moving target using TDOA measurements.
The goal is for every agent to estimate the target’s position
without requiring a central node to collect all measurements
and propagate an estimate to all agents in the network. To
that end, we first discuss a decentralized estimation scheme,
where structural observability analysis is conducted to derive
the minimum number of TDOA measurements required for
an agent to estimate the target state on its own. We will
then discuss the distributed estimation scheme where agents
exchange estimate information, and present the necessary and
sufficient condition in terms of network topology for achieving
stable estimates.

A. Decentralized Estimation

In this approach, each agent runs its own filter using its
own TDOA measurements. Here, agents exchange only their
locations and TOA values to generate TDOA measurements
without exchanging any other pieces of information. Each
node implements an extended Kalman filter (EKF) to estimate
the target’s state

Filklk—1) = A#i(k—1lk—1), (11)
zi(klk) = &;(klk—1)
+K;(F) [yi(k) — hi(&:(k|k — 1))],(12)

where %;(k|j) is the i-th node’s estimate of the state at time
k after the j-th measurement has been processed, and K; (k)
is its filtering gain, which is computed according to

Ki(k) = Pi(k|k — 1)H;(k)’

x [Hi(k)Ps(k[k — 1) (13)

1

H;(k)' + R;]

3

Fig. 1: Network of 3 agents monitoring the target with agent
1 as the reference node.

and
Pi(klk—1) = AP;(k —1\k— YA+ BQB', (14)
Pi(klk) = [I—K;(k)H;(k)]Pi(klk—1)
[I—K Hy(k))
Ki(k )RK( ), (15)

where P;(k|j) is the i-th agent’s error covariance matrix at
time k after the j-th measurement has been processed.

It is well-known (see [21] and [22]) that the estimation error
for agent ¢ under this scheme, which propagates as follows,

Ti(k+1) = A(I — K;(k)H;(k))Zi(k) +ni(k), (16)

is stable if and only if the pair (A, H;(k)) is observable, where
%i(k) 2 x(k) — 2;(k|k) is the estimation error for agent i and
the vector n;(k) collects the terms independent of Z;(k). In
the following, we will show that the pair (A, H;(k)) is unob-
servable when agent ¢ has less than 3 TDOA measurements.
To avoid clutter, we will consider only agent 1 of the network,
and drop the ¢ subscript from the following analysis.

As discussed earlier, if a structural property is true for one
admissible choice of non-zero elements, it is true for almost
all choices of non-zero elements. Additionally, it can be shown
that the choices of parameters for which the generic property
does not hold, lie on a hypersurface (see Definition 1) in the
free parameter space with zero Lebesgue measure [16]. Due to
the fixed structure of our system matrix A in (6) and the time-
varying measurement matrix H (k) in (7), it is beneficial to
utilize structural analysis when examining the observability of
our system. In the following, we employ a structural approach
to establish the minimum number of TDOA measurements
needed to render the process generically observable.

Definition 1: Let f = f(x1,...,2,) be a polynomial in
the n variables x1,...,x, with coefficients in R. Then the
point £ = (Z1,...,Z,) in R™ is called a zero of f if
f(@1,...,2,) = 0. The set of zeros of f is called the locus
of f. A subset V of R™ is called a hypersurface in R™ if it is
the locus of a nonconstant polynomial.

First, we consider the case where agent 1 only has two
neighbors and, therefore, only two TDOA measurements as
shown in Figure 1. The measurement matrix H(k), in this
case, admits the following structure

A A2 A3 0 00
A A5 X 0 0 0]

The system is said to be generically observable if the pair
(A, H)) is observable for almost all values of T, Aq,..., Ag.
In other words, the system is generically observable if and
only if the observability matrix O is full rank for almost all
values of T', A1, ..., Ag, Where

O =[H, (HyA) (HyA2)

Hy = 17)

(H,A%)]".  (18)
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Fig. 2: Network of 4 agents monitoring the target with agent
1 as the reference node.

It is well known that rank(QO) < 6 if and only if all 6 x 6
minors of O are zero [16]. We can easily verify that all
6 x 6 minors of O in (18) are zero, regardless of the values
of T, A1,...,X¢. This implies that the process in (5) with
measurement matrix (7) is unobservable when the node has
two or less TDOA measurements'.

Now we consider the case where agent 1 has three neigh-
bors and, therefore, three TDOA measurements as shown in
Figure 2. The measurement matrix H (k), in this case, admits
the following structure

A A2 A3 0 0 O
Hy=|XM X X 0 0 0 (19)
A A A 0 0 O

Checking all 6 x 6 minors of O, we observe that some
minors of O are not identically zero and are all of the form

aT3(A3 (AsA7 — Aadg) + A2 (Agdg — A7)
+A1 (A6As — Ashg))?,

for some a € R. Therefore, we conclude that rank(O) = 6
for almost all values of 7" and Ay,..., A9, and that the
pair (A, H(k)) is generically observable if the agent has a
minimum of 3 TDOA measurements?. Furthermore, the set
of values that render the pair unobservable is a hypersurface
in the free parameter space where the expression in (20) is
zero. Interestingly, this means that the process is generically
observable except when:

o The sampling time used for discretization of the system

in (5) is 0, or
o All of the points that satisfy

(20)

A1 A2 As
det A A5 e =0,
A As Ao

i.e., when the 3 TDOA measurements are linearly depen-
dent, and the 4 agents are coplanar.

For all agents in the network to be able to
estimate the target’s position under this decentralized
scheme, we would require that all such pairs

(A, Hi(k)),(A, Ha(k)),...,(A,Hy(k)) to be observable,
ie., we would require the pair (Iy ® A,Dgy) to be
observable, where ® denotes the Kronecker product, and
Hi (k) 0
Dp(k) = 1)
0 Hy (k)
1If the node has only one TDOA measurement, and therefore only one
neighbor, then there is only one 6 x 6 minor of O and it is det(O).

21f the node has more than 3 TDOA measurements, it can be verified that
rank(©) = 6 if rank(Hy) > 3.

4

Let 2(klk) = [1(k|k) #n(k|k)'] denote the
network-wide estimate of the network-wide state z(k) =
[z(k) :c(k)’}/ = 1y ® x(k), where 1y € RY is the
column vector whose entries are all 1. The dynamics of this
network-wide state can be derived as follows

z(k+1) =1y ® (Az(k) + Bw(k))
=(Un®A)(1y © z(k))
+ Uy ©B)(In @ w(k))

=(In®A)z(k)+ Iy @ Bw(k), (22)

with w(k) £ 1y®w(k) representing the network-wide process
noise. Denoting the i-th agent’s estimation error by Z;(k) £
x(k) —2;(k|k), and the network-wide estimation error Z(k) £
[Z1 (k) aEN(k)’}/, the dynamics of Z(k) are given by

Z(k+1) =(In® A)(Ieny — K(k)Du(k)) Z(k)
+n(k),

where K (k) is a block-diagonal matrix of the filter gains
Ki(k)...Kn(k), and the vector 7(k) collects the terms
independent of Z(k). This network-wide estimation error can
be stabilized if the pair (Iy ® A, Dy (k)) is generically ob-
servable, where each agent needs to have a sufficient number
of neighbors to estimate the process using only its own TDOA
measurements.

Under this formulation, each agent can estimate the target’s
location when it has a minimum of 3 TDOA measurements,
corresponding to each agent having a minimum of 3 neighbors.
This decentralized approach requires each agent to be heavily
connected such that the target system is observable using each
agent’s own measurements. Next, we discuss how the number
of required communication links can be reduced, and argue
that it is possible to estimate the target’s location without the
need for heavily connecting the agents.

(23)

B. Distributed Estimation

Consider the dynamical system in (22), and noting that for
a stochastic matrix W € RY*N_ W1y = 1y, we can rewrite
(22) as

z(k+1) =1y ® (Az(k) + Bw(k))
:WlN & A:C(k) + 1N &® Bw(k)

=WeA)z(k)+ Iy ® B)w(k). (24)

For this modified dynamical system in (24), a centralized
filter can be designed with estimation error dynamics that can
be expressed as

Z(k+1) =(W® A) (Isxy — Kc(k) Dy (k) 2(k)
+ n(k),

where K (k) is the filter gain, which can stabilize the error dy-
namics if the pair (W ® A, Dy (k)) is generically observable.
In the following, we will show that it is possible to obtain a
network-wide estimation error with dynamics similar to (25)
by averaging the estimates among neighboring agents.

Let W € RV*N be a stochastic matrix with entries w;; >0
if ¢ = j or if agents ¢ and j can exchange information;

(25)
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otherwise w;; = 0. We assume here that every agent has
access to its own information (i.e., w;; > 0), and that the
communication links are bidirectional, namely, if agent j can
send its information to agent ¢, then the reverse is also true,
wij,wj; > 0. Every agent in the network implements a
filtering scheme similar to the decentralized case, but followed
by updating its estimate by averaging the estimates from
neighbors and itself. The filter implemented by each agent
in the network is then given by

Ziklk —1) = Azi(k—1), (26)
i (k|k) i (k|k —1)
+Ki(k) [yi(k) — hi(&:i(k|k = 1))],(27)
N
mm::Zwmwm (28)

Denoting Z;(k|k — 1) by &;(k), and substituting (27) and
(28) into (26), we can express a one-step formulation of agent
1’s estimate can as

i(k+1) Z Wi [Ax]

(29)
AR 1) (3s8) = s 2500 ) |
The ¢-th agent’s estimation error is then given by
N
+1) = wi [A(T = K, (k) H,; (k) (k) 30)
j=1

+ n;(k)] -
Denoting the network-wide estimation error by (k) =
[ (k) Zn(k)']’, then

Z(k+1) =W ® A) (Isx — K(k)Dg(k)) Z(k)

+n(k),

which is similar to (25), except that here the gain matrix
K (k) is restricted to be block-diagonal. As explained in [14],
computing such a constrained gain is possible via an iterative
cone-complementary optimization algorithm; see [23] and [24]
for details. In [25], the authors derived a suboptimal filtering
gain inspired by the Markovian jump linear system filtering
problem, where

3D

Ki(k) =Pi(k|k — 1)H,(k)’

—1 (32)
x [Hi(k)Pi(klk = D) H(k) + Ri] ™,
and
Pi(klk—1) = AP(k—1)A"+ BQB', (33)
Pi(klk) = [Is — Ki(k)H;(k)] Pi(k|k — 1)
xmfm@mwy

Ki(k)RiKi(k)', (34)
mmzzzw]km (35)

5

Therefore, to ensure the convergence of the networked filter,
one has to ensure that the networked system is observable [14].
To that end, we investigate the conditions on the matrix W
and, therefore, the topology of the undirected communication
graph among agents, that would render the pair (W ® A, Dgy)
observable, and therefore ensure the convergence of the net-
worked filter. We first note the following property regarding
the powers of the matrix W from [26].

Lemma 1: Let [W!'];; denote the (i,j) element of the
matrix W', where W is the stochastic matrix representing the
communication topology with w;; > 0. Then, [W'];; > 0 if
there is a path between agents ¢ and j of length less than or
equal to [; otherwise [W!];; = 0.

The pair (W ® A,Dpg) is observable if and only if
rank(O) = 6N. Here,

Dg (k)
Dy(k)(W® A)
0 = |Du(k)(W® A)?

Dy (k)
Dy(k)(W® A)

Du(k)(W?® A%) | (36)

Du(k)W @ A| | Dy (k)W? @ AP),

where p = 6N — 1. Equivalently, denoting O; as the block
column representing agent i’s subsystem, we can write O =
[ Oq ‘ ‘ On ] From the structure of Dy, it is easy to
see that rank(Q) = vazl rank(O;).

We are now ready to present the main results in this paper.

Theorem 1: For a network of agents with time-invariant and
undirected topology, the system under the proposed distributed
TDOA-based localization is observable if and only if every
agent is part of a (sub)network that has at least 4 connected,
non-coplanar agents.

Proof: Sufficiency: We consider the case where agent ¢ is
part of a network that has only 4 connected agents, and note
that the following results can be easily extended to the cases
where the network has more agents. Since it is always possible
to renumber the agents, we will only consider the subsystem
corresponding to agent 1, and write

Hy (k)

0y = (37)

[W23]41 H4(k)A23

This agent can be connected to the network in 4 possible
ways that are shown in Fig. 33. For the ease of presentation,
in the following, we examine Case (d), where the agent has
only one neighbor, and show that rank(O;) = 6. The other
three cases are discussed in Appendix A.

3The graphs shown in Fig. 3 represent the minimum number of links
required for each graph to be connected. It is possible to add more edges
among agents in these graphs and adding more links will only help in terms
of observability.
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Fig. 3: The 4 possible configurations for node 1 to be con-
nected to the network using the minimum number of edges.

Case (d): The structure of H;(k) fori=1,...,4 is as
Hi(A)=[A A X3 0 0 0

|=A1 =A2 =3 0 0 O
HM)_{M X A 00 0}’
=M =X =X 0 0 O
HS(A){M s A 0 0 0}’
HiA)=[-X7 =Xs —Xg 0 0 0].
Recalling that
C [ CAF
rank : = rank ,
CAnfl CAk-i—n—l
it can be shown that the pair
Hi(N)
A, | H3()\)
Hy(N)
is generically observable, implying that
Hi(N)
Hs())
Hy(A)
rank =6.
Hi(\)AS
H3(\)AS
| Hy(M)AS

for almost all values of 7' and A. Additionally, rank(O;) = 6
for almost all values of 7' and A. Specifically, this generic
property holds for all values of 1" and A, except for when the
4 agents are coplanar. Since it is always possible to renumber
the agents, then if every agent is connected to the network that
has a minimum of 4 connected, non-coplanar agents, then the
pair (W ® A, Dy (k)) is generically observable. The proof for
the other cases follows a similar approach, and is presented in
Appendix A.

Necessity: If an agent is disconnected, or is part of a network
that has less than 4 agents, then there are not enough pieces of

6

information to estimate the target’s position centrally, let alone
distributively, and the error dynamics in (25) — and therefore
(31) — cannot be stabilized. [ |

For a time-varying, undirected communication graph, The-
orem 1 can be extended to offer a scalable approach that is
somewhat robust to communication link dropout.

Corollary 1: For a time-varying undirected network, if every
agent remains part of a network that has a minimum of 4 con-
nected, non-coplanar agents then the networked system under
the proposed distributed estimation scheme is observable.

Proof: As the network connectivity changes, if every
agent remains part of a network that has a minimum of 4
connected, non-coplanar agents, then it can be shown that
rank(O;) = 6 for every agent in the network. This, in turn,
ensures that the networked system is observable by Theorem 1.

|

IV. TARGET TRACKING WITH COORDINATED ROBOTIC
NETWORK MOVEMENT

In this section we look into the second part of the problem.
We begin the discussion by investigating the agent formation
needed for optimum localization of the target.

A. Optimal Formation

For a network of IV agents, there is a total number of N (N —
1)/2 possible agent pairs. Let Zp = {(3,j)|1 < j < i <
N} denote the set of all agent pairs and Z = {(¢,5)]j <
i,w;; > 0}, a subset of Zy, represent the set of agent pairs
used for estimation. From the definition of w;;, it is clear that
T depends on the communication topology among agents.

The Cramer-Rao bound (CRB) is a lower bound for the
covariance matrix of unbiased estimators and is given by
the inverse of the Fisher information matrix [27]. With y £
[y ... yy]. the Fisher information matrix is given by

(%mf(yp)) (a%lnf(yp)ﬂ 3%

where f(y|p) is the probability density function (PDF) of y
given p and E[-] denotes the expectation on y. Note that the
measurement noise v; is assumed to be Gaussian with zero
mean. Assuming that R; = 012)[|M.|, one arrives at a 3 X 3
Fisher information matrix by Chan and Ho* [28]

J=F

1
J = =Gd, (39)
where
G = [g” .. ] (i,j)GI 5 (40)
95 = 9i—9j (41)
g = M. (42)
o — pill

Clearly, g; is a unit-length vector pointing from agent ¢ to the
target, and the matrix G depends on the target position, agents’
positions, and the set Z of agent pairs used for localization.

“Here, the propapagation speed of the transmitted signal is normalized to
one.
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Since the CRB is a square matrix, we seek a formation of
agents that minimizes of the trace of the CRB,

w(J ) =0l ([GG']Y), (43)

which is a lower bound for the sum of variances of unbiased
estimators for all elements of the target’s position p. In order
to obtain the lowest possible CRB, and therefore a better
performance by the estimator, all agent pairs in the network
need to be considered, and Z = Z, requiring a fully-connected
network. The necessary and sufficient conditions to achieve a
minimum CRB are presented in [27]. It is known that the
optimum 2D formation is that of a uniform angular array
where all agents are equally distributed around a circle of
radius R, for some arbitrary R > 0, centered around the target
[27]. Similarly, in the 3D case, the optimal configurations for
a complete network are the 3D equivalent of uniform angular
arrays, known as the Platonic solids.

Remark 1: The biggest drawback in achieving optimal
estimation is that it requires the complete connectivity of the
corresponding agent network. This requirement can be relaxed
if one is interested in sub-optimal performance. We note that
since the performance depends on the shape of the formation,
one can search the shape space of the agent formation space
to arrive at topology-specific shapes that minimize (at least
locally), the associated CRB. In this work, we specify the
formation to be that of a Platonic solid, even when the network
is not completely connected.

The goal of tracking the moving target by the network is
to ensure adequate localization using the distributed estimator.
However, it is not necessary to continuously move the robots
with the target. In order to balance the trade-off between the
cumulative distance traveled and the estimation performance,
each agent can utilize the norm of the error covariance matrix,
|| P;||, and only apply the tracking control if the || P;|| > b for
some constant b > 0. Note that b is a design parameter a
user can set depending on the specific problem. In particular,
this parameter allows the user to mediate between two ex-
treme cases, 1) minimizing energy and remaining stationary
(b = o), and (2) maximizing estimation performance by
continuously tracking the moving target (b = 0). While this
switching control strategy is not guaranteed to drive each agent
to its corresponding desired location, it can greatly reduce the
total distance traveled by all agents, as is illustrated in the
following section.

In order to guarantee that all agents move together, or
keep still at the same time, we exploit the average-based
consensus scheme in (28) and (35) between TDOA measure-
ments. Namely, every 7 << T seconds, each robotic agent
¢ in the network communicates and averages its estimate and
covariance matrix with its neighbors N;. This ensures that all
agents agree on their covariance matrices and coordinate their
movements>.

SExchanging information on a much quicker time scale is only needed to
ensure that the agents coordinate their movement, and is not a requirement
for the distributed estimator.

@ x
y

Fig. 4: Illustration of the simplified model of a propelled
underwater robot with steering control, with a view on the
sagittal plane. The robot has similar yaw control in the
horizontal plane.

V. SIMULATION RESULTS

In this work, we use each robot’s estimate of the target’s
state to arrive at the desired position of each robot. To facilitate
the simulation, we consider a simplified model of a propelled
underwater vehicle with steering control in yaw and pitch. The
model used for each agent in the network is given by:

Dy v; cos (¢) cos (7i)
pY v; sin (¢;) cos (7;)
D7 v; sin (7;)
Vj 47}
i Wi g (44)
Vi Wi~

Wi, b Uj,2

| Wiy | i Uj3 |

where p; = [pf p! p7| denotes the position of agent i
in the inertial frame, v; represents the agent’s linear velocity
along its body-fixed = axis, which stretches from the robot
center to the front of the robot. The angle ~; is the angle
between the inertial z axis and agent i’s body-fixed z axis,
while ¢; is the robot’s yaw angle measured as the angle
between the inertial = axis and the projection of the body-
fixed z-axis onto the inertial x — y plane. The terms w; 4 and
w;~ are the rates of change of the angles ¢; and +;, while
ai,u; 2, and u; 3 represent the control inputs for the robot.
Figure 4 illustrates the the robot position and relevant angle
in the sagittal (z — 2) plane.

The estimated position of the moving target is fed into a
feedback linearization control strategy to drive each agent to its
desired position. The desired state for agent ¢ can be obtained
from its estimate of target’s state:

= pitd; (45)
vi = 124l (46)
o= tan! () (47)
%= Sinfl(ngfn) (“48)

(49)
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000
0 000

Fig. 5: The fixed communication topology among a network of
8 agents. It is clear that no agent in the network has a sufficient
number of neighbors (and therefore TDOA measurements) to
estimate the process on its own.

where d; is a constant vector that defines the position of agent
i relative to the target.

The proposed approach was simulated for a network of N =
8 agents with initial positions:

p=[-7 3 5]
pp=[1 -2 —5]
ps=[5 -1 4]
pi=1[7 4 2]
ps=[-5 2 -2
pe=10 -6 7]
pr=[1 -5 1]

ps=1[-1 2 —1]

as shown in Figure 6. The measurement noise covariance
matrix for each agent was set to R; = I|y;|. Estimators of
each agent were initialized with z; = [0 0 0 0 O 0]/
and P; = 100[s. The initial position of the moving target
was set to [17 -5 —15} /, with a process noise covariance
matrix () = 0.0173. The emitted signal from the source was
assumed to have a period of 7' = 1 s, while the average-based
consensus was carried every 7 = (0.1 s. The desired formation
for all agents was set to that of a cube, i.e. a Platonic solid
with 8 vertices, with a the radius of the underlying sphere set
to 10.

First we utilized the fixed communication topology shown in
Fig. 5. Figs. 7(a) and 7(b) show the final network configuration
for the two extreme cases b = 0 and b = oo, respectively.
When b = 0, the network prioritizes minimizing the covariance
norms over the total traveled distance, causing the network to
continuously track the moving target with its desired forma-
tion. On the other hand, when b = oo, the robots attempt to
hold their positions to minimize the overall traveled distance
without any consideration to the covariance norms. Figs. 8 and
9 show the estimation performance (estimation error and co-
variance in (31) and (35), respectively) for different values of
b, while Fig. 10 depicts the corresponding cumulative distance
traveled by all agents in the network. From these figures, it
can be seen that as b increases, the overall traveled distance
decreases while the covariance norms increase, causing the
network to remain stationary more often in exchange for less
reliable estimation, as is also captured in Fig. 9.

For the case of a time-varying communication network,
we implemented a distance rule where a communication
link exists between any two agents if the distance between

10
Communication link
0
N

-10

.20,_ Estimates \ |

T Mobilenode
0 Moving target
\ —— - ~ 0 10
-10
10 )

Fig. 6: Initial setup for simulation environment with a fixed
communication topology. The big circle represents the moving
target, while the small circles (overlapping one another at the
origin) represent the initial estimates of the target’s location for
each robot. The ellipsoids represent the mobile robots, while
the thin lines connecting them represent the communication
links.

them is strictly less than 21. To ensure that no agent has a
sufficient number of measurements to estimate the process
on its own, we deformed the desired tracking formation
so that the distance between some agents would be large
enough. Fig. 11 shows the initial and final setup as the agents
constantly track the target position (i.e., b = 0). Initially the
communication graph is fully connected as all agents are close
enough. As the distance between the robots increases, some
of the communication links are lost. Finally, it is clear from
Fig. 12 that successful estimation is achieved even as the
communication graph changes and some of the communication
links are dropped.

VI. CONCLUSION

In this paper, we investigated the problem of distributed
localization of a moving target by a network of agents us-
ing TDOA measurements from first observability principles.
Structural observability principles were utilized to highlight
the importance of having enough measurements to accurately
localize the moving target. We showed that a decentralized
approach without exchanging estimates requires every agent in
the network to be heavily connected to localize the target on
its own. On the other hand, under the distributed approach, we
showed that when the agents exchange information and fuse
their estimates, then it is indeed possible for every agent in the
network to estimate the target’s position without needing to be
heavily connected. Specifically, we showed that if every agent
is connected to a network with a minimum of 4 connected,
non-coplanar agents, then the process is rendered generically
observable and each agent can accurately localize the target.
This work can be extended to time-varying communication
topologies that are commonly encountered when the communi-
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Fig. 7: Simulation results of the robots for the two extreme values of b under a fixed communication topology where (a) the

robots are constantly moving with target (b = 0), and (b) the robots are staying put (b = c0).
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Fig. 8: Comparison of the Mean Squared Estimation Error (MSEE) of for each agent in the network for different values of b
under a fixed communication topology.
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Fig. 9: Comparison of average covariance norms for different
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Fig. 10: Comparison of the collective distance traveled by the
entire network for different b values under a fixed communi-
cation topology.

cation links depend on the distances between the robots as they
move. The distributed filtering approach offers a degree of ro-
bustness to communication link dropouts, and has been shown
to perform well if the minimum connectivity condition holds.
Furthermore, we proposed a movement control strategy that
aims to balance the trade-off between estimation performance
and total distance traveled by the network. A single parameter,
b, is specified to tune the network performance between the
two extreme cases of continuously tracking the target (best
estimation performance and high energy consumption), or
remaining stationary (maximum energy conservation at the
expense of accurate localization). Through simulation, we
notice a graceful degradation in estimation performance for
larger values of b in order to reduce energy expenditure.
This work can be expanded in several ways, including
the analysis of directed communication graphs. Additionally,

10

different distributed control strategies can be introduced for
formation control and tracking of the target with obstacle and
collision avoidance. Other interesting problems include online-
tuning of the parameter b to change the network objective
and react to changes in the environment (e.g., to reduce
energy expenditure further when the robots are low on battery).
Ultimately, we plan to experimentally validate these algorithms
in TDOA-based-tracking of tagged fish using a group of
gliding robotic fish [29].

APPENDIX A
CASES (A),(B), AND (C) IN THEOREM 1

We show that rank(O;) = 6 for the remaining three cases
in Fig. 3.

Case (a): This case is the easiest to examine, as agent 1
has a sufficient number of neighbors. The measurement matrix
H; (k) has the following structure

M A A3 0 0 O
H\N =M A X 0 0 0, (50)
A Az Xo 0 0 0

and from the discussion on decentralized approach, the pair
(A, Hy1(\)) is generically observable. It immediately follows
that rank(O;) = 6, since

rank (O;) = rank . =6,
[W7] " Hi(\)A”

for almost all values of 7" and .
Case (b): The structure of H;(k) fori=1,...

Hi(A)=[A A2 A3 0 0 0]

A1 —Az —A3 0 0 0
HN =X X X 0 0 0],
A A Ae 0 0 0
Hs(A) =[-X =X —X¢ 0 0 0],
H4(/\):[—)\7 _)\S —/\9 0 0 0]

We first note that the pair

(2 [2)):

is generically observable, which can be shown following the
same analysis in the discussion for the decentralized approach.
This in turn, ensures that

Hi(M)
Hy(M)
rank =0,
Hi(M\)AS
Hy(X\)AS
for almost all values of 7" and A, and it immediately follows
that rank(O;) = 6.
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Fig. 11: Evolution of the communication topology as the agents move in space to track the robot at different times.
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k: almost all values of 7" and A.
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