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Abstract—Localization and tracking of a moving target arises
in many different contexts and is of particular interest in the
field of robotic networks. One important class of localization
schemes exploits the time-difference-of-arrival (TDOA) of a signal
emitted by the target and detected by multiple sensors. In this
work, we propose a fully distributed approach to TDOA-based
localization and tracking of a moving target in 3D space by
a group of mobile robots. We utilize a networked extended
Kalman filter to estimate the target’s location in a distributed
manner, and guarantee successful localization under fixed and
time-varying undirected communication topologies if every agent
is part of a network with a minimum of 4 connected, non-
coplanar agents. Since localization performance under TDOA-
based schemes degrades as the target moves away from the
convex hull formed by the agents, it is important for the network
to track the target as it moves in space. We thus further propose a
movement control strategy based on the norm of the estimation
covariance matrices, with a tuning parameter to balance the
trade-off between estimation performance and the total distance
traveled by the robots. A numerical example involving robots with
simplified three-dimensional dynamics is provided to illustrate
the performance of the proposed approach.

Index Terms—Distributed localization, time-difference-of-
arrival (TDOA), Networked extended Kalman filter, robotic
networks, structural observability

I. INTRODUCTION

O
VER the past two decades, wireless sensor networks

(WSNs), often enabled by mobile robots, have received

increasing attention due to their potential application to a

number of diverse areas [1], such as environmental monitoring,

space exploration, military applications, target tracking, and

health care. Time-difference-of-arrival (TDOA)-based algo-

rithms are widely used for precise localization of a target,

examples of which include wireless ranging radar systems,

cellular positioning systems [2], and acoustic telemetry in

fishery research [3]. This paper considers the problem of

TDOA-based localization and tracking of a moving target

with a robotic network in a distributed manner. We propose a

networked extended Kalman filter, and derive the conditions

for successful localization under fixed and time-varying com-

munication topologies.
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A. Related Work

Generally speaking, TDOA algorithms rely on a target

emitting a signal periodically, which is detected by special

receivers deployed either at fixed locations or on mobile

robots. If multiple receivers detect the same signal, it is

possible to infer the target’s location using the differences

among detection times at these receivers.

Much of the work on TDOA-based localization in the

literature adopts a centralized approach, in which a reference

node is chosen and the times of arrival (TOA) of the emitted

signal for all other nodes in the network are subtracted from

the reference node’s TOA, generating TDOA measurements at

fusion hub. If the propagation speed of the signal is known,

the TDOA measurements can be converted to range-difference

measurements, which are then used to estimate the location

of the target [4], [5]. This centralized approach has a long

history and is widely used in aerospace systems [6]. Geometric

treatment of the problem for a stationary target was considered

in [7] and [8], where the target location is inferred from the ge-

ometric relations imposed by the TDOA measurements. When

the target’s location changes with time, dynamic approaches

are generally used for localization, in which a filter is used

to estimate the target’s location. Examples of these methods

include utilizing an Extended Kalman Filter (EKF) in [9], or

an Unscented Kalman Filter and Particle Filters in [10].

Due to power and bandwidth constraints in WSNs or robotic

networks, centralized information processing is often infea-

sible, particularly for a large-scale and unreliable networks.

Moreover, some sensors cannot transmit their measurements to

the reference node due to their limited communication ranges.

These drawbacks motivated the investigation of distributed

strategies for TDOA-based localization. In [11], decentralized

source localization in multihop networks was considered,

where a connected dominating set of nodes work as the

network backbone to collect the measurements, and a leader

node of that set is selected to estimate the target’s location,

essentially acting as a centralized estimator of the target’s

position. The need for a common reference node is alleviated

in [12], where a network of paired sensors is utilized while

requiring all such pairs to be able communicate with one

another. As we discuss later in Section III, this decentralized

approach can be improved upon by exchanging estimate

information between nodes, allowing for successful estimation

without requiring all agents in the network to be connected.

In this work, structural observability is used to investigate
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the network topology conditions for distributed localization

of a moving target. Structural analysis deals with system

properties that do not depend on the numerical values of

the parameters, but only on the underlying structure (zeros

and non-zeros) of the system matrices [13]–[15]. It turns out

that if a structural property holds for one possible choice of

non-zero elements as free parameters, it is true for almost

all choices of non-zero elements and, therefore, is called

a generic property of the system. Furthermore, it can be

shown that those particular (non-admissible) choices for which

the generic property does not hold, lie on some algebraic

variety with zero Lebesgue measure [16]. While this work is

similar to [14] and [17] in that it employs structural analysis

on the system matrices, there is a significant difference. In

particular, the results reported in [14] and [17] treat all non-

zero elements as free parameters, which in turn disguises the

importance of the number of TDOA measurements used in this

localization scheme. In Section III, we explicitly consider the

role played by using more TDOA measurements, and prove

that the system can be rendered generically observable when

a sufficient number of TDOA measurements are used.

B. Contributions

The main contribution of this paper is the introduction of

a fully distributed solution to target localization under fixed

and time-varying undirected communication topologies. This

approach does not require a common reference node or data

fusion center, nor does it require each agent to be heavily

connected to estimate the target’s location on its own. Instead,

we show that every agent in the network can successfully

localize the target if it is part of a network that has a minimum

of 4 connected, non-coplanar agents.

The TDOA-based estimation performance relies on the

relative positions between individual robots and the moving

target. As the target moves away from the convex hull formed

by the agents, estimation performance begins to degrade

and it becomes paramount to track the target as it moves

through space. Rather than continuously tracking the target,

we further propose an adaptive movement strategy, where the

robotic network moves only when the norm of the estimation

covariance matrix exceeds a certain limit, to balance the trade-

off between estimation performance and distance traveled by

the entire mobile network.

While preliminary versions of some results of this work

were presented at conferences [18]–[20], this paper presents an

integrated framework of TDOA-based target localization and

tracking control for mobile robots and represents several sig-

nificant improvements over [18]–[20]. First, [18] was focused

on a particular distributed extended Kalman filtering-based es-

timation scheme with TDOA, the convergence of which relies

on assumptions that are difficult to verify. In contrast, this

work treats a more general class of distributed estimators and

exploits structural observability to derive explicit convergence

conditions in terms of the network topology. Second, [19] dealt

with the formation-based target-tracking control in the two-

dimensional (2D) space, while in this paper both localization

and tracking control (including the simulation results) are

treated in the 3D space. Compared to [20], this work offers

more integrative treatment of the problem by incorporating

target tracking, extension to time-varying topologies, and

presentation of more extensive simulation results.

C. Organization of this paper

The remainder of this paper is organized as follows. We

first present the target movement model and the TDOA mea-

surement model in Section II. In Section III, we discuss the

problem of distributed localization and derive the convergence

condition in terms of network topology via structural observ-

ability analysis. Section IV is focused on tracking control

to balance the estimation performance and traveled distance.

Finally, we provide a numerical simulation in Section V

to illustrate these results before discussing some concluding

remarks and future research directions in Section VI.

II. PROBLEM SETUP

We consider a moving target in the 3D space with p(t) =
[

px(t) py(t) pz(t)
]′

denoting its coordinates at time t. The

target moves randomly in space according to
[

ṗ(t)
p̈(t)

]

=

[

0 I3
0 0

] [

p(t)
ṗ(t)

]

+

[

0
I3

]

w(t), (1)

where I3 is the 3 × 3 identity matrix and w(t) ∈ R
3 is

the process noise, which is assumed to be zero-mean, white

Gaussian noise with covariance matrix Q.

The target emits a signal periodically that gets detected

by a group of N robotic agents, or nodes, at different times

depending on each agent’s relative distance to the target. At

each detection, agent i records the signal’s TOA and acquires

the TOAs of all other agents that can communicate their

information to agent i. These agents form the set of neighbors

of agent i, which is denoted as Ni. Each agent then subtracts

the TOAs of its neighbors from its own TOA, generating

a list of time-difference-of-arrival (TDOA) measurements.

Assuming that the propagation speed of the signal is known,

the measurements available for each agent are given by

yi(kT ) = hi(kT ) + vi(kT ), (2)

where

hi(t) =







hi,1(t)
...

hi,|Ni|(t)






, (3)

with

hi,j(t) = ‖p(t)− pi(t)‖ − ‖p(t)− pi,j(t)‖. (4)

Here, T is the period at which the signal is emitted, vi(t) ∈
R

|Ni| is the measurement noise, assumed to be zero-mean,

white Gaussian noise with covariance matrix Ri, pi(t) is the

position of agent i, and pi,j(t) is the position of the j-th

neighbor of agent i.

Denoting the target’s state as x(t) =
[

p′(t) ṗ′(t)
]′

, and

discretizing the model in (1) with sampling time T , with slight

abuse of notation, we can write the discrete-time model of the

target as

x(k + 1) = Ax(k) +Bw(k), (5)
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otherwise wij = 0. We assume here that every agent has

access to its own information (i.e., wii > 0), and that the

communication links are bidirectional, namely, if agent j can

send its information to agent i, then the reverse is also true,

wij , wji > 0. Every agent in the network implements a

filtering scheme similar to the decentralized case, but followed

by updating its estimate by averaging the estimates from

neighbors and itself. The filter implemented by each agent

in the network is then given by

x̂i(k|k − 1) = Ax̄i(k − 1), (26)

x̂i(k|k) = x̂i(k|k − 1)

+Ki(k)
[

yi(k)− hi(x̂i(k|k − 1))
]

, (27)

x̄i(k) =
N
∑

j=1

wij x̂j(k|k). (28)

Denoting x̂i(k|k − 1) by x̂i(k), and substituting (27) and

(28) into (26), we can express a one-step formulation of agent

i’s estimate can as

x̂i(k + 1) =
N
∑

j=1

wij

[

Ax̂j(k)+

AKj(k)

(

yj(k)− hj(x̂j(k))

)]

.

(29)

The i-th agent’s estimation error is then given by

x̃i(k + 1) =
N
∑

j=1

wij [A(I −Kj(k)Hj(k))x̃j(k)

+ ηj(k)] .

(30)

Denoting the network-wide estimation error by x̃(k) ,
[

x̃1(k)
′ . . . x̃N (k)′

]′
, then

x̃(k + 1) = (W ⊗A) (I6N −K(k)DH(k)) x̃(k)

+ η(k),
(31)

which is similar to (25), except that here the gain matrix

K(k) is restricted to be block-diagonal. As explained in [14],

computing such a constrained gain is possible via an iterative

cone-complementary optimization algorithm; see [23] and [24]

for details. In [25], the authors derived a suboptimal filtering

gain inspired by the Markovian jump linear system filtering

problem, where

Ki(k) =Pi(k|k − 1)Hi(k)
′

×
[

Hi(k)Pi(k|k − 1)Hi(k)
′ +Ri

]−1
,

(32)

and

Pi(k|k − 1) = AP̄i(k − 1)A′ +BQB′, (33)

Pi(k|k) =
[

I6 −Ki(k)Hi(k)
]

Pi(k|k − 1)

×
[

I6 −Ki(k)Hi(k)
]′

+Ki(k)RiKi(k)
′, (34)

P̄i(k) =
N
∑

j=1

wijPj(k|k). (35)

Therefore, to ensure the convergence of the networked filter,

one has to ensure that the networked system is observable [14].

To that end, we investigate the conditions on the matrix W

and, therefore, the topology of the undirected communication

graph among agents, that would render the pair (W ⊗A,DH)
observable, and therefore ensure the convergence of the net-

worked filter. We first note the following property regarding

the powers of the matrix W from [26].

Lemma 1: Let [W l]ij denote the (i, j) element of the

matrix W l, where W is the stochastic matrix representing the

communication topology with wii > 0. Then, [W l]ij > 0 if

there is a path between agents i and j of length less than or

equal to l; otherwise [W l]ij = 0.

The pair (W ⊗ A,DH) is observable if and only if

rank(O) = 6N . Here,

O =















DH(k)
DH(k)(W ⊗A)
DH(k)(W ⊗A)2

...

DH(k)(W ⊗A)p















=















DH(k)
DH(k)(W ⊗A)
DH(k)(W 2 ⊗A2)

...

DH(k)(W p ⊗Ap),















(36)

where p = 6N − 1. Equivalently, denoting Oi as the block

column representing agent i’s subsystem, we can write O =
[

O1 . . . ON

]

. From the structure of DH , it is easy to

see that rank(O) =
∑N

i=1
rank(Oi).

We are now ready to present the main results in this paper.

Theorem 1: For a network of agents with time-invariant and

undirected topology, the system under the proposed distributed

TDOA-based localization is observable if and only if every

agent is part of a (sub)network that has at least 4 connected,

non-coplanar agents.

Proof: Sufficiency: We consider the case where agent i is

part of a network that has only 4 connected agents, and note

that the following results can be easily extended to the cases

where the network has more agents. Since it is always possible

to renumber the agents, we will only consider the subsystem

corresponding to agent 1, and write

O1 =







H1(k)
...

[

W 23
]

41
H4(k)A

23






. (37)

This agent can be connected to the network in 4 possible

ways that are shown in Fig. 33. For the ease of presentation,

in the following, we examine Case (d), where the agent has

only one neighbor, and show that rank(O1) = 6. The other

three cases are discussed in Appendix A.

3The graphs shown in Fig. 3 represent the minimum number of links
required for each graph to be connected. It is possible to add more edges
among agents in these graphs and adding more links will only help in terms
of observability.
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(a) (b)

Fig. 7: Simulation results of the robots for the two extreme values of b under a fixed communication topology where (a) the

robots are constantly moving with target (b = 0), and (b) the robots are staying put (b = ∞).

(a) b = 0. (b) b = 30

(c) b = 100 (d) b = ∞

Fig. 8: Comparison of the Mean Squared Estimation Error (MSEE) of for each agent in the network for different values of b

under a fixed communication topology.
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