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A class of models is considered in which the masses only of the third generation of quarks and leptons
arise in the tree approximation, while masses for the second and first generations are produced respectively
by one-loop and two-loop radiative corrections. So far, for various reasons, these models are not realistic.
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I. INTRODUCTION

In the Standard Model the masses of quarks and leptons
take values proportional to the coupling constants in the
interaction of these fermions with scalar fields, constants that
in the context of this model are entirely arbitrary. But the
peculiar hierarchical pattern of lepton and quark masses
seems to call for a larger theory, in which in some leading
approximation the only quarks and leptons with nonzero mass
are those of the third generation, the tau, top, and bottom, with
the other lepton and quark masses arising from some sort of
radiative correction. Such theories were actively considered
[1] soon after the completion of the Standard Model, but
interest in this program seems to have lapsed subsequently [2].

This paper will explore in detail a class of models of this
sort, based on a different symmetry group. These models
are not realistic, for reasons that will be spelled out later, but
it is hoped that they may help to revive interest in this
program, and to lay out some of the methods and problems
that it confronts.

II. GAUGE AND SCALAR FIELDS

If the spontaneous breakdown of the electroweak sym-
metry gave masses only to the quarks and leptons of the third
generation in the tree approximation, then nothing in the
Standard Model would generate masses for the first and
second generations in higher orders of perturbation theory.
To get masses for the second and first generations by
emission and absorption of some sort of gauge bosons,
we would need to expand the gauge symmetry group. In
order for these masses to be much less than the zeroth order
masses of the third generation, we would need the gauge

*weinberg@physics.utexas.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2020/101(3)/035020(12)

035020-1

coupling constants to be relatively small, more or less like
the electroweak couplings. If these new gauge couplings
together with those of the Standard Model all descended
from some theory such as a string theory or a unified gauge
theory in which they were all equal at some very high energy,
then in order to have small couplings at accessible energies
the new gauge group would have to be a direct product of
simple subgroups with smaller beta functions than for the
SU(3) of QCD—that is, most likely only SO(3) and/or
SO(2). After some attempts, what seems to work best is
SO;(3) ® SOx(3), with the three generations of left-
handed quark and lepton SU(2) ® U(1) doublets forming
separate representations (3, 1) of SO; (3) ® SOx(3), and
the three generations of right-handed quarks and charged
leptons furnishing separate representations (1, 3). [We label
representations of SO(3) by their dimensionality.] Though
we shall concentrate on this gauge group, our analysis will
deal with problems that would have to be encountered in any
attempt to interpret the hierarchy of quark and lepton masses
as radiative corrections.

In order for scalar fields to have renormalizable cou-
plings to these quarks and leptons, they would have to
form 9 electroweak doublets

(a2) »

transforming as (3, 3) representations of SO; (3) ® SOx(3).
[Here superscripts indicate charges; subscripts i, j, etc. are
SO, (3) vector indices running over the values 1, 2, 3;
subscripts a, b, etc. are SO(3) vector indices. also running
over the values 1, 2, 3.] Emission and absorption of the
corresponding spinless particles also produces radiative
corrections to the quark and lepton masses. As we shall
see in the next section, while keeping the mass of the
Standard Model Higgs boson and the weak coupling con-
stant at their known values, we can take all the other scalar
particles and the new vector bosons to be heavy enough to
have escaped detection. But the calculation in Sec. IV shows
that the radiative corrections to masses do not disappear
when the new scalar and vector bosons become very heavy.
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The only possible renormalizable coupling of these scalars to leptons and quarks is then
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Here and below G, G and Gy, are constants, and again i and a run over the values 1, 2, 3, repeated indices are summed,

and superscripts indicate charges.

III. STATIONARY POINTS: A FIRST LOOK

The most general renormalizable potential for the scalars @ that is invariant under the new SO, (3) ® SO(3) as well as

the electroweak SU(2) ® U(1) takes the form
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where the b, and ¢, are various real dimensionless
constants. The Lagrangian terms (2) and (3) along with
the rest of the Lagrangian happen to be invariant under a
reflection:

R: b -0 Cp - —¢r, (4)
with right-handed fermions and all gauge fields left
invariant.

We are concerned here only with stationary points of
the potential for which charge is conserved, so in seeking
such stationary points we set ®; = 0. Inspection of
Eq. (3) then shows that every term is symmetric between
®° and its Hermitian conjugate. It follows that if V(@)
is stationary at a real value of ®° under variations that
keep ®° real, then at this point it is stationary under all
variations of ®°. [In general, if V(z)=V(z*) then for 1
real V(A4¢€)=V(1+¢€*) can have no terms of first order
in Ime.] We can therefore seek stationary points of the
potential (not necessarily all stationary points) by taking
the possible expectation values ¢;, of @) to be real.
(Here and below, we use lower case letters to distinguish
the possible spacetime-independent c-number expectation
values of various scalar fields from the fields themselves.)
For ® =0 and ¢;, = ®), real, the potential (3) must
take the form of a general renormalizable potential that is
invariant under SO; (3) ® SO(3) and the reflection R,
and so

qL = —4qL

(3)

V(@) =—p’Tr(¢" )+ b[Tr(¢" §)]* +cTr(p pop" ). (5)

The dimensionless constants b and c¢ are linear combi-
nations of the coefficients of the quartic terms in the
general potential (3):

b:b1+b2+b3,
c=cy+cy+c3+cq4+Cs5+ e

(6)
[A trilinear SO;(3) ® SOg(3)-invariant term Det¢ can-
not arise from (3). This can also be seen as a conse-
quence of invariance under the reflection (4).]

If this were the end of the story, and there were no other
scalar fields with which the fields ®;, could interact, then
Eq. (5) would be the potential that governs the possible
expectation values of these scalars. We will have to
introduce other scalar fields that do interact with the
®,,, but it will be instructive first to consider the impli-
cations of the potential (5), returning later to consider the
effect of interaction with other scalars.

To ensure that the SO, (3) ® SO(3) gauge symmetry is
spontaneously broken at the stationary points of (5), we
would need to take x> > 0. In order for this potential to go
to +oo rather than —oo when ¢ goes to infinity in any
direction, the other constants in (5) would have to be in
either range b > 0 and ¢ > —b or ¢ > 0 and b > —¢/3,
or both. Any ¢ can be diagonalized by an SO;(3) ®
SOg(3) transformation, so we can characterize the various
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stationary points of the potential according to their
elements when diagonalized. If we assume that b > 0
and —b < ¢ <0, then at the global minimum of the
potential, the ¢,, when diagonalized would have two zero
diagonal elements and one nonzero diagonal element A,
with A% = y?/(2c + 2b), which we can define as the
33-element. In this case naturally only the third generation
of quarks and leptons would have masses in the tree
approximation, given by
m, = G4, m;, = Gp4, m, =Gyt (7)
Just as in the Standard Model, the breaking of the
electroweak symmetry gives masses to the W and Z and
eliminates the Goldstone bosons associated with ®3; and
Im®Y;, leaving a neutral scalar associated with Re®Y,
whose couplings to the third-generation quarks and leptons
are the same as for the Higgs boson of the Standard Model.
This introduction of new scalar doublets can be tolerated
only if the masses of the new scalar particles introduced in
this way can all be much larger than the Standard Model
Higgs mass, my = 125 GeV. For the potential (5), the
known value of my fixes u to have the value my /2, and the
known coupling constant G of the weak interaction fixes

the expectation value 4 = p/+/2(b + ¢) of the scalar field
Red), to have the value 271/4G;"/* = 247 GeV, so b + ¢

would have to take the value b + ¢ = v/2Gpm%,/8 = 0.032,
but b and ¢ and all the other constants in Eq. (3) would be
otherwise unconstrained. The squared masses of the spinless
particles associated with the real neutral scalar fields Re®?,
(withi # 3 and a # 3) would all equal to —24%c/ (b + ¢), so
these masses could be made reasonably large by taking —c of
order unity while keeping b + ¢ fixed. [Recall that in order
to make the stationary point with only Re®9; nonzero the
global minimum of the potential (5), we have assumed that
—b < ¢ < 0.] In the absence of other scalar fields, the real
neutral scalar fields Re®?, and Re®), (withi # 3anda # 3)
would be massless Goldstone bosons, eliminated by the
Higgs mechanism. The masses of the particles associated
with the other scalars, Im®Y, and ®;, with i # 3 or a # 3
would involve the many other constants in Eq. (3), and could
presumably therefore be made arbitrarily large.

Of course this is not the end of the story. With nothing
added to the model, the SO;(2) ® SOx(2) subgroup of
SO0;(3) ® SOg(3) with generators #;3 and tg; would be
unbroken; the two SO, (3) ® SOg(3) gauge bosons asso-
ciated with this subgroup would be massless; and sym-
metry under the reflections R exp(izt;,) and R exp(int; ;)
would be unbroken, keeping the quarks and leptons of the
first and second generations massless despite all radiative
corrections. We need to add a new sector of scalar fields
whose expectation values together with the primary sector
expectation values ¢;, can break all of SO;(3) ® SOx(3)
(or all but some finite subgroup), and allow for the second

and first generations of quarks and leptons to acquire
masses from one-loop and two-loop radiative corrections.
With all scalar vacuum expectation values other than
(Re®Y;) taken very large, the SO;(3) ® SOx(3) gauge
bosons would be all arbitrarily heavy. (We will see that this
does not eliminate contributions of radiative corrections to
the quark and lepton masses.) These new scalar fields can
be assumed to be hidden, in the sense that they are neutral
under the electroweak gauge group, so that they have no
renormalizable couplings to the quarks and leptons and do
not introduce any mixing of the W and Z with the
SO;(3) ® SOg(3) gauge bosons. But we will have to
come back in Sec. VI to see which other results of the
present section survive the introduction of this hidden
sector of scalar fields.

IV. MASSES FROM RADIATIVE CORRECTIONS

Section V will offer some illustrative speculations
regarding the nature of the scalar fields of the hidden
sector, and the vector and scalar boson masses produced by
their expectation values, but for the present we shall work
with general real symmetric mass-square matrices for the
SO;(3) ® SOg(3) vector bosons and for the various scalar
bosons.

The 6 x 6 mass matrix of the SO; (3) ® SO (3) vector
bosons has six eigenvalues y,, with six-component eigen-

vectors (1}, ul})), satisfying

Z”%i,Lj”(LnJ') + Zﬂii,Rb”gtk) = /’l%z”(Lni)’
j b

D Hharsy) + D Mrarsiy = Wity (8)
j b

These eigenvectors are orthogonal, and can be chosen real
and orthonormal, so that

Zué’?u({?) + Zu%"a) u%) = Spm- (9)

These eigenvalues and eigenvectors are the ingredients we
need in calculating the effects of emission and absorption of
the vector bosons.

To one-loop order, the emission and absorption of
SO;(3) ® SOx(3) gauge bosons with an intermediate
third-generation massive quark or lepton gives the one-
particle-irreducible two-point function (in a classic nota-
tion) for quarks or leptons of the first or second generation
with four-momentum p* in Feynman gauge':

'Both indices on the two-point function X in Eq. (10) run over
both left- and right-handed quark or lepton fields of the first and
second generations, so in Eq. (10) we do not bother to distinguish
between SO;(3) indices i, j, k and SOk(3) indices that are
elsewhere denoted a, b, ¢
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(n)_ (n)

+ grgrugiup v (1 =vs)[=i(p — q)"r, + maly, (1 +7s)]. (10)
|
Here g; and gg are the gauge couplings of SO, (3) ® 9L grM3 () (n) [42 Inps — m3 Inm}
SOg(3), and the sums over n run over the six vector boson ~ "ai = 743 Zealﬁeiﬂ URpULj { 2 —m2
mass eigenvalues defined by Eq. (8). The generators of bin " ’
SO;(3) and SOk(3) are denoted 7;; and tg,, and in the (14)

(3, 3) representation have the components [f1;];; = i€y;;
and [tg.],» = i€.qp- Hence, for instance, the generators 17
and 7y, produce transitions between the second and third
generations.

We are interested in the case in which in the tree
approximation only m5 is nonzero, so to one-loop order
we can go on the mass shell for the first and second
generations by simply setting p* = 0, in which case (after
discarding terms in the integrand odd in g) the two-point
function (10) takes the form

2,i(0) = mgi(1 +75)/2 +mi (1 =ys)/2,  (11)

where

4ig; grms () (n)
Mg; = W %n:ebcﬁejﬁu]eb Urj

d4q
X - —. 12
/[q2+m%—zenq2+uz—ze] 12

Each term in the sum over vector boson mass eigenval-
ues is logarithmically divergent, but the sum is convergent,
because the completeness of the set of eigenvectors u")
together with the orthonormality conditions (9) tell us that
Zn u™ (T ig the unit matrix, and in particular

S ufug) =o. (13)

The logarithmic divergences are independent of y,,, and so
their sum is proportional to (13), and hence they cancel.
Indeed, as remarked by Barr and Zee [3], renormalizabilty
makes this sort of cancellation inevitable, as there is no
counterterm that could cancel an infinity.

After combining denominators, Wick rotating, integrat-
ing over ¢g*, and integrating over Feynman parameters, the
mass matrix of the second and first generations is

It makes no difference what units for mass we use in
calculating the logarithms, since a change in units only
gives a term proportional to the sum (13). We can diago-
nalize the matrix m,; (which also gets rid of the yss) by
multiplying the left- and right-handed quark or lepton fields
of the first and second generation with independent 2 x 2
unitary matrices U; and Uy; the physical masses of the first-
and second-generation quarks and leptons are then the
elements of the diagonal matrix U;m U;.

The couplings at zero momentum transfer of the field
Re®); to the first and second generation of quarks and
leptons would be generated by the same one-loop diagram,
and would be the same as in the Standard Model. At nonzero
momentum transfer the coupling is modified by a form
factor, but this form factor is nearly constant up to momen-
tum transfers of order m5 or the smallest y,,, whichever is
greater.

This general class of models provides a plausible
possible explanation of why the quarks and leptons of
the first and second generations should be much less
massive than their third-generation counterparts, but so
far we have seen no reason why the first generation should
be so much lighter than the second. But we can now easily
describe the sort of vector boson mass matrices that will
give masses for the second but not the first generation in
one-loop order.

If

ﬂ%Z,Ra =0 & ﬂ%i,Rz =0 (15)

for all a and i, and if

ﬂ%z.u =0 & ﬂ%QZ,Ra =0 (16)

for all i#2 and all a # 2, then obviously the only
eigenvectors of y? with L2 or R2 components respectively

have only L2 or R2 components, so MSQHZ) =0 for all

eigenvectors n for which u(L"i) # 0, and u(an) =0 for all
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eigenvectors n for which ugg # 0. Inspection of Eq. (14)
shows then that to one-loop order, m;; = 0 and m,; = 0O for
all i and a. The 2 x 2 mass matrix m,; of the first and
second generations in this order would then be already
diagonal, with only one nonzero element, the second
generation mass m, = ny,:

2

21 12 2 2
_ grLgrms (n)_ (n) |H hl/l —m3 In m3
==y ;”m U [ - ﬂ% . . (17)

Repeating the same steps that led to Eq. (17), we see that
the first-generation quarks and leptons get a two-loop mass

| == u
a2 RIUL3 >

o GLIRM NS () (0 [ﬂ% 1nﬂ%2 - m}ln m%} (1)
My — M3

n

It is easy to think of a finite subgroup of SO;(3) ®
SOx(3) ® R that if unbroken would ensure the validity of
conditions (15) and (16) and thereby give vanishing first-
generation masses in one-loop order. (This unbroken
subgroup must be finite to avoid the appearance of new
massless gauge bosons.) We could take this unbroken
symmetry as invariance under the operators

Rexp(int;;) & Rexp(intg;) (19)
where R is the reflection (4). [This reflection has no effect
on vector boson masses, but must be included in order for
the appearance of the vacuum expectation value of Re<I>(3)3
not to break invariance under the transformations (19).]
Unfortunately, invariance under (19) would imply not only
that conditions (15) and (16) are satisfied, so that the first
generation quarks and leptons get no mass in one-loop
order, but would also imply that y7 5 p, = 0 and 7, o3 =0
for all i and a, which according to Eq. (18) would imply
also that the first generation quarks and leptons also get no
mass in two-loop order. Indeed, we could have seen this
without looking into the details of radiative corrections.
Because R is defined to change the sign of all left-handed
quark or lepton fields, the first symmetry transformation
(19) changes the sign of the left-handed first generation
quark or lepton fields, so if this is an unbroken symmetry
then the first generation does not get a mass from any
source, including scalar boson as well as vector boson
interactions.

So where does the first generation get its masses? It is
possible that the first generation masses have nothing to do
with vector boson emission and absorption. It should be
noted that the symmetry of the Lagrangian under the
reflection R is an accidental symmetry, in the sense that
it is a consequence of the gauge symmetries of the theory
and the condition of renormalizability. It therefore need not
be respected by operators in the Lagrangian of higher
dimensionality, whose coefficients are suppressed by a

negative power of some large mass, just as lepton con-
servation is not respected by dimension five operators
added to the renormalizable Lagrangian of the Standard
Model. If R symmetry is violated in this way, the first
generation of quarks and leptons could get masses in the
tree approximation from interactions of the fermion fields
with two or more powers of scalar fields, masses that are
small only because of the suppression of these nonrenor-
malizable interactions. But because the first generation
quarks and leptons are much heavier than neutrinos while
much lighter than the third generation quarks and leptons,
the mass scale whose reciprocal appears in these higher
dimensional operators would have to be much lighter than
the mass scale in the interactions that give neutrinos their
mass and much heavier than the third-generation fermions.

In the next section we take up a possibility that is more in
the spirit of this paper, that for a suitable choice of a hidden
sector of scalar fields, the potential accidently has a
symmetry that unlike (19) is not a subgroup of the gauge
group and R, and which has a subgroup that when
unbroken naturally gives the vector boson mass matrix
the form required for radiative corrections to give masses to
the second generation of quarks and leptons in one-loop
order but to the first generation only in two-loop order.

Masses are also generated by radiative corrections due to
emission and absorption of scalar bosons. Here again we
will keep to the general case in this section, leaving it for
the next sections to consider specific forms for the mass
matrix.

The charged scalar fields ¢, that correspond to charged
spinless particles of definite mass My, are in general linear
combinations of the previously introduced fields @ :

v =D i DL, (20)

with uﬁj,”) some constant coefficients found by diagonal-

izing the charged scalar mass matrix. Assuming again that
only the third generation quarks get masses in the tree
approximation, the one-loop two-point function for quarks
of the first and second generation is here of the same form
as (11), except that here m,; is complex:

2,i(0) =my(1+75)/2+mi,(1—ys)/2.  (21)
Again, we can diagonalize the matrix m,; by multiplying
the left- and right-handed quark or lepton fields of the first
and second generation with independent 2 x 2 unitary
matrices U; and Ug, and the physical masses of the first-
and second-generation quarks and leptons are then the
elements of the diagonal matrix ULmUj .

Following the same methods that led to Eq. (12), we
find the one-loop contribution of charged scalar bosons
to the masses of first- and second-generation quarks of
charge +2/3
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+2/3 _ lGUGDmb Z

ai

d4q
X R 22
/[q2+mi—i€][q2+M?v+—i€] 22)

and for first- and second-generation quarks of charge —1/3:

—13 _ iGyGpm, (N+)_ (N+)x
My =54 Uz, Up
(27) ZN:

d*q
X , —.  (23)
/ lq* + m} — ie][q* + M%, — i€

Each term in these sums is logarithmically divergent, but
the ultraviolet divergences again cancel in the sum. To see
this, it is easiest to derive the necessary completeness
relation by requiring that the fields (20) of definite mass
have a kinematic Lagrangian term:

= 0,05 "y,
N

so that the propagators of these fields have the conventional
normalization that we assumed in deriving Egs. (22) and
(23). In order that this kinematic Lagrangian should agree
with the correct kinematic Lagrangian —0, @70+ ®@;, it is
necessary that

N+_55

Zu

Equations (22) and (23) were derived only for the first- and
second-generation one-loop masses, where both i and «a
equal 1 and/or 2, in which case this relation gives

S uld Uy = (24)
N

The divergences in each term of Egs. (22) and (23) are
independent of N, so the total divergence in the sums is
proportional to (24), and hence vanishes. Equations (22)
and (23) then give for the mass matrices of first- and
second-generation quarks of charge +2/3 and —1/3:

+2/3 _ GUGDmb
Mai 1672 Z

[M,z\ur 1nM,2V+ —m3 Inm3

i } (25)

2
My, —m,

GyGpm
-173 _ GyGUp zz (N+)  (N+)*

mg; - 1671'2 ~ Uz, U
y M3, In M3, — m}Inm} (26)
MZ _ m2 :
Ny T

The case of neutral scalars is more complicated, because
the neutral fields of definite mass are in general linear
combinations of the neutral scalar fields of the hidden
sector to be introduced in the next section, as well as of the
fields @9 introduced in Sec. II and their adjoints.
Separating the real and imaginary parts of any complex
fields of definite mass, we can take all the neutral scalars of
definite mass to be real, and write them as

o =D L "0 +ug O+ (27)
a

where the coefficients ugivo) are various complex constants,

and the dots indicate linear combinations of scalar fields of

the hidden sector. The mass matrix m,, appearing in the

two-point function (21) for the first and second generation

of leptons and quarks of each charge are then

.G2 .
= S
T
N
d4q
X , 28
[ @
_1s iGEHm, NO) (NO)x
maz/ (2?7:) uga >I/£E3 )
N
d4
x/ 3 SR l (29)
[q* + mj — i€]lg* + M3, — ie]’
+2/3 _ iG%,m, yNO)x, (NO)
ai (271_)4 = 3a i3

x / d'q (30)
(% + m? —ie][q> + M3, — ie]’

Again, to deal with logarithmic divergences, we need a
completeness relation. We define these real neutral scalars
so that the kinematic term in the Lagrangian is

1
- E Z@é"ozvaﬂfﬂgl
N

In order that this should contain the correct kinematic term
-9, % *®Y, for the neutral scalars introduced earlier, it is
necessary that

STl UNY =68, S Ul =0, (31)
N N

In the case that concerns us here, in which both i and a are
unequal to 3, the second relation tells us that

S ul uy” =0 (32)
N
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so the logarithmic divergences cancel in Egs. (28)—(30),
which give

¢ Gpme (NO)_ (NOys [ Mo In M%) — m% In m?
Mai = 62 230 His [ M —m2 ]
N No T~ Mg
(33)
-1/3 _ Gpm, L NO) | (NO)« [M,ZVO In M%,, — m In mﬂ
ai 1672 £ 13 My — 2 )
(34)
mt3 Um, Z [ 2oIn M%) — m?In mtz] .
o Mo — mj
(35)

Inspection of Egs. (25), (26), and (33)—(35) shows that in
order for one-loop scalar boson emission and absorption to
give masses to the second generation of quarks and leptons
but not the first generation, there would have to be a scalar
field of definite mass that includes both @3, and ®,; terms
but none that contain both ®3; and ®5 terms. In this case
for these radiative corrections to give masses to the first
generation in two-loop order there would have to be scalar
fields of definite mass that contain both ®;, and ®,; terms.
We will have to wait until we return to the primary sector
scalar fields in Sec. VI to see whether these conditions are
satisfied.

V. HIDDEN SECTOR SCALARS

To give masses only to the third generation of quarks and
leptons in the tree approximation, we have assumed that the
|

Vir= Z [~px Te (PN

N

+5 Z Evw Tr(¥

N;EN’

+ S Tr(PVTYVIPMTPN)) 4y Tr(PVTPN)) Ty

+ oy [Tr(PM TP,

YWY 4 by [Tr(PMTPWN)2 4 o Tr(PNT

scalar fields Re®?, have nonvanishing expectation values
only for i = a = 3. These break SO, (3) ® SOx(3) to the
SO;(2) ® SOg(2) subgroup with generators t;3 and ;.
This symmetry breaking by itself gives nonvanishing
values only for the following components of the SO; (3) ®
SOg(3) vector boson mass-squared matrix:

_ _ 212
Hroior = Hi22 = giAs

HR1.R1 = MR2.R2 = g%e/lz-

where 1 = (Re®Y;).

To produce additional components of the vector
boson mass matrix, we introduce a number of additional
scalar field multiplets that, like the electroweak doublet
®,,, transform according to the (3, 3) representation of
SO, (3) ® SOx(3), but unlike ®@;, are neutral under the
electroweak SU(2) ® U(1), and therefore cannot have
renormalizable interactions with the quarks and leptons.
We will denote these new electroweak-neutral multiplets

as ‘Pfiv) with N > 1. For simplicity, we assume that the
Lagrangian is invariant under independent sign changes
YWN) 5 W) for each of the new scalar multiplets, as
well as the reflection R and SO;(3) ® SOx(3). Then
the most general renormalizable potential for all the
scalars is

V - V] + V[] + V/, (36)

where V; is given by Eq. (3), V;; is the most general
renormalizable potential for the hidden sector scalars

qJ(N>qJ<N>TqJ<N)))]

PPV TGO 4 e Tr(PO) PPN NPT

and V' is the general interaction between the primary and hidden sectors:

ZfN(qﬁ)'(ng,) (g +Z,<N(cb+).<

(OFS (ORy (OF

z : ia ‘{’(N)‘P(N) 2 : ia
N( )((I)()) b b N((DO)'(

ia N ia

(qJ(N’>TqJ(N’))
(37)
<I>+) o
Jb (N)\g(N)
(50 (20w
(I)O J Z q)?h J
oy
Jjb N)ay(N
(I)O )lpz(a hpﬁ'b)' (38)

jb

Here the coefficients ,ujzv, by, etc. are real but otherwise arbitrary, and summation of repeated subscripts is understood.
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We again assume that the stationary point of the potential has ®;,

)

can lump Re®?, together with the ¥;,”’. We write Re®?, as ¥

0)

ia

+ = 0and Im®), = 0, so to find this stationary point we

and express the total potential as a function of the possible

’

c-number expectation values ™) with N > 0 of all these scalar fields (again denoted with lower case letters):

V= ST TR Ty M) 4 by [Trl Ty )] ey Tl 07y My 0700
N

+ ) [Enn Tr(y W Ty Wy (VITy (VD) ey Ty Ny Ty (V) (VT

N#N'

+ Cun Tr(p M Ty Wy NTy NDY 4 Ty Ty N T (3 (VT (V')

+ oy [Tr(yp ™M Ty N)]2),

The sums now extend to N =0 and/or N’ =0, with
Ho = M2, by = b, cg = ¢, &gy = &no = Ens ete.

We note that each of the summed SO, (3) and SOg(3)
vector indices occurs just twice in each term, so this potential
has an accidental symmetry under the sign changes

l//z(iv )~ ’lLi’?Ral/’Siv >’ (40)
where #;; and 75, are any N-independent sign factors. It is
natural for the expectation values of the scalar fields to be
invariant under any subgroup of this group of sign changes,
in the technical sense that the restriction of the ys to such
invariant values lowers the number of equations that need to
be satisfied at a stationary point of the potential by the
same amount as it lowers the number of free components of
the ws. In particular, it is natural to find stationary points
that are invariant under the subgroup of the group of
reflections (40) that consists of all the reflections with
Nt = N2 ==NL3=Mr1 = —Nr2=—NR3> OF N2 = —ML1 =
—Nr3 =MNr2 = —Nr1 = —HR3> OF N3 = —MNp1 = —N2 =
Nr3y = —Ngr1 = —Ng2. Invariance under this subgroup just
implies that all z,//giv) (including ¢;, = 1//52)) are diagonal.
At this point we will greatly simplify our discussion by
taking the coefficient oy of the final term in Eq. (37) and
the corresponding coefficient oy in Eq. (38) to vanish. I
have not been able to think of any symmetry assumption
that would have this as a consequence, but setting all oy
and oy equal to zero has the very convenient implication

that with all z//gflw diagonal, the potential (39) is a function

only of the squares of the diagonal components. It is then

natural to find a stationary point for which in the basis in
which all y/gp are diagonal, there is any desired assortment

of zeroes on the diagonal of any WSQ’).

Not only are such stationary points natural—they all
actually occur. When the w™) are all diagonal, the
derivative of the potential (39) with respect to any one

(V)

component y; ’ takes the form

ov

(N) (N) (N2
W i T Wi ZLNi.N’j[l//jj ]

=51 [—ZM?W
N

(39)

where the L are constants, depending on the coefficients
by, ¢y, Ennr, etc. in the potential (39), but independent of
the components of the ys. (The summation convention is
suspended here.) The condition that V be stationary with

respect to variations in 1//1(5)
i = a and l//,(-fv) =0, while if i = a and y

condition takes the form

is trivially satisfied if i # a or if
(N) £ 0 then this

ii

N!
2#12\/ = E LNi,N’j[WE’j >]2-
JN'

With a total of D nonvanishing diagonal components, these
are D linear inhomogeneous equations for the squares of
the D nonvanishing components. The determinant of L
does not vanish for generic values of the coefficients by,
cy» Ennrs etc., so these equations have a solution, one that is
unique. (We saw a simple example of this in Sec. II.) It is a
more complicated business to find if this solution has
(N')

positive values for all [y

an absolute minimum or even a local minimum of the
potential. In the absence of a specific candidate for a
realistic theory, it does not seem worthwhile to go into this.

With diagonal scalar expectation values, the 6 x 6 vector
boson mass-square matrix takes the block-diagonal form

]?, and if this stationary point is

#p 00
w=10 p 0 (41)
0 0 4
where the 2 x 2 submatrices y? are
2 2
HLiLi HLiRi
//1125< 21 i 21 z>. (42)
HRiLi  HRiRi

To find a vector boson mass-squared matrix of the sort
that gives a hierarchy of quark and lepton masses, we can
include just three (3, 3) real neutral scalar multiplets, with
nonzero expectation values:
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L=

oS O O
S { O
= © O

(43)

S O xR O o O
S & O O O O
S O O x» O O

The vector boson mass-squared matrix here takes the
block-diagonal form (41), (42), and now the nonvanishing
elements of the submatrices are
Ml =91 (X +a + 2+ +6%),
Hri g1 = Jr(A+ 0 + 2+ +8),
l‘%z,Lz =gi (P 4+ +717). ﬂ12?2,R2 =g +p7+77).
/‘%3,L3 =91 (@ +7+8),  pgsps=gr(@®+7>+6%).
H%3.R3 =—2919rY0. (44)

/"%I,Rl =-=2g.9rap.

But note that y3, p, = u7; p, = 0 for all i and a. All the
S0, (3) ® SOx(3) gauge bosons are massive, and can be
made heavier than the W and Z by arranging that some
combinations of a, 3, y and 6 (as for example just y) are
sufficiently larger than A.

In one-loop order the emission of L1 and/or R1 gauge
bosons in 2 <> 3 transitions produces second-generation
masses given by Eq. (33), but there still is no mixing of the
L2 and R2 gauge boson masses, so one-loop radiative
corrections still do not give any mass to the first generation
of quarks and leptons. But because there now is a non-
vanishing mixing of the L3 and R3 gauge boson masses,
the emission of the L3 component of a gauge boson in a
1 — 2 transition followed by the absorption of the R3
component of the same gauge boson gives a mass for the
first generation of quarks and leptons, which as shown in
Eq. (18) is proportional to the corresponding second-
generation mass, and hence is of two-loop order.

VI. THE PRIMARY SECTOR REVISITED

It is easy to preserve the results of Sec. II when we add
the hidden sector of scalar fields, by setting equal to zero all
interactions of the scalar fields ®;, of the primary sector

with the fields W\ with N > 1 of the hidden sector—that
is, by setting the coefficients &y, ky, {y, and py in Eq. (38)
equal to zero (as well as taking all o) to vanish). But not
only would this be an unnatural act, it would also have an
unacceptable consequence. With no interaction between the
scalar fields of the primary and hidden sectors, the potential
would be invariant under separate SO;(3) ® SOg(3)
transformations of the scalar fields of each sector. When
these two symmetries are spontaneously broken, there
would be two sets of massless Goldstone bosons. One
linear combination of these massless fields would be

eliminated by the Higgs mechanism, but since there is
only one SO;(3) ® SOg(3) gauge group, another linear
combination would be left as real massless spinless
particles. If we allow an interaction between the scalar
fields of the primary and hidden sector, but assume that it is
very weak, then the broken symmetry would entail a very
light pseudo-Goldstone boson, which is almost as bad. To
avoid this, we must not only include the interactions in
Eq (36) between the scalar fields of the primary and hidden
sector, but also take these interactions strong enough to
keep the pseudo-Goldstone boson too heavy to have been
observed. With this interaction present, it is necessary to
reconsider the results in Sec. III for the stationary points
and masses of the scalar fields of the primary sector.

In carrying out this analysis, it is both necessary and
convenient to assume that the expectation values of the
scalar fields of the hidden sector are much larger than those
of the primary sector. This will ensure that the masses of the
SO; (3) ® SO(3) gauge bosons are much larger than the
W and Z masses. The Goldstone boson that is eliminated by
the Higgs mechanism is then close to the Goldstone boson
associated with the symmetry breaking in the hidden sector,
leaving a pseudo-Goldstone boson in the primary sector.
This assumption also gives the scalar fields of the hidden
sector large masses, locking in their expectation values WEZJ)
with N > 1, independent of the fields of the primary sector.

With this assumption, the potential for the scalar fields of
the primary sector is effectively

o o
Viett = Vi = Z <¢)E) ) ‘<q)é)a>ﬂ,2a

)

o038 o)
ia ai ”
S (o) (o @
where
N N N
M%a == Z fN[WE‘a>]2 - Z KN[‘//I('b )]2 - Z PN[‘!’E}A2
J:N=1 b.N>1 b.j.N>1
(46)
W2 = p2 ==y vy v (47)
N>1

and V; is given by Eq. (3).

To find the stationary point of V; ¢, we again take the
expectation values of ®; and Im®?, equal to zero, and let
the expectation value ¢;, of Re®? have only the single
nonzero element ¢33 = A. (The existence of such a sta-
tionary point was shown in Sec. V.) Setting the term in
Eq. (45) of first order in ®Y — (®)) equal to zero

then gives
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W+ 33 +

2= , 48
2(b+c¢) (48)
where b and ¢ are given by Eq. (6).
The scalar mass matrix can be read off by considering the terms in Eq. (45) that are quadratic in =) — (®?) and
@ and their adjoints:
Viquad = Z 222by = ? — ui, || @7 P + Z 222(by + ¢y + ¢3) — p* = p)| @5
i#3.a%3 i#3
+ 2[2/12(171 + o3t es) = it = 15,] |05, Z JTEE L
a#3 i#3,a#3
- ZZ,“%RG(‘I’F(D;) + [212(1’ +¢) —u? —ﬂ33 ﬂ32]|‘p33|2 Z {2/12171 —H _luza”q) ?
i#3 i#3,a#3
+ ) 2R (by + e+ oo+ €5+ o+ bs) — P — p]| @Y
i#3
+ D 22 (b + 3 + o5+ ey + cq + by) — 2 = 13, ]| @, 2
a#3
420+ ¢) = =43y — WRIIPRP + D 227bsRe(®),)?
i#3,a#3
+ 22/12 b + ¢s5 + cs)Re(PY)* + ZMZ(% + 03+ cq)Re(@5,)? + 243 (b + c)Re(P5)?
i#3 a#3
_ 200 _ n 0 0
Z HiaPia Pui 22#;’3Re(¢i3 3)). (49)

i#3.a#3 i#3

First, using Eq. (48), we see that there are two fields here
of zero mass: ®F; and Im<1>(3)3. These are the Goldstone
bosons of broken SU(2) ® U(1) and appear physically as
the helicity zero states of the W and Z bosons, just as in the
Standard Model.

Next, note that another field of definite mass is Red)%%,
which plays the same role here as the Higgs boson of the
Standard Model. Its squared mass is the coefficient of
(Re®})?/2 in Eq. (49). Using Eq. (48), this is

=2[64%(b +¢) — p* — i3y — W33
=40 + p3s + ) =82(b+c). (50
The final result is the same as in Sec. II, the only
difference being that in the derivation x? is replaced with
ur+ M%3 + //323 As noted in Sec. II, our knowledge of the
Higgs boson mass and the weak interaction strength lets us
conclude from this result that b + ¢ has the value 0.032. No
other scalar boson mass is given by the same combination of
parameters, so it is plausible that if the constants b,, and ¢, in
Eq. (3) are of order unity then all other scalar bosons are
much heavier than the Higgs boson.

Of particular interest are the fields Re®? and Re®), with
i # 3, which would be the Goldstone boson fields of
broken SO (3) ® SOg(3) if the ®?, did not interact with

the scalar fields of the hidden sector. The terms in Eq. (49)
involving these fields are

D [(Re®%)2(22(b + ¢) -y — )
i#3

+ (Re<I)gi)2(2/12(b + C) - ﬂ2 - ﬂ%i) - 2(1)&(1)?3”%]

or, using Eq. (48) again,
Z[(M§3
i#3

~ 23Rl Redl].

— pi73) (Re®%)? + (u33 — 43;) (Reds, )

(51)

As anticipated, these fields would evidently be massless in
the absence of the interaction between primary and hidden
sectors. In the approximation assumed above in this
section, that the breaking of SO (3) ® SOg(3) is mostly
due to the expectation values of scalar fields of the hidden
sector, the massless Goldstone boson fields associated with

this breaking are dominated by terms ‘Pl(gv) and ‘Pg]lv) with
i #3 and N > 1, and it is these fields and not the primary
sector fields Re®?, and Re®, that provide the helicity zero
part of the massive SO (3) ® SOg(3) gauge bosons.

Continuing, the terms in Eq. (49) involving Im<I>?3 and
Im®Y, with i # 3 are
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Z[[%z(bl + ¢y + ¢g) = i = p] (Im®Y)?
i#3

+ [222(by + ¢35 + ¢5) — p* — p3,](Im®Y,)?
2 m m| 2

and the terms in Eq. (49) involving Re®? or Im®?, with
i#3and a # 3 are

> [222(by + b3) = 4 = i, ] (Re®), )? — p/2Re @), Red)
i#3,a#3
(53)
and
> [[222(by = by) —p? = p2,] (Im®Y, )2 — 2 Im®Y, Im®Y ]
i#3.a43
(54)

Corresponding results for the charged scalars can be found
from the first three lines of Eq. (49).

Inspection of these results shows that the charged and
neutral scalar fields of definite mass contain both the terms
®,, and ®,; with i # a if and only if 2 is nonzero.
Equation (47) shows that for generic coefficients { this
will be the case if there are one or more scalar fields ¥V) of
the hidden sector whose expectation values ") have both
ii and aa components nonzero. Equation (43) shows that
for the choice we have made of the scalar fields of the
hidden sector and for their expectation values, the coef-
ficients y’% and u'% are nonzero, but /3 = 0. It follows that
there are charged and neutral scalar fields of definite mass
that contain both the terms ®,; and ®5,, but none that
contain both the terms @5 and ®@5;. As we have seen these
are just the conditions under which the quarks and leptons
of the second generation but not the first generation get
masses from one-loop emission and absorption of scalar
bosons. The one-loop quark masses produced by charged
scalars is given by Eq. (25) and (26):

m, —m;22/3
_ GyGpmy, N+ M3%, InM3%, —m3lnm]
R Z M3, —m} ’
Ny Ty
(55)
my = m;21/3
:GUGDth (V4) (N4 M3 InM3%, —m?Inm?
T a 3 Up Moy, — 2 ;
(56)

while the one-loop quark and lepton masses produced by
neutral scalars are given by Egs. (33)—(35) as

2 2 2 2 2
o G, (N0) (N0« | Mo InMyo — mzInmz
m, =my, = 16 5 2”32 Uys M2 — ,
TN No — Mz

(57)

2 2 21nm2
My In My, —mjlnm;

()

GDmb (NO) (NO)*|:
= Uzy Upz
1672 ;

Mzzvo —my,
and
m.= m;22/3
_ G%jm, (NO)* (N()) [sz\,olanzVO—m,zlnm,T (59)
l6m* 42 % M3 —m;

The first generation of quarks and leptons get masses from
emission and absorption of scalar bosons in two-loop order.
It is striking that the same choice of scalar fields in the
hidden sector leads to both the radiative corrections
involving vector bosons and those involving scalar bosons
generating quark and lepton masses for the second and first
generation to one-loop and two-loop order, respectively.

VII. PROBLEMS

The results obtained here for radiatively generated
masses involve many unknown parameters. But we have
noted that the large number of new scalar and vector
particles in these models can (and must) be supposed to be
heavy enough to have escaped observation, and where they
are sufficiently heavy we can easily find the ratios of many
quark and lepton masses. Unfortunately, these predicted
ratios turn out to be wrong.

First, if the masses of the second-generation quarks and
leptons arose from radiative corrections involving the
SO;(3) ® SOg(3) gauge bosons, and if we did somehow
arrange that these gauge bosons were all much heavier
than the quarks and leptons of the third generations, then
according to Eq. (17) the ratios of the masses of the second
and third generations quarks and leptons would all be
independent of the various masses of the third generation:

qLg n) (n
= 4LﬂzR Z”Eel)”(u) In 7, (60)

my/ms

and so would be the same for leptons and quarks of each
charge,

mc/mt = ms/mb = mu/m‘r (61)

which is not even approximately true of observed masses.
The strong interactions can account for some differences in
these mass ratios, but these interactions are not very strong
at energies of the order of m,. and m,, and of course are
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entirely absent for the leptons, while m,./m, is an order of
magnitude smaller than m,,/m..

Similarly, if the radiatively generated masses of second-
generation quarks were dominated by the emission and
absorption of charged scalar bosons, then according to
Egs. (55) and (56) we would have

mc/mb = ms/mt (62)

which is even further from the truth. Finally, if the
radiatively generated masses of second generation quarks
and leptons were dominated by the emission and absorption
of neutral scalar bosons, then according to Egs. (57)—(59)
and Eq. (7) we would have

me/m; = my/mj, = m,/m, (63)

which is worse yet.

The above wrong predictions of mass ratios involving
quarks of charge +2/3 would be invalidated if the mass of
the relevant SO;(3) ® SOr(3) gauge bosons or scalar
bosons were of the same order of magnitude of the
top quark mass. In that case, these new bosons might be
accessible to observation.

Another unrealistic feature of these results is that they
do not exhibit any Cabibbo-Kobayashi-Maskawa mixing
angles. Quark mass mixing could be included by giving

up the somewhat unnatural assumption that the coefficients
oy and oy, in Egs. (38) and (39) all vanish. We might
instead assume that for some reason these coefficients
are relatively small, expecting that this will yield rather
small mixing angles. But in this case it is not clear that it
would be possible in a natural way to maintain the starting
assumption that only the third generation of quarks and
leptons get masses in the tree approximation. Also, in this
case we would need to worry about the possibility of flavor-
changing neutral currents.

The best that can be hoped for the models discussed in
this paper is that they may perhaps provoke new ideas for a
realistic theory in which radiative corrections account for
the masses of the first and second generations of quarks and
leptons, together with guidance in dealing with the prob-
lems that will arise in such a theory.
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