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A class of models is considered in which the masses only of the third generation of quarks and leptons
arise in the tree approximation, while masses for the second and first generations are produced respectively
by one-loop and two-loop radiative corrections. So far, for various reasons, these models are not realistic.
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I. INTRODUCTION

In the Standard Model the masses of quarks and leptons
take values proportional to the coupling constants in the
interaction of these fermions with scalar fields, constants that
in the context of this model are entirely arbitrary. But the
peculiar hierarchical pattern of lepton and quark masses
seems to call for a larger theory, in which in some leading
approximation the only quarks and leptonswith nonzeromass
are those of the third generation, the tau, top, and bottom,with
the other lepton and quark masses arising from some sort of
radiative correction. Such theories were actively considered
[1] soon after the completion of the Standard Model, but
interest in this programseems tohave lapsed subsequently [2].
This paper will explore in detail a class of models of this

sort, based on a different symmetry group. These models
are not realistic, for reasons that will be spelled out later, but
it is hoped that they may help to revive interest in this
program, and to lay out some of the methods and problems
that it confronts.

II. GAUGE AND SCALAR FIELDS

If the spontaneous breakdown of the electroweak sym-
metry gavemasses only to the quarks and leptons of the third
generation in the tree approximation, then nothing in the
Standard Model would generate masses for the first and
second generations in higher orders of perturbation theory.
To get masses for the second and first generations by
emission and absorption of some sort of gauge bosons,
we would need to expand the gauge symmetry group. In
order for these masses to be much less than the zeroth order
masses of the third generation, we would need the gauge

coupling constants to be relatively small, more or less like
the electroweak couplings. If these new gauge couplings
together with those of the Standard Model all descended
from some theory such as a string theory or a unified gauge
theory inwhich theywere all equal at somevery high energy,
then in order to have small couplings at accessible energies
the new gauge group would have to be a direct product of
simple subgroups with smaller beta functions than for the
SUð3Þ of QCD—that is, most likely only SOð3Þ and/or
SOð2Þ. After some attempts, what seems to work best is
SOLð3Þ ⊗ SORð3Þ, with the three generations of left-
handed quark and lepton SUð2Þ ⊗ Uð1Þ doublets forming
separate representations (3, 1) of SOLð3Þ ⊗ SORð3Þ, and
the three generations of right-handed quarks and charged
leptons furnishing separate representations (1, 3). [We label
representations of SOð3Þ by their dimensionality.] Though
we shall concentrate on this gauge group, our analysis will
deal with problems that would have to be encountered in any
attempt to interpret the hierarchy of quark and leptonmasses
as radiative corrections.
In order for scalar fields to have renormalizable cou-

plings to these quarks and leptons, they would have to
form 9 electroweak doublets�Φþ

ia

Φ0
ia

�
; ð1Þ

transforming as (3, 3) representations of SOLð3Þ ⊗ SORð3Þ.
[Here superscripts indicate charges; subscripts i, j, etc. are
SOLð3Þ vector indices running over the values 1, 2, 3;
subscripts a, b, etc. are SORð3Þ vector indices. also running
over the values 1, 2, 3.] Emission and absorption of the
corresponding spinless particles also produces radiative
corrections to the quark and lepton masses. As we shall
see in the next section, while keeping the mass of the
Standard Model Higgs boson and the weak coupling con-
stant at their known values, we can take all the other scalar
particles and the new vector bosons to be heavy enough to
have escaped detection. But the calculation in Sec. IV shows
that the radiative corrections to masses do not disappear
when the new scalar and vector bosons become very heavy.
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The only possible renormalizable coupling of these scalars to leptons and quarks is then

Lq&l;Φ ¼ −GL

�
νi

l−
i

�
L

·

�Φþ
ia

Φ0
ia

�
l−
Ra −GD

�
q2=3i

q−1=3i

�
L

·

�Φþ
ia

Φ0
ia

�
q−1=3Ra

−GU

�
q2=3i

q−1=3i

�
L

·

�
Φ0�

ia

Φ−
ia

�
qþ2=3
Ra þ c:c:: ð2Þ

Here and below GL, GD and GU are constants, and again i and a run over the values 1, 2, 3, repeated indices are summed,
and superscripts indicate charges.

III. STATIONARY POINTS: A FIRST LOOK

The most general renormalizable potential for the scalars Φ that is invariant under the new SOLð3Þ ⊗ SORð3Þ as well as
the electroweak SUð2Þ ⊗ Uð1Þ takes the form

VIðΦÞ ¼ −μ2
�Φþ

ia

Φ0
ia

�
·

�Φþ
ia

Φ0
ia

�
þ
�Φþ

ia

Φ0
ia

�
·

�Φþ
jb

Φ0
jb

��Φþ
kc

Φ0
kc

�
·

�Φþ
ld

Φ0
ld

�

× ½b1δijδklδabδcd þ c1δijδklδacδbd þ c2δijδklδadδbc

þ c3δikδjlδabδcd þ b2δikδjlδacδbd þ c4δikδjlδadδbc

þ c5δilδjkδabδcd þ c6δilδjkδacδbd þ b3δilδjkδadδbc�; ð3Þ

where the bn and cn are various real dimensionless
constants. The Lagrangian terms (2) and (3) along with
the rest of the Lagrangian happen to be invariant under a
reflection:

R∶ Φ → −Φ qL → −qL lL → −lL; ð4Þ

with right-handed fermions and all gauge fields left
invariant.
We are concerned here only with stationary points of

the potential for which charge is conserved, so in seeking
such stationary points we set Φþ

ia ¼ 0. Inspection of
Eq. (3) then shows that every term is symmetric between
Φ0 and its Hermitian conjugate. It follows that if VðΦ0Þ
is stationary at a real value of Φ0 under variations that
keep Φ0 real, then at this point it is stationary under all
variations of Φ0. [In general, if VðzÞ¼Vðz�Þ then for λ
real VðλþϵÞ¼Vðλþϵ�Þ can have no terms of first order
in Imϵ.] We can therefore seek stationary points of the
potential (not necessarily all stationary points) by taking
the possible expectation values ϕia of Φ0

ia to be real.
(Here and below, we use lower case letters to distinguish
the possible spacetime-independent c-number expectation
values of various scalar fields from the fields themselves.)
For Φþ

ia ¼ 0 and ϕia ≡Φ0
ia real, the potential (3) must

take the form of a general renormalizable potential that is
invariant under SOLð3Þ ⊗ SORð3Þ and the reflection R,
and so

VIðϕÞ¼−μ2TrðϕTϕÞþb½TrðϕTϕÞ�2þcTrðϕTϕϕTϕÞ: ð5Þ

The dimensionless constants b and c are linear combi-
nations of the coefficients of the quartic terms in the
general potential (3):

b ¼ b1 þ b2 þ b3;

c ¼ c1 þ c2 þ c3 þ c4 þ c5 þ c6: ð6Þ
[A trilinear SOLð3Þ ⊗ SORð3Þ-invariant term Detϕ can-
not arise from (3). This can also be seen as a conse-
quence of invariance under the reflection (4).]
If this were the end of the story, and there were no other

scalar fields with which the fields Φia could interact, then
Eq. (5) would be the potential that governs the possible
expectation values of these scalars. We will have to
introduce other scalar fields that do interact with the
Φia, but it will be instructive first to consider the impli-
cations of the potential (5), returning later to consider the
effect of interaction with other scalars.
To ensure that the SOLð3Þ ⊗ SORð3Þ gauge symmetry is

spontaneously broken at the stationary points of (5), we
would need to take μ2 > 0. In order for this potential to go
to þ∞ rather than −∞ when ϕ goes to infinity in any
direction, the other constants in (5) would have to be in
either range b > 0 and c > −b or c > 0 and b > −c=3,
or both. Any ϕ can be diagonalized by an SOLð3Þ ⊗
SORð3Þ transformation, so we can characterize the various
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stationary points of the potential according to their
elements when diagonalized. If we assume that b > 0
and −b < c < 0, then at the global minimum of the
potential, the ϕia when diagonalized would have two zero
diagonal elements and one nonzero diagonal element λ,
with λ2 ¼ μ2=ð2cþ 2bÞ, which we can define as the
33-element. In this case naturally only the third generation
of quarks and leptons would have masses in the tree
approximation, given by

mτ ¼ GLλ; mb ¼ GDλ; mt ¼ GUλ: ð7Þ

Just as in the Standard Model, the breaking of the
electroweak symmetry gives masses to the W and Z and
eliminates the Goldstone bosons associated with Φþ

33 and
ImΦ0

33, leaving a neutral scalar associated with ReΦ0
33

whose couplings to the third-generation quarks and leptons
are the same as for the Higgs boson of the Standard Model.
This introduction of new scalar doublets can be tolerated

only if the masses of the new scalar particles introduced in
this way can all be much larger than the Standard Model
Higgs mass, mH ¼ 125 GeV. For the potential (5), the
known value of mH fixes μ to have the valuemH=2, and the
known coupling constant GF of the weak interaction fixes
the expectation value λ ¼ μ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðbþ cÞp

of the scalar field

ReΦ0
33 to have the value 2−1=4G−1=2

F ¼ 247 GeV, so bþ c
would have to take thevaluebþ c ¼ ffiffiffi

2
p

GFm2
H=8 ¼ 0.032,

but b and c and all the other constants in Eq. (3) would be
otherwise unconstrained. The squaredmasses of the spinless
particles associated with the real neutral scalar fields ReΦ0

ia
(with i ≠ 3 and a ≠ 3) would all equal to−2μ2c=ðbþ cÞ, so
thesemasses could bemade reasonably large by taking−c of
order unity while keeping bþ c fixed. [Recall that in order
to make the stationary point with only ReΦ0

33 nonzero the
global minimum of the potential (5), we have assumed that
−b < c < 0.] In the absence of other scalar fields, the real
neutral scalar fieldsReΦ0

i3 andReΦ0
3a (with i ≠ 3 anda ≠ 3)

would be massless Goldstone bosons, eliminated by the
Higgs mechanism. The masses of the particles associated
with the other scalars, ImΦ0

ia and Φþ
ia with i ≠ 3 or a ≠ 3

would involve themany other constants in Eq. (3), and could
presumably therefore be made arbitrarily large.
Of course this is not the end of the story. With nothing

added to the model, the SOLð2Þ ⊗ SORð2Þ subgroup of
SOLð3Þ ⊗ SORð3Þ with generators tL3 and tR3 would be
unbroken; the two SOLð3Þ ⊗ SORð3Þ gauge bosons asso-
ciated with this subgroup would be massless; and sym-
metry under the reflections R expðiπtL2Þ andR expðiπtL1Þ
would be unbroken, keeping the quarks and leptons of the
first and second generations massless despite all radiative
corrections. We need to add a new sector of scalar fields
whose expectation values together with the primary sector
expectation values ϕia can break all of SOLð3Þ ⊗ SORð3Þ
(or all but some finite subgroup), and allow for the second

and first generations of quarks and leptons to acquire
masses from one-loop and two-loop radiative corrections.
With all scalar vacuum expectation values other than
hReΦ0

33i taken very large, the SOLð3Þ ⊗ SORð3Þ gauge
bosons would be all arbitrarily heavy. (We will see that this
does not eliminate contributions of radiative corrections to
the quark and lepton masses.) These new scalar fields can
be assumed to be hidden, in the sense that they are neutral
under the electroweak gauge group, so that they have no
renormalizable couplings to the quarks and leptons and do
not introduce any mixing of the W and Z with the
SOLð3Þ ⊗ SORð3Þ gauge bosons. But we will have to
come back in Sec. VI to see which other results of the
present section survive the introduction of this hidden
sector of scalar fields.

IV. MASSES FROM RADIATIVE CORRECTIONS

Section V will offer some illustrative speculations
regarding the nature of the scalar fields of the hidden
sector, and the vector and scalar boson masses produced by
their expectation values, but for the present we shall work
with general real symmetric mass-square matrices for the
SOLð3Þ ⊗ SORð3Þ vector bosons and for the various scalar
bosons.
The 6 × 6 mass matrix of the SOLð3Þ ⊗ SORð3Þ vector

bosons has six eigenvalues μn, with six-component eigen-

vectors ðuðnÞLi ; u
ðnÞ
Ra Þ, satisfying

X
j

μ2Li;Lju
ðnÞ
Lj þ

X
b

μ2Li;Rbu
ðnÞ
Rb ¼ μ2nu

ðnÞ
Li ;

X
j

μ2Ra;Lju
ðnÞ
Lj þ

X
b

μ2Ra;Rbu
ðnÞ
Rb ¼ μ2nu

ðnÞ
Ra : ð8Þ

These eigenvectors are orthogonal, and can be chosen real
and orthonormal, so that

X
i

uðnÞLi u
ðmÞ
Li þ

X
a

uðnÞRau
ðmÞ
Ra ¼ δnm: ð9Þ

These eigenvalues and eigenvectors are the ingredients we
need in calculating the effects of emission and absorption of
the vector bosons.
To one-loop order, the emission and absorption of

SOLð3Þ ⊗ SORð3Þ gauge bosons with an intermediate
third-generation massive quark or lepton gives the one-
particle-irreducible two-point function (in a classic nota-
tion) for quarks or leptons of the first or second generation
with four-momentum pν in Feynman gauge1:

1Both indices on the two-point function Σ in Eq. (10) run over
both left- and right-handed quark or lepton fields of the first and
second generations, so in Eq. (10) we do not bother to distinguish
between SOLð3Þ indices i, j, k and SORð3Þ indices that are
elsewhere denoted a, b, c
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ΣijðpÞ ¼
i

4ð2πÞ4
X
kln

ϵki3ϵlj3

Z
d4q

½ðp − qÞ2 þm2
3 − iϵ�½q2 þ μ2n − iϵ�

× ½g2LuðnÞLk u
ðnÞ
Ll γ

μð1þ γ5Þ½−iðp − qÞνγν þm3�γμð1þ γ5Þ
þ g2Ru

ðnÞ
Rk u

ðnÞ
Rl γ

μð1 − γ5Þ½−iðp − qÞνγν þm3�γμð1 − γ5Þ
þ gLgRu

ðnÞ
Lk u

ðnÞ
Rl γ

μð1þ γ5Þ½−iðp − qÞνγν þm3�γμð1 − γ5Þ
þ gLgRu

ðnÞ
Rk u

ðnÞ
Ll γ

μð1 − γ5Þ½−iðp − qÞνγν þm3�γμð1þ γ5Þ�: ð10Þ

Here gL and gR are the gauge couplings of SOLð3Þ ⊗
SORð3Þ, and the sums over n run over the six vector boson
mass eigenvalues defined by Eq. (8). The generators of
SOLð3Þ and SORð3Þ are denoted tLi and tRa, and in the
(3, 3) representation have the components ½tLk�ij ¼ iϵkij
and ½tRc�ab ¼ iϵcab. Hence, for instance, the generators tL1
and tR1 produce transitions between the second and third
generations.
We are interested in the case in which in the tree

approximation only m3 is nonzero, so to one-loop order
we can go on the mass shell for the first and second
generations by simply setting pν ¼ 0, in which case (after
discarding terms in the integrand odd in q) the two-point
function (10) takes the form

Σaið0Þ ¼ maið1þ γ5Þ=2þmiað1 − γ5Þ=2; ð11Þ

where

mai ¼
4igLgRm3

ð2πÞ4
X
kln

ϵba3ϵji3u
ðnÞ
Rbu

ðnÞ
Lj

×
Z

d4q
½q2 þm2

3 − iϵ�½q2 þ μ2n − iϵ� : ð12Þ

Each term in the sum over vector boson mass eigenval-
ues is logarithmically divergent, but the sum is convergent,
because the completeness of the set of eigenvectors uðnÞ
together with the orthonormality conditions (9) tell us thatP

n u
ðnÞuðnÞT is the unit matrix, and in particular

X
n

uðnÞLi u
ðnÞ
Ra ¼ 0: ð13Þ

The logarithmic divergences are independent of μn, and so
their sum is proportional to (13), and hence they cancel.
Indeed, as remarked by Barr and Zee [3], renormalizabilty
makes this sort of cancellation inevitable, as there is no
counterterm that could cancel an infinity.
After combining denominators, Wick rotating, integrat-

ing over qμ, and integrating over Feynman parameters, the
mass matrix of the second and first generations is

mai ¼
gLgRm3

4π2
X
bjn

ϵab3ϵij3u
ðnÞ
Rbu

ðnÞ
Lj

�
μ2n ln μ2n −m2

3 lnm
2
3

μ2n −m2
3

�
:

ð14Þ

It makes no difference what units for mass we use in
calculating the logarithms, since a change in units only
gives a term proportional to the sum (13). We can diago-
nalize the matrix mai (which also gets rid of the γ5s) by
multiplying the left- and right-handed quark or lepton fields
of the first and second generation with independent 2 × 2
unitarymatricesUL andUR; the physical masses of the first-
and second-generation quarks and leptons are then the
elements of the diagonal matrix U†

RmUL.
The couplings at zero momentum transfer of the field

ReΦ0
33 to the first and second generation of quarks and

leptons would be generated by the same one-loop diagram,
andwould be the same as in the StandardModel. At nonzero
momentum transfer the coupling is modified by a form
factor, but this form factor is nearly constant up to momen-
tum transfers of order m3 or the smallest μn, whichever is
greater.
This general class of models provides a plausible

possible explanation of why the quarks and leptons of
the first and second generations should be much less
massive than their third-generation counterparts, but so
far we have seen no reason why the first generation should
be so much lighter than the second. But we can now easily
describe the sort of vector boson mass matrices that will
give masses for the second but not the first generation in
one-loop order.
If

μ2L2;Ra ¼ 0 & μ2Li;R2 ¼ 0 ð15Þ

for all a and i, and if

μ2L2;Li ¼ 0 & μ2R2;Ra ¼ 0 ð16Þ

for all i ≠ 2 and all a ≠ 2, then obviously the only
eigenvectors of μ2 with L2 or R2 components respectively

have only L2 or R2 components, so uðnÞR2 ¼ 0 for all

eigenvectors n for which uðnÞLi ≠ 0, and uðnÞL2 ¼ 0 for all

STEVEN WEINBERG PHYS. REV. D 101, 035020 (2020)

035020-4



eigenvectors n for which uðnÞRa ≠ 0. Inspection of Eq. (14)
shows then that to one-loop order,m1i ¼ 0 andma1 ¼ 0 for
all i and a. The 2 × 2 mass matrix mai of the first and
second generations in this order would then be already
diagonal, with only one nonzero element, the second
generation mass m2 ¼ m22:

m2 ¼
gLgRm3

4π2
X
n

uðnÞR1u
ðnÞ
L1

�
μ2n ln μ2n −m2

3 lnm
2
3

μ2n −m2
3

�
: ð17Þ

Repeating the same steps that led to Eq. (17), we see that
the first-generation quarks and leptons get a two-loop mass

m1 ¼
gLgRm2

4π2
X
n

uðnÞR3u
ðnÞ
L3

�
μ2n ln μ2n −m2

3 lnm
2
3

μ2n −m2
3

�
: ð18Þ

It is easy to think of a finite subgroup of SOLð3Þ ⊗
SORð3Þ ⊗ R that if unbroken would ensure the validity of
conditions (15) and (16) and thereby give vanishing first-
generation masses in one-loop order. (This unbroken
subgroup must be finite to avoid the appearance of new
massless gauge bosons.) We could take this unbroken
symmetry as invariance under the operators

R expðiπtL1Þ & R expðiπtR1Þ ð19Þ

where R is the reflection (4). [This reflection has no effect
on vector boson masses, but must be included in order for
the appearance of the vacuum expectation value of ReΦ0

33

not to break invariance under the transformations (19).]
Unfortunately, invariance under (19) would imply not only
that conditions (15) and (16) are satisfied, so that the first
generation quarks and leptons get no mass in one-loop
order, but would also imply that μ2L3;Ra ¼ 0 and μ2Li;R3 ¼ 0

for all i and a, which according to Eq. (18) would imply
also that the first generation quarks and leptons also get no
mass in two-loop order. Indeed, we could have seen this
without looking into the details of radiative corrections.
Because R is defined to change the sign of all left-handed
quark or lepton fields, the first symmetry transformation
(19) changes the sign of the left-handed first generation
quark or lepton fields, so if this is an unbroken symmetry
then the first generation does not get a mass from any
source, including scalar boson as well as vector boson
interactions.
So where does the first generation get its masses? It is

possible that the first generation masses have nothing to do
with vector boson emission and absorption. It should be
noted that the symmetry of the Lagrangian under the
reflection R is an accidental symmetry, in the sense that
it is a consequence of the gauge symmetries of the theory
and the condition of renormalizability. It therefore need not
be respected by operators in the Lagrangian of higher
dimensionality, whose coefficients are suppressed by a

negative power of some large mass, just as lepton con-
servation is not respected by dimension five operators
added to the renormalizable Lagrangian of the Standard
Model. If R symmetry is violated in this way, the first
generation of quarks and leptons could get masses in the
tree approximation from interactions of the fermion fields
with two or more powers of scalar fields, masses that are
small only because of the suppression of these nonrenor-
malizable interactions. But because the first generation
quarks and leptons are much heavier than neutrinos while
much lighter than the third generation quarks and leptons,
the mass scale whose reciprocal appears in these higher
dimensional operators would have to be much lighter than
the mass scale in the interactions that give neutrinos their
mass and much heavier than the third-generation fermions.
In the next section we take up a possibility that is more in

the spirit of this paper, that for a suitable choice of a hidden
sector of scalar fields, the potential accidently has a
symmetry that unlike (19) is not a subgroup of the gauge
group and R, and which has a subgroup that when
unbroken naturally gives the vector boson mass matrix
the form required for radiative corrections to give masses to
the second generation of quarks and leptons in one-loop
order but to the first generation only in two-loop order.
Masses are also generated by radiative corrections due to

emission and absorption of scalar bosons. Here again we
will keep to the general case in this section, leaving it for
the next sections to consider specific forms for the mass
matrix.
The charged scalar fields φþ

N that correspond to charged
spinless particles of definite massMNþ are in general linear
combinations of the previously introduced fields Φþ

ia:

φþ
N ¼

X
ia

uðNþÞ
ia Φþ

ia; ð20Þ

with uðNþÞ
ia some constant coefficients found by diagonal-

izing the charged scalar mass matrix. Assuming again that
only the third generation quarks get masses in the tree
approximation, the one-loop two-point function for quarks
of the first and second generation is here of the same form
as (11), except that here mai is complex:

Σaið0Þ ¼ maið1þ γ5Þ=2þm�
iað1 − γ5Þ=2: ð21Þ

Again, we can diagonalize the matrix mai by multiplying
the left- and right-handed quark or lepton fields of the first
and second generation with independent 2 × 2 unitary
matrices UL and UR, and the physical masses of the first-
and second-generation quarks and leptons are then the
elements of the diagonal matrix U†

RmUL.
Following the same methods that led to Eq. (12), we

find the one-loop contribution of charged scalar bosons
to the masses of first- and second-generation quarks of
charge þ2=3
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mþ2=3
ai ¼ iGUGDmb

ð2πÞ4
X
N

uðNþÞ�
3a uðNþÞ

i3

×
Z

d4q
½q2 þm2

b − iϵ�½q2 þM2
Nþ − iϵ� ; ð22Þ

and for first- and second-generation quarks of charge −1=3:

m−1=3
ai ¼ iGUGDmt

ð2πÞ4
X
N

uðNþÞ
3a uðNþÞ�

i3

×
Z

d4q
½q2 þm2

t − iϵ�½q2 þM2
Nþ − iϵ� : ð23Þ

Each term in these sums is logarithmically divergent, but
the ultraviolet divergences again cancel in the sum. To see
this, it is easiest to derive the necessary completeness
relation by requiring that the fields (20) of definite mass
have a kinematic Lagrangian term:

−
X
N

∂μφ
þ�
N ∂μφþ

N;

so that the propagators of these fields have the conventional
normalization that we assumed in deriving Eqs. (22) and
(23). In order that this kinematic Lagrangian should agree
with the correct kinematic Lagrangian −∂μΦþ�

ia ∂μΦþ
ia, it is

necessary that

X
N

uðNþÞ�
ia uðNþÞ

jb ¼ δijδab

Equations (22) and (23) were derived only for the first- and
second-generation one-loop masses, where both i and a
equal 1 and/or 2, in which case this relation gives

X
N

uðNþÞ�
3a uðNþÞ

i3 ¼ 0: ð24Þ

The divergences in each term of Eqs. (22) and (23) are
independent of N, so the total divergence in the sums is
proportional to (24), and hence vanishes. Equations (22)
and (23) then give for the mass matrices of first- and
second-generation quarks of charge þ2=3 and −1=3:

mþ2=3
ai ¼ GUGDmb

16π2
X
N

uðNþÞ�
3a uðNþÞ

i3

×

�
M2

Nþ lnM2
Nþ −m2

b lnm
2
b

M2
Nþ −m2

b

�
; ð25Þ

m−1=3
ai ¼ GUGDmt

16π2
X
N

uðNþÞ
3a uðNþÞ�

i3

×

�
M2

Nþ lnM2
Nþ −m2

t lnm2
t

M2
Nþ −m2

t

�
: ð26Þ

The case of neutral scalars is more complicated, because
the neutral fields of definite mass are in general linear
combinations of the neutral scalar fields of the hidden
sector to be introduced in the next section, as well as of the
fields Φ0

ia introduced in Sec. II and their adjoints.
Separating the real and imaginary parts of any complex
fields of definite mass, we can take all the neutral scalars of
definite mass to be real, and write them as

φ0
N ¼

X
ia

½uðN0Þ
ia Φ0

ia þ uðN0Þ�
ia Φ0�

ia � þ… ð27Þ

where the coefficients uðN0Þ
ia are various complex constants,

and the dots indicate linear combinations of scalar fields of
the hidden sector. The mass matrix mia appearing in the
two-point function (21) for the first and second generation
of leptons and quarks of each charge are then

mL
ai ¼

iG2
Lmτ

ð2πÞ4
X
N

uðN0Þ
3a uðN0Þ�

i3

×
Z

d4q
½q2 þm2

τ − iϵ�½q2 þM2
N0 − iϵ� ; ð28Þ

m−1=3
ai ¼ iG2

Dmb

ð2πÞ4
X
N

uðN0Þ
3a uðN0Þ�

i3

×
Z

d4q
½q2 þm2

b − iϵ�½q2 þM2
N0 − iϵ� ; ð29Þ

mþ2=3
ai ¼ iG2

Umt

ð2πÞ4
X
N

uðN0Þ�
3a uðN0Þ

i3

×
Z

d4q
½q2 þm2

t − iϵ�½q2 þM2
N0 − iϵ� ; ð30Þ

Again, to deal with logarithmic divergences, we need a
completeness relation. We define these real neutral scalars
so that the kinematic term in the Lagrangian is

−
1

2

X
N

∂μφ
0
N∂μφ0

N:

In order that this should contain the correct kinematic term
−∂μΦ0�

ia∂μΦ0
ia for the neutral scalars introduced earlier, it is

necessary that

X
N

uðNþÞ�
ia uðNþÞ

jb ¼ δijδab;
X
N

uðN0Þ�
ia uðN0Þ

jb ¼ 0: ð31Þ

In the case that concerns us here, in which both i and a are
unequal to 3, the second relation tells us that

X
N

uðN0Þ�
3a uðN0Þ

i3 ¼ 0 ð32Þ
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so the logarithmic divergences cancel in Eqs. (28)–(30),
which give

mL
ai ¼

G2
Lmτ

16π2
X
N

uðN0Þ
3a uðN0Þ�

i3

�
M2

N0 lnM
2
N0 −m2

τ lnm2
τ

M2
N0 −m2

τ

�
;

ð33Þ

m−1=3
ai ¼ G2

Dmb

16π2
X
N

uðN0Þ
3a uðN0Þ�

i3

�
M2

N0 lnM
2
N0 −m2

b lnm
2
b

M2
N0 −m2

b

�
;

ð34Þ

mþ2=3
ai ¼ G2

Umt

16π2
X
N

uðN0Þ�
3a uðN0Þ

i3

�
M2

N0 lnM
2
N0 −m2

t lnm2
t

M2
N0 −m2

t

�
:

ð35Þ

Inspection of Eqs. (25), (26), and (33)–(35) shows that in
order for one-loop scalar boson emission and absorption to
give masses to the second generation of quarks and leptons
but not the first generation, there would have to be a scalar
field of definite mass that includes both Φ32 and Φ23 terms
but none that contain both Φ31 and Φ13 terms. In this case
for these radiative corrections to give masses to the first
generation in two-loop order there would have to be scalar
fields of definite mass that contain both Φ12 and Φ21 terms.
We will have to wait until we return to the primary sector
scalar fields in Sec. VI to see whether these conditions are
satisfied.

V. HIDDEN SECTOR SCALARS

To give masses only to the third generation of quarks and
leptons in the tree approximation, we have assumed that the

scalar fields ReΦ0
ia have nonvanishing expectation values

only for i ¼ a ¼ 3. These break SOLð3Þ ⊗ SORð3Þ to the
SOLð2Þ ⊗ SORð2Þ subgroup with generators tL3 and tR3.
This symmetry breaking by itself gives nonvanishing
values only for the following components of the SOLð3Þ ⊗
SORð3Þ vector boson mass-squared matrix:

μL1;L1 ¼ μL2;L2 ¼ g2Lλ
2;

μR1;R1 ¼ μR2;R2 ¼ g2Rλ
2:

where λ ¼ hReΦ0
33i.

To produce additional components of the vector
boson mass matrix, we introduce a number of additional
scalar field multiplets that, like the electroweak doublet
Φia, transform according to the (3, 3) representation of
SOLð3Þ ⊗ SORð3Þ, but unlike Φia are neutral under the
electroweak SUð2Þ ⊗ Uð1Þ, and therefore cannot have
renormalizable interactions with the quarks and leptons.
We will denote these new electroweak-neutral multiplets

as ΨðNÞ
ia with N ≥ 1. For simplicity, we assume that the

Lagrangian is invariant under independent sign changes
ΨðNÞ → −ΨðNÞ for each of the new scalar multiplets, as
well as the reflection R and SOLð3Þ ⊗ SORð3Þ. Then
the most general renormalizable potential for all the
scalars is

V ¼ VI þ VII þ V 0; ð36Þ

where VI is given by Eq. (3), VII is the most general
renormalizable potential for the hidden sector scalars

VII ¼
X
N

½−μ2NTrðΨðNÞTΨðNÞÞ þ bN ½TrðΨðNÞTΨðNÞÞ�2 þ cNTrðΨðNÞTΨðNÞΨðNÞTΨðNÞÞÞ�

þ 1

2

X
N≠N0

½ξNN0TrðΨðNÞTΨðNÞΨðN0ÞTΨðN0ÞÞ þ κNN0TrðΨðNÞΨðNÞTΨðN0ÞΨðN0ÞTÞ

þ ζNN0TrðΨðNÞTΨðN0ÞΨðNÞTΨðN0ÞÞ þ ρNN0TrðΨðNÞTΨðNÞÞTrðΨðN0ÞTΨðN0ÞÞ
þ σNN0 ½TrðΨðNÞTΨðN0ÞÞ�2�; ð37Þ

and V 0 is the general interaction between the primary and hidden sectors:

V 0 ¼
X
N

ξN

�Φþ
ia

Φ0
ia

�
·

�Φþ
ib

Φ0
ib

�
ΨðNÞ

jb ΨðNÞ
ja þ

X
N

κN

�Φþ
ia

Φ0
ia

�
·

�Φþ
ja

Φ0
ja

�
ΨðNÞ

ib ΨðNÞ
jb þ

X
N

ζN

�Φþ
ia

Φ0
ia

�
·

�Φþ
jb

Φ0
jb

�
ΨðNÞ

ib ΨðNÞ
ja

þ
X
N

ρN

�Φþ
ia

Φ0
ia

�
·

�Φþ
ia

Φ0
ia

�
ΨðNÞ

jb ΨðNÞ
jb þ

X
N

σN

�Φþ
ia

Φ0
ia

�
·

�Φþ
jb

Φ0
jb

�
ΨðNÞ

ia ΨðNÞ
jb : ð38Þ

Here the coefficients μ2N , bN , etc. are real but otherwise arbitrary, and summation of repeated subscripts is understood.
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We again assume that the stationary point of the potential has Φþ
ia ¼ 0 and ImΦ0

ia ¼ 0, so to find this stationary point we

can lump ReΦ0
ia together with the Ψ

ðNÞ
ia . We write ReΦ0

ia as Ψ
ð0Þ
ia , and express the total potential as a function of the possible

c-number expectation values ψ ðNÞ with N ≥ 0 of all these scalar fields (again denoted with lower case letters):

V ¼
X
N

½−μ2NTrðψ ðNÞTψ ðNÞÞ þ bN ½Trðψ ðNÞTψ ðNÞÞ�2 þ cNTrðψ ðNÞTψ ðNÞψ ðNÞTψ ðNÞÞÞ�

þ
X
N≠N0

½ξNN0Trðψ ðNÞTψ ðNÞψ ðN0ÞTψ ðN0ÞÞ þ κNN0Trðψ ðNÞψ ðNÞTψ ðN0Þψ ðN0ÞTÞ

þ ζNN0Trðψ ðNÞTψ ðN0Þψ ðNÞTψ ðN0ÞÞ þ ρNN0Trðψ ðNÞTψ ðNÞÞTrðψ ðN0ÞTψ ðN0ÞÞ
þ σNN0 ½Trðψ ðNÞTψ ðN0ÞÞ�2�: ð39Þ

The sums now extend to N ¼ 0 and/or N0 ¼ 0, with
μ20 ¼ μ2, b0 ¼ b, c0 ¼ c, ξ0N ¼ ξN0 ¼ ξN , etc.
We note that each of the summed SOLð3Þ and SORð3Þ

vector indices occurs just twice in each term, so this potential
has an accidental symmetry under the sign changes

ψ ðNÞ
ia → ηLiηRaψ

ðNÞ
ia ; ð40Þ

where ηLi and ηRa are any N-independent sign factors. It is
natural for the expectation values of the scalar fields to be
invariant under any subgroup of this group of sign changes,
in the technical sense that the restriction of the ψs to such
invariant values lowers the number of equations that need to
be satisfied at a stationary point of the potential by the
same amount as it lowers the number of free components of
the ψs. In particular, it is natural to find stationary points
that are invariant under the subgroup of the group of
reflections (40) that consists of all the reflections with
ηL1¼−ηL2¼−ηL3¼ηR1¼−ηR2¼−ηR3, or ηL2 ¼ −ηL1 ¼
−ηL3 ¼ ηR2 ¼ −ηR1 ¼ −ηR3, or ηL3 ¼ −ηL1 ¼ −ηL2 ¼
ηR3 ¼ −ηR1 ¼ −ηR2. Invariance under this subgroup just

implies that all ψ ðNÞ
ia (including ϕia ≡ ψ ð0Þ

ia ) are diagonal.
At this point we will greatly simplify our discussion by

taking the coefficient σNN0 of the final term in Eq. (37) and
the corresponding coefficient σN in Eq. (38) to vanish. I
have not been able to think of any symmetry assumption
that would have this as a consequence, but setting all σNN0

and σN equal to zero has the very convenient implication

that with all ψ ðNÞ
ia diagonal, the potential (39) is a function

only of the squares of the diagonal components. It is then
natural to find a stationary point for which in the basis in

which all ψ ðNÞ
ia are diagonal, there is any desired assortment

of zeroes on the diagonal of any ψ ðNÞ
ia .

Not only are such stationary points natural—they all
actually occur. When the ψ ðNÞ are all diagonal, the
derivative of the potential (39) with respect to any one

component ψ ðNÞ
ia takes the form

∂V
∂ψ ðNÞ

ia

¼ δia

�
−2μ2Nψ

ðNÞ
ii þ ψ ðNÞ

ii

X
jN0

LNi;N0j½ψ ðN0Þ
jj �2

�
;

where the L are constants, depending on the coefficients
bN , cN , ξNN0 , etc. in the potential (39), but independent of
the components of the ψs. (The summation convention is
suspended here.) The condition that V be stationary with

respect to variations in ψ ðNÞ
ia is trivially satisfied if i ≠ a or if

i ¼ a and ψ ðNÞ
ii ¼ 0, while if i ¼ a and ψ ðNÞ

ii ≠ 0 then this
condition takes the form

2μ2N ¼
X
jN0

LNi;N0j½ψ ðN0Þ
jj �2:

With a total ofD nonvanishing diagonal components, these
are D linear inhomogeneous equations for the squares of
the D nonvanishing components. The determinant of L
does not vanish for generic values of the coefficients bN ,
cN , ξNN0 , etc., so these equations have a solution, one that is
unique. (We saw a simple example of this in Sec. II.) It is a
more complicated business to find if this solution has

positive values for all ½ψ ðN0Þ
jj �2, and if this stationary point is

an absolute minimum or even a local minimum of the
potential. In the absence of a specific candidate for a
realistic theory, it does not seem worthwhile to go into this.
With diagonal scalar expectation values, the 6 × 6 vector

boson mass-square matrix takes the block-diagonal form

μ2 ¼

0
B@

μ21 0 0

0 μ22 0

0 0 μ23

1
CA ð41Þ

where the 2 × 2 submatrices μ2i are

μ2i ≡
�
μ2Li;Li μ2Li;Ri

μ2Ri;Li μ2Ri;Ri

�
: ð42Þ

To find a vector boson mass-squared matrix of the sort
that gives a hierarchy of quark and lepton masses, we can
include just three (3, 3) real neutral scalar multiplets, with
nonzero expectation values:
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ψ ð0Þ ¼

0
B@

0 0 0

0 0 0

0 0 λ

1
CA; ψ ð1Þ ¼

0
B@

0 0 0

0 α 0

0 0 β

1
CA;

ψ ð2Þ ¼

0
B@

γ 0 0

0 δ 0

0 0 0

1
CA: ð43Þ

The vector boson mass-squared matrix here takes the
block-diagonal form (41), (42), and now the nonvanishing
elements of the submatrices are

μ2L1;L1¼ g2Lðλ2þα2þβ2þ γ2þδ2Þ; μ2L1;R1¼−2gLgRαβ;

μ2R1;R1¼ g2Rðλ2þα2þβ2þ γ2þδ2Þ;
μ2L2;L2¼ g2Lðλ2þβ2þ γ2Þ; μ2R2;R2¼ g2Rðλ2þβ2þ γ2Þ;
μ2L3;L3¼ g2Lðα2þ γ2þδ2Þ; μ2R3;R3¼ g2Rðα2þ γ2þδ2Þ;
μ2L3;R3¼−2gLgRγδ: ð44Þ

But note that μ2L2;Ra ¼ μ2Li;R2 ¼ 0 for all i and a. All the
SOLð3Þ ⊗ SORð3Þ gauge bosons are massive, and can be
made heavier than the W and Z by arranging that some
combinations of α, β, γ and δ (as for example just γ) are
sufficiently larger than λ.
In one-loop order the emission of L1 and/or R1 gauge

bosons in 2 ↔ 3 transitions produces second-generation
masses given by Eq. (33), but there still is no mixing of the
L2 and R2 gauge boson masses, so one-loop radiative
corrections still do not give any mass to the first generation
of quarks and leptons. But because there now is a non-
vanishing mixing of the L3 and R3 gauge boson masses,
the emission of the L3 component of a gauge boson in a
1 → 2 transition followed by the absorption of the R3
component of the same gauge boson gives a mass for the
first generation of quarks and leptons, which as shown in
Eq. (18) is proportional to the corresponding second-
generation mass, and hence is of two-loop order.

VI. THE PRIMARY SECTOR REVISITED

It is easy to preserve the results of Sec. II when we add
the hidden sector of scalar fields, by setting equal to zero all
interactions of the scalar fields Φia of the primary sector

with the fields ΨðNÞ
ia with N ≥ 1 of the hidden sector—that

is, by setting the coefficients ξN , κN , ζN , and ρN in Eq. (38)
equal to zero (as well as taking all σN to vanish). But not
only would this be an unnatural act, it would also have an
unacceptable consequence. With no interaction between the
scalar fields of the primary and hidden sectors, the potential
would be invariant under separate SOLð3Þ ⊗ SORð3Þ
transformations of the scalar fields of each sector. When
these two symmetries are spontaneously broken, there
would be two sets of massless Goldstone bosons. One
linear combination of these massless fields would be

eliminated by the Higgs mechanism, but since there is
only one SOLð3Þ ⊗ SORð3Þ gauge group, another linear
combination would be left as real massless spinless
particles. If we allow an interaction between the scalar
fields of the primary and hidden sector, but assume that it is
very weak, then the broken symmetry would entail a very
light pseudo-Goldstone boson, which is almost as bad. To
avoid this, we must not only include the interactions in
Eq (36) between the scalar fields of the primary and hidden
sector, but also take these interactions strong enough to
keep the pseudo-Goldstone boson too heavy to have been
observed. With this interaction present, it is necessary to
reconsider the results in Sec. III for the stationary points
and masses of the scalar fields of the primary sector.
In carrying out this analysis, it is both necessary and

convenient to assume that the expectation values of the
scalar fields of the hidden sector are much larger than those
of the primary sector. This will ensure that the masses of the
SOLð3Þ ⊗ SORð3Þ gauge bosons are much larger than the
Wand Z masses. The Goldstone boson that is eliminated by
the Higgs mechanism is then close to the Goldstone boson
associated with the symmetry breaking in the hidden sector,
leaving a pseudo-Goldstone boson in the primary sector.
This assumption also gives the scalar fields of the hidden

sector large masses, locking in their expectation values ψ ðNÞ
ia

with N ≥ 1, independent of the fields of the primary sector.
With this assumption, the potential for the scalar fields of

the primary sector is effectively

VI;eff ¼ VI −
X
ia

�Φþ
ia

Φ0
ia

�
·

�Φþ
ia

Φ0
ia

�
μ2ia

−
X
ia

�Φþ
ia

Φ0
ia

�
·

�Φþ
ai

Φ0
ai

�
μ02ia; ð45Þ

where

μ2ia ¼ −
X
j;N≥1

ξN ½ψ ðNÞ
ja �2 −

X
b;N≥1

κN ½ψ ðNÞ
ib �2 −

X
b;j;N≥1

ρN ½ψ ðNÞ
jb �2

ð46Þ

μ02ia ¼ μ02ai ¼ −
X
N≥1

ζNψ
ðNÞ
ii ψ ðNÞ

aa ; ð47Þ

and VI is given by Eq. (3).
To find the stationary point of VI;eff , we again take the

expectation values of Φþ
ia and ImΦ0

ia equal to zero, and let
the expectation value ϕia of ReΦ0

ia have only the single
nonzero element ϕ33 ¼ λ. (The existence of such a sta-
tionary point was shown in Sec. V.) Setting the term in
Eq. (45) of first order in Φ0

ia − hΦ0
iai equal to zero

then gives
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λ2 ¼ μ2 þ μ233 þ μ0233
2ðbþ cÞ ; ð48Þ

where b and c are given by Eq. (6).
The scalar mass matrix can be read off by considering the terms in Eq. (45) that are quadratic in Φ0

ia ≡Φ0
ia − hΦ0

iai and
Φþ

ia and their adjoints:

VI;quad ¼
X

i≠3;a≠3
½2λ2b1 − μ2 − μ2ia�jΦþ

iaj2 þ
X
i≠3

½2λ2ðb1 þ c1 þ c2Þ − μ2 − μ2i3�jΦþ
i3j2

þ
X
a≠3

½2λ2ðb1 þ c3 þ c5Þ − μ2 − μ23a�jΦþ
3aj2 −

X
i≠3;a≠3

μ02iaΦ
þ†
ia Φ

þ
ai

− 2
X
i≠3

μ02i3ReðΦþ†
i3 Φþ

3iÞ þ ½2λ2ðbþ cÞ − μ2 − μ233 − μ0233�jΦþ
33j2 þ

X
i≠3;a≠3

½2λ2b1 − μ2 − μ2ia�jΦ0
iaj2

þ
X
i≠3

½2λ2ðb1 þ c1 þ c2 þ c5 þ c6 þ b3Þ − μ2 − μ2i3�jΦ0
i3j2

þ
X
a≠3

½2λ2ðb1 þ c3 þ c5 þ c2 þ c4 þ b3Þ − μ2 − μ23a�jΦ0
3aj2

þ ½4λ2ðbþ cÞ − μ2 − μ233 − μ0233�jΦ00
33j2 þ

X
i≠3;a≠3

2λ2b3ReðΦ0
iaÞ2

þ
X
i≠3

2λ2ðb3 þ c5 þ c6ÞReðΦ0
i3Þ2 þ

X
a≠3

2λ2ðb3 þ c2 þ c4ÞReðΦ0
3aÞ2 þ 2λ2ðbþ cÞReðΦ00

33Þ2

−
X

i≠3;a≠3
μ02iaΦ

0†
iaΦ0

ai − 2
X
i≠3

μ02i3ReðΦ0†
i3Φ0

3iÞ: ð49Þ

First, using Eq. (48), we see that there are two fields here
of zero mass: Φþ

33 and ImΦ0
33. These are the Goldstone

bosons of broken SUð2Þ ⊗ Uð1Þ and appear physically as
the helicity zero states of the W and Z bosons, just as in the
Standard Model.
Next, note that another field of definite mass is ReΦ00

33,
which plays the same role here as the Higgs boson of the
Standard Model. Its squared mass is the coefficient of
ðReΦ00

33Þ2=2 in Eq. (49). Using Eq. (48), this is

m2
H ¼ 2½6λ2ðbþ cÞ − μ2 − μ233 − μ0233�
¼ 4ðμ2 þ μ233 þ μ0233Þ ¼ 8λ2ðbþ cÞ: ð50Þ

The final result is the same as in Sec. II, the only
difference being that in the derivation μ2 is replaced with
μ2 þ μ233 þ μ0233. As noted in Sec. II, our knowledge of the
Higgs boson mass and the weak interaction strength lets us
conclude from this result that bþ c has the value 0.032. No
other scalar bosonmass is given by the same combination of
parameters, so it is plausible that if the constants bn and cn in
Eq. (3) are of order unity then all other scalar bosons are
much heavier than the Higgs boson.
Of particular interest are the fields ReΦ0

i3 and ReΦ0
3i with

i ≠ 3, which would be the Goldstone boson fields of
broken SOLð3Þ ⊗ SORð3Þ if the Φ0

ia did not interact with

the scalar fields of the hidden sector. The terms in Eq. (49)
involving these fields are

X
i≠3

½ðReΦ0
i3Þ2ð2λ2ðbþ cÞ − μ2 − μ2i3Þ

þ ðReΦ0
3iÞ2ð2λ2ðbþ cÞ − μ2 − μ23iÞ − 2Φ0

3iΦ0
i3μ

02
i3�;

or, using Eq. (48) again,

X
i≠3

½ðμ233 − μ2i3ÞðReΦ0
i3Þ2 þ ðμ233 − μ23iÞðReΦ0

3iÞ2

− 2μ02i3ReΦ0
3iReΦ0

i3�: ð51Þ

As anticipated, these fields would evidently be massless in
the absence of the interaction between primary and hidden
sectors. In the approximation assumed above in this
section, that the breaking of SOLð3Þ ⊗ SORð3Þ is mostly
due to the expectation values of scalar fields of the hidden
sector, the massless Goldstone boson fields associated with

this breaking are dominated by terms ΨðNÞ
i3 and ΨðNÞ

3i with
i ≠ 3 and N ≥ 1, and it is these fields and not the primary
sector fields ReΦ0

i3 and ReΦ0
3i that provide the helicity zero

part of the massive SOLð3Þ ⊗ SORð3Þ gauge bosons.
Continuing, the terms in Eq. (49) involving ImΦ0

i3 and
ImΦ0

3i with i ≠ 3 are
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X
i≠3

½½2λ2ðb1 þ c1 þ c2Þ − μ2 − μ2i3�ðImΦ0
i3Þ2

þ ½2λ2ðb1 þ c3 þ c5Þ − μ2 − μ23i�ðImΦ0
3iÞ2

− 2μ02i3ImΦ0
i3ImΦ0

3i�; ð52Þ

and the terms in Eq. (49) involving ReΦ0
ia or ImΦ0

ia with
i ≠ 3 and a ≠ 3 are
X

i≠3;a≠3
½½2λ2ðb1þb3Þ−μ2−μ2ia�ðReΦ0

iaÞ2−μ02iaReΦ0
iaReΦ0

ai�

ð53Þ
and
X

i≠3;a≠3
½½2λ2ðb1−b3Þ−μ2−μ2ia�ðImΦ0

iaÞ2−μ02iaImΦ0
iaImΦ0

ai�:

ð54Þ
Corresponding results for the charged scalars can be found
from the first three lines of Eq. (49).
Inspection of these results shows that the charged and

neutral scalar fields of definite mass contain both the terms
Φia and Φai with i ≠ a if and only if μ02ia is nonzero.
Equation (47) shows that for generic coefficients ζN this
will be the case if there are one or more scalar fieldsΨðNÞ of
the hidden sector whose expectation values ψ ðNÞ have both
ii and aa components nonzero. Equation (43) shows that
for the choice we have made of the scalar fields of the
hidden sector and for their expectation values, the coef-
ficients μ0223 and μ

02
12 are nonzero, but μ

02
13 ¼ 0. It follows that

there are charged and neutral scalar fields of definite mass
that contain both the terms Φ23 and Φ32, but none that
contain both the terms Φ13 and Φ31. As we have seen these
are just the conditions under which the quarks and leptons
of the second generation but not the first generation get
masses from one-loop emission and absorption of scalar
bosons. The one-loop quark masses produced by charged
scalars is given by Eq. (25) and (26):

mc ¼mþ2=3
22

¼GUGDmb

16π2
X
N

uðNþÞ�
32 uðNþÞ

23

�
M2

Nþ lnM
2
Nþ−m2

b lnm
2
b

M2
Nþ−m2

b

�
;

ð55Þ

ms ¼ m−1=3
22

¼ GUGDmt

16π2
X
N

uðNþÞ
32 uðNþÞ�

23

�
M2

Nþ lnM2
Nþ −m2

t lnm2
t

M2
Nþ −m2

t

�
;

ð56Þ

while the one-loop quark and lepton masses produced by
neutral scalars are given by Eqs. (33)–(35) as

mμ ¼mL
22¼

G2
Lmτ

16π2
X
N

uðN0Þ
32 uðN0Þ�

23

�
M2

N0 lnM
2
N0−m2

τ lnm2
τ

M2
N0−m2

τ

�
;

ð57Þ

ms¼m−1=3
22

¼G2
Dmb

16π2
X
N

uðN0Þ
32 uðN0Þ�

23

�
M2

N0 lnM
2
N0−m2

b lnm
2
b

M2
N0−m2

b

�
; ð58Þ

and

mc ¼mþ2=3
22

¼G2
Umt

16π2
X
N

uðN0Þ�
32 uðN0Þ

23

�
M2

N0 lnM
2
N0−m2

t lnm2
t

M2
N0−m2

t

�
: ð59Þ

The first generation of quarks and leptons get masses from
emission and absorption of scalar bosons in two-loop order.
It is striking that the same choice of scalar fields in the

hidden sector leads to both the radiative corrections
involving vector bosons and those involving scalar bosons
generating quark and lepton masses for the second and first
generation to one-loop and two-loop order, respectively.

VII. PROBLEMS

The results obtained here for radiatively generated
masses involve many unknown parameters. But we have
noted that the large number of new scalar and vector
particles in these models can (and must) be supposed to be
heavy enough to have escaped observation, and where they
are sufficiently heavy we can easily find the ratios of many
quark and lepton masses. Unfortunately, these predicted
ratios turn out to be wrong.
First, if the masses of the second-generation quarks and

leptons arose from radiative corrections involving the
SOLð3Þ ⊗ SORð3Þ gauge bosons, and if we did somehow
arrange that these gauge bosons were all much heavier
than the quarks and leptons of the third generations, then
according to Eq. (17) the ratios of the masses of the second
and third generations quarks and leptons would all be
independent of the various masses of the third generation:

m2=m3 ≃
gLgR
4π2

X
n

uðnÞR1u
ðnÞ
L1 ln μ

2
n; ð60Þ

and so would be the same for leptons and quarks of each
charge,

mc=mt ¼ ms=mb ¼ mμ=mτ ð61Þ

which is not even approximately true of observed masses.
The strong interactions can account for some differences in
these mass ratios, but these interactions are not very strong
at energies of the order of mc and mt, and of course are
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entirely absent for the leptons, while mc=mt is an order of
magnitude smaller than mμ=mτ.
Similarly, if the radiatively generated masses of second-

generation quarks were dominated by the emission and
absorption of charged scalar bosons, then according to
Eqs. (55) and (56) we would have

mc=mb ¼ ms=mt ð62Þ
which is even further from the truth. Finally, if the
radiatively generated masses of second generation quarks
and leptons were dominated by the emission and absorption
of neutral scalar bosons, then according to Eqs. (57)–(59)
and Eq. (7) we would have

mc=m3
t ¼ ms=m3

b ¼ mμ=m3
τ ; ð63Þ

which is worse yet.
The above wrong predictions of mass ratios involving

quarks of charge þ2=3 would be invalidated if the mass of
the relevant SOLð3Þ ⊗ SORð3Þ gauge bosons or scalar
bosons were of the same order of magnitude of the
top quark mass. In that case, these new bosons might be
accessible to observation.
Another unrealistic feature of these results is that they

do not exhibit any Cabibbo-Kobayashi-Maskawa mixing
angles. Quark mass mixing could be included by giving

up the somewhat unnatural assumption that the coefficients
σN and σNN0 in Eqs. (38) and (39) all vanish. We might
instead assume that for some reason these coefficients
are relatively small, expecting that this will yield rather
small mixing angles. But in this case it is not clear that it
would be possible in a natural way to maintain the starting
assumption that only the third generation of quarks and
leptons get masses in the tree approximation. Also, in this
case we would need to worry about the possibility of flavor-
changing neutral currents.
The best that can be hoped for the models discussed in

this paper is that they may perhaps provoke new ideas for a
realistic theory in which radiative corrections account for
the masses of the first and second generations of quarks and
leptons, together with guidance in dealing with the prob-
lems that will arise in such a theory.
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