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Backstepping Control of Gliding Robotic Fish for Trajectory Tracking
in 3D Space
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Abstract— Autonomous underwater gliders have become
valuable, energy-efficient tools for a myriad of applications
including ocean exploration, fish tracking, and environmen-
tal sampling. Many applications, such as, exploring a large
area of underwater ruins or navigating through a coral reef,
would benefit from fine trajectory tracking. However, trajectory
tracking control of underwater gliders is particularly challeng-
ing due to their under-actuated, nonlinear dynamics. Taking
gliding robotic fish as an example, in this work we propose a
backstepping-based controller for the gliding motion to track
a desired reference for the pitch angle and position in the
3D space. In particular, the challenge of under-actuation is
addressed by exploiting the coupled dynamics and introducing
a new modified error term that combines pitch and horizontal
position tracking errors. The effectiveness of the proposed con-
trol scheme is demonstrated via simulation and its advantages
are shown via comparison with a PID controller.

I. INTRODUCTION

Underwater gliders are autonomous vehichles that use
variable buoyancy and hydrofoils to realize horizontal travel
by shifting the center of gravity. They are known for
high energy efficiency, allowing them to have exceptionally
long operational periods. Their typical motion patterns are
sawtooth-like gliding. Another useful motion is spiraling,
enabled by controlling the vehicle’s roll angle or deflecting
the control surfaces. The concept, introduced by Henrey
Stommel [1], motivated development of gliders such as
SLOCUM [1], Spray [2], and Seaglider [3]. The success of
the early gliders has inspired development of other under-
water vehicles that exploit gliding [4], [5] like the gliding
robotic fish [5], which combines the gliding mechanism with
the tail-actuated swimming [6] to realize both high energy-
efficiency and high maneuverability. It has demonstrated
promise in environmental sensing applications [7].

Control of gliders presents a significant challenge, due to
their highly nonlinear and under-actuated dynamics. Early
work in control of gliders saw the use of PID controllers
for their simplicity [2], [3]. In the past two decades, more
advanced and model-based control methodologies have been
proposed. For example, neural network-based control was
used to implement a self-tuning PID controller to track the
velocity along a single axis in the inertial frame [8]. Isa
and Arshad analyzed the use of a neural network as a model
predictive controller and a gain-tuner algorithm to the control
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pitch angle and linear velocities of a linearized glider model
[9]. Nag et al. [10] compared fuzzy logic control against PID
for pitch and depth tracking. Zhang et al. [11] used nonlinear
passivity-based control to stabilize the glide path of a glider
in the sagittal plane with a whale-like tail. Sliding mode
control has also been explored because of its robustness to
disturbances. Yang and Ma used sliding mode control to
track trajectories of the pitch angle and ballast mass [12].
Mat-Noh et al. used a linearized glider model to compare an
Integral Super Twisting Sliding Mode controller with several
other sliding mode variants for stabilizing a gliding path
between 30 and 45 degrees [13]. Leonard and Graver used a
linear quadratic regulator on linearized dynamics to control
the magnitude of velocity on a steady-state glide path [14],
[15]. Mahmoudian and Woosely developed an efficient path
planning strategy that concatenates equilibrium turning and
gliding motions, and then implemented the strategy using
PID controllers to reach specified center of gravity and center
of buoyancy [16]. In [17], several different control strategies
for underwater gliders are compared.

Despite the aforementioned extensive work on glider con-
trol, current approaches have largely focused on stabilization
based on linearized models, or single-input single-output
control of heading, pitch or velocity control. In fact, most
work on underwater glider control focuses on controllers
designed to reach a desired pitch angle, velocity, or specified
depth [18]. In particular, the study of trajectory tracking con-
trol in the 3D space is scarce, if any. Trajectory tracking for
underwater gliders and other gliding-type vehicles is a basic
functionality that is of direct relevance to various sampling
and target-tracking applications for the underwater environ-
ment. It is a valuable ability to have for exploring complex
environments, such as coral reefs and underwater ruins. In
addition, it also enables improved performance in many other
applications in oceanography, marine science, water quality
monitoring, and surveillance. Trajectory tracking and path
following have been heavily studied for propeller-driven un-
derwater vehicles [19]-[26]. However, the literature on these
topics for underwater gliders is very limited, with [18] being
one of very few examples considering the full dynamic model
of a gliding system. The authors of [18] proposed an adaptive
backstepping control for tracking the yaw angle, the pitch
angle, and the velocity magnitude of an underwater glider,
but not position trajectories. However, trajectory tracking
for positions, as in the works cited above on propeller-
driven underwater vehicles, is arguably more valuable when
operating in cluttered underwater environments.

In this paper, a backstepping-based trajectory tracking

3730



Fig. 1. Illustration of robot reference frames and mass distribution [29].

controller is proposed to control the 3D motion of underwater
gliders, tracking reference trajectories for both the 3D posi-
tion and the pitch angle. Backstepping-based control design
presents a practical and promising approach because it offers
a systematic framework that guarantees the stability of the
closed-loop system, and allows the accommodation of input
constraints [27]. To put the discussion in context, we focus
on the model of a gliding robotic fish. With only three control
inputs, the proposed control scheme addresses simultaneous
tracking of pitch and 3D position. To facilitate the control
design, the tracking errors are expressed in a cylindrical
coordinate system with its origin coinciding with that of
the robot’s body-fixed frame. To address the under-actuated
problem, a hybrid error function is introduced by modifying
the pitch tracking error with a term regulated by the position
tracking error in the horizontal plane. Lyapunov analysis,
which drives the backstepping control design, shows that the
depth tracking error, the aforementioned error, and the error
between the yaw angle and the direction of x-y planar posi-
tion tracking error, all converge to zero. We further sketch the
procedure, using two-time-scale analysis, for establishing the
tracking of all four components of the reference trajectories
(pitch and 3D position).

This work represents a significant extension to our prior
work [28], which deals with trajectory tracking of pitch
and 2D position in the saggital plane. Aside from extension
from 2D to 3D, a critical improvement over [28] is the
elucidation of why the proposed controller is able to achieve
tracking with under-actuation. Extensive simulation results
are presented to show that the proposed controller is able to
track different trajectories in the 3D space and it outperforms
a set of well-tuned PID controllers in these tracking tasks.
Similar to our previous work [28], a sliding mode observer is
implemented to estimate the body-fixed velocities, which are
otherwise not directly accessible, but the design is excluded
due to space limitation.

The rest of this paper is organized as follows. Section II
describes the system model and the problem formulation.
Section III provides an overview of the control design
process and analysis of the closed-loop system, followed
by simulation results in Section IV and the conclusion in
Section-V.

II. SYSTEM MODELING AND PROBLEM FORMULATION
A. Gliding Robotic Fish Model

The robot, depicted in Fig. 1, has two relevant reference
frames. The first is the inertial frame, represented by A, ..
The A, axis is along the direction of gravity, and A, /A, are
defined in the horizontal plane, with the origin A as a fixed
point in space. The body-fixed frame is denoted by O, y, 2,
with the origin O at the geometric center of the glider body.
The O,, axis is along the body longitudinal axis pointing
toward the robot’s front, the O,, axis is perpendicular to
the O,, axis in the sagittal plane of the robot pointing
towards the robot’s underbelly, and the O,, axis is formed
according to the right-hand orthonormal principle. The glider
is modeled as a 6 degree-of-freedom (DOF) rigid body
with an internal moving mass, a water tank, and a servo-
actuated tail that has its own axis of rotation parallel to
the robot’s O, axis, at an offset along the O,, axis. The
tail can be used for both propulsion and steering, and in
the context of this paper, it is used for the latter only. The
internal movable mass, which is restricted to the longitudinal
axis, controls the robot’s pitch angle. The last control input,
representing the negative net buoyancy, is given as the sum
of the uniformly distributed stationary mass mg (including
mass of water in tank), internal movable mass m, and non-
uniformly distributed mass m,, minus the mass m of the
water displaced by the robot. This can be expressed as
mo = ms + m + my, —m, where mg < 0 causes the robot
to float and mg > 0 causes the robot to sink. Effectively, the
robot controls mg by changing the amount of water in the
tank. In summary, the control inputs include the negative net
buoyancy my, the distance 7,; of the movable mass from
the body-frame origin, and the tail angle §.

The state vector, consisting of the position b; = [z, y, 2|7
of the robot, the Euler angles (roll, pitch, and yaw) ¥ =
[6,0,1]T given in the inertial frame, and the body-fixed
linear velocities v, = [vq,v2,v3])T and angular velocities
wy = [wi,ws, ws3]T, is given by

X = [x,y,z,dD,H,d),vl,vg,vg,wl,WQ,wg]T (1)

The dynamic equations are

i)i = va
U= R, wyp
Oy = M~ (Muvy X wy + mogRTk + Fouy) 2

Wy = JH(=Jwy + Jwp X wy + Muy X vp + Tegs
+ My grw X (RTk) + mgrp X (RTk))

with
1 tan(0)sin(¢) cos(¢)tan ()
Ro=[ 0 cos(o) —sin (¢)
0 sin(¢) cos(¢)
cos(0) cos(0)
where 1, = [0,0,7,1]7, M = diag{mi,ma, ms} is

the added mass matrix due to the surrounding fluid,
J = diag{Jy, Jo, J3} is the added inertia matrix, To,y =
Ry, [Ml,Mg,Mg]T is the hydrodynamic moment vector,
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Fig. 2. TIllustration of the robot error frame. A is the inertial frame and
the point (z4, Y4, 24) is the desired position for the robot. The position
error vector (e, Ye, 2e) is the difference between the desired position and
the center of the robot. The axes xp, yp, and z; represent the body-fixed
coordinate frame.

Fewt = Ry [-D, F, —L]T is the hydrodynamic force vec-
tor, k = [0,0,1]%, and r,, = [0, 0, r,3]7. R is a 3x3 rotation
matrix parameterized by the Euler angles ¥ = [¢,6,]
and Ry, is a 3x3 rotation matrix parameterized by o and
(. These matrices, the hydrodynamic forces of lift L, drag
D, side force Fj, and the yaw moment M3, pitch moment
M, and roll moment M; are as given in [5]. Furthermore,
note that o = arctan 72 is the angle of attack and § =

1
arcsin 22 is the side-slip angle.
Ch +v2.+v3 . .
For convenience, we will abstract the linear and angular

velocity dynamics as

U1 fo11 + a1 sin(0)uy + forous + forsuj
U fo21 + fo21us + fo2ou3
vs | | fes1 + apzcos(0)ur + fozous + feszul
Wi | Jo11 + forzus
Wo fuw21 + aw, cos(0)usg
Ws fwz1 + fusaus
(3)

where u; = myg, ug = rp1, and uz = J are the controls, a1,
ay3 and a,, are constants, and f,;; and f,;; are nonlinear
functions of the state vector.

B. Problem Formulation

The problem of trajectory tracking involves controlling
a robot to follow a time-dependent path. In our work, we
strive to have the robot pose P = [z,y,z,0]T follow a
trajectory in the inertial coordinate system, given by the
desired path Py(t) = [z4(t),ya(t), za(t), 0a(t)]T. Pa(t) and
P,(t) are assumed to be sufficiently smooth with |64] < +7.
To solve this problem, we define the inertial frame error
P.(t) = [we, Ye, 2e, 0] as

r —Tyq
Pt)=| Y% )
0—0,4

According to Fig. 2, the Cartesian error coordinates can be
rewritten in cylindrical coordinates, which is more control-
friendly for the system. This can be done by representing
the position error vector (z.,y.) in the plane as a mag-

nitude p. = +/z2+y? and angle n = arctan(y./z.)

suitably defined to give the correct quadrant. The vector
is expressed in the inertial frame A, but it is attached
to the origin of the robot’s body-fixed frame [zy,ys, 2] .
The cylindrical representation of the error vector becomes
PE(t) = [pe; Ve, ze, )T where . = 1) — 7, denotes the
difference between the yaw angle ¢ and the direction of the
planar tracking error vector, . When 1. = 0, the robot will
point in the direction of fastest reduction of planar tracking
error. To handle the under-actuated nature of the robot, we
introduce a hybrid error function

¢ = 0. — ctanh 0 tanh(p cos(1).)) (5)

where ¢ > 0 is a constant. We note that the function
& is not unique and can be more generally written as
& = b — cfe1(0) fea(me, Ye, e), satisfying fe1(0) = 0
and fe2(0,0,%.) = 0. Furthermore, cfe1(0) fea(xe, Ye, Ye)
should be designed such that when 1. = 0 and p. > 0,
|€] < |e|, and when ), = £ and p. > 0, |¢| > |0.|. These
conditions are satisfied by the choice of ¢ in Eq. (5).

With the hyprid error function, we define the modified
tracking error vector P,, = [1)., 2, £]T, which will be used
in the backstepping control design. The derivative of the error
vector P, can be expressed in terms of the state variables,
using the fact that . = p. cosn and y. = p. sinn to derive

pe = cos(n)ie + sin(n)ge

1 6
i1 = - Ccos(ie — sin(n).) ©

which are needed for computing € and v, later.

With this formulation, trajectory tracking becomes a stabi-
lization problem with respect to the error vector. The control
objective is now to drive the modified error vector P, to the
origin. Later we discuss how P, converges to zero implies
the convergence of all elements of the original tracking error
vector P, to zero.

III. BACKSTEPING-BASED CONTROL DESIGN

A. Overview of Control Design

First we define the Lyapunov function V'(§, z, ) =
1(&% + 22 + ¢?2), and seek a controller that can make V
negative-definite. One can write

V = €6+ zede + Yethe
. . . T
9e—c(f51fs2+f51f£2) 3
= Z’e Ze
Ve Ve
Following the backstepping methodology, we define the new
error variables
Cl =it kize = Zo = Cl — k.2
G2 = e +kythe = e =2 — kyte
G=8+hkf = {=CG— ke

where k, ky, and k¢ are positive design constants. This leads

0 V = 2(C1 = kaze) + Pe(Co — kytbe) +€(Cs — ke€). The
augmented Lyapunov function can then be defined as V4 =

3732



A
Pe
c1 Cc2
Az = Az, ’ $
g Aﬂk Y ¥
= A
Fig. 3. Illustration of the desired behavior for the robot (R), when tracking

trajectory is given by a virtual copy (VC) gliding in a plane for four
different cases. Black angle marker represents § = 64 and green angle
marker represents 6 = 4 + f¢ (0, Te,Ye, Ye). Az and Ad represent the
vertical and horizontal travel of robot when 8 = 64 + f¢ (6, Ze, Ye, Ye),
respectively, while Azy and Ady represent the vertical and horizontal travel
of the virtual copy, respectively.

+ (¢ + & + ). The time-derivative V4 can be made
negative-definite by using the control inputs which show up
in the derivatives of (;. Choosing the inputs such that Cz =

—kiGi leads to Vi = V + (—k1¢? — ka3 — k3(3), where
ki,ko, and k3 are posmve constants to be chosen. Adding
and subtracting the term (- T G+ 4@ G+ 4k C3) reveals that

V4 < 0 for the gain choices satisfying k1 k., > , kaky >

and kske > 7. This step in the Lyapunov analysis enables
us to choose inputs uy, Uz, and ugz to ensure stabilization
of the system. The equations (1 = Ze + kize = —ki(a,

Co = Yo + kythe = koo, and G = & + ke€ = —k3(3 can
be rewritten as

él = friur + fious + figus + f14U§ + fis = —k1G1
Co = forus + fooua + fozuz + fogui + fo5 = —ka(o
G = farur + faoua + fazus + faauj + fas = —k3(s

where f;; =

gg;; fori =1,2,3,j=1,---,4and fi5 =

G- (u; fi;) with uy = u3. These equations give us the

j=1 :
means to solve for the inputs such that (; = —k;(;, in which
case Vy = —i(@ — 2k 26)2 (kg — i) - ﬁw(@ -
ka'@[]e)Q - <22(k2 - 4}11/) ) (4k5 (C3 2k§€)2 - Cg(k?» - i)

The controller can be derived in a much simpler form if we
assume ¢ = 0 and 7) = 0, both of which are reasonable for
typical operating conditions of the gliding robotic fish. With
this assumption, the equations for solving the control inputs
can be written in a matrix form as follows:

Uy

fir 0  fis fia u Iy
0 0 fa3 O u2 =| Ty
far fa2 f3z faa u% I's

where I'; = — f;5 — k;(;. The inputs can be then computed

directly as

T

°7 fas
! (Fl — fizus — f14(U3)2)

fi @)

— (T3 — fazuz — fa(u3)?)

f32

- fljig}w (T1 — fisus — fra(us)?)

B. Analysis of the Closed-Loop System

uy =

U =

Under the control design from the previous subsection,
one can guarantee that &, 1., and z, all approach zero. Note
that the original tracking goal is for all errors of P, in Eq.
(4) to approach zero. The closed-loop system is given by

Z.Ie Cl - kzze
Ve Co — kytbe
¢ G — ke&
e | _ §—c (fglfgz + fg1f§2) )
p:e COS(QZJ - @Z}e)fe + Sin(w - %)Z)e
G —k1Gy
G —kaCa
L G| | —ks(s ]

An instrumental tool for analysis of the original error vector
will be singular perturbation theory for multi-time scale
systems [30], where the dynamics of p. and 6. are at a time
scale slower than the other dynamics in Eq. (8). Due to the
limited space, we will skip the detailed rigorous analysis; in-
stead, we examine only what happens in the boundary layer,
where £ = 0,2, =0,%. =0,(1 = 0,(2 = 0,(3 = 0, to shed
the key light. When ¢ = 0, 0. = cfe1(0) fea(ze, Ye, e ).
This implies that 0 = 84 + cfe1(0e + 0q) fe2(Te, Ye, Ye). In
addition, z, = 0 implies z = z4 and 2z, = 0, while ¢, = 0
implies that the robot is pointing toward the desired direction
(when projected onto the horizontal plane). From [5], [14],
[15], it is understood that, similar to flight kinematics, glider
kinematics can be expressed in terms of the magnitude of
velocity and a glide angle 6,. The glide angle is defined as
0y = 0 — «, which can be approximated by %, where Ad
and Az are the horizontal and vertical distances traveled in a
given amount of time. In practice, « is fairly small compared
to 0; so 0, ~ 6. This is illustrated by comparing the glide
angle and the pitch angle in Section IV (see, for example,
Figs. 4, 6). 6 and 6, differ in sign only for |#| < 3° in
simulations. At these small angles, the effect of the hybrid
function are nearly non-existent due to the tanh(é) term. In
essence, perturbing the pitch angle effectively changes the
glide path, slowing or speeding up horizontal travel, so that
the robot converges onto the trajectory in planar position.
This behavior is further illustrated in Fig. 3. Once the x —y
planar position error converges to zero (p. = 0), . — £ = 0.

IV. SIMULATION RESULTS

The backstepping controller proposed in this paper is
compared against a PID controller to show its effectiveness,
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Simulation results with a sawtooth-shaped reference trajectory constrained to a vertical plane. The legends “bc” and “pid” indicate results from

the proposed backstepping controller and the PID controller, respectively. (a): Reference and controlled trajectories in the 3D space; (b)-(e): the trajectory
of tracking errors (¢, Ye, 2e, Oe); (f): the graph showing the pitch angle vs. the glide angle under the proposed controller; (g)-(i): the trajectories of the

control inputs (51, Mo, 6).
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Simulation results with a spiral reference trajectory. The legends “bc” and “pid” indicate results from the proposed backstepping controller and

the PID controller, respectively. (a): Reference and controlled trajectories in the 3D space; (b)-(e): the trajectory of tracking errors (e, Ye, e, 0e); (f): the
graph showing the pitch angle vs. the glide angle under the proposed controller; (g)-(i): the trajectories of the control inputs (rp1,m0, 9)..
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where three different trajectories representative of the types
of motion underwater gliders experience are used. The model
parameters for simulation are taken from [5] with limits of
+0.1 kg on my, :i:% on §, and £7 mm on 7. In simulation,
we redefine the tracking error v, as v — arctan(yy/xp,) if
pe < € and ¥ — 7 otherwise, where z;, = x, — [ cost and
Yn = Ye — lsin), for some small [ > 0. This allows the
tracking error to be defined at the point of singularity when
pe = 0. We take € to be 0.1 and [ to be 0.2. A small € > 0
is added to p. in 1 given in Eq. (6) as well for numerical
stability.

The PID controller is based on the error vector P, . The
error v, is used to calculate § with gains k, = 1, k; = 0.001
and kq = 0.1. The error £ is used to calculate 7,; with gains
kp = 0.083, k; = 0.036 and kg = 0.042. The error z is
used to calculate mg with gains k, = 10, k; = 0.01 and
kq = 0. The PID controller gains are tuned with the Matlab
PID tuner and then refined through simulation runs to give
good tracking performance on the trajectory shown in Fig.
6. The parameters for both the PID and the backstepping
controller are kept the same over all three trajectories.

The backstepping controller requires state feedback; how-
ever, in practice, only measurements of Euler angles, angular
velocities, and depth are readily available. Therefore, a
sliding mode observer, as suggested in [4], is implemented
to obtain the estimates of vy, v9, and v using the aforemen-
tioned measurements. The desired trajectories are generated
by a virtual copy of the robot using the same parameters as
the actual robot.

The three reference trajectories include a sawtooth-shaped
gliding pattern, a spiral pattern, and a more difficult trajectory
generated by a time-dependent input to the virtual robot.
Fig. 4 shows the simulation results for the case of the
sawtooth-like reference trajectory. It can be seen that while
the PID controller reduces z. slightly faster, the backstepping
controller results in smaller z, and 6,. The control effort
under the backstepping controller is less than the effort under
the PID controller for r,; and mg, with the PID controller
hitting the saturation more often. For the tail angle &, the
PID controller has the smaller control effort for the first 15
to 20 seconds, but the backstepping controller has the smaller
control effort for the rest of the trajectory.

Fig. 5 shows the simulation results for tracking the spiral
reference. Here, the backstepping controller shows evident
advantages in tracking all four elements of the trajectory,
resulting in significantly smaller x, y., ze, and 8. A chatter-
ing effect occurs in the input for the backstepping controller
during most of the last half of the trajectory. This is likely
due to the definition of .. It can change rapidly when
pPe = a2+ y? approaches e, causing the the tail angle
0 to be large and discontinuous at times.

Fig. 6 shows the results for the case of a more arbitrary
reference trajectory in the 3D space. While the PID controller
is able to track the reference reasonably well, it is again
outperformed by the backstepping controller, the resulting
trajectory of which almost perfectly overlaps with the desired
one after an initial transient. The chattering effect takes place

in both controllers during the last 100 seconds.

V. CONCLUSION AND FUTURE WORK

In this work we presented a backstepping-based controller
for a gliding robotic fish to track a 3D reference trajec-
tory along with a pitch angle reference trajectory using
only three actuation inputs. The key enabling factor was
the introduction of a hybrid error function, combining the
pitch tracking error with the planar position tracking error.
We argued that, at a slower time scale, the hybrid error
function so constructed drives both the pitch error and the
planar tracking error to zero. Simulation with three different
reference trajectories showed that the backstepping controller
is indeed able to track both 3D position and pitch references
successfully. Overall, the proposed controller also showed
advantages over a tuned PID controller in terms of tracking
performance and control effort. We attribute this to the fact
that the backstepping controller, unlike the PID controller,
is able to incorporate the inherent coupling of the error
dynamics. Although the proposed control approach addresses
gliding robotic fish specifically in this work, we anticipate the
methodology to be relevant to underwater gliders in general.

Future work will include formalizing the multi-time-scale
singular perturbation analysis to establish the convergence
proof. The controller will be further refined to address the
chattering issue observed in simulation. We will also examine
estimating © — y planar position using an observer based
on sporadic surface measurements, emulating the practical
operation scenario of underwater gliders. The observer and
controller designs will be implemented on a gliding robotic
fish, and experimentally validated in pool and lake environ-
ments.
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