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Abstract— Autonomous underwater gliders have become
valuable, energy-efficient tools for a myriad of applications
including ocean exploration, fish tracking, and environmen-
tal sampling. Many applications, such as, exploring a large
area of underwater ruins or navigating through a coral reef,
would benefit from fine trajectory tracking. However, trajectory
tracking control of underwater gliders is particularly challeng-
ing due to their under-actuated, nonlinear dynamics. Taking
gliding robotic fish as an example, in this work we propose a
backstepping-based controller for the gliding motion to track
a desired reference for the pitch angle and position in the
3D space. In particular, the challenge of under-actuation is
addressed by exploiting the coupled dynamics and introducing
a new modified error term that combines pitch and horizontal
position tracking errors. The effectiveness of the proposed con-
trol scheme is demonstrated via simulation and its advantages
are shown via comparison with a PID controller.

I. INTRODUCTION

Underwater gliders are autonomous vehichles that use

variable buoyancy and hydrofoils to realize horizontal travel

by shifting the center of gravity. They are known for

high energy efficiency, allowing them to have exceptionally

long operational periods. Their typical motion patterns are

sawtooth-like gliding. Another useful motion is spiraling,

enabled by controlling the vehicle’s roll angle or deflecting

the control surfaces. The concept, introduced by Henrey

Stommel [1], motivated development of gliders such as

SLOCUM [1], Spray [2], and Seaglider [3]. The success of

the early gliders has inspired development of other under-

water vehicles that exploit gliding [4], [5] like the gliding

robotic fish [5], which combines the gliding mechanism with

the tail-actuated swimming [6] to realize both high energy-

efficiency and high maneuverability. It has demonstrated

promise in environmental sensing applications [7].

Control of gliders presents a significant challenge, due to

their highly nonlinear and under-actuated dynamics. Early

work in control of gliders saw the use of PID controllers

for their simplicity [2], [3]. In the past two decades, more

advanced and model-based control methodologies have been

proposed. For example, neural network-based control was

used to implement a self-tuning PID controller to track the

velocity along a single axis in the inertial frame [8]. Isa

and Arshad analyzed the use of a neural network as a model

predictive controller and a gain-tuner algorithm to the control
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pitch angle and linear velocities of a linearized glider model

[9]. Nag et al. [10] compared fuzzy logic control against PID

for pitch and depth tracking. Zhang et al. [11] used nonlinear

passivity-based control to stabilize the glide path of a glider

in the sagittal plane with a whale-like tail. Sliding mode

control has also been explored because of its robustness to

disturbances. Yang and Ma used sliding mode control to

track trajectories of the pitch angle and ballast mass [12].

Mat-Noh et al. used a linearized glider model to compare an

Integral Super Twisting Sliding Mode controller with several

other sliding mode variants for stabilizing a gliding path

between 30 and 45 degrees [13]. Leonard and Graver used a

linear quadratic regulator on linearized dynamics to control

the magnitude of velocity on a steady-state glide path [14],

[15]. Mahmoudian and Woosely developed an efficient path

planning strategy that concatenates equilibrium turning and

gliding motions, and then implemented the strategy using

PID controllers to reach specified center of gravity and center

of buoyancy [16]. In [17], several different control strategies

for underwater gliders are compared.

Despite the aforementioned extensive work on glider con-

trol, current approaches have largely focused on stabilization

based on linearized models, or single-input single-output

control of heading, pitch or velocity control. In fact, most

work on underwater glider control focuses on controllers

designed to reach a desired pitch angle, velocity, or specified

depth [18]. In particular, the study of trajectory tracking con-

trol in the 3D space is scarce, if any. Trajectory tracking for

underwater gliders and other gliding-type vehicles is a basic

functionality that is of direct relevance to various sampling

and target-tracking applications for the underwater environ-

ment. It is a valuable ability to have for exploring complex

environments, such as coral reefs and underwater ruins. In

addition, it also enables improved performance in many other

applications in oceanography, marine science, water quality

monitoring, and surveillance. Trajectory tracking and path

following have been heavily studied for propeller-driven un-

derwater vehicles [19]–[26]. However, the literature on these

topics for underwater gliders is very limited, with [18] being

one of very few examples considering the full dynamic model

of a gliding system. The authors of [18] proposed an adaptive

backstepping control for tracking the yaw angle, the pitch

angle, and the velocity magnitude of an underwater glider,

but not position trajectories. However, trajectory tracking

for positions, as in the works cited above on propeller-

driven underwater vehicles, is arguably more valuable when

operating in cluttered underwater environments.

In this paper, a backstepping-based trajectory tracking
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Fig. 1. Illustration of robot reference frames and mass distribution [29].

controller is proposed to control the 3D motion of underwater

gliders, tracking reference trajectories for both the 3D posi-

tion and the pitch angle. Backstepping-based control design

presents a practical and promising approach because it offers

a systematic framework that guarantees the stability of the

closed-loop system, and allows the accommodation of input

constraints [27]. To put the discussion in context, we focus

on the model of a gliding robotic fish. With only three control

inputs, the proposed control scheme addresses simultaneous

tracking of pitch and 3D position. To facilitate the control

design, the tracking errors are expressed in a cylindrical

coordinate system with its origin coinciding with that of

the robot’s body-fixed frame. To address the under-actuated

problem, a hybrid error function is introduced by modifying

the pitch tracking error with a term regulated by the position

tracking error in the horizontal plane. Lyapunov analysis,

which drives the backstepping control design, shows that the

depth tracking error, the aforementioned error, and the error

between the yaw angle and the direction of x-y planar posi-

tion tracking error, all converge to zero. We further sketch the

procedure, using two-time-scale analysis, for establishing the

tracking of all four components of the reference trajectories

(pitch and 3D position).

This work represents a significant extension to our prior

work [28], which deals with trajectory tracking of pitch

and 2D position in the saggital plane. Aside from extension

from 2D to 3D, a critical improvement over [28] is the

elucidation of why the proposed controller is able to achieve

tracking with under-actuation. Extensive simulation results

are presented to show that the proposed controller is able to

track different trajectories in the 3D space and it outperforms

a set of well-tuned PID controllers in these tracking tasks.

Similar to our previous work [28], a sliding mode observer is

implemented to estimate the body-fixed velocities, which are

otherwise not directly accessible, but the design is excluded

due to space limitation.

The rest of this paper is organized as follows. Section II

describes the system model and the problem formulation.

Section III provides an overview of the control design

process and analysis of the closed-loop system, followed

by simulation results in Section IV and the conclusion in

Section-V.

II. SYSTEM MODELING AND PROBLEM FORMULATION

A. Gliding Robotic Fish Model

The robot, depicted in Fig. 1, has two relevant reference

frames. The first is the inertial frame, represented by Axyz .

The Az axis is along the direction of gravity, and Ax/Ay are

defined in the horizontal plane, with the origin A as a fixed

point in space. The body-fixed frame is denoted by Oxbybzb
with the origin O at the geometric center of the glider body.

The Oxb axis is along the body longitudinal axis pointing

toward the robot’s front, the Ozb axis is perpendicular to

the Oxb axis in the sagittal plane of the robot pointing

towards the robot’s underbelly, and the Oyb axis is formed

according to the right-hand orthonormal principle. The glider

is modeled as a 6 degree-of-freedom (DOF) rigid body

with an internal moving mass, a water tank, and a servo-

actuated tail that has its own axis of rotation parallel to

the robot’s Ozb axis, at an offset along the Oxb axis. The

tail can be used for both propulsion and steering, and in

the context of this paper, it is used for the latter only. The

internal movable mass, which is restricted to the longitudinal

axis, controls the robot’s pitch angle. The last control input,

representing the negative net buoyancy, is given as the sum

of the uniformly distributed stationary mass ms (including

mass of water in tank), internal movable mass m̄, and non-

uniformly distributed mass mw minus the mass m of the

water displaced by the robot. This can be expressed as

m0 = ms + m̄+mw −m, where m0 < 0 causes the robot

to float and m0 > 0 causes the robot to sink. Effectively, the

robot controls m0 by changing the amount of water in the

tank. In summary, the control inputs include the negative net

buoyancy m0, the distance rp1 of the movable mass from

the body-frame origin, and the tail angle δ.

The state vector, consisting of the position bi = [x, y, z]T

of the robot, the Euler angles (roll, pitch, and yaw) Ψ =
[φ, θ, ψ]T given in the inertial frame, and the body-fixed

linear velocities vb = [v1, v2, v3]
T and angular velocities

ωb = [ω1, ω2, ω3]
T , is given by

X = [x, y, z, φ, θ, ψ, v1, v2, v3, ω1, ω2, ω3]
T (1)

The dynamic equations are






























ḃi = Rvb

Ψ̇ = Rωωb

v̇b =M−1(Mvb × ωb +m0gR
T k + Fext)

ω̇b = J−1(−Jωb + Jωb × ωb +Mvb × vb + Text

+mwgrw × (RT k) + m̄grp × (RT k))

(2)

with

Rω =





1 tan (θ) sin (φ) cos (φ) tan (θ)
0 cos (φ) − sin (φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)





where rp = [0, 0, rp1]
T , M = diag{m1,m2,m3} is

the added mass matrix due to the surrounding fluid,

J = diag{J1, J2, J3} is the added inertia matrix, Text =
Rbv [M1,M2,M3]

T
is the hydrodynamic moment vector,
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Fig. 2. Illustration of the robot error frame. A is the inertial frame and
the point (xd, yd, zd) is the desired position for the robot. The position
error vector (xe, ye, ze) is the difference between the desired position and
the center of the robot. The axes xb, yb, and zb represent the body-fixed
coordinate frame.

Fext = Rbv [−D,Fs,−L]T is the hydrodynamic force vec-

tor, k = [0, 0, 1]T , and rw = [0, 0, rw3]
T . R is a 3×3 rotation

matrix parameterized by the Euler angles Ψ = [φ, θ, ψ]T

and Rbv is a 3×3 rotation matrix parameterized by α and

β. These matrices, the hydrodynamic forces of lift L, drag

D, side force Fs, and the yaw moment M3, pitch moment

M2, and roll moment M1 are as given in [5]. Furthermore,

note that α = arctan v3
v1

is the angle of attack and β =
arcsin v2√

v2
1
+v2

2
+v2

3

is the side-slip angle.

For convenience, we will abstract the linear and angular

velocity dynamics as
















v̇1
v̇2
v̇3
ω̇1

ω̇2

ω̇3

















=

















fv11 + av1 sin(θ)u1 + fv12u3 + fv13u
2
3

fv21 + fv21u3 + fv22u
2
3

fv31 + av3 cos(θ)u1 + fv32u3 + fv33u
2
3

fω11 + fω12u3
fω21 + aω2

cos(θ)u2
fω31 + fω32u3

















(3)

where u1 = m0, u2 = rp1, and u3 = δ are the controls, av1,

av3 and aω2
are constants, and fvij and fωij are nonlinear

functions of the state vector.

B. Problem Formulation

The problem of trajectory tracking involves controlling

a robot to follow a time-dependent path. In our work, we

strive to have the robot pose P = [x, y, z, θ]T follow a

trajectory in the inertial coordinate system, given by the

desired path Pd(t) = [xd(t), yd(t), zd(t), θd(t)]
T . Ṗd(t) and

P̈d(t) are assumed to be sufficiently smooth with |θd| < ±π
2 .

To solve this problem, we define the inertial frame error

Pe(t) = [xe, ye, ze, θe]
T as

Pe(t) =









x− xd
y − yd
z − zd
θ − θd









(4)

According to Fig. 2, the Cartesian error coordinates can be

rewritten in cylindrical coordinates, which is more control-

friendly for the system. This can be done by representing

the position error vector (xe, ye) in the plane as a mag-

nitude ρe =
√

x2e + y2e and angle η = arctan(ye/xe)

suitably defined to give the correct quadrant. The vector

is expressed in the inertial frame A, but it is attached

to the origin of the robot’s body-fixed frame [xb, yb, zb]
T .

The cylindrical representation of the error vector becomes

P ce (t) = [ρe, ψe, ze, θe]
T where ψe = ψ − η, denotes the

difference between the yaw angle ψ and the direction of the

planar tracking error vector, η. When ψe = 0, the robot will

point in the direction of fastest reduction of planar tracking

error. To handle the under-actuated nature of the robot, we

introduce a hybrid error function

ξ = θe − c tanh θ tanh(ρe cos(ψe)) (5)

where c > 0 is a constant. We note that the function

ξ is not unique and can be more generally written as

ξ = θe − cfξ1(θ)fξ2(xe, ye, ψe), satisfying fξ1(0) = 0
and fξ2(0, 0, ψe) = 0. Furthermore, cfξ1(θ)fξ2(xe, ye, ψe)
should be designed such that when ψe = 0 and ρe > 0,

|ξ| < |θe|, and when ψe = ±π and ρe > 0, |ξ| > |θe|. These

conditions are satisfied by the choice of ξ in Eq. (5).

With the hyprid error function, we define the modified

tracking error vector Pea = [ψe, ze, ξ]
T , which will be used

in the backstepping control design. The derivative of the error

vector Pea can be expressed in terms of the state variables,

using the fact that xe = ρe cos η and ye = ρe sin η to derive






ρ̇e = cos(η)ẋe + sin(η)ẏe

η̇ =
1

ρe
(cos(η)ẏe − sin(η)ẋe)

(6)

which are needed for computing ξ̇ and ψ̇e later.

With this formulation, trajectory tracking becomes a stabi-

lization problem with respect to the error vector. The control

objective is now to drive the modified error vector Pea to the

origin. Later we discuss how Pea converges to zero implies

the convergence of all elements of the original tracking error

vector Pe to zero.

III. BACKSTEPING-BASED CONTROL DESIGN

A. Overview of Control Design

First we define the Lyapunov function V (ξ, ze, ψe) =
1
2 (ξ

2 + z2e + ψ2
e), and seek a controller that can make V̇

negative-definite. One can write

V̇ = ξξ̇ + zeże + ψeψ̇e

=







θ̇e − c
(

fξ1ḟξ2 + ḟξ1fξ2

)

że
ψ̇e







T




ξ
ze
ψe





Following the backstepping methodology, we define the new

error variables

ζ1 = że + kzze =⇒ że = ζ1 − kzze

ζ2 = ψ̇e + kψψe =⇒ ψ̇e = ζ2 − kψψe

ζ3 = ξ̇ + kξξ =⇒ ξ̇ = ζ3 − kξξ

where kz , kψ , and kξ are positive design constants. This leads

to V̇ = ze(ζ1 − kzze) + ψe(ζ2 − kψψe) + ξ(ζ3 − kξξ). The

augmented Lyapunov function can then be defined as VA =
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Fig. 3. Illustration of the desired behavior for the robot (R), when tracking
trajectory is given by a virtual copy (VC) gliding in a plane for four
different cases. Black angle marker represents θ = θd and green angle
marker represents θ = θd + fξ(θ, xe, ye, ψe). ∆z and ∆d represent the
vertical and horizontal travel of robot when θ = θd + fξ(θ, xe, ye, ψe),
respectively, while ∆zd and ∆dd represent the vertical and horizontal travel
of the virtual copy, respectively.

V + 1
2 (ζ

2
1 + ζ22 + ζ23 ). The time-derivative V̇A can be made

negative-definite by using the control inputs which show up

in the derivatives of ζi. Choosing the inputs such that ζ̇i =
−kiζi leads to V̇A = V̇ + (−k1ζ21 − k2ζ

2
2 − k3ζ

2
3 ), where

k1, k2, and k3 are positive constants to be chosen. Adding

and subtracting the term ( 1
4kz

ζ21+
1

4kψ
ζ22+

1
4kξ

ζ23 ) reveals that

V̇A < 0 for the gain choices satisfying k1kz >
1
4 , k2kψ >

1
4 ,

and k3kξ >
1
4 . This step in the Lyapunov analysis enables

us to choose inputs u1, u2, and u3 to ensure stabilization

of the system. The equations ζ̇1 = z̈e + kz że = −k1ζ1,

ζ̇2 = ψ̈e + kψψ̇e = −k2ζ2, and ζ̇3 = ξ̈ + kξ ξ̇ = −k3ζ3 can

be rewritten as

ζ̇1 = f11u1 + f12u2 + f13u3 + f14u
2
3 + f15 = −k1ζ1

ζ̇2 = f21u1 + f22u2 + f23u3 + f24u
2
3 + f25 = −k2ζ2

ζ̇3 = f31u1 + f32u2 + f33u3 + f34u
2
3 + f35 = −k3ζ3

where fij = ∂ζ̇i
∂uj

for i = 1, 2, 3, j = 1, · · · , 4 and fi5 =

ζ̇i−
∑4
j=1(ujfij) with u4 = u23. These equations give us the

means to solve for the inputs such that ζ̇i = −kiζi, in which

case V̇A = − 1
4kz

(ζ1 − 2kzze)
2 − ζ21 (k1 − 1

4kz
) − 1

4kψ
(ζ2 −

2kψψe)
2−ζ22 (k2− 1

4kψ
)− 1

(4kξ)
(ζ3−2kξξ)

2−ζ23 (k3− 1
4kξ

).
The controller can be derived in a much simpler form if we

assume φ = 0 and η̈ = 0, both of which are reasonable for

typical operating conditions of the gliding robotic fish. With

this assumption, the equations for solving the control inputs

can be written in a matrix form as follows:





f11 0 f13 f14
0 0 f23 0
f31 f32 f33 f34













u1
u2
u3
u23









=





Γ1

Γ2

Γ3





where Γi = −fi5 − kiζi. The inputs can be then computed

directly as














































u3 =
Γ2

f23

u1 =
1

f11
(Γ1 − f13u3 − f14(u3)

2)

u2 =
1

f32
(Γ3 − f33u3 − f34(u3)

2)

− f31
f11f32

(Γ1 − f13u3 − f14(u3)
2)

(7)

B. Analysis of the Closed-Loop System

Under the control design from the previous subsection,

one can guarantee that ξ, ψe, and ze all approach zero. Note

that the original tracking goal is for all errors of Pe in Eq.

(4) to approach zero. The closed-loop system is given by


























że
ψ̇e
ξ̇

θ̇e
ρ̇e
ζ̇1
ζ̇2
ζ̇3



























=



























ζ1 − kzze
ζ2 − kψψe
ζ3 − kξξ

ξ̇ − c
(

fξ1ḟξ2 + ḟξ1fξ2

)

cos(ψ − ψe)ẋe + sin(ψ − ψe)ẏe
−k1ζ1
−k2ζ2
−k3ζ3



























(8)

An instrumental tool for analysis of the original error vector

will be singular perturbation theory for multi-time scale

systems [30], where the dynamics of ρe and θe are at a time

scale slower than the other dynamics in Eq. (8). Due to the

limited space, we will skip the detailed rigorous analysis; in-

stead, we examine only what happens in the boundary layer,

where ξ = 0, ze = 0, ψe = 0, ζ1 = 0, ζ2 = 0, ζ3 = 0, to shed

the key light. When ξ = 0, θe = cfξ1(θ)fξ2(xe, ye, ψe).
This implies that θ = θd + cfξ1(θe + θd)fξ2(xe, ye, ψe). In

addition, ze = 0 implies z ≡ zd and że = 0, while ψe = 0
implies that the robot is pointing toward the desired direction

(when projected onto the horizontal plane). From [5], [14],

[15], it is understood that, similar to flight kinematics, glider

kinematics can be expressed in terms of the magnitude of

velocity and a glide angle θg . The glide angle is defined as

θg = θ − α, which can be approximated by ∆d
∆z , where ∆d

and ∆z are the horizontal and vertical distances traveled in a

given amount of time. In practice, α is fairly small compared

to θ; so θg ≈ θ. This is illustrated by comparing the glide

angle and the pitch angle in Section IV (see, for example,

Figs. 4, 6). θ and θg differ in sign only for |θ| < 3◦ in

simulations. At these small angles, the effect of the hybrid

function are nearly non-existent due to the tanh(θ) term. In

essence, perturbing the pitch angle effectively changes the

glide path, slowing or speeding up horizontal travel, so that

the robot converges onto the trajectory in planar position.

This behavior is further illustrated in Fig. 3. Once the x− y
planar position error converges to zero (ρe = 0), θe → ξ = 0.

IV. SIMULATION RESULTS

The backstepping controller proposed in this paper is

compared against a PID controller to show its effectiveness,
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Fig. 4. Simulation results with a sawtooth-shaped reference trajectory constrained to a vertical plane. The legends “bc” and “pid” indicate results from
the proposed backstepping controller and the PID controller, respectively. (a): Reference and controlled trajectories in the 3D space; (b)-(e): the trajectory
of tracking errors (xe, ye, ze, θe); (f): the graph showing the pitch angle vs. the glide angle under the proposed controller; (g)-(i): the trajectories of the
control inputs (rp1,m0, δ).
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Fig. 5. Simulation results with a spiral reference trajectory. The legends “bc” and “pid” indicate results from the proposed backstepping controller and
the PID controller, respectively. (a): Reference and controlled trajectories in the 3D space; (b)-(e): the trajectory of tracking errors (xe, ye, ze, θe); (f): the
graph showing the pitch angle vs. the glide angle under the proposed controller; (g)-(i): the trajectories of the control inputs (rp1,m0, δ)..
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where three different trajectories representative of the types

of motion underwater gliders experience are used. The model

parameters for simulation are taken from [5] with limits of

±0.1 kg on m0, ±π
3 on δ, and ±7 mm on rp1. In simulation,

we redefine the tracking error ψe as ψ − arctan(yh/xh) if

ρe < ǫ and ψ − η otherwise, where xh = xe − l cosψ and

yh = ye − l sinψ, for some small l > 0. This allows the

tracking error to be defined at the point of singularity when

ρe = 0. We take ǫ to be 0.1 and l to be 0.2. A small ǫ > 0
is added to ρe in η̇ given in Eq. (6) as well for numerical

stability.

The PID controller is based on the error vector Pea . The

error ψe is used to calculate δ with gains kp = 1, ki = 0.001
and kd = 0.1. The error ξ is used to calculate rp1 with gains

kp = 0.083, ki = 0.036 and kd = 0.042. The error ze is

used to calculate m0 with gains kp = 10, ki = 0.01 and

kd = 0. The PID controller gains are tuned with the Matlab

PID tuner and then refined through simulation runs to give

good tracking performance on the trajectory shown in Fig.

6. The parameters for both the PID and the backstepping

controller are kept the same over all three trajectories.

The backstepping controller requires state feedback; how-

ever, in practice, only measurements of Euler angles, angular

velocities, and depth are readily available. Therefore, a

sliding mode observer, as suggested in [4], is implemented

to obtain the estimates of v1, v2, and v3 using the aforemen-

tioned measurements. The desired trajectories are generated

by a virtual copy of the robot using the same parameters as

the actual robot.

The three reference trajectories include a sawtooth-shaped

gliding pattern, a spiral pattern, and a more difficult trajectory

generated by a time-dependent input to the virtual robot.

Fig. 4 shows the simulation results for the case of the

sawtooth-like reference trajectory. It can be seen that while

the PID controller reduces xe slightly faster, the backstepping

controller results in smaller ze and θe. The control effort

under the backstepping controller is less than the effort under

the PID controller for rp1 and m0, with the PID controller

hitting the saturation more often. For the tail angle δ, the

PID controller has the smaller control effort for the first 15

to 20 seconds, but the backstepping controller has the smaller

control effort for the rest of the trajectory.

Fig. 5 shows the simulation results for tracking the spiral

reference. Here, the backstepping controller shows evident

advantages in tracking all four elements of the trajectory,

resulting in significantly smaller xe, ye, ze, and θe. A chatter-

ing effect occurs in the input for the backstepping controller

during most of the last half of the trajectory. This is likely

due to the definition of ψe. It can change rapidly when

ρe =
√

x2e + y2e approaches ǫ, causing the the tail angle

δ to be large and discontinuous at times.

Fig. 6 shows the results for the case of a more arbitrary

reference trajectory in the 3D space. While the PID controller

is able to track the reference reasonably well, it is again

outperformed by the backstepping controller, the resulting

trajectory of which almost perfectly overlaps with the desired

one after an initial transient. The chattering effect takes place

in both controllers during the last 100 seconds.

V. CONCLUSION AND FUTURE WORK

In this work we presented a backstepping-based controller

for a gliding robotic fish to track a 3D reference trajec-

tory along with a pitch angle reference trajectory using

only three actuation inputs. The key enabling factor was

the introduction of a hybrid error function, combining the

pitch tracking error with the planar position tracking error.

We argued that, at a slower time scale, the hybrid error

function so constructed drives both the pitch error and the

planar tracking error to zero. Simulation with three different

reference trajectories showed that the backstepping controller

is indeed able to track both 3D position and pitch references

successfully. Overall, the proposed controller also showed

advantages over a tuned PID controller in terms of tracking

performance and control effort. We attribute this to the fact

that the backstepping controller, unlike the PID controller,

is able to incorporate the inherent coupling of the error

dynamics. Although the proposed control approach addresses

gliding robotic fish specifically in this work, we anticipate the

methodology to be relevant to underwater gliders in general.

Future work will include formalizing the multi-time-scale

singular perturbation analysis to establish the convergence

proof. The controller will be further refined to address the

chattering issue observed in simulation. We will also examine

estimating x − y planar position using an observer based

on sporadic surface measurements, emulating the practical

operation scenario of underwater gliders. The observer and

controller designs will be implemented on a gliding robotic

fish, and experimentally validated in pool and lake environ-

ments.
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