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SUMMARY

Mantle convection and long-term lithosphere dynamics in the Earth and other planets can
be treated as the slow deformation of a highly viscous fluid, and as such can be described
using the compressible Navier—Stokes equations. Since on Earth-sized planets the influence
of compressibility is not a dominant effect, density deviations from a reference profile are at
most on the order of a few percent and using the full governing equations poses numerical
challenges, most modelling studies have simplified the governing equations. Common approx-
imations assume a temporally constant, but depth-dependent reference profile for the density
(the anelastic liquid approximation), or drop compressibility altogether and use a constant ref-
erence density (the Boussinesq approximation). In most previous studies of mantle convection
and crustal dynamics, one can assume that the error introduced by these approximations was
small compared to the errors that resulted from poorly constrained material behaviour and
limited numerical accuracy. However, as model parametrizations have become more realistic,
and model resolution has improved, this may no longer be the case and the error due to using
simplified conservation equations might no longer be negligible: while such approximations
may be reasonable for models of mantle plumes or slabs traversing the whole mantle, they may
be unsatisfactory for layered materials experiencing phase transitions or materials undergoing
significant heating or cooling. For example, at boundary layers or close to dynamically chang-
ing density gradients, the error arising from the use of the aforementioned compressibility
approximations can be the dominant error source, and common approximations may fail to
capture the physical behaviour of interest. In this paper, we discuss new formulations of the
continuity equation that include dynamic density variations due to temperature, pressure and
composition without using a reference profile for the density. We quantify the improvement
in accuracy relative to existing formulations in a number of benchmark models and evaluate
for which practical applications these effects are important. Finally, we consider numerical as-
pects of the new formulations. We implement and test these formulations in the freely available
community software ASPECT, and use this code for our numerical experiments.

Key words: Equations of state; Phase transitions; Mantle processes; Numerical modelling;
Numerical solutions; Dynamics of lithosphere and mantle.

{ INTRODUCTION that the flow can be described by the (compressible) Navier—Stokes

equations:
Convection of material in the mantle of Earth and other rocky plan- Ju
ets is understood to be a slow flow of material driven primarily o (— +u- Vu) —V.1+Vp =pg, (1)
by buoyancy effects caused by temperature differences. At suffi- ot
ciently long timescales, the material can adequately be described as ap £V (pu)=0 )
a viscous fluid, and in that case first principle considerations dictate at ’
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where u is the velocity, p is the pressure, 7 is the deviatoric stress
tensor, ¢ is time and g is the gravity vector. p = p(p, T, C) is the
density, which may depend on pressure, temperature 7 and chemical
composition(s) C.

To first order, viscous stresses in fluids are linearly dependent
on the strain rate tensor, that is, T =2u (Vu+(Vu)"), where
w = u(p, 7) is a fourth-rank tensor defined as the fluid viscos-
ity. For isotropic fluids, i can be reduced to two scalar compo-
nents, the shear viscosity 1 and the bulk (or dilational) viscosity
¢, where ¢ quantifies the viscous dissipation under compression
or expansion. Viscous stresses in isotropic fluids can therefore
be written as T =7 (Vu+ (Vu)") — (31— ¢) (V- u)l. In near-
incompressible fluids, the bulk viscosity is very small (Schubert
et al. 2001), such that the constitutive law simplifies to t = 2né,
where & = % (Vu + (Vu)T) - %(V -u)/ is the deviatoric rate-of-
deformation tensor. Even under these simplifying assumptions, the
shear viscosity 1 can still depend on temperature, pressure, com-
position and (in the case of non-Newtonian fluids) strain rate. Our
examination of the different compressibility approximations for the
Stokes equations is independent of the choice of viscosity formu-
lation, therefore, we do not further discuss any specific viscosity
choice in this paper.

Egs (1) and (2) describe processes that operate on very differ-
ent timescales. Specifically, they allow for processes such as the
propagation of seismic waves and the compression or expansion of
material caused by dynamic pressure that operate on much shorter
timescales than convection of material induced by buoyancy forces.
In the following sections, we will discuss these different timescales
in detail to separate timescales that are relevant to our applications
from those that are not.

1.1 Timescale of seismic waves versus convective flow

While seismic waves travel on a timescale of seconds, with ve-
locities ¢ of the order of several kilometres per second, convective
flow in the mantle occurs on timescales of millions of years, with
flow velocities u of the order of centimetres per year. The ratio of
these respective timescales is defined by the Mach number, M =
u/c (Batchelor & Batchelor 2000), which is of the order of M ~
10~"3 for the Earth’s mantle. Processes on such drastically different
timescales can usually not be resolved in a single numerical model.
This has motivated a simplification of the equations, eliminating
processes on much shorter timescales than the model time step
to avoid the numerical instabilities they would cause. Specifically,
studies of mantle convection typically use the infinite Prandtl num-
ber approximation, where the Prandtl number is the ratio between
momentum diffusivity and thermal diffusivity, which for Earth’s
mantle is & 10%°, This eliminates the inertia term from eq. (1) (Jarvis
& McKenzie 1980; Glatzmaier 1988; Bercovici ef al. 1992). An in-
finite Prandtl number also implies a Mach number of zero (Curbelo
et al. 2019), and consequently, there are no sound waves in models
using this approximation.

If we neglect inertia terms, eqs (1) and (2) simplify to the follow-
ing set that can be interpreted as describing force balance and mass
conservation at every instant:

—V-t+Vp=pg, 3)

d

P LY. (puy=0. )
at

These equations are then augmented by an equation that describes
the conservation of energy, typically expressed as an advection—
diffusion equation for the temperature (see Section 2 below). In
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addition, if the material under consideration is chemically hetero-
geneous, the transport of the chemical composition needs to be
considered.

1.2 Timescale of viscous relaxation versus convective flow

Even without inertia terms, eqs (3) and (4) describe processes on
different timescales than that of advection (Curbelo ef al. 2019).
The time-derivative of the density in (4) introduces a different
timescale, described as the viscous isentropic relaxation timescale
t, = $1/(y Po) by Curbelo er al. (2019). Here, y is the ratio of
heat capacities at constant pressure and constant volume, and P, is
the (constant) pressure. This timescale describes how fast regions
of positive (or negative) dynamic pressure can relax by causing
the material to expand (or compress) against viscous forces. In the
Earth, this timescale is of the order of a few hundred years (for the
upper mantle) to a few tens of thousands of years (for the lower
mantle). While it is much slower than that of seismic wave prop-
agation, it is still considerably faster than advective or conductive
timescales.

Consequently, the full compressible continuity equation (4) is
rarely used in analytic or computational geodynamic models. In
the absence of inertia, pressures and velocities can change almost
instantaneously from one time step (or one nonlinear iteration) to
the next, which allows small pressure variations to cause waves
in density and therefore velocity and pressure. Unless the time
step of the numerical method is shorter than the viscous relaxation
timescale, this causes growing pressure fluctuations and oscilla-
tions in the solution (Ismail-Zadeh & Tackley 2010; Curbelo ef al.
2019), which may also prevent convergence of the nonlinear solver
overall.

To avoid these instabilities, studies of mantle convection com-
monly remove the time-derivative of the density from the mass
conservation equation (4) (Jarvis & McKenzie 1980; Glatzmaier
1988; Bercovici et al. 1992). This causes the density to respond to
changes in pressure and temperature instantaneously, but does not
take into account the associated volume changes (and, accordingly,
does not cause flow of material). The majority of published mod-
els use one of a sequence of approximations that form a hierarchy
of more simplified models; specifically, these are often referred to
as the anelastic liquid approximation or ALA (Jarvis & McKenzie
1980), truncated anelastic liquid approximation or TALA (Jarvis &
McKenzie 1980; Ita & King 1994) and Boussinesq approximation
or BA (Oberbeck 1879; Boussinesq 1903; Rayleigh 1916). One may
also add the extended Boussinesq approximation (EBA; Oxburgh
& Turcotte 1978; Christensen & Yuen 1985) to this list, but since
it is just a combination of the BA (for the Stokes equations) and
the ALA (for the advection-diffusion of temperature), we will not
further discuss it here.

All of these approximations have been instrumental in modelling
mantle convection and lithosphere dynamics. They have the ad-
vantage that they (i) allow analytical solutions for simple cases;
(i1) allow further analysis such as non-dimensionalized formula-
tions that give rise to dimensionless indicators such as the Rayleigh
number that characterize the flow (e.g. Rayleigh 1916); (iii) allow
for computational solutions with fewer complications than the full
equations. Furthermore, the ALA incorporates the first-order effects
of compressibility (see e.g. Batchelor 1953; Ogura & Phillips 1962;
Gough 1969), so that for many applications the model error between
the choice of formulation and the exact equations may actually be
smaller than the error of the numerical approximation.
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Figure 1. Many approximations to the compressible Stokes equations are
based on reference profiles representing the average mantle (light-grey solid
line). However, much of the energy transport in the mantle takes place within
upwelling plumes (red) and subducting slabs (blue), which have tempera-
tures (and hence, densities) that deviate substantially from this reference
profile.

1.3 Importance of compressibility

Despite these advantages, all of the approximations above use some
kind of 1-D reference profile—describing how density changes with
depth—when computing the volumetric changes due to heating or
pressurization of the material. Consequently, they do not consider
how compressibility is affected when temperature, pressure, or com-
position deviates from that reference profile. It has been known
since the 1980s that material compressibility is an important as-
pect in numerical simulations of mantle convection in the Earth
(Jarvis & McKenzie 1980; Yuen et al. 1987; Steinbach et al. 1989;
Schubert et al. 2001). Given the many insights our community has
gained by way of computational geodynamics, using approxima-
tions such as ALA is clearly useful for many applications, and
specifically for large-scale models of planetary mantle convection.
On the other hand, over the last decades, the applications of geody-
namic modelling codes have become substantially more complex.
For example, we can now (1) use material properties computed
based on mineral physics databases, leading to numerous and po-
tentially very sharp phase transitions; (2) incorporate chemical het-
erogeneity, with strong variations in material properties between
different rock types, specifically regarding their densities and com-
pressibilities; (3) link different length and timescales, which places
more emphasis on realistic deformation of the lithosphere and the
formation of plate boundaries in convection simulations; (4) for-
mulate multiphysics models, taking into account processes such as
the seismic cycle, the generation and transport of fluids, or land-
scape evolution. For these applications, we know that temperatures,
pressures and densities can substantially deviate from the mantle
average, particularly near boundary layers, phase transitions, and
due to chemical heterogeneities (see Fig. 1). In such locations, the
real volume change is then substantially different from that used
in the approximations above, and, consequently, so are the dynamic
stresses that are important drivers of motion. For this reason, we here
want to revisit the formulation of compressibility in the equations
used for convection simulations.

As a first step, let us reconsider the arguments for eliminating the
time derivative of the density in the mass conservation equation (4)

made in Schubert ef al. (2001). In addition to considerations re-
garding the different timescales, the simplification is based on the
assumptions that density deviations due to temperature and other
sources than the hydrostatic pressure are small (i.e. on the order
of a percent or smaller). Using a linearized equation of state, and
considering a density that depends on pressure p, temperature 7' and
composition C, the corresponding density changes can be expressed
as

dp =krpdp —apdT + ApdC. 5)

Here, « is the thermal expansivity and « 7 is the isothermal com-
pressibility (see also Section 2.2). We can estimate the contribution
of each of these terms relative to the full density using typical
material properties of Earth’s mantle (Schubert et a/. 2001) and as-
suming the largest reasonable local variations in temperature, pres-
sure, and composition occurring in Earth’s lithosphere and mantle.
The pressure contribution is k7dp < 3 x 10712 Pa~" x 500 MPa =
0.15 per cent. The temperature contribution is ad7T < 1000K x
3 x 10 K™! =3 percent. The contribution of composition or
phase transitions can be up to Ap/p < 500kgm=3 /4000 kgm > =
12.5 per cent. Given these estimates, we may have to reconsider un-
der which circumstances it is indeed appropriate to eliminate some
or all of the corresponding terms from the mass conservation equa-
tion, as some density variations are not negligible compared to the
total density.

To assess the effects of using the approximations described above,
we therefore set out to answer the following questions:

(i) For realistic models of Earth, how accurate is each of these
approximations? We will principally assess this by calculating the
size of (dp/dt) + V - (pu), which eq. (7) requires to be zero, but
will be nonzero in the computational solutions of the approximate
models, which require only V - (pu) = 0, where p is the density on
the reference profile.

(i1) For realistic models of Earth, can we quantify whether the
inaccuracy resulting from the assumptions actually matters? In other
words, does it matter that (dp/dt) 4+ V - (pu) # 0, or is the violation
of'mass conservation acceptable because it does not result in notably
different model predictions?

(iii) If there are geodynamic applications where the model error
even for the most accurate commonly used approximation (namely,
the ALA) is not acceptable, can we devise other approximate for-
mulations that are more accurate? Specifically, can we find a formu-
lation that takes into account all of the processes that are relevant for
mantle convection and lithosphere dynamics, but does not include
sub-time-step processes that would cause pressure oscillations? We
also consider whether any such approximation can be (efficiently)
implemented.

We believe that answering these questions is timely given that
today’s simulation codes have reached accuracies and resolutions
at which the numerical approximation no longer vastly dominates
the model error. Furthermore, the current generation of codes
have become sufficiently sophisticated that they now have built-
in parametrizations of highly complex material behaviour and are
capable of incorporating more complicated compressibility formu-
lations if our experiments show that this would be useful.

We organize the manuscript as follows. In Section 2, we intro-
duce the governing equations and their existing approximations,
and derive the new approximations we investigate in this work.
In Section 3, we use several simple benchmark cases to illustrate
and analyse which physical processes can and cannot be modelled
by each approximation. These benchmarks also ensure that all of
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the presented approximations are correctly implemented. Finally, in
Section 4, we discuss several applications for which we can show
that the choice of approximation matters, and these will then be
the basis for the conclusions we draw in Section 5. An appendix
outlines the derivation of one of our benchmarks.

2 FORMULATIONS AND
APPROXIMATIONS OF THE
COMPRESSIBLE STOKES EQUATIONS

In order to discuss different ways to formulate and approximate
the compressible Stokes equations, let us start with the following
equations describing momentum, mass, and energy conservation:

- V.14 Vp=pg, (6)
3
L 1v-(pw =0, %)
ot
pC,,(%-}—u-VT)—V-(kVT)=pH+r:é+aT(u-Vp)+QL. (8)

The parameters in eqs (6) and (7) are the same as in eqs (1) and
(2). Additionally, C,, k, H, «, and Q; are the specific heat capacity
(at constant pressure), thermal conductivity, intrinsic specific heat
production, thermal expansion coefficient, and latent heat gener-
ated by phase transitions, respectively. We allow that all of these
parameters with the exception of gravity can depend on the current
temperature and pressure; furthermore, we allow that the viscosity
n can depend on the strain rate ¢ and that all parameters may also
depend on the location x to facilitate material parametrizations that
are not derived from realistic material models but incorporate a pri-
ori modelling assumptions. Often geodynamic models also allow
for the tracking of composition or other local properties of the rock
using particles/tracers or compositional fields that are advected by
the velocity field, that is, solving the following equation:

ac;
( o +u-VCi> =R, fori=l.n, )

where 7 is the number of compositional quantities tracked and R;
are reaction rates. The dependence of parameters on X can then also
be understood as an underlying dependence on composition C or
other properties (see e.g. Heister ef al. 2017). In other words, we
consider that n = n(p, T, é(n),x), p = p(p, T, X), k = k(p, T, X),
H=Hp, T,x),x=a(p,T,x),g=gXx).

As mentioned above, there are numerous approximations to eqs
(6)—(8) that have been widely used in the literature, such as the
ALA, TALA and BA (see e.g. Bercovici et al. 1992, Schubert et
al. 2001, King ef al. 2010 and Tan & Gurnis 2007). We will dis-
cuss the assumptions and consequences of these approximations in
the following subsections, and add a discussion of ASPECT’s im-
plementation of these approximations. Finally, we will derive and
discuss a new approximation, which we call the projected density
approximation (PDA).

2.1 Notes on phase transitions

Taking into account mineral phase transitions and their impact on
material properties is essential for many problems in mantle con-
vection.

In early studies, phase transitions were often implemented in the
form of an analytical function, the ‘phase function’ (e.g., Chris-
tensen & Yuen 1985), which described the proportions of each
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stable phase in dependence of depth (or hydrostatic pressure). Usu-
ally, these functions were chosen in such a way that they provided a
smooth transition from one phase to the next (such as a hyperbolic
tangent), and consequently, derivatives of the density with respect
to depth were easy to compute.

As geodynamic modelling codes became more complex, and
thermodynamic modelling software such as Perple_X (Connolly
2005) and HeFESTo (Stixrude & Lithgow-Bertelloni 2005) became
more widely used in the geodynamics community, other approaches
for implementing phase transitions were developed to make use
of these tools. One common approach is to use a thermodynamic
modelling software and a mineral physics database to compute a
table of material properties (usually with pressure and temperature
as the independent variables). Every time a material property, like
the density, is needed to compute the solution, this look-up table can
provide its value for a known temperature and pressure (and mantle
composition; e.g., Xu et al. 2008; Nakagawa et al. 2009). However,
this means that the density may no longer be a smooth function on
the scale of the mesh resolution used in the geodynamic model, as
phase transitions may be quite sharp and appear as discontinuities
when interpolated to the computational mesh. Consequently, we
cannot assume any more that the density is always differentiable
with respect to depth or pressure. In addition, each rock type in
the model may have its own p—T-look-up table, and may follow a
different equation of state.

Another possibility is to call the thermodynamic modelling soft-
ware directly from the geodynamic model to compute material prop-
erties, without the intermediate step of using a look-up table. This
allows for very accurate results and a wide range of chemical com-
positions, but is so far rarely done due to the computational cost.
As in the lookup-table method above, densities and other properties
may no longer be continuous in the geodynamic computation when
computed externally.

2.2 Notes on thermodynamic properties

The approximations we present rely on a number of material prop-
erties to compute the density and temperature changes caused by
changes in pressure, namely, the thermal expansivity, the specific
heat capacity and the compressibility. While these coefficients may
at first appear independent (and are treated as such in many pub-
lications), there are thermodynamic relations between these prop-
erties which must be satisfied in any self-consistent material de-
scription. In addition, it is important to distinguish between prop-
erties corresponding to isothermal (constant temperature), adia-
batic/isentropic (constant entropy) and isobaric (constant pressure)
processes. Specifically, we will use the following material proper-
ties:

(1) the thermal expansivity, describing how much the material
expands due to temperature increases at constant pressure:

__1(%»
‘= p<BT)p, (10)

(ii) the specific isobaric heat capacity C,, describing how much
heat is needed to change the temperature of a given material at
constant pressure:

d
C, = (a—‘;) , (11)
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(iii) the isothermal compressibility, describing how much the
material is compressed due to pressure increases at constant tem-
perature:

1 /9
Kr = — <i> , (12)
p\op /)

(iv) the isentropic/adiabatic compressibility, describing how
much the material is compressed due to pressure increases at con-
stant entropy:

ks = ! (a—p> . (13)
p\dp /s

These properties are all second derivatives of the specific ther-
modynamic potentials (specific enthalpy and free energies). Con-
sequently, there are implicit relationships between the parameters
(for the derivation, see e.g. section 6.8 of Schubert et al. 2001),
which include a relationship between the isothermal and isentropic
compressibilities,

a’T
Ks = Ky — ——, (14)
pCp
and a relationship between heat capacity and the volumetric equa-
tion of state:

(), - (%)
) T ),

These relations also allow us to compute isentropes, which can be
used as reference profiles in some of the compressibility approxi-
mations:

<8T> ol 16
/s pCy

In the following case studies, we choose thermodynamic properties
that ensure direct comparison between the different compressibility
approximations.

2.3 The (truncated) anelastic liquid approximation

The anelastic approximation (Batchelor 1953; Ogura & Phillips
1962; Gough 1969) or more precisely its specialization for liquids,
the anelastic liquid approximation (Jarvis & McKenzie 1980) is
based on two assumptions. First, that lateral density variations are
small relative to a reference density profile: p(r) = p(p, T), where r
is the radial or vertical coordinate, depending on whether the model
is posed in spherical or Cartesian coordinates. The bar indicates
that density values are taken along the reference profile, and are
therefore only a function of 7. The ALA approximates the density
via a Taylor expansion in pressure and temperature:

oo )~ 0+ (%) o+ () T (a7

=p(r) (1 +kr(r)p" —a@)I’). (18)

Here, k7 is the isothermal compressibility, and primes mark devia-
tions from the reference state: p = p+ p'and T =T + T'.

The second assumption is that the deviation of density from the
(depth-dependent) reference profile can be neglected in the mass and
energy conservation equations (7) and (8), and is only considered
in the right-hand side of the momentum conservation equation (the
buoyancy term in eq. 6), which describes the driving force of the
flow. Since this reference state is assumed to not change over time
(or to only change very slowly over time), the time-derivative of

the density in the mass conservation equation is zero, and eq. (7)
simplifies to

V- (pu) = 0. (19)

The TALA further simplifies the ALA by assuming that the variation
of the density due to pressure variations is small, that is, that

p(p, T) ~ B) + (3‘;) T = 50) (1 -@T). 0)
P

Both the ALA and TALA then use the depth-dependent p(r) in
the energy conservation equation (8).

We note that this verbal description is not the original way in
which the ALA was derived. Instead, the original derivation (Batch-
elor 1953; Ogura & Phillips 1962; Gough 1969; Jarvis & McKenzie
1980) is based on a non-dimensionalization of the equations and a
polynomial expansion of the relevant terms, after which the higher
order terms are neglected. We chose to present the approximations
in the current way to make it easier to understand the physical
assumptions implied by the mathematical description.

2.4 The Boussinesq approximation

Although derived more than 50 yr before the ALA, the B4 (Ober-
beck 1879; Boussinesq 1903; Rayleigh 1916) can be seen as a
further simplification of the ALA that assumes a constant reference
temperature and reference density, 7(r) = Ty, p(r) = po. In other
words, density variations are assumed to be so small that they are
negligible everywhere except in the buoyancy term of the momen-
tum equation (6). This simplifies the mass conservation equation
(7) to its incompressible form V - u = 0. In addition, as the refer-
ence temperature is constant, adiabatic and shear heating are not
considered in the energy equation (8).

Both the BA and the ALA (approximating the behaviour of pure
gases/liquids or atmospheric convection, respectively) were origi-
nally designed assuming density variations predominantly due to
temperature and pressure. Nevertheless, in geodynamic modelling,
they have been widely used with density variations caused by com-
positional heterogeneity and phase transitions. The former is jus-
tified as long as density variations due to chemical heterogeneities
remain small (similar to the effect of temperature variations), or if
they do not vary strongly with depth. In the Earth’s mantle, this is
not necessarily the case (see e.g. Tan & Gurnis 2007). Phase tran-
sitions may cause even bigger density deviations. As long as the
model is isochemical, ALA/TALA implementations can include
phase transitions in the background reference density profile, and
they can even model the effects of a non-zero Clapeyron slope and
the latent heat release or consumption by adding the correspond-
ing terms in the temperature equation and in the buoyancy term
(e.g. Christensen & Yuen 1985; Tackley er al. 1993; Bunge et al.
1997; Nakagawa & Tackley 2004; Nakagawa et al. 2009; Leng &
Zhong 2010). However, in chemically heterogeneous models, the
depth range and density change of a phase transition depends on
the chemical composition, which means that it cannot be included
in a single reference profile. In this case, neither BA nor ALA can
be used to model the effect of volumetric contraction or expansion
of at least a part of the material. Volume changes due to phase
transitions can reach almost 10 per cent over very narrow depth
ranges for important phase transitions in the deep mantle [e.g. at the
670 km discontinuity; cf. the Preliminary Reference Earth Model
by Dziewonski & Anderson (1981)], and may be even larger for
dehydration reactions in shallower parts of the Earth. Furthermore,
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these large density gradients may not all be at the same depth as a
function of temperature and composition, such that any given ‘refer-
ence’ profile has less physical meaning; as an example, the ‘410” km
discontinuity is not, in fact, at a constant depth everywhere in Earth,
and will not exist at all in materials devoid of olivine/wadsleyite.

2.5 New approximations

In the following, let us introduce three approximations that go be-
yond those discussed above. All of these start by considering why
we do not want to solve the original mass conservation equation

).

ap
L 4v. =0,
ar T (pu)

directly. Besides the fact that the equations are nonlinear, the prin-
cipal difficulty is that the primary variables of the full momentum
conservation equation (1) are the velocity and pressure, but in the
mass conservation equation the primary variables are the density
and momentum. One can resolve this by expressing the density
in terms of the pressure and temperature, as done in eqs (17) and
(20), for example; however, applying the product and chain rules to
V - (pu) leads to complicated terms that are difficult to discretize.
As a consequence, all of the approximations described above use a
reference density of some kind in the mass conservation equation.
The new problem is also linear, and thus easier to solve.

But we can still ask whether the use of the chain rule can lead to
a more accurate approximation. To this end, let us rewrite the mass
conservation equation in the following form:

ap

1 19 1
(2L iv.pu)=-L 4v.us(-Vp)-u=0 1)
p \ 0t p ot P

The approximations derived below use this form as a starting point.

2.5.1 The isentropic compression approximation (ICA)

The ICA can be seen as a variation of the ALA and is the default
for handling compressible models in the ASPECT software used
for the numerical experiments in this paper. ICA follows the ALA
and BA in neglecting time derivatives of the density in the mass
conservation equation. It then replaces the reference density profile
with an approximation of the effects of static compression due to
the action of gravity at each point. This is achieved by introduc-
ing a depth-dependent reference hydrostatic pressure p, = p(r),
calculated using a 1-D density (and gravity) profile that is charac-
teristic for the model. Using this approximation in eq. (21) results

in the replacement of %Vp ~ pith,, ~ i%”Vﬁh ~ Kksppg, and
consequently
V.u=—ksmg-u, (22)

where x5 is the compressibility at constant entropy and p, =
p(p,, T, C). Because the approximation uses the isentropic com-
pressibility (rather than the isothermal compressibility), the right-
hand side of the equation describes volume changes along an adiabat
due to the combined effect of the changes in pressure and tempera-
ture.

The ICA thus has different modelling assumptions than ALA.
ALA neglects all density changes that are not included in the refer-
ence profile, for example lateral variations in composition or tem-
perature. It is possible to take into account changes in the reference
profile over time, such as caused by secular cooling of the Earth, by
recomputing the profile in given time intervals, but at every given
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instant there is only one reference profile describing how the density
changes with depth. In contrast, ICA does not have one exclusive
reference profile, but instead calculates the material adiabat based
on the current temperature, pressure and composition (because both
p; and kg can depend on these variables). Consequently, it automat-
ically computes an approximation to the local adiabat for material
with a different composition, material with a higher or lower tem-
perature than the average mantle such as plumes or subducted slabs,
and changes in average mantle temperature over time. However, ICA
still neglects the volumetric effects of local density changes over
time not caused by advection along an adiabat (e.g. due to thermal
diffusion or radiogenic heat production).

The ICA can be used either with a reference density profile
or the full density in the temperature equation. In the benchmark
experiments and applications presented in the following sections,
we will use the formulation with the full density.

2.5.2 The hydrostatic compression approximation (HCA)

The HCA (Heister et al. 2017) follows a similar derivation, but ap-
proximates the gradient of the density in a different way. Specifically,
it reintroduces the effects of local temperature gradients, replacing
the reference density profile by the effects of static compression
and dynamic temperature at each point. The resulting expansion is
in terms of temperature and pressure (but not composition), rather
than pressure at constant entropy:

1/ 3 1/ )
- ( p p T) ~ (—pvm + —pVT>
p \dp aT

1
—Vp &~ —Vp+—=V
1
~ ;(Krp(phg)—apVT),

P p \dp aT

which, when entered into (21), yields
V-u=—(krppg —aVT) u. (23)

Note that this approximation uses 7, the isothermal compress-
ibility (rather than isentropic compressibility), so that —k70,g - u
describes the effect of compression/expansion due to isothermal
pressure changes and @ VT - u describes the compression/expansion
due to isobaric temperature changes. As a consequence, the HCA
also uses different modelling assumptions than the ALA. While
the ALA neglects all effects due to deviation from the reference
profile, the HCA includes the effects of pressure and temperature
variations as separate contributions. As we will show this is more
accurate than the ALA for steady state cases (both close to and fur-
ther away from the reference profile), but cannot accurately model
time-dependent flow. Consider, for example, a volume of material
that contains a lateral density gradient (e.g. caused by temperature).
If that material is purely advected along at constant pressure and
temperature, the density of a small parcel that moves with the flow
does not change, therefore the divergence of the velocity should be
zero. This can be demonstrated by the Lagrangian formulation of
the mass conservation equation (2):

D,
Z+pV-u=0, (24)

where Dp/Dt = (dp/dt) + Vp -u is the Lagrangian material
derivative of the density. The advection of temperature (and the
related density) gradients with the flow alone does not change the
density along material pathlines over time (i.e. Dp/Dt = 0). Ac-
cordingly, the divergence of the velocity should be zero in that case.
However, eq. (23) yields V-u = —aVT -u # 0, which is clearly
wrong for this thought experiment.
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We will illustrate the effect of this inconsistency in Section 3.2
and despite describing the approximation in an earlier publica-
tion (Heister ef al. 2017) advise against using it for geodynamic
computations. The HCA—just as the ICA—can be implemented
to use either a reference density or the full density in the energy
conservation equation.

2.5.3 The projected density approximation

Compared to the full mass conservation equation (2), both the ICA
and the HCA suffer from the fact that (i) the time derivative of the
density is neglected and (ii) the approximations assume that the
density is differentiable with regard to the pressure and, in the case
of the HCA, the temperature. This latter assumption is not valid if
the density is essentially discontinuous, for example, in the presence
of phase changes. In fact, applying the product rule to V - (pu) is
also not valid in that case, but we will ignore this for a moment.

The reason why we have derived approximations under these as-
sumptions is that the density is not a primary variable in geodynamic
computations, but is a function of the computed pressure and tem-
perature fields. Consequently, we cannot express the time derivative
or gradient of the density without recourse to the time derivatives
or gradients of the pressure and temperature fields, using the chain
rule. In the following, we will therefore pursue an entirely differ-
ent strategy that does not attempt to express the density variations
through pressure or temperature variations, but instead tries to stay
closer to the original form by directly using the density, which then
also allows us to keep the time derivative.

As mentioned in Section 1, the full compressible continuity equa-
tion is rarely used in convection models because it causes pressure
oscillations in the solution (Glatzmaier 1988; Ismail-Zadeh & Tack-
ley 2010) and convergence problems for nonlinear solvers. All of
the previously discussed formulations prevent the generation of this
type of pressure oscillations by using time-independent reference
densities. However, as discussed, this also excludes dynamic contri-
butions from temperature and composition. Therefore when deriv-
ing the new formulation of this section, we choose to stay close to
the full density (including dynamic temperature and composition),
but use a reference pressure profile p, (as in the HCA) to prevent
the generation of pressure waves. This is a more accurate approx-
imation than made in the ALA, because density changes due to
the ‘dynamic pressure’ (p — p,(r)) are small compared to the ones
caused by local compositional heterogeneities and temperature vari-
ations (see Section 1.3). Nevertheless, there might be special cases
where dynamic pressure effects exceed the influence of other varia-
tions and become important. In particular, at shallow depths (above
the isostatic compensation depth), different regions may have total
pressures which differ significantly from the reference hydrostatic
profile. In this case, however, none of the discussed formulations
will be a good approximation to the full set of conservation equa-
tions. This is not an important consideration for mantle convection
or lithosphere dynamics simulations, as long as a reasonable refer-
ence pressure profile has been chosen.

Accordingly, we propose using the following form of the mass
conservation equation:

Unfortunately, as mentioned, we cannot evaluate the right-hand side
terms because numerically only p and T are known as functions of
x and ¢, and p, = pu(p,(x, 1), T(x, 1), C(x, t)) can in general be an
expression that we cannot differentiate with respect to x or 7.

Therefore, we replace p, by its projection or interpolation p,
onto a finite dimensional space R, for example, the same space that
is used to represent temperature. Then, the final version of the mass
conservation equation used in the PDA is as follows:

- —Vp-u. (25)

This formulation has a variety of advantages. First, in order to
compute pj, by projection or interpolation, we only need the values
of p, at individual points, but not its derivatives. Second, as an
element of the finite dimensional space R;,, we know how to compute
spatial and temporal derivatives of p, easily and efficiently, and so
all terms on the right-hand side of (25) are easy to evaluate. And,
finally, if one chooses R, to be a space of continuous functions
(e.g., one of the usual continuous finite element spaces), then the
right-hand side is also always well-defined.

The formulation also solves another problem in the finite element
context: If R, is chosen as a space of continuous functions, and
if the space used for the discretization @ of the velocity u is also
continuous (as is typically done), then the application of the product
rulein V - (p1) = Vp, - i+ p,V - it is now well-defined.

In our computational practice, the way the system of (3) and
(25) is solved is that we keep all terms that involve the density on
the right-hand side and perform a fixed-point iteration as described
in Heister et al. (2017). We remark that computing the time deriva-
tive of p, involves the (projected) density from previous time steps.
It is natural to use the same approximation for the time-derivative
as for the other time-dependent solution variables. In our imple-
mentation, we use a BDF2 approximation for the time derivative in
time step », using the solution at time steps » — 1 and n — 2 (see
Kronbichler et al. 2012):

37’;5 ~ 1 (an + kﬂ*l ~n,S kn + kﬂ*l ~n—1%
~ oo Pp = P
ot kﬂ kn + kn—l kn—l
kZ

+ n ~n—2% )
kn—l(kn +kn—l)ph >

Here, k, = " — "~ ! denotes the length of the nth time step and s
is the number of the fixed point iteration at the current time step.
Furthermore, ,5,’,'_1'* is the projected density from the last nonlinear
iteration in the previous time step (and similarly for i),’f*z'*). On
the other hand, p,* is computed by projection (or interpolation)
of py(py, T™*, C™*), except in the first nonlinear iteration where it
is computed by projecting (or interpolating) p,(p,, T, é‘) where T
and C are linearly extrapolated from the previous two time steps.

The resulting set of equations is of course more nonlinear than
simpler approximations like ALA, and therefore potentially more
computationally expensive. However, in our models in the follow-
ing sections we observe that the additional computational cost can
vary significantly, depending on other existing nonlinearities in the
model. For steady-state convection benchmarks like the ones in
Section 3 we observe an additional cost of less than 10 per cent.
For models with strong nonlinearities, we observe a higher cost for
the PDA: for example, the model of contracting crust (Section 4.3)
requires twice the time for PDA, almost exclusively because of a
higher number of nonlinear iterations per time step.
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3 BENCHMARKS: HOW
APPROXIMATING THE MASS
CONSERVATION EQUATION
INFLUENCES THE FLOW

After introducing the different compressibility approximations for
the Stokes equation, we will now discuss their performance in sim-
ple steady-state and time-dependent benchmark models. To this end,
we first introduce a number of different 1-D benchmark cases that
quantify the mass error associated with each approximation. We
start from the simple case of steady-state flow along an adiabat,
and gradually introduce varying complexities, such as deviations
from the adiabat, temperature changes over time, advecting density
gradients and varying pressure over time.

The formulations and benchmark setups are implemented in
the open source community code ASPECT (Kronbichler et al.
2012; Bangerth et al. 2016, 2018; He et al. 2017; Heister et
al. 2017) newer than git version 41b764019. The specific ver-
sion of ASPECT used for the models in this manuscript is avail-
able at https://github.com/gassmoeller/aspect/releases/tag/compres
sible-formulations-submission as git version 82e47{2fd. The input
files and post-processing scripts for benchmarks and models in this
manuscript are available at https://github.com/gassmoeller/formula
tions-of-compressible-mantle-convection-data.

3.1 1-D vertical or horizontal steady-state flow

The first model describes vertical flow along an adiabat. The setup
consists of a long vertical pipe (aspect ratio 10:1), in which material
is leaving the lower outlet with a prescribed velocity, driving the
downward flow. The upper inlet is stress-free (open), and material
enters with a constant temperature. The side boundaries are free-
slip. Due to a constant downward gravity this model develops a
hydrostatic pressure profile, which leads to an increase of the (com-
pressible) material density with depth. The thermal expansivity and
isothermal compressibility are chosen as constant, and the thermal
conductivity is set to zero in order to let an adiabatic temperature
profile develop. The heat capacity is set to be constant, consis-
tent with the thermodynamic relations in (14)—(16) if temperature
changes are adiabatic. This then leads to a density that satisfies

p(p, T) = poexpkr(p — po) — (T — Ty)),

with the reference pressure py = 0 and the reference temperature Ty
= 1600 K. This profile satisfies the definitions of the thermal ex-
pansivity and isothermal compressibility given in eqs (10) and (12).
(The thermodynamic relations require that the isentropic compress-
ibility cannot be constant, and we can compute it from the quantities
given above using eq. (14).) There is no internal heat generation in
the material except for adiabatic heating. A sketch of the model
and its parameters is shown in the top left panel of Fig. 2. Under
these conditions, the exact material velocity decreases as density
increases with depth to create a constant mass flux. Indeed, since
the setup is 1-D, the mass conservation equation (2) implies that pu.,
= constant, and the velocity is readily computed using the density
profile above. This means we can quantify the error of the different
formulations as the difference between the mass flux at the inlet and
the outlet, normalized by the mass flux at the outlet. To illustrate
the limitation of approximations that use a reference profile, we
will consider two cases: (i) the material that enters has the potential
temperature of the reference profile and (ii) the material at the inlet
has a lower temperature than the reference profile (e.g. like a cold
subducting plate would have).
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The top row of Fig. 2 shows that for this test case, the various
approximations have different systematic (model) errors—which
are independent of the mesh resolution—and numerical (discretiza-
tion) errors—which converge to zero with increasing resolution.
For steady-state flow along the reference adiabat, all approxima-
tions solve the equations with similar accuracy and converge to
an error of zero (Fig. 2b), because in this case the model error is
zero. But because the ALA was only designed to accurately model
compression at its reference adiabatic profile, it suffers from a sys-
tematic error as soon as material moves along a different adiabat.
This lets the mass flux error stagnate at a relatively high level (1073,
Fig. 2¢), whereas the new approximations proposed in Section 2.5
converge with mesh resolution towards an error of 0, with a second-
order convergence rate. The PDA shows generally the smallest mass
errors of all approximations, independent of mesh resolution.

The second model setup (bottom left panel of Fig. 2) is a rotated
version of the first setup, creating lateral pipe flow. Whereas the first
test case was designed to capture heating due to adiabatic compres-
sion (e.g., in subducting slabs or rising plumes), in this example
we test how well the different compressibility approximations can
capture non-adiabatic changes in temperature (e.g., the cooling of
an oceanic plate as it moves away from a mid-ocean ridge). For this
purpose, we switch off gravity (to simplify the model and eliminate
the density changes caused by the hydrostatic pressure), but instead
introduce internal heat production in the material. Heat capacity is
again set to be constant (this is thermodynamically consistent, as the
conditions within the domain lie along a single line in p-T space).
The internal heat production increases from the inlet to the outlet
as H = 10" W/kg, where [ is the length of the pipe, but H does
not vary with time. This leads to thermal expansion over time as
the material travels from the inlet (left) to the outlet (right), and we
consequently expect an increase in velocity from the inlet (higher
density) to the outlet (lower density). It stands to reason that ap-
proximations that assume compression only in downward direction
(e.g. by relying on a depth-dependent reference profile) are not able
to capture this type of situation well.

This is confirmed by the results in Fig. 2, bottom. Only the PDA
and HCA have a zero model error (observed as the mesh size goes
to zero), while the ALA and ICA show a stagnating model error
(Figs 2d and e). Because these latter two were designed to model
adiabatic volume changes, they do not capture the volume change
caused by non-adiabatic temperature changes.

3.2 1-D transient flow

In the test cases above we have looked at steady-state behaviour,
but in practical applications the density at each point within the
domain is time-dependent, making the term dp/d¢ relevant (as we
will demonstrate in Sections 4.2 and 4.3). To study this effect, we
have designed three time-dependent benchmarks.

As a first case, we consider an open pipe (just like in the lateral
pipe benchmark above) that has an open boundary on the right,
allowing free in- and outflow of material, and a closed boundary on
the left. Over time, the material in the pipe is slowly heated inter-
nally. The resulting expansion causes outflow of material through
the open boundary, and the amount of outflow should be equivalent
to the loss of mass inside the pipe. The PDA is the only one of the
formulations discussed in Section 2 that includes the time derivative
of the density, so one might expect that it alone can yield accurate
solutions.
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Figure 2. Model setup and mass flux error for the different compressibility approximations in the steady-state 1-D compressible pipe flow tests. The relative
error is computed as |Jmout + Jm.inl/[/m.inl, Where Jmin and Jm oyt are the mass fluxes into and out of the model domain. Top: vertical flow test. Bottom:
horizontal flow test. Left: model setup. Centre: mass flux errors if the adiabatic temperature profile matches the inflow temperature. Right: mass flux errors if

the adiabatic temperature profile does not match the actual inflow temperature.

To verify this quantitatively, let us describe the setup and its
model parameters that lead to a time-dependent mass outflux J(7).
First, we prescribe the internal heating to produce a temperature
increase as

T(t) = Ty + wt, (26)
where we choose w = 100 K Myr~!. The resulting density is then
p(t) — poe—a(T(t)fTo) — poe—awt' (27)

With this setup, the (exact) outflow through the open boundary
needs to exactly balance the mass change inside the model domain:

d
Jn(t) = fr nejadr= -5 /ﬂ p(1) <2, (28)

where J), is the total mass flux, j,, is the mass flux density, I" is the
model boundary with normal vector n and €2 is the model domain.
Since the density p is spatially uniform, we obtain

Ju(t) = powVie ™™, (29)

where ¥ is the volume of the domain. Otherwise, we use the same
material properties as in the example described in Section 3.1 and
displayed in Fig. 2(a).

‘We show results for this situation in Fig. 3, where we use a variable
number of time steps to reach a time 7= 10 Myr and a corresponding
heating of 1000 K. The equations above imply a mass flux of .J,,(7)
A 0.0205 kg s~!. By this time, around 2 per cent of the total mass
has left the model (equivalent to a 2 per cent expansion due to the
increasing temperature). As expected, the mass flux can only be
adequately captured by the PDA, as shown in Fig. 3(b). Its error
converges as expected with the order of our BDF2 time-stepping
scheme (second order), while all other approximations experience
a constant model error.

As asecond case, let us consider the same lateral pipe, but instead
of local temperature changes we will apply a time-variable exter-
nal pressure to the right model boundary. We choose the external
pressure as exponentially increasing with time, leading to compres-
sion, so that material flows into the pipe from the right (Fig. 3c).
The results shown in Fig. 3(d) imply that the ALA, ICA and HCA
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Figure 3. Time-dependent 1-D compressible pipe flow tests: model setup
and relative mass flux error in J,,(7) for T = 10 Myr for the different com-
pressibility approximations. The error is computed as described in Fig. 2.
Top row: outflow due to internal heating. Middle row: inflow due to external
pressure. Bottom row: Lateral advection of a temperature gradient.

cannot be used to model this effect because they consider neither
dynamic pressure nor local changes in density over time in the mass
conservation equation [dynamic pressures are included only in the
force balance equation (1)]. The PDA could in principle include
the effect, but as discussed in Section 2.5.3, we explicitly exclude
the dynamic pressure from the density calculation to prevent the
generation of pressure oscillations. However, one could modify the
method discussed in Section 2.5.3 to use the full, not just the hydro-
static, pressure because the solution is smooth and there are no den-
sity gradients, and therefore no pressure waves. We have made this
modification and show the results with the dashed line in Fig. 3(d).
The modification then correctly predicts the (small) compression of
the material, and at the expected second-order convergence.

To justify our omission of the dynamic pressure component from
the PDA despite the results of the previous paragraph, see our
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discussion of the magnitude of different density variations in Earth’s
mantle in Section 1.3. In the current example, a dynamic pressure
change of 100 MPa changes the density by a negligible amount of
0.04 per cent.

As a third test case, we investigate the lateral advection of a den-
sity gradient. The model setup is similar to the steady-state lateral
pipe flow in Section 3.1, but instead of heating the material inter-
nally over time, we fix the temperature on the left model boundary
and let this temperature increase linearly over time (Fig. 3e). We
also prescribe an inward material flow on the left boundary with
a fixed velocity that exponentially increases over time. The right
boundary is stress-free (open) so that material can flow out. Under
these conditions we can derive an analytical expression for the mass
flow out of the right boundary at any given time (see Appendix A).
We choose to let the model evolve until the material that started at
the left boundary reaches the right boundary and compare the mass
flux in the model to the analytical solution.

Because all density anomalies are transported along with the flow,
and there are no density changes along material pathlines, there
should be no velocity divergence in this model. This is guaranteed
in the ALA and ICA, because all gradients in the reference profile
are vertical, while the velocity is horizontal, therefore the mass
conservation equation for these approximations reduces to V - u =
—(1/p)Vp-u=0.

The results shown in Fig. 3(f) point out that all approximations
reproduce this result, except for the HCA, which assumes that all
density gradients (including those caused by advected temperature
gradients) cause a velocity divergence. Therefore, the HCA does
not correctly predict the mass flux for this process, which is a con-
siderable shortcoming, because the advection of transient density
gradients due to temperature anomalies is the dominant mode of
convection in the Earth. Accordingly, while HCA performs very
well for steady-state advection as shown in Section 3.1, it is in fact
unsuitable for transient models of mantle convection or lithosphere
dynamics and we advise against using it. As in the other examples,
the PDA correctly converges towards the analytic solution.

Our conclusion from this series of benchmarks is that only the
PDA includes all the terms necessary to accurately solve different
modes of compressible convection in geodynamic models, and that
the remaining model error of using a hydrostatic reference pressure
profile is at least an order of magnitude smaller than the model error
of other approximations.

4 EXAMPLE APPLICATIONS

The simplified 1-D examples of the previous section show that
we implemented the approximations correctly, and that capturing
compressibility more accurately could improve the results of geo-
dynamic models. Whether this added fidelity is actually necessary
in typical geodynamic applications is of course an entirely different
question. We will explore this question using more realistic applica-
tion cases relevant for global mantle convection models, subduction
zone models, and models of crustal and lithospheric deformation in
the current section.

4.1 Global effects: rising plumes and sinking slabs

As shown in the previous section, when material in the mantle moves
up and down along the reference temperature profile, its volume
changes are computed correctly independent of the compressible

0202 1snBny |z uo Jasn sineq ‘eluloiied Jo Ausioaun A 2yySeLS/¥9Z1L/2/ 12z /PMeB/wod dno olwspeoe)/:sd)y wolj papeojumoq



1274 R. Gassmoller et al.

formulation. However, p—T paths of plume and slab material typ-
ically deviate by more than 100 K from the reference profile, and
thermal conduction means that the paths are not isentropic (Fig. 1).
The results in Section 3.1 showed that not all approximations in-
clude these effects, which causes a model error that depends on the
formulation used. Here, we estimate how big this error is for typical
plumes and slabs in the Earth’s mantle, and how it would influence
their predicted temperature, heat flux, and buoyancy.

Let us assume a plume with a relatively large excess temperature
of ATcvp = 1000 K when it starts at the core-mantle boundary
(consistent with CMB temperature estimates of 3300-4300 K as
given by Lay et al. 2008) that cools down to an excess temperature
of ATgupee = 250 K as it approaches the surface. For simplicity,
we also assume constant (i.e. thermodynamically inconsistent, but
nevertheless representative) material properties; specifically, a ther-
mal expansivity of @ = 2 x 107> K~!, and densities of pguface =
3400 kg m3 and peyp = 5600 kg m=3. This means that the plume
has a density difference of Apcys &~ pemp@ ATcoys = 112 kg m=3,
or 2 per cent, at the core—mantle boundary, and a density difference
of ApPgurface X Psurface® ATguface = 17 kg m™3, or 0.5 per cent, at
the surface. In other words, there is a volume decrease of about
1.5 per cent due to the plume cooling down that is not predicted in
models that use a reference profile to compute the effects of com-
pressibility. We conducted numerical models of rising plumes using
these parameters and the different compressibility approximations
described above, and see volume changes on the same order. This
volume change is quite small compared to the volume change along
the reference profile (approximately 50 per cent), and also in com-
parison to existing uncertainties in the material properties of the
mantle.

If we do a similar estimate for subducting slabs, using A Ty face
= 1300 K and ATcys = 300 K, the density change that is not
accounted for amounts to about 2 per cent, of the same order of
magnitude as found above for rising plumes. This value is consistent
with previous estimates (e.g. Schubert ef al. 2001; Ismail-Zadeh &
Tackley 2010), which suggest that density variations not included
in the reference profile are of the order of a few percent. Changes
in heat flux and buoyancy flux are expected to be of the same order
of magnitude.

In order to illustrate how these differences influence time-
dependent convection in the mantle, we set up simplified geody-
namic models with constant viscosity (see Table B.1 for a complete
list of parameters), using the different compressibility approxima-
tions described above (Fig. 4). Temperatures are prescribed at the
top and bottom boundaries, and the side boundaries are insulating.
All boundaries are impermeable and allow free slip. Qualitatively,
all models behave very similarly, and the differences in heat flux
between the models are of the same order of magnitude as the time
variability in cumulative heat flux (Fig. 4d). The main systematic
difference between the models is that the timing of the onset of con-
vection, and the growth of thermal instabilities is slightly different:
Only the projected density model includes volume changes caused
by thermal diffusion and the related expansion or contraction. Be-
cause cooling material decreases in volume, and heating material
increases in volume, downwellings form more slowly (Figs 4a and
b) and upwellings form faster than in the simulations using approx-
imations that do not include this effect (if the heat flux across the
boundary is otherwise comparable). However, this difference in the
growth rate of instabilities only shifts the onset of flow by a few
million years (Fig. 4c) and does not lead to large cumulative heat
flux differences between the models.
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Figure 4. Simplified 2-D mantle convection model for three different com-
pressibility approximations. (a and b) Instabilities of the upper, cold thermal
boundary layer, illustrated by the blue —300 K subadiabatic temperature
contours, at 200 Myr (a) and 215 Myr (b) after the start of the model.
In the projected density model (light blue line), downwellings start later
in time because the material contracts as it is cooled, leading to slower
growth of instabilities. This time-lag is also visible in a comparison of
the heat flux in the first few hundred million years between the differ-
ent compressibility approximations (c). The heat flux evolution is simi-
lar in all models. There is a small time delay for the projected density
model, but differences in heat flux are only of the order of a percent,
even when the heat flux is integrated over time (d) and shown over a
much longer time horizon. (We compute the relative difference in cumu-
lative heat flux as Ageumulative(t) = fr;o(q — qica)dr/ fr'=0 Gicadr, where

104,16
qica = frlio ™ qicadr is the average heat flux in the model using the isen-

tropic compression approximation and ¢ is the heat flux in each individual
model.) The differences in cumulative heat flux due to the temporal vari-
ability of each model are comparable to the heat flux differences between
models due to the approximation error.
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This means that for global convection models, the model error
caused by using an approximation that does not include the effects
of temperatures deviating from the reference profile in the mass
conservation equation is so small that it can be assumed to be neg-
ligible in most cases. The effects of compositional density changes
have a similar order of magnitude, and density changes due to
dynamic pressures are even smaller. Only in cases where composi-
tional density differences are much larger, such as for metal-silicate
separation during core formation or the deflection of a free surface,
where they can reach 100 per cent does the time derivative of the
density become important (Ismail-Zadeh & Tackley 2010).

4.2 Regional effects: dynamic contraction due to phase
transitions with large density changes

Some phase transitions in the mantle cause large density changes,
which implies large changes in volume and consequently substan-
tial (nonzero) values of V - u. If the predominant material in the
mantle undergoes the phase transition, if the density changes are
not very sensitive to the chemical composition, or if the model is
isochemical, these density changes can be included in the reference
profiles of the ALA/TALA formulations. Examples are the tran-
sitions from olivine to wadsleyite, wadsleyite to ringwoodite and
ringwoodite to bridgmanite, which are commonly included in geo-
dynamic models. However, some phase transitions strongly depend
on the chemical composition, and only a part of the material in the
model would be affected. Examples include high pressure dehy-
dration reactions, which only occur in hydrated parts of subducted
slabs. These reactions can cause density changes of 20 per cent or
more, and cannot be included in reference profiles, because they
depend on the presence of hydrated material and the temperature of
this material, which will change dynamically during the simulation.

To investigate how these phase transitions affect the dynamics
and evolution of subducted slabs, and how much the model be-
haviour is changed if these effects are not included, we set up a
simplified 2-D model of a subducting slab with a domain size of
300 km x 200 km. The slab enters the model from the top left
corner, and consists of a broad cold thermal anomaly and a com-
positional anomaly in the form of a thin layer of hydrated crustal
material. The phase transition only occurs in this top crustal layer,
and the density across the phase transition changes from 2700 to
3300 kg m~ at a pressure of 4 GPa (approximately 125 km depth).
This roughly corresponds to the transition of antigorite serpentinite
to nominally anhydrous basalt. The subduction velocity of approxi-
mately 1 cm yr~! is prescribed using velocity and traction boundary
conditions, and the shape and structure of the slab are determined
by the temperature and composition initial and boundary conditions
as detailed in Section B2. For simplicity, we chose constant material
properties (except for the density), as given in Table B.1.

We show the setup and results of this model in Fig. 5. Using the
full mass conservation equation, the volume of the subducted crust
decreases by 20 per cent as it reaches the depth where it dehydrates.
This contraction induces negative dynamic pressures and stresses
whose magnitude depends on the width of the phase transition,
which is approximately 5 km in our model, causing stresses of the
order of 70 MPa. The magnitude of these stresses might be quite
different for phase transitions in the Earth, in particular because
we here use a constant viscosity and the slab is dehydrated over
a very narrow depth range. However, this example illustrates that
depending on the phase transition, deviatoric stresses might become
large enough for brittle failure and the generation of earthquakes
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(e.g. Guest et al. 2003, 2004), in particular when considering that
the negative dynamic pressure would reduce the strength of the
material. If the time derivative of the density is not included in the
compressibility formulation and only taken along a reference profile
(such as for the classical ALA) models cannot reproduce this stress
increase and volume change.

We note that the description of a dehydration phase transition
as a pure contraction of the solid material as we have done in this
section is of course still a simplification of the full process, which
would include the emplacement and flow of the released fluid.

4.3 Regional effects: thermal contraction of a cooling
crust

In the previous examples, we have discussed the effects of density
changes caused by the convection of material up- or downwards
within the mantle, if the density change is not included in the ref-
erence profile. But also when material is not initially moving, the
conduction of heat can lead to density changes that are not correctly
accounted for in the reference profile. To illustrate this effect, we
use a simplified model of a thermally cooling crust.

The model setup of this example is a 2-D box with a width of
300 km and a depth of 30 km, representative of the Earth’s crust.
Boundary temperatures are 300 K at the top of the domain and 800 K
at the bottom, and the side walls are insulating. The box is split into
two areas: The right half represents old crust where the temperature
increases linearly from 300 K at the surface to 800 K at a depth of
30 km (the steady-state profile when simplistically assuming pure
heat conduction). The left half represents hot, recently formed crust,
such as in a rift, which, for simplicity, has a constant temperature of
800 K. These areas are separated by a zone of lower viscosity that
dips to the left with an angle of 45° and crosses the whole model
domain from top to bottom, representative of a simplified fault
zone (see also Section B3). Stress in the whole model is limited
by a Drucker-Prager yield criterion, otherwise the material has a
constant viscosity except for the weak fault zone separating the
two regions of different temperature. The model has a deformable
free surface and free-slip (zero tangential stress) boundaries at the
bottom and the side walls; in other words, no externally prescribed
velocities will be driving the evolution of the model.

As the hot material in the left part of the model cools, its thermal
contraction causes deformation localized along the weak fault zone
(see Fig. 6): The young crust in the hanging wall contracts and
undergoes plastic deformation, the material close to the surface
moves downwards, and a change in topography across the fault
develops. In our idealized example with rather high initial lateral
temperature variations, the model generates relief of ~229 m over
5 Myr. Models using common approximations like ALA or BA—
which do not include the time-derivative of the density—do not
reproduce this effect (see last panels of Fig. 6).

Although not often included in geodynamic models, volumet-
ric thermal expansion and contraction plays an important role in
a number of applications, such as the generation of topography in
rifts (Ziegler & Cloetingh 2004), at mid-ocean ridges (Haxby &
Parmentier 1988) and on icy satellites (e.g., Mitri e al. 2010). Ad-
ditionally, it is responsible for deformation and relief of transform
faults and fracture zones close to mid-ocean ridges (Turcotte 1974;
Collette 1974; Choi et al. 2008; Morgan et al. 2019), which can be
illustrated as follows: As oceanic plates move away from the ridge
axis, they cool and contract. Thermal contraction in the spreading
direction can be compensated for by the addition of new material
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Figure 5. Top: geodynamic model of a subducted slab crossing a phase transition with a large density change, such as is common for dehydration reactions.
Background colours show the density, blue contours indicate the subadiabatic temperature of the subducted slab and the black contour marks the (hydrated) crust
of the slab. The phase transition occurs at a pressure of 4 GPa and is marked by a white horizontal line. It increases the density by 600kg m~, corresponding
to a volume decrease of about 20 per cent. Middle and bottom: dynamic pressures and stresses as computed using the anelastic liquid approximation (left) and
the full mass conservation equation (using the projected density approximation, right). Both models predict stresses induced by the flow around the subducted
slab, which are of the order of 10 MPa. However, only the projected density method includes the volume change of the dehydration reaction: Because the
reaction only occurs for a specific type of material (the part of the slab that is hydrated crust), it cannot be included in the reference profile. Hence, the large
stresses induced by the volume reduction can only be modelled using the projected density approximation.

at the ridge axis, but contraction in ridge-parallel direction induces
thermal stresses that cause deformation and lead to a widening of
the transform fault valley. All of the mentioned processes are not
captured in traditional compressible or incompressible formulations
such as ALA and BA. Therefore, using the PDA in these applica-
tions likely improves the accuracy of the model results.

S CONCLUSIONS

‘We have described and tested new, more accurate approximations
of the compressible Stokes equations suitable for geodynamics, and
implemented them in the open-source community modelling soft-
ware ASPECT (http://aspect.geodynamics.org). Using the full mass

conservation equation is possible, although it presents a challenge
for numerical schemes. Instead, we propose to approximate this
equation by using a density which includes the effects of changing
temperature and composition, but neglects changes in dynamic pres-
sure, which would cause volume changes of the order of 0.1 per cent
or smaller. This method allows geodynamic simulations to include
the time derivative of the density, capturing local changes in mass
distribution without causing pressure oscillations.

Our results show that existing approximations that use a reference
density profile (like the BA or the ALA) are sufficiently accurate
for most global mantle convection models. However, using these
common approximations neglects the effects of density changes
that are not related to changes in static pressure along a specific p—
T-composition trajectory, and consequently cannot be included in
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Figure 6. Top rows: idealized cooling crust model using the projected density approximation from model start to 5 Myr. Left: effective viscosity after plasticity
(background colours) and temperature (isocontours) of the model evolution. Right: deviatoric stress (background colours) and topography (upper inlet, vertical
exaggeration 20 x ). Bottom row: final state of an identical model setup using the anelastic liquid approximation. While the temperature evolves identically, no

stress or topography is created over time.

the reference profile. For example, these effects become important
in the following situations:

(1) When different types of material with different densities and
phase transitions are present, and accordingly, some material under-
goes phase transitions that are not included in the reference profile;

(ii) When material expands or contracts due to temperature
changes caused by heat conduction close to boundary layers.

As these density changes can be of the order of 10 per cent and
can happen on short timescales relative to those of viscous relax-
ation, they may induce substantial stresses, causing modifications
to the pattern of viscous flow or even promoting plasticity or brittle
failure. These consequences of induced stresses are currently not

accurately represented in most numerical models, but may be cru-
cial in studies of crustal and lithospheric deformation, e. g. for the
stresses in subducting crust, or thermal cooling of rifted margins
and newly created ocean floor. In cases where one wants to model
these phenomena, our experiments show that only the use of the
PDA can yield quantitatively accurate results.
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APPENDIX A: DERIVATION OF THE
TRANSIENT ADVECTION BENCHMARK

The general setup is explained in Section 3.2. We chose the inflow
temperature and velocity as:

Ti(r) = 1600 + 200 (A1)
0(t) = voel (A2)
v,(1) = 0. (A3)

We call v, = v and want the material in the chosen time #; to travel
two times the length of the model /. In other words, we have the
relationship

2] = 0" vdt = f(;’ voeﬁ dt = voty(e — 1), (A4)

and thus, vy = ﬁ

Further, we want the initial temperature distribution 75(x) to be
consistent with the temperature and velocity boundary condition.
Theoretically we could have chosen a constant initial temperature
(the analytical result would remain unchanged), but then we would
not test the numerical approximations. First we determine the equiv-
alent time (in the past) where material that is now at location x would
have been at the left boundary:

x(t) = [*vdt = [" voe™ dt = voty (1 —eﬁ). (AS)

. *
This results in —35—2 + 1 = e, and thus:

) =nn(1- 2 ) =nin(1-22). (A6)

Given this time #(x) we can compute the hypothetical boundary
temperature at that time in the past:

Ty(x) = 1600 + 20022 (A7)

21

= 1600 + 200 In (1 - -“°*"). (A8)

Finally, we want to measure the accuracy at a time £, when the ma-
terial that was initial at the left boundary reaches the right boundary.
We can compute 7, as follows:

L= fode = [ vet dr = wry (o —1) (A9)

= 2Lt —1). (A10)

Some arithmetic then yields that £, = £ In (31).
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APPENDIX B: DETAILED SETUP OF
THE EXAMPLE APPLICATIONS

In order to satisfy the definitions of the thermal expansivity and
the isothermal compressibility as specified in eqs (10) and (12), all
application models use a density of the form

p(p’ T’ C) = (pO + Apphasc(c)) exp(KT(p - Po) - Ot(T - TO)),
(BI)

with the reference pressure py = 0 and the reference temperature Ty
and reference density po given in Table B.1. Apppas(C) describes
the dependence of density on the prevalent mineral phase, which
depends on the composition.

B1 Global convection model: Initial and boundary
conditions

The model starts from an adiabatic temperature profile, computed
from the parameters in Table B.1. To guarantee that upwellings
and downwellings will initiate at the same position in the different
models, we add small Gaussian temperature perturbations,

(r—x) cy—hf)

2 2
2c2 2¢;

T(t=0)= Ta+ AT exp <—

AT, exp (_(x —x)? B Oy — h)z) ’

2 2
2c? 2¢;

with AT, = 5K, AT, = 3 K, x; = 200 km, x, = 3500 km, ¢, =
400 km, ¢, = 200 km, and the height of the model domain /2 = 3000
km. To drive convection, we prescribe a temperature of 273 K at the
top and 3700 K at the bottom throughout the model evolution. There
is no internal heat production, but the model includes adiabatic
heating and shear heating. The side boundaries are insulating, and
all boundaries are impermeable and permit free slip.

B2 Dynamic contraction due to phase transitions with
large density changes: initial and boundary conditions

To guarantee a steady downward flow, we prescribe both compo-
nents of the velocity at the surface as u = (uy; —uy), and the hor-
izontal component of the velocity at all other boundaries as u, =
uy, with 1g = 1 cm yr~!. This causes an inward flow from the top
left corner, angled downwards by 45°. All remaining velocity com-
ponents are not fixed; instead the lithostatic pressure is applied as
the vertical component of the boundary traction at the left, right
and bottom boundaries, allowing for outflow at the right and bot-
tom boundaries. The initial temperature is constant, except for a
negative Gaussian anomaly in the top left corner:

=) - x0)2)>

2c2 ’
with yy = 200 km, xy = 10 km, ¢ = 35 km. Throughout the model
evolution, the temperature is prescribed at the left and top bound-
aries (wWhere material flows in) using the same equation. The bot-
tom and right boundaries (where material flows out) are Neumann
boundaries for the temperature. The initial composition is uniform,
without any hydrated crust in the model. As the model evolves and
material flows in, the composition at the top boundary is prescribed
as

T(t = 0) = 1600 K — 1000 K exp (

(=)
C— exp(— e ) X9 < x < 60 km,
otherwise.
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Table B.1. Parameters for the models presented in Section 4.

Quantity Global convection model Phase transition model Cooling crust model

n 1022 Pa's 1022 Pa's 1024 Pa's

an/dT 0 0 0

£0 3300 kg m > 3300 kg m 3 2800 kg m 3

o 2 x 1075 exp (a'p) K™ 2x 1073 K~! 4 %1079 K!

o —1.117979 x 10~ pa~! - -

G, 1250 Jkg ' K~! 1250 T kg ' K! 750 Jkg~' K~!

To 1600 K 1600 K 800 K

Apphase 0 see Section B2 0

k 47 Wm-IK-! 47WmK-! 25WmIK-!

KT 4x 10712 pa! 32 x 10712 pa~! 32 x 10712 pa~!

ks kr — o2T Kr — 2T Kr — o2T
pCp pCp rCp

X extent 6000 km 300 km 300 km

Z extent 3000 km 200 km 30 km

Resolution 23 km 1.6 km 1 km

The composition at the left (inflow) boundary is prescribed to zero;
we do not prescribe anything for the composition at all other (out-
flow) boundaries.

In this model, the density depends on the composition as given
in eq. (B1), using

Apprase(C) = 0.5 (tanh (%) - 1) 5 C,
P

with the pressure where the phase transition occurs py, = 4 GPa, §p
= 100 MPa and §p = 600 kg m~3. This implies a zero Clapeyron
slope, and means that the hydrated crust represented by the compo-
sitional variable C is 600 kg m~3 lighter than the background mantle
material above the phase transition, but has the same reference den-
sity as the surrounding mantle after the dehydration reaction.

The model includes adiabatic heating and shear heating, but
for simplicity, we do not take into account latent heat release or
consumption at the phase transition (which may lead to additional
stresses caused by the associated temperature change).

B3 Cooling crust model: rheology and initial conditions
The application featuring a cooling crust uses the following initial
conditions for temperature and composition:

T(t = 0) = 800 K — 500 Ky/h (0.5 +0.5tanh (x_fzvi_x(’» ,

C
(x —y—xo)z)

C(t=0)=-exp (— 702

with xg = 135 km, ¢ = 2.5 km and the height of the model domain 4
= 30km. Here, the compositional variable C indicates the presence
of weak material in a fault zone, and influences the viscosity as
given below.

The rheologic law combines a composition-dependent, but oth-
erwise constant viscosity with a Drucker—Prager yield criterion of
the form

. Ovyicld . .
Mplastic = MiN | MAX | ———— Nmin | » Mmax with yield strength
( (NW ) )
Oyicla = Cyicla COS ¢ + psing,
Nviscous = 77(1 - C) +0.01 7’]C,

Neff = mln(nviscous, nplastic)’

and with the cohesion Cyiqq = 20 MPa, the friction angle ¢ = 20°,
Nmin = 102! Pa s, Nuu = 10%* Pa s and n = 10** Pas. &3 is the
second invariant of the deviatoric strain rate, computed in 2-D as
=g — %é‘,l, with & being the symmetric strain rate tensor, &, its
trace, and I being the identity tensor. The second invariant is defined
as &8 = &d,éd, — &d &%), Because the deviatoric tensor has no trace
and is symmetric, this can be simplified to &} = —&3,&8, — 5,83,
The boundary conditions for the model are described in the main
text, and there is no radiogenic heat production or shear heating in
this model.
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