


the inf-sup condition is satisfied a priori is difficult, if not impossible. To the best of our knowledge, few high-order

accurate results are reported using this approach.

In this work we propose a new approach that is high-order accurate and agnostic to the discretization. It is similar

to the momentum-force-based methods. However, instead of adding a concentrated force along the exact Dirichlet

boundary, we introduce control variables that are distributed along an approximate boundary that consists merely of

element faces. The significance of doing this is that it allows us to eliminate the delta function and, consequently, its

problematic regularization. An inverse problem is solved to find the control variables that best satisfy the boundary

conditions. Compared to the Lagrange-multiplier approach, no special function space is required. The approach

requires the solution of a PDE-constrained optimization problem, which can be computationally expensive in general.

Fortunately, the structure of the problem can be exploited to develop effective preconditioners[14].

The remainder of the paper is organized as follows. In Section II we introduce the framework of the proposed

method; in Section III we perform a mesh convergence study to investigate the accuracy of the proposed method; in

Section IV we discuss preconditioners for the iterative solution of the inverse problem.

II. Proposed method

In this section we first introduce the formulation of the inverse problem used to impose Dirichlet boundary conditions

for a generic boundary value problem (BVP). We then provide the first-order optimality conditions and the corresponding

Karush-Kuhn-Tucker (KKT) system.

Let Ω ⊂ R2 be a two dimensional domain. We consider the following BVP:

R(u) = 0, ∀x ∈ Ω,

u = uD, ∀x ∈ ∂Ω,
(1)

where R(u) denotes a (possibly nonlinear) partial differential operator, Ω is the problem domain, and uD is the boundary

value on the Dirichlet boundary ∂Ω. In the optimal control community, the solution u is also called the state variable.

To simplify the presentation, we focus exclusively on Dirichlet boundary conditions, but the proposed method can easily

be generalized to include, for example, Neumann boundary conditions.

A. Problem formulation

As with other immersed boundary methods, the physical domain Ω is extended into a larger computational domain

Ω̃ ⊇ Ω such that the computational boundary ∂Ω̃ is an approximation of the physical boundary ∂Ω. This is illustrated

in Figure 1, in which Ω is the shaded area, and the computational domain is the domain consisting of all the triangles.

Rather than discretizing the BVP (1) on Ω directly, we instead propose the following discretized inverse problem on

Ω̃:
min
uh,ch

Jh(uh, ch) = ‖uh − uD ‖2
∂Ω
+ ‖ch − uD ‖2

∂Ω̃

s.t. Rh(uh, ch) = 0 on Ω̃.
(2)

Here, uh is the discrete solution defined on the computational domain Ω̃, and ch is the control variable defined on the

computational boundary ∂Ω̃. The control variable is the Dirichlet boundary value in the discretization of the BVP,

denoted by Rh, which itself serves as the equality constraint in the above optimization problem. Note that Rh can be

based on any type of discretization that uses weakly imposed boundary conditions, including finite difference, finite

volume or finite element. Discretizations that use strongly imposed boundary conditions have not been considered in

this work, but we believe the general approach could be adapted to such methods.

There are two terms in the objective Jh , and both involve the (squared) norm of a difference defined on a boundary.

For example, since we use a discontinuous Galerkin (DG) method to discretize Rh in this work, a straightforward choice

for the objective is

Jh(uh, ch) =

∫

∂Ω

(uh − uD)
2dΓ +

∫

∂Ω̃

(ch − uh)
2dΓ.

The first term above, referred to as the misfit in the inverse-problem literature, evaluates the discrepancy between the

discrete solution uh and the boundary value uD along the true boundary ΓB. The second term is a Tikhonov-type

regularization used to stabilize the inverse problem.
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Ju =
∂Rh

∂uh
, Jc =

∂Rh

∂ch
, (3)

Huu =

∂2Lh

∂u2
h

, Hcc =

∂2Lh

∂c2
h

, (4)

Huc =

∂2Lh

∂uh∂ch
, Hcu =

∂2Lh

∂ch∂uh
. (5)

The matrix Huc = Hcu
T for problems with continuous second derivatives, but they are kept distinct in the following

sections.

To begin, we define the Lagrangian

Lh(uh, ch, ψh) = Jh + ψ
T
h Rh, (6)

where ψh is the Lagrange multiplier. By differentiating the Lagrangian with respect to uh, ch and ψh, and setting the

derivatives to zero, we obtain the KKT conditions

∂Lh

∂x
=



∂Jh
∂uh
+ ψT

h
Ju

∂Jh
∂ch
+ ψT

h
Jc

Rh



= 0, (7)

where we have introduced the compound vector

x =
[
uT
h

cT
h

ψT
h

]T
.

The conditions (7) define a system of equations that inherit the linearity/nonlinearity of the original problem (1). That is,

if (1) is linear, so is (7); if (1) is nonlinear, (7) is also nonlinear. The first equation in (7) is typically called the adjoint

equation, and the multiplier ψh is the adjoint. The second equation is the total derivative of the objective Jh with respect

to ch , and the third is the equality constraint in (2), i.e., the state discretization.

For the linear problems considered in this work, (7) is equivalent to the following KKT system:

K∆x = −
∂Lh

∂x
(8)

where

K =
∂2Lh

∂x2
=



Huu Huc J
T
u

Hcu Hcc J
T
c

Ju Jc 0


is the second derivative of the Lagrangian, and ∆x = x∗ − x with x∗ being the solution to the KKT system.

There are two approaches that can be used to solve the KKT system (8): the reduced-space approach and the

full-space approach. In the reduced-space approach, the state and adjoint variables are first eliminated to produce an

equation for ch . Once the control is known, Rh can be solved to find uh . This whole process may need to be repeated for

nonlinear problems until convergence. In the full-space approach the three variables are solved simultaneously. We use

the full-space approach in this work, because, eventually, we are interested in solving nonlinear BVPs governed by, e.g.,

the Euler and Navier-Stokes equations, and solving (7) in the full space is usually more efficient for nonlinear problems.

Readers are referred to [14–16] for further discussion on the relative merits of the two approaches.

III. Convergence Study

In this section we carry out a convergence study of our proposed approach using the method of manufactured

solutions. The model BVP is a steady linear convection-diffusion equation. By adjusting the advection velocity and the

diffusion coefficient pure convection and diffusion problems can be recovered as extreme cases. The discretization Rh is

a DG finite-element method, which is described in greater detail below.
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A. Model problem

As mentioned above, we consider the linear convection-diffusion equation:

∇ · (au − µ∇u) = f , in Ω,

u = uD, on ∂Ω,
(9)

where a ∈ R2 is the convection velocity, and µ is the positive diffusion coefficient. The problem domain Ω is the unit

disk, i.e., Ω = {[x, y] : x2
+ y

2 ≤ 1}. In the following tests, three sets of parameters a and µ are chosen to model

different physics:

• a = [1, 1], µ = 0 for a pure convection problem;

• a = [0, 0], µ = 1 for a pure diffusion problem;

• a = [1, 1], µ = 10−2 for a convection-diffusion problem.

The manufactured solution used to derive the source f and the boundary data uD is defined to be

u = ex+y sin(πx) sin(πy). (10)

Fig. 2 The coarsest mesh and the physical boundary used for the convergence study.

B. Discontinuous Galerkin discretization

We use a DG finite-element method to discretize (9). The symmetric interior penalty Galerkin (SIPG) method[17]

is used to discretize the diffusion term while upwinding is used for the advection part[18]. In order to be more specific,

we begin by introducing some notation. Let Ω̃h be a shape-regular subdivision of Ω̃ into disjoint elements K ∈ Ω̃h , and

let Vh be a broken function space on Ω̃h such that Vh(K) ⊂ H2. The set of interior faces is denoted by ΓI . Additionally,

we introduce the standard jump and mean operators on both scalar and vector variables. For an interior face e ∈ ΓI ,

these operators are given by

{{u}} = (u+ + u−)/2, {{q}} = (q+ + q
−)/2,

nuo = u+n+ + u−n−, nqo = q
+ · n+ + q

− · n−,

where n
+ and n

− are the outward unit normals of ∂K+ and ∂K−, respectively, and u+ and u− are the traces along the

common face from the interior of K+ and K−, respectively. Finally, the subscript h will be used to indicate a function

from a finite dimensional space; for example, the approximate solution to the PDE is denoted as uh which is previously

introduced in Section II.

The bilinear weak form of the discretization Rh corresponding to (9) reads
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Rh(uh, ch; vh) =

∫

Ω̃h

[∇vh · (auh − µ∇uh) + vh fh] dΩ

−

∫

ΓI

[
nvho · F̂(u+h, u

−
h )
]

dΓ −

∫

∂Ω̃

[
vh F̂(uh, ch) · n

]
dΓ

+

∫

ΓI

[nvho · {{µ∇uh}} + {{µ∇vh}} · nuho − ǫ{{µ}}nuho · nvho] dΓ

+

∫

∂Ω̃

[vhµ∇uh · n + (µ∇vh) · n(uh − ch) − ǫ µvh(uh − ch)] dΓ,

(11)

where vh ∈ Vh is the test function, F̂ is the upwinding flux function, and ǫ is the SIPG penalty parameter[17]. Note that

the discrete source fh is obtained by projecting the exact source f derived from the manufactured solution (10) onto Ω̃.

As mentioned in Section II.A, the control variable is the Dirichlet boundary value on ∂Ω̃. These boundary conditions

are weakly imposed by penalizing the discrepancy between uh and ch .

Lastly, the Lagrangian polynomials with degree p ∈ {1, 2, 3, 4} are chosen as the basis of Vh .

C. Numerical results

In the following test cases, the linear KKT system (8) is solved using a sparse direct solver. In Section IV we will

discuss the iterative solution of (7).

To estimate the asymptotic convergence rate, we use a sequence of five uniformly refined triangular meshes. The

coarsest mesh together with the immersed boundary ∂Ω is shown in Figure 2, with element size h = H = 0.1178513.

Here element size h is taken to be the square root of the element area. Each element is subdivided into four to obtain a

refined mesh; that is, the element sizes of the finer meshes are H/2, H/4, H/8 and H/16. We can see from Figure 2 that

the physical boundary intersects mesh elements at different locations, including vertices, which will help demonstrate

the robustness of the proposed approach.

We would like to assess the accuracy of the discrete solution uh , and this is typically accomplished by evaluating the

L2 error on a sequence of ever finer grids; however, evaluating the L2 solution error in Ω is not straightforward, because

element-based cubature rules do not apply on the elements cut by the boundary. One could develop cubature rules for

the elements cut by the immersed boundary, but this is a research topic in its own right[19]. The approach adopted in

this paper is to set the solution error on Ω̃h \Ω to zero.

The solution contours using p = 1 and p = 4 basis functions on the coarsest mesh are compared against the exact

contours in Figure 3a and 3b, respectively. We can see that in both cases the discrete solution matches well with the

exact manufactured solution. Furthermore, as expected, a higher-order approximation produces better results on the

same mesh.

Figure 4 plots the solution error versus element size h for the specific convection, diffusion and convection-diffusion

problems defined earlier. For all problems, our approach achieves the optimal convergence rates of p + 1.

IV. Iterative solution of the KKT system

An alternative to the direct factorization used in Section III is an iterative method. Iterative methods are suitable for

solving very large systems in terms of memory consumption, and they often lend themselves well to parallelization.

However, compared to a conforming-mesh discretization, the system (8) is an indefinite and highly ill-conditioned

saddle-point problem. Therefore, an effective preconditioner is essential for an iterative solution of (8) to be practical.

In [14] a set of preconditioners based on the block factorization of the KKT matrix were introduced, and we will apply

two of them to our inverse problem.

A. Preconditioners for KKT matrix

An exact factorization of the KKT matrix K is given by

K =



HuuJ
−1
u 0 I

HcuJ
−1
u I J

T
c J

−T
u

I 0 0





Ju Jc 0

0 Hz 0

0 H
T
y J

T
u



, (12)
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(a) p = 1 (b) p = 4

Fig. 3 Solution contour of the convection-diffusion problem on the coarsest mesh. Exact solution: red line,

discrete solution: blue line.

where we have introduced Hy and the reduced Hessian Hz :

Hy = Hcu − J
T
c J

−T
u Huu,

Hz = J
T
c J

−T
u HuuJ

−1
u Jc − J

T
c J

−T
u Huc − HcuJ

−1
u Jc + Hcc.

(13)

The factorization (12) is significant because it is equivalent (up to permutation) to a block LU factorization of K; thus,

it permits a sequential solution of the three variables, ch, uh, and ψh. It suggests that we can build a preconditioner,

denoted by P1, for the KKT matrix by replacing the reduced Hessian Hz with an approximation Bz , and replacing the

state Jacobian Ju with its own preconditioner J̃u

P1 =



HuuJ̃
−1
u 0 I

HcuJ̃
−1
u I J

T
c J̃

−T
u

I 0 0





J̃u Jc 0

0 Bz 0

0 H̃
T
y J̃

T
u



, (14)

where

H̃y = Hcu − J
T
c J̃

−T
u Huu.

Furthermore, if all the second derivative matrices Huu, Huc, Hcu and Hcc are discarded, P1 is reduced to another

preconditioner P2:

P2 =



0 0 I

0 I J
T
c J̃

−T
u

I 0 0





J̃u Jc 0

0 H̃z 0

0 0 J̃
T
u



. (15)

P1 and P2 correspond to P̃4 and P̃2 from [14], where it was shown that P1 requires four applications of the state

preconditioner (or its transpose) and P2 requires two applications of the state preconditioner (or its transpose).

Once J̃u and Bz are chosen, the preconditioner for the whole KKT system is fully determined. In our work, we

use the Crout version of Incomplete LU factorization (ILUC)[20] as the preconditioner J̃u . The accuracy of the

ILUC factorization is determined by a threshold parameter τILUC; when τILUC = 0 ILUC is equivalent to a complete LU

factorization.

Two choices of the approximate reduced Hessian, Bz , are considered. Both choices are based on an approximate

reduced Hessian H̃z rather than the exact one. H̃z approximates Hz by replacing the state Jacobian Ju with its

preconditioner J̃u; that is

H̃z = J
T
c J̃

−T
u HuuJ̃

−1
u Jc − J

T
c J̃

−T
u Huc − HcuJ̃

−1
u Jc + Hcc. (16)
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The first reduced Hessian preconditioner, denoted by B
ILUC
z , is obtained by applying the ILUC factorization to (16).

Since B
ILUC
z is based on an ILUC factorization, an explicit expression for H̃z is required, which limits its application to

small- or medium-size problems.

The second choice for Bz , denoted by B
LC
z , is a Lanczos-Chebyshev preconditioner (the two-step stationary method

in [14]). This preconditioner applies a fixed number of Chebyshev iterations using (16) to precondition Hz . Chebyshev

iteration is a stationary method suitable for positive definite matrices and requires estimates of the smallest and the

largest eigenvalues. Since the only operations required is are Hessian-vector products, it is matrix free∗. See [21] for

more information on Chebyshev iteration and the Lanczos algorithm.

In the following results, when B
LC
z is used we denote P1 and P2 as P1(B

LC
z ) and P2(B

LC
z ), respectively. The same

convention also applies to B
ILUC
z .

B. Numerical results

In this subsection, the convection-diffusion problem described in Section III is solved with a restarted left-

preconditioned Generalized Minimal Residual (GMRES) method[22] in order to assess the performance of the

preconditioners P1 and P2. The ILUC factorization with τILUC = 10−4 is used as the state preconditioner J̃u . For B
ILUC
z ,

the threshold of the ILUC factorization is τILUC = 10−8. All cases use p = 4 Lagrange basis functions. The number of

GMRES restart steps and the number of Lanczos iterations are both set to 100, and the number of Chebyshev iterations

is fixed at 20. The GMRES iteration terminates once the residual norm is reduced by a factor of 1013.

The convergence histories in terms of GMRES iterations are plotted in Figure 5. As can be seen, the Krylov iteration

converges in fewer than 200 steps using preconditioner P1, for all the meshes, and in fewer than 900 steps using P2.

Additionally, with the same Bz , it takes many fewer iterations (around a third) with P1 than with P2. Even taking into

account that each application of P1 requires twice the number of applications of J̃u as P1, this suggests that P2 is more

efficient than P2, at least for problems considered.

A comparison between the reduced Hessian preconditioners B
ILUC
z and B

LC
z shows that with the current settings the

former is superior to the latter in terms of the number of Krylov iteration. However, to construct B
ILUC
z the explicit

expression of the approximate reduced Hessian H̃z has to be available, which needs at least size(ch) applications of J̃u .

On the other hand, the cost for B
LC
z is composed of two parts: the Lanczos iteration used to estimate the smallest and the

largest eigenvalues of H̃z , which has to be performed once per Krylov solve, and the Chebyshev iteration for each B
LC
z

application.

Although Figure 5 shows the number of iterations increases as the problem size gets larger, this does not imply that

P1 and P2 themselves are not effective, because their performance depends strongly on the performance of the state

preconditioner J̃u . For instance, we have observed that a fixed threshold value for the ILUC factorization works better for

small problems than for large problems. For example, with the threshold value mentioned above, the ratio between the

number of nonzero values in J̃
−1
u and that in Ju , nnz(J̃−1

u )/nnz(Ju), drops from 67.85% on the coarsest mesh to 56.13%

on the finest mesh; keep in mind a larger ratio indicates fewer dropped entries and a more accurate approximation.

To reduce the influence of J̃u on our assessment of the preconditioners, we examine the number of GMRES iterations

required to solve the preconditioned adjoint equation (the first equation in (7))

J̃
−T
u J

T
uψh = −

∂Jh

∂uh
,

and use this to normalize the number of GMRES iterations required to solve the KKT system. Note that this does not

reflect the cost of constructing or using the Bz preconditioners.

The results are given in Table 1.We find that P1(B
LC
z ) is the most scalable preconditioner. Furthermore, roughly

speaking, P1 is more scalable than P2 for both B
ILUC
z and B

LC
z .

V. Conclusion
We have proposed a novel immersed boundary method that is formulated as an inverse problem. The method

is notable in the sense that it is agnostic to the underlying discretization and it is high-order accurate. We verified

this latter characteristic by demonstrating that a DG discretization achieves optimal convergence rates on advection,

advection-diffusion, and pure diffusion problems. In order for the method to be applied to large-scale problems, iterative

methods are necessary for which we need effective preconditioners. We presented potential preconditioners based

∗More precisely, it is Hessian free, since the ILUC factorization of Ju is still needed for (16).
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Table 1 Relative performance of KKT preconditioners with respect to the state preconditioner J̃u with approx-

imation degree p = 4.

mesh size h P1(B
ILUC
z ) P2(B

ILUC
z ) P1(B

LC
z ) P2(B

LC
z )

H 2.13 4.00 6.88 7.38

H/2 1.54 3.54 3.63 4.54

H/4 1.57 4.07 3.14 4.50

H/8 0.86 3.54 1.28 3.58

H/16 3.38 16.50 3.72 13.06

on using the PDE Jacobian to eliminate the state and adjoint. These preconditioners work relatively well when the

effect of the state preconditioner J̃u is taken into account. Future work will focus on improving the efficiency of the

preconditioner for the reduced Hessian and extending the methodology to the Euler and Navier-Stokes equations.
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