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Abstract. Field-programmable gate arrays (FPGAs) have largely been used in
communication and high-performance computing and given the recent advances
in big data and emerging trends in cloud computing (e.g., serverless [18]),
FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s
datacenters [6] and Amazon Web Services [10]). To address these domains’
processing needs, recent research has focused on using FPGAs to accelerate
workloads, ranging from analytics and machine learning to databases and
network function virtualization. In this paper, we present an ongoing effort to
realize a high-performance FPGA-as-a-microservice (FaaM) architecture for the
cloud. We discuss some of the technical challenges and propose several solutions
for efficiently integrating FPGAs into virtualized environments. Our case study
deploying a multithreaded, multi-user compression as a microservice using the
FaaM architecture indicate that microservices-based FPGA acceleration can
sustain high-performance compared to straightforward implementation with
minimal to no communication overhead despite the hardware abstraction.

1 Introduction

With the rapidly increasing demand for cloud computing, there is a corresponding increased
interest in using field-programmable gate arrays (FPGAs) to accelerate datacenter workloads. Given an
FPGA’s computational flexibility, FPGA-based accelerators have been generally applied to
applications with intensive, high-performance computing (HPC) demands, achieving orders of
magnitude performance improvement and power efficiency as compared to functionally equivalent
central processing unit (CPU)- based implementations [4][5][6]. Additionally, an FPGA’s
reprogramability make FPGA- based accelerators highly suitable for datacenter-wide deployments,
especially for workloads that have algorithms that may change over time. However, the economics of
scaling new, non-homogenous datacenter architectures combining traditional CPUs with FPGAs
remains a significant resource management challenge, which includes deployment, maintainability, and
composability across an entire datacenter infrastructure. Addressing these challenges is critical for
minimizing operational costs and service downtime in large-scale, production environments.

In spite of this management complexity, the emergence of hyperscale datacenters (i.e., datacenters
with high scale-out capabilities) presents an opportunity for accelerator systems that tightly integrate
CPUs and FPGAs (e.g., Xeon+FPGA server platform [7]). While these tightly coupled servers enable
acceleration of local applications that run on each server, to meet performance demands, users must be
able to access and distribute applications across a large, global FPGA accelerator pool which shares an
optimized communication infrastructure. Finally, for ease of use, this pool must appear as an individual
datacenter resource that is accessible to multiple, simultaneous cloud users.
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2 Related Work

Recent research efforts explore the flexibility of using FPGAs as hardware accelerators for
datacenter services, which are similar to traditional software-based services but realize additional
performance benefits. Byma et al. [8] and Ye et al. [9] proposed integrating FPGA resources into
datacenters and the cloud with OpenStack, which is open-source cloud software that uses a hypervisor
and virtual machines (VMs). Fahmy et al. [10] introduced a framework that uses a custom resource
manager to directly manage virtual FPGA accelerators in the form of partially reconfigurable regions
(PRRs). Cloud-based FPGAs that are used for specific services, such as network function acceleration
and deep learning inference, may require low-latency or high-bandwidth communication for streaming
data or processing large volumes of data. Caulfield et al. [11] used a layer of FPGAs between the
network switches and the servers, providing the FPGAs with direct intercommunication and enabling
datacenter-wide acceleration. Ouyang et al. [12] used an FPGA accelerator to enable large-scale deep
neural network (DNN) training, and provide online services in a low-cost, low-power environment.

3 FPGA Microservices

Our approach uses microservices (a collection of loosely coupled accelerator services) to offer
FPGA accelerators as a set of shared, lightweight services that scales dynamically with constantly
changing datacenter workload demands. Using an FPGA-as-a-microservice (FaaM) architecture for the
cloud, FPGA accelerator functionality can be offered as a microservice, enabling application developers
to easily leverage many microservice characteristics, including auto-deployment, scalability, dynamic
configuration, and disaster recovery [13]. Additionally, since a microservice is stateless, FPGA
resources can be quickly provisioned without relying on extra virtualization technology [14], further
reducing the time to relocate a microservice in the event of failure.
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Fig. 1. High-level overview of the FaaM architecture.

3.1 Design and Implementation

In this section, we describe our FaaM design and implementation, which is based on Docker
containers. We prototype FaaM using x86-based Xeon+FPGA physical machines running a Linux
operating system. We note that the proposed FaaM architecture is not restricted to only Docker
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containers and Xeon+FPGA platforms but can be realized for other types of virtualization
technologies and FPGA platforms.

Fig. 1 depicts the general FaaM architecture consisting of a Worker Node and a Service Node.
To enable dynamic scaling with workload type and size, Worker Nodes are decoupled from Service
Nodes. Service Nodes host FaaM services, providing a set of hardware-accelerated functions (e.g.,
a compression service). FaaM services are deployed in Service Containers, simplifying
manageability by the FaaM Service Manager. To support load balancing, multiple instances of a
Service Container can be deployed by the FaaM Service Manager as a group of identical services,
providing fault-tolerant redundancy and scalability. Service Containers may also serve unique
FaaM services depending on how the FaaM Service Manager and the FPGA in the Worker Nodes
have been configured.

Each Worker Node runs a single instance of the FaaM Accelerator Manager, which is a separate
(privileged) Docker container instance, providing accelerator management functions (e.g.,
reprogramming the FPGA or providing control and monitoring features). Under the control of the
FaaM Accelerator Manager, a Worker Node hosts one or more Worker Containers from a container
repository that is accessible by all Worker Nodes. Each Worker Container abstracts a specific
hardware accelerator function (e.g., a compression service), exposing the function as a web service,
consequently enabling remote access by Service Containers. A high-speed Ethernet network
connects Service Nodes with Worker Nodes. Worker Nodes are behind a secured network, and
cloud users have no way of directly interacting with the FPGAs or Worker Nodes, except through
a set web application programming interfaces (APIs) exposed by Service Nodes through Service
Containers. The APIs are implemented as Java WebSocket, enabling point-to-point inter-node
communication. As shown in Fig. 1, a Worker Node is organized into three distinct layers: the
FPGA accelerator, the task scheduler, and the Java virtual machine (JVM) runtime system.

3.2 FPGA Accelerator

Fig. 2 illustrates the FPGA accelerator layer, where accelerator function units (AFUs) provide
specific hardware functionality (e.g., compression, machine learning inference, etc.). The AFUs
act as a pool of FPGA configurable resources where these hardware functions can be assigned to
each AFU. The hardware function is constrained in size by the amount of logic resources on the
AFU, and it must expose a Cache Coherent Interface Protocol (CCI-P) that connects to the CCI-P
Interconnect block and to the rest of the components on the FPGA.
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Fig. 2. (a). Overview of prototype platform. (b). Software stack of prototype system.

3.3 Scheduler

To schedule cloud users’ jobs, we focus on a task scheduler that is local to each Worker
Container. The role of the scheduler is to admit threads from the web service and schedule these
threads on the FPGA. When an accelerator request arrives, the scheduler examines the low- level
information from the hardware (such as which AFU is currently unutilized) and makes dispatch
decisions that match the corresponding thread to an available AFU. To maintain fair sharing of the
AFU, we use a first-come-first- serve (FCFS) scheduling policy and use buffer sizes with minimal
overhead, ranging between 32 KB and 128 KB as further discussed in Section 4.2. When an
accelerator function is not available, the scheduler defaults to executing the thread on the CPU to
maintain acceptable throughput.
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3.4 Runtime System

We implemented an FPGA runtime system written in Java. The runtime system is designed as
a dynamic library shared among multiple threads that can be associated with user requests. We
prototyped the runtime system atop the Accelerator Abstraction Layer (AAL) software stack
provided by Intel. AAL provides low-level accelerator management functionality to the scheduler,
allowing the scheduler to call into native C/C++ libraries of AAL. While the FPGA JVM and task
scheduler both run as a single JVM process, the web service runs as a separate process, allowing
for a different type of application-facing web service to be integrated with the runtime system.
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Fig. 3. Integrating frameworks with FaaM.

4 FPGA Integration Challenges and Solutions

In this section, we present several challenges and solutions when designing the FaaM
architecture. To verify the proposed approach, we implement compression [15] as a microservice
(CaaM) and evaluate runtime performance as well as overheads.

4.1 Software-FPGA Interaction

While FPGA accelerators are normally manipulated through C/C++ code or low-level libraries,
some datacenter-scale applications and frameworks are commonly written in Java - or other
runtime-based language like Scala — running within a (JVM) virtual machine. FPGAs are naturally
not supported by JVMs, thus the first step for FPGA-to-application integration is to enable
support for the FPGA in the JVM, and bridge the gap between native C/C++ code and the
application runtime. Java Native Interface (JNI) is typically used to address this issue, however
JNI does not always deliver an efficient solution. In particular, the cost of moving data between
the JVM heap and native memory can adversely impact application performance. Using SWIG (a
wrapper and interface generator), we wrote a domain-specific language (DSL) script that
automatically generates Java wrappers from native C++ classes. This approach saves us a
significant amount time in debugging JNI code directly, while generating clean interfaces that are
optimized for our specific native libraries (i.e., the AAL runtime libraries).

4.2 FPGA-to-Host-Memory Communication

Since data movement between the JVM and native memory can incur significant overhead, we
leverage the non- blocking I/O (i.e., Java NIO) mechanism that is natively built into the Java
framework. A buffer from Java NIO is essentially a block of memory that is wrapped in a Java
buffer object. This object is then accessible in Java as a streaming Java class, and is free of JVM
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Fig. 4. Buffer read / write performance for different buffer sizes.

garbage collection since the underlying memory is outside the JVM heap. We create NIO buffers
of fixed sizes (one per software thread) and re-use individual buffers as many times as the thread
associated with a respective buffer is dispatched. Because the allocation of NIO-based buffers can
incur overheads (just as with direct memory allocation in C), reusing buffers between non-overlap
threads helps to amortize this overhead. As empirically suggested in Fig. 4, we choose buffer size
of 64 KB as the optimal transfer size. We also observe that a relatively large amount of time is
required by the JVM when establishing large NIO buffers —up to 1ms for buffers as large as 1GB.

4.3 CPU-FPGA Thread Co-Existence

FPGAs are naturally suited for highly parallel tasks such as compression [16], and can rapidly
offload CPU threads for these kinds of tasks. Therefore, it is necessary to maintain high resource
utilization by sharing the FPGA accelerator across multiple CPU threads. To achieve sharing, we
implement three versions of an accelerator function interacting with the CPU: Single-threaded C++
(ZLIB-FPGA), single-threaded Java (ZLIB-FPGA/JVM) and multithreaded Java (ZLIB-
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FPGA/JVM-T). We also compare performance with default ZLIB running on a CPU for single-
threaded (ZLIB-CPU) and multithreaded (ZLIB-CPU-T) task.
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Fig. 6. TeraSort of an 8 GB file in Apache Spark using eight worker threads. “-T” denotes
that the compresssion algorithm is multithreaded.

While ZLIB-FPGA is a straightforward C++ implementation, ZLIB-FPGA/JVM is a wrapper
implementation of the former in Java. ZLIB- FPGA/JVM-T is coupled with our task scheduler and
together integrated into a multithreaded data processing system (Spark [17]) to demonstrate real
world benefits. It is important to note that the purpose of evaluating the performance of ZLIB-
FPGA/JVM initially is to ensure that the developed wrapper compares with the performance of the
straightforward ZLIB-FPGA implementation with least possible overheads. In the single-threaded
scenario (Fig. 5), ZLIB- FPGA/JVM shows an average speedup of 9.8x over ZLIB- CPU. This
was roughly the same speedup (10X) achieved when comparing the straightforward ZLIB-FPGA
implementation with ZLIB-CPU, meaning ZLIB-FPGA/JVM has very minimal overhead despite
the JVM abstraction.

Having created an efficient JVM version of the FPGA accelerator, we can integrate ZLIB-
FPGA/JVM in a multithreaded environment. We use our task scheduler and set the buffer sizes for
individual threads to 64 KB (from Fig. 4, 64 KB is the optimal transfer size). The transfer size is
also congruent with the chunk sizes on the FPGA accelerator. Moreover, we find that this buffer
size is most effective when taking into consideration the Resilient Distributed Datasets (RDD)
block size used by the Spark. As shown in Fig. 6 and using our multithreaded JVM implementation,
the total application run time is reduced from 7 minutes down to 5 minutes.

4.4 Resiliency

An important design factor in a hyperscale cloud is the ability to recover from unforeseen
failures and minimize downtimes. For FPGAs deployed in the cloud, this can be particularly
challenging due to the setup and initialization steps required. To address this challenge, we extend
ZLIB- FPGA/JVM-T and leverage Docker’s GPU passthrough [18] to create a compression-as-a-
microservice (CaaM) framework. The CaaM framework, now exposing ZLIB- FPGA/JVM-T as a
containerized service, achieves the same performance as with the non-containerized ZLIB-
FPGA/JVM-T implementation. To provide fault recovery and improve service availability, using
the FaaM Accelerator Manager we configure the CaaM framework to automatically restart upon
failure, which takes only a fraction of a second as with any standard Docker container that has
been configured with Autorestart.

5 Discussions and Conclusions

We presented an architecture for deploying FPGAs in the cloud and highlighted several
challenges and solutions for harnessing FPGA accelerators in virtualized environments, such as
Docker containers. Motivated by the dynamic nature of datacenter workloads, we proposed an
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FPGA-as-a- Microservice (FaaM) architecture to allow multiple cloud users to share FPGA
accelerator services. Using this FaaM architecture, we implemented compression-as-a-
Microservice (CaaM), and demonstrated that FPGA microservices achieve high performance with
very minimal runtime overheads. We observed that by efficiently designing buffer movement
mechanisms between Java’s heap memory and native memory used by the FPGA accelerator, it is
possible to reduce unnecessary data transfer overheads and achieve acceptable performance that is
close to straightforward FPGA implementation in C/C++. Our Java implementation has less than
1% reduction in application performance for the CaaM. Contrary to previous work where a single,
shared buffered is created and shared among multiple threads—resulting in thread contentions—
our implementations create multiple private non- blocking NIO buffers, resulting in a more
efficient computation-to-memory access pattern. By scaling up or down buffer sizes (to a certain
threshold) along with the number of threads in relation to the total input work size, a more balanced
degree in concurrency (i.e., interleaving) across threads can be achieved. Based on our
experimentation, choosing a buffer size that matches the block size of the underlying file system
typically results in fewer block misses for data fetched directly from disk.

For accelerator service requests, the CaaM framework assumes that the input dataset is
domiciled locally on an FPGA-attached node. There is active research to integrate FPGAs with
YARN and other cluster managers, whereby datasets are distributed across multiple nodes (both
FPGA- and non-FPGA-attached). With a more aggressive data locality, such cluster managers
could subsequently schedule FPGA- specific tasks on the FPGA-attached nodes provided the
working sets of the overall data is already locally cached to the nodes. The fact that FPGA
acceleration services implemented using FaaM are encapsulated and isolated across user-space
containers, allows container mangers, such as Mesos and Kubernetes, to easily orchestrate such
services in a datacenter environment. Future work will include conducting further studies on FaaM
with a diverse set of workloads (including machine learning inference) as well as integrating the
CaaM framework into streaming applications (e.g., network function virtualization) and data
serialization frameworks such as Apache Thrift and Microsoft Bond.
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