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Abstract. Field-programmable gate arrays (FPGAs) have largely been used in 
communication and high-performance computing and given the recent advances 
in big data and emerging trends in cloud computing (e.g., serverless [18]), 
FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s 
datacenters [6] and Amazon Web Services [10]). To address these domains’ 
processing needs, recent research has focused on using FPGAs to accelerate 
workloads, ranging from analytics and machine learning to databases and 
network function virtualization. In this paper, we present an ongoing effort to 
realize a high-performance FPGA-as-a-microservice (FaaM) architecture for the 
cloud. We discuss some of the technical challenges and propose several solutions 
for efficiently integrating FPGAs into virtualized environments. Our case study 
deploying a multithreaded, multi-user compression as a microservice using the 
FaaM architecture indicate that microservices-based FPGA acceleration can 
sustain high-performance compared to straightforward implementation with 
minimal to no communication overhead despite the hardware abstraction. 

1 Introduction   
 With the rapidly increasing demand for cloud computing, there is a corresponding increased 

interest in using field-programmable gate arrays (FPGAs) to accelerate datacenter workloads. Given an 
FPGA’s computational flexibility, FPGA-based accelerators have been generally applied to 
applications with intensive, high-performance computing (HPC) demands, achieving orders of 
magnitude performance improvement and power efficiency as compared to functionally equivalent 
central processing unit (CPU)- based implementations [4][5][6]. Additionally, an FPGA’s 
reprogramability make FPGA- based accelerators highly suitable for datacenter-wide deployments, 
especially for workloads that have algorithms that may change over time. However, the economics of 
scaling new, non-homogenous datacenter architectures combining traditional CPUs with FPGAs 
remains a significant resource management challenge, which includes deployment, maintainability, and 
composability across an entire datacenter infrastructure. Addressing these challenges is critical for 
minimizing operational costs and service downtime in large-scale, production environments.  

In spite of this management complexity, the emergence of hyperscale datacenters (i.e., datacenters 
with high scale-out capabilities) presents an opportunity for accelerator systems that tightly integrate 
CPUs and FPGAs (e.g., Xeon+FPGA server platform [7]). While these tightly coupled servers enable 
acceleration of local applications that run on each server, to meet performance demands, users must be 
able to access and distribute applications across a large, global FPGA accelerator pool which shares an 
optimized communication infrastructure. Finally, for ease of use, this pool must appear as an individual 
datacenter resource that is accessible to multiple, simultaneous cloud users. 
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2 Related Work    
Recent research efforts explore the flexibility of using FPGAs as hardware accelerators for 

datacenter services, which are similar to traditional software-based services but realize additional 
performance benefits. Byma et al. [8] and Ye et al. [9] proposed integrating FPGA resources into 
datacenters and the cloud with OpenStack, which is open-source cloud software that uses a hypervisor 
and virtual machines (VMs). Fahmy et al. [10] introduced a framework that uses a custom resource 
manager to directly manage virtual FPGA accelerators in the form of partially reconfigurable regions 
(PRRs). Cloud-based FPGAs that are used for specific services, such as network function acceleration 
and deep learning inference, may require low-latency or high-bandwidth communication for streaming 
data or processing large volumes of data. Caulfield et al. [11] used a layer of FPGAs between the 
network switches and the servers, providing the FPGAs with direct intercommunication and enabling 
datacenter-wide acceleration. Ouyang et al. [12] used an FPGA accelerator to enable large-scale deep 
neural network (DNN) training, and provide online services in a low-cost, low-power environment. 

3 FPGA Microservices     
Our approach uses microservices (a collection of loosely coupled accelerator services) to offer 

FPGA accelerators as a set of shared, lightweight services that scales dynamically with constantly 
changing datacenter workload demands. Using an FPGA-as-a-microservice (FaaM) architecture for the 
cloud, FPGA accelerator functionality can be offered as a microservice, enabling application developers 
to easily leverage many microservice characteristics, including auto-deployment, scalability, dynamic 
configuration, and disaster recovery [13]. Additionally, since a microservice is stateless, FPGA 
resources can be quickly provisioned without relying on extra virtualization technology [14], further 
reducing the time to relocate a microservice in the event of failure. 
 

3.1 Design and Implementation  

In this section, we describe our FaaM design and implementation, which is based on Docker 
containers. We prototype FaaM using x86-based Xeon+FPGA physical machines running a Linux 
operating system. We note that the proposed FaaM architecture is not restricted to only Docker 

 
 
Fig. 1. High-level overview of the FaaM architecture. 
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containers and Xeon+FPGA platforms but can be realized for other types of virtualization 
technologies and FPGA platforms. 

Fig. 1 depicts the general FaaM architecture consisting of a Worker Node and a Service Node. 
To enable dynamic scaling with workload type and size, Worker Nodes are decoupled from Service 
Nodes. Service Nodes host FaaM services, providing a set of hardware-accelerated functions (e.g., 
a compression service). FaaM services are deployed in Service Containers, simplifying 
manageability by the FaaM Service Manager. To support load balancing, multiple instances of a 
Service Container can be deployed by the FaaM Service Manager as a group of identical services, 
providing fault-tolerant redundancy and scalability. Service Containers may also serve unique 
FaaM services depending on how the FaaM Service Manager and the FPGA in the Worker Nodes 
have been configured. 

Each Worker Node runs a single instance of the FaaM Accelerator Manager, which is a separate 
(privileged) Docker container instance, providing accelerator management functions (e.g., 
reprogramming the FPGA or providing control and monitoring features). Under the control of the 
FaaM Accelerator Manager, a Worker Node hosts one or more Worker Containers from a container 
repository that is accessible by all Worker Nodes. Each Worker Container abstracts a specific 
hardware accelerator function (e.g., a compression service), exposing the function as a web service, 
consequently enabling remote access by Service Containers. A high-speed Ethernet network 
connects Service Nodes with Worker Nodes. Worker Nodes are behind a secured network, and 
cloud users have no way of directly interacting with the FPGAs or Worker Nodes, except through 
a set web application programming interfaces (APIs) exposed by Service Nodes through Service 
Containers. The APIs are implemented as Java WebSocket, enabling point-to-point inter-node 
communication. As shown in Fig. 1, a Worker Node is organized into three distinct layers: the 
FPGA accelerator, the task scheduler, and the Java virtual machine (JVM) runtime system. 

3.2 FPGA Accelerator  
Fig. 2 illustrates the FPGA accelerator layer, where accelerator function units (AFUs) provide 

specific hardware functionality (e.g., compression, machine learning inference, etc.). The AFUs 
act as a pool of FPGA configurable resources where these hardware functions can be assigned to 
each AFU. The hardware function is constrained in size by the amount of logic resources on the 
AFU, and it must expose a Cache Coherent Interface Protocol (CCI-P) that connects to the CCI-P 
Interconnect block and to the rest of the components on the FPGA. 
 
 
  
 

 

 

Anknoledgement  
 
 
 

3.3 Scheduler   

To schedule cloud users’ jobs, we focus on a task scheduler that is local to each Worker 
Container. The role of the scheduler is to admit threads from the web service and schedule these 
threads on the FPGA. When an accelerator request arrives, the scheduler examines the low- level 
information from the hardware (such as which AFU is currently unutilized) and makes dispatch 
decisions that match the corresponding thread to an available AFU. To maintain fair sharing of the 
AFU, we use a first-come-first- serve (FCFS) scheduling policy and use buffer sizes with minimal 
overhead, ranging between 32 KB and 128 KB as further discussed in Section 4.2. When an 
accelerator function is not available, the scheduler defaults to executing the thread on the CPU to 
maintain acceptable throughput. 

 
 

Fig. 2. (a). Overview of prototype platform. (b). Software stack of prototype system. 
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3.4 Runtime System  
 

We implemented an FPGA runtime system written in Java. The runtime system is designed as 
a dynamic library shared among multiple threads that can be associated with user requests. We 
prototyped the runtime system atop the Accelerator Abstraction Layer (AAL) software stack 
provided by Intel. AAL provides low-level accelerator management functionality to the scheduler, 
allowing the scheduler to call into native C/C++ libraries of AAL. While the FPGA JVM and task 
scheduler both run as a single JVM process, the web service runs as a separate process, allowing 
for a different type of application-facing web service to be integrated with the runtime system. 

 
4 FPGA Integration Challenges and Solutions 

In this section, we present several challenges and solutions when designing the FaaM 
architecture. To verify the proposed approach, we implement compression [15] as a microservice 
(CaaM) and evaluate runtime performance as well as overheads. 

4.1 Software-FPGA Interaction    

While FPGA accelerators are normally manipulated through C/C++ code or low-level libraries, 
some datacenter-scale applications and frameworks are commonly written in Java - or other 
runtime-based language like Scala – running within a (JVM) virtual machine. FPGAs are naturally 
not supported by JVMs, thus the first step for FPGA-to-application integration is to enable 
support for the FPGA in the JVM, and bridge the gap between native C/C++ code and the 
application runtime. Java Native Interface (JNI) is typically used to address this issue, however 
JNI does not always deliver an efficient solution. In particular, the cost of moving data between 
the JVM heap and native memory can adversely impact application performance. Using SWIG (a 
wrapper and interface generator), we wrote a domain-specific language (DSL) script that 
automatically generates Java wrappers from native C++ classes. This approach saves us a 
significant amount time in debugging JNI code directly, while generating clean interfaces that are 
optimized for our specific native libraries (i.e., the AAL runtime libraries). 

4.2 FPGA-to-Host-Memory Communication     

Since data movement between the JVM and native memory can incur significant overhead, we 
leverage the non- blocking I/O (i.e., Java NIO) mechanism that is natively built into the Java 
framework. A buffer from Java NIO is essentially a block of memory that is wrapped in a Java 
buffer object. This object is then accessible in Java as a streaming Java class, and is free of JVM 

 
Fig. 3. Integrating frameworks with FaaM. 
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garbage collection since the underlying memory is outside the JVM heap. We create NIO buffers 
of fixed sizes (one per software thread) and re-use individual buffers as many times as the thread 
associated with a respective buffer is dispatched. Because the allocation of NIO-based buffers can 
incur overheads (just as with direct memory allocation in C), reusing buffers between non-overlap 
threads helps to amortize this overhead. As empirically suggested in Fig. 4, we choose buffer size 
of 64 KB as the optimal transfer size. We also observe that a relatively large amount of time is 
required by the JVM when establishing large NIO buffers—up to 1ms for buffers as large as 1GB. 
 

4.3 CPU-FPGA Thread Co-Existence     

FPGAs are naturally suited for highly parallel tasks such as compression [16], and can rapidly 
offload CPU threads for these kinds of tasks. Therefore, it is necessary to maintain high resource 
utilization by sharing the FPGA accelerator across multiple CPU threads. To achieve sharing, we 
implement three versions of an accelerator function interacting with the CPU: Single-threaded C++ 
(ZLIB-FPGA), single-threaded Java (ZLIB-FPGA/JVM) and multithreaded Java (ZLIB-

 
 

Fig. 4. Buffer read / write performance for different buffer sizes. 

 
 

Fig. 5. Single-threaded benchmark of ZLIB-FPGA/JVM versus ZLIB-CPU. Both ZLIB-CPU and 
GZIP-CPU (JDK) are based on the DEFLATE algorithm, thus their performances are similar. BZIP-
CPU has the highest compression ratio but is CPU- intensive. 
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FPGA/JVM-T). We also compare performance with default ZLIB running on a CPU for single-
threaded (ZLIB-CPU) and multithreaded (ZLIB-CPU-T) task. 

While ZLIB-FPGA is a straightforward C++ implementation, ZLIB-FPGA/JVM is a wrapper 
implementation of the former in Java. ZLIB- FPGA/JVM-T is coupled with our task scheduler and 
together integrated into a multithreaded data processing system (Spark [17]) to demonstrate real 
world benefits. It is important to note that the purpose of evaluating the performance of ZLIB-
FPGA/JVM initially is to ensure that the developed wrapper compares with the performance of the 
straightforward ZLIB-FPGA implementation with least possible overheads. In the single-threaded 
scenario (Fig. 5), ZLIB- FPGA/JVM shows an average speedup of 9.8x over ZLIB- CPU. This 
was roughly the same speedup (10X) achieved when comparing the straightforward ZLIB-FPGA 
implementation with ZLIB-CPU, meaning ZLIB-FPGA/JVM has very minimal overhead despite 
the JVM abstraction. 

Having created an efficient JVM version of the FPGA accelerator, we can integrate ZLIB-
FPGA/JVM in a multithreaded environment. We use our task scheduler and set the buffer sizes for 
individual threads to 64 KB (from Fig. 4, 64 KB is the optimal transfer size). The transfer size is 
also congruent with the chunk sizes on the FPGA accelerator. Moreover, we find that this buffer 
size is most effective when taking into consideration the Resilient Distributed Datasets (RDD) 
block size used by the Spark. As shown in Fig. 6 and using our multithreaded JVM implementation, 
the total application run time is reduced from 7 minutes down to 5 minutes. 

4.4 Resiliency  

An important design factor in a hyperscale cloud is the ability to recover from unforeseen 
failures and minimize downtimes. For FPGAs deployed in the cloud, this can be particularly 
challenging due to the setup and initialization steps required. To address this challenge, we extend 
ZLIB- FPGA/JVM-T and leverage Docker’s GPU passthrough [18] to create a compression-as-a-
microservice (CaaM) framework. The CaaM framework, now exposing ZLIB- FPGA/JVM-T as a 
containerized service, achieves the same performance as with the non-containerized ZLIB- 
FPGA/JVM-T implementation. To provide fault recovery and improve service availability, using 
the FaaM Accelerator Manager we configure the CaaM framework to automatically restart upon 
failure, which takes only a fraction of a second as with any standard Docker container that has 
been configured with Autorestart. 

  

5 Discussions and Conclusions  
We presented an architecture for deploying FPGAs in the cloud and highlighted several 

challenges and solutions for harnessing FPGA accelerators in virtualized environments, such as 
Docker containers. Motivated by the dynamic nature of datacenter workloads, we proposed an 

 
 

Fig. 6. TeraSort of an 8 GB file in Apache Spark using eight worker threads. “-T” denotes 
that the compresssion algorithm is multithreaded. 
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FPGA-as-a- Microservice (FaaM) architecture to allow multiple cloud users to share FPGA 
accelerator services. Using this FaaM architecture, we implemented compression-as-a- 
Microservice (CaaM), and demonstrated that FPGA microservices achieve high performance with 
very minimal runtime overheads. We observed that by efficiently designing buffer movement 
mechanisms between Java’s heap memory and native memory used by the FPGA accelerator, it is 
possible to reduce unnecessary data transfer overheads and achieve acceptable performance that is 
close to straightforward FPGA implementation in C/C++. Our Java implementation has less than 
1% reduction in application performance for the CaaM. Contrary to previous work where a single, 
shared buffered is created and shared among multiple threads—resulting in thread contentions— 
our implementations create multiple private non- blocking NIO buffers, resulting in a more 
efficient computation-to-memory access pattern. By scaling up or down buffer sizes (to a certain 
threshold) along with the number of threads in relation to the total input work size, a more balanced 
degree in concurrency (i.e., interleaving) across threads can be achieved. Based on our 
experimentation, choosing a buffer size that matches the block size of the underlying file system 
typically results in fewer block misses for data fetched directly from disk. 

For accelerator service requests, the CaaM framework assumes that the input dataset is 
domiciled locally on an FPGA-attached node. There is active research to integrate FPGAs with 
YARN and other cluster managers, whereby datasets are distributed across multiple nodes (both 
FPGA- and non-FPGA-attached). With a more aggressive data locality, such cluster managers 
could subsequently schedule FPGA- specific tasks on the FPGA-attached nodes provided the 
working sets of the overall data is already locally cached to the nodes. The fact that FPGA 
acceleration services implemented using FaaM are encapsulated and isolated across user-space 
containers, allows container mangers, such as Mesos and Kubernetes, to easily orchestrate such 
services in a datacenter environment. Future work will include conducting further studies on FaaM 
with a diverse set of workloads (including machine learning inference) as well as integrating the 
CaaM framework into streaming applications (e.g., network function virtualization) and data 
serialization frameworks such as Apache Thrift and Microsoft Bond. 
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