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The creation of disordered hyperuniform materials with extraordinary optical properties (e.g., large
complete photonic band gaps) requires a capacity to synthesize large samples that are effectively
hyperuniform down to the nanoscale. Motivated by this challenge, we propose a feasible equilibrium
fabrication protocol using binary paramagnetic colloidal particles confined in a 2D plane. The strong and
long-ranged dipolar interaction induced by a tunable magnetic field is free from screening effects that
attenuate long-ranged electrostatic interactions in charged colloidal systems. Specifically, we numerically
find a family of optimal size ratios that makes the two-phase system effectively hyperuniform. We show
that hyperuniformity is a general consequence of low isothermal compressibilities, which makes our
protocol suitable to treat more general systems with other long-ranged interactions, dimensionalities, and/
or polydispersity. Our methodology paves the way to synthesize large photonic hyperuniform materials that
function in the visible to infrared range and hence may accelerate the discovery of novel photonic materials.
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Introduction.—Disordered hyperuniform systems are
exotic disordered states that lie between crystals and
liquids. While being statistically isotropic like liquids, they
exhibit “hidden order” in the sense that they suppress large-
scale density fluctuations in the way that crystals do. Since
the fundamental study on this subject [1], hyperuniformity
has been observed in a surprisingly wide variety of systems.
Examples range from classical equilibrium systems [2—4],
classical and quantum jammed systems [5-8], critical
absorbing states [9—11], active matter [12,13], soft poly-
mers [14], biological systems [15,16], to the one-
dimensional point patterns derived from the nontrivial
zeros of the Riemann zeta function [17]; see also the
recent review for a more comprehensive list [18].
Hyperuniform point configurations in d-dimensional space
R¢ possess a structure factor S(k) that goes to zero as the
wave number |Kk| vanishes, i.e., limj_o S(k) = 0, which
corresponds to a local number variance 6%, (R) in a spherical
window of radius R that grows slower than RY. The
hyperuniformity concept has been generalized to two-phase
media [19], where hyperuniformity means that the spectral
density 7y (k) (Fourier transform of the autocovariance
function [20]) goes to zero as |k| — 0, which is equivalent
to a local volume-fraction variance 6% (R) that decreases
faster than R~ for large R.
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Besides being of great fundamental interest, hyperuni-
form materials are showing exciting technological promise,
especially in photonics [21-27]. Specifically, disordered
hyperuniform dielectric networks can have large and
complete photonic band gaps, like photonic crystals, but
possess the advantage of being isotropic, enabling free-
form waveguides [22]. These studies have spurred the
exploration of these unusual materials for acoustic appli-
cations [28]. Moreover, hyperuniform materials may be
useful for producing vivid noniridescent structural colors
[29,30]. However, a fundamental challenge is how to make
large hyperuniform samples efficiently, especially down to
the nanoscale. Computational protocols, such as the exten-
sively used collective-coordinate optimization technique
[4], involve high computational costs, which makes it
difficult to generate sample sizes beyond thousands of
particles. Thus, a bottom-up, self-assembly based fabrica-
tion method is highly desired. Notable examples include
jamming of hard or soft particles [5,6,31,32], periodically
driven systems going through an absorbing phase transition
[10,33,34], and spinodal decomposition or dewetting
[35,36]. The fact that many of these hyperuniform non-
equilibrium systems are at critical points implies that there
is little room to tune the structure, e.g., it is impossible to
demand a significantly lower volume fraction in jammed
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systems. Moreover, any imperfections or defects, which
always occur in experiments, can degrade hyperuniformity,
e.g., rattlers in jammed packings [37].

On the other hand, equilibrium systems are much more
robust and flexible in the sense that their macroscopic
properties are time independent and can be tuned by many
parameters. Specifically, in order to observe hyperuniform-
ity in an equilibrium system, the isothermal compressibility
relation S(0") = pkgTk; dictates a vanishing compress-
ibility k7 at positive temperature 7. This relation implies
that a long-ranged interaction must be present. While
systems that utilize Coulombic interactions may at first
glance appear to be suitable to achieve hyperuniformity
(e.g., charged colloids), they often suffer from screening
effects that attenuate the associated long-range electrostatic
interactions. It has been shown that such systems only
become effectively hyperuniform [38] at low temperatures
and small inverse screening lengths.

In this Letter, we propose a highly feasible and robust
equilibrium protocol that can be used in the laboratory to
fabricate large disordered hyperuniform materials down to
the nanoscale. Specifically, we consider superparamag-
netic colloidal particles (doped with magnetic materials)
confined at a two-dimensional (2D) interface such that
dipole-dipole interactions are induced when a magnetic
field is applied perpendicular to the plane. The inter-
actions in such systems are strong, long-ranged
[u(r) ~ 1/73], and free of screening effects, making them
excellent candidate systems that can yield large, effec-
tively disordered hyperuniform colloidal systems at pos-
itive temperatures. We employ binary particle mixtures to
frustrate crystallization [39]. The monodisperse version
of our model has been extensively studied both numeri-
cally and experimentally [40-43], mainly for probing
the nature of 2D melting [44]. Much less is known about
the polydisperse case. In this work, we apply both
Monte Carlo simulations and integral-equation formal-
isms to study the structure of the system. Similar tech-
niques were applied in Ref. [45], but hyperuniformity was
not a consideration. Moreover, here we focus on the two-
phase systems formed by the particles, which is crucial for
our purposes, as detailed below.

Our main finding is that in the equilibrium liquid phase,
despite the structure of each component not being
hyperuniform, there exists an optimal size ratio R;/R, =
[0282,(0%)/p1S11(07)](1/4) that makes the resulting two-
phase system effectively hyperuniform. Here S;; and p; are
the partial structure factor and density of the species i. The
optimal size ratio leverages the destructive interference
between scattering events between the two species, which
is a general direct consequence of low isothermal com-
pressibilities due to the strong and long-ranged repulsion.
Our protocol can be potentially applied to other long-
ranged soft repulsions [u(r) ~ 1/r"], as they are shown to
bear similar physics [41]. Additionally, our protocol is also

suitable to systems with other dimensionalities and/or
polydispersity.

Methods.—We study binary superparamagnetic colloidal
particles confined in a 2D plane [39,45,46]. An external
magnetic field B perpendicular to the plane is applied,
inducing a dipole-dipole interaction. For the binary system
we consider here, N;, y;, p;, and x; denote the particle
number, susceptibility, number density, and concentration
for each component, i = 1, 2, respectively, while p is the
total number density. Species 1 and 2 consist of “large”
and “small” particles, respectively, in the sense that
X1 > x»- The dipole-dipole interaction u;; can be rewritten
as pu;;(d) =T;;/d®, where § = 1/(kgT), with kp being
Boltzmann’s constant, and x is the distance between
two particles rescaled by the average interparticle
distance between large particles, i.e., d = r/a;;, where
ay = 1/,/p;. The quantity I';; is a dimensionless coupling
strength between species i and j, which can be written as
T;; = PuoxixjB*/(8mas,). The binary colloids have radii
R, and R,, respectively, however in our simulations they
can be treated conveniently as pointlike due to the strong
dipole-dipole repulsion [46]. We perform Monte Carlo
simulations of a system that consists of 3600 particles,
using a simplified swap Monte Carlo algorithm [47]. Up to
10° steps were used to equilibrate the systems, and all
results presented are averaged using 30 to 50 configura-
tions. The particle sizes are chosen such that the volume
fraction is fixed at 0.15. We also solve the Ornstein-Zernike
integral equation numerically to obtain the partial structure
factors using the Rogers-Young [48] (RY) closure, see
Ref. [49] and Supplemental Material (SM) [50] for details
of the corresponding algorithm.

Results.—Importantly, we first show the binary system is
not hyperuniform as a point pattern, but there is a unique
way of decorating the points with spheres so that this
resulting two-phase system is effectively hyperuniform. As
noted above, hyperuniformity, i.e., the vanishing of S(0™)
of an equilibrium one-component system, is directly related
to its incompressibility. However, we need to consider the
isothermal compressibility k7 of a binary system, which, in
any Euclidean space dimension d, can be expressed in
terms of the partial structure factors S;;(k) [51]:

S11(01)85,(01) — 82, (0
pkBTKT: 11( ) 22( ) 12( ) , (1)

x1525(07) 4 %281, (0%) — 2x]x351,(07)

where S;;(k) = (N;N;)~V/2)(ii;(k)i; (k)). Here i, (k) and
71, (k) are complex collective density variables for large and
small particles, which are defined as 7i; (k) = Zf\g e~k
and 7iy(k) = S, e7®™, where {r;} and {ry} refer
to the set of positions of large and small particles.
Incompressibility (kr = 0) at positive temperature then
implies that
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FIG. 1. Structure factors for large particles S;,(k), small
particles Sy, (k), and the entire system S (k) for different
values of the coupling strength: (a) ', =1, (b) 'y =3,
(¢) Ty, =5, (d) T'y, =10. Clearly, neither the point pattern
associated with each component nor the entire system is hyper-
uniform.

8§11(07)85(07) = $3,(07) = 0. (2)

While incompressibility cannot be perfectly achieved in the
dipolar system we study, due to the strong and long-ranged
repulsion, this condition will approximately hold when the
coupling strength I' is sufficiently large.

However, we show that incompressibility in our equi-
librium binary systems means the destructive interference
of scattering events between both species, rather than the
vanishing of S(k) itself as the case in monodisperse
systems. To demonstrate this idea, we present simulation
results of a binary system with the number density ratio
p1/p> = 1 and the susceptibility ratio y,/y, = 2. Figure 1
depicts the computed structure factors for the small
particles S,,(k), large particles S;;(k), and the entire
system S, (k) for different coupling strengths. Here
Storat (k) can be written as N~ (|71, (k) + 7;(k)[*).

Clearly, neither the point pattern associated with each
component or the entire system of points is hyperuniform,
which requires vanishing structure factors when k goes to
zero. Interestingly, we find that compared to the structure
factors of each component, the small-k values of the
structure factor Sy (k) are suppressed, while the first
peak is significantly enhanced. The k value of the first
intersection of S;;(k) and S,,(k) corresponds to the
minimum of S, (k), which decreases as the coupling
strength increases. These facts suggest that the interference
due to scattering from the small and large particles is
constructive near the wavelength associated with the first
peak of the structure factor, while destructive in the small-k
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FIG. 2. (a) The angle ¢(k) between the complex collective

density variables for small particles 7i,(k) and large particles
11 (k) as a function of wave number k under different coupling
strengths. (b) A schematic plot of the complex collective density
variables for small particles 7i, (k) and large particles 7, (k) in the
complex plane. Here, vector i, (k) can be stretched out to cancel
71, (k) when they are added together.

region, which favors hyperuniformity. To demonstrate this
observation quantitatively, we compute the angle ¢ (k)
between 71, (k) and i, (k), defined by

p(k)

— rccos Re(1 (K))Re(7iy (k) + Im (i, () Im(7iy (k)

721 (k)| 722 (k)|

(3)

We plot the angular-averaged ¢ (k) as a function of wave
number & in Fig. 2(a). These results justify our previous
arguments, i.e., in the small-k region, the angle ¢ (k) is
very close to 7z, showing that the two complex collective
density variables align themselves in opposite directions
and thus the interference is destructive [see schematic
shown in Fig. 2(b)]; while the first dip of ¢(k) coincides
with the location of the first peak, showing that the
interference is constructive at the peak. When k — oo,
the angle converges to z/2, which confirms the expect-
ation that the correlation finally dies out. Importantly, as
the coupling strength increases, the two complex collec-
tive density variables are more strongly aligned with each
other. We now show how this finding relates to Eq. (2).
Using the aforementioned complex collective density
variables, it easily follows that S;,(k) can be written as

\/S11(k)S2 (k) cos ¢(k). Plugging into Eq. (2), we have
$11(0%)85,(07)[1 = cos® p(07)] = 0. (4)

The solution of Eq. (4) means that ¢(0") = z. Moreover,
for dense liquids, numerically we found S;;(0") and
S, (0™") are insensitive to I', thus we approximately have
[1 +cos¢(07)] « Tky according to Eq. (1). This relation
explains the results in Fig. 2(a), i.e., the angle ¢(0™)
converges to z as the coupling strength increases.
However, although 7i;(0") and 7,(0") almost align
themselves in opposite directions in the complex plane,
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due to the fact that their magnitudes are different, their sum
as well as the resulting total structure factor Sy, (07)
cannot vanish. This suggests that if we can elongate the
vectors 7;(0") and 7i,(0") such that their magnitudes
match each other, their sum would be very close to zero, as
we indicated in Fig. 2(b). Importantly, this idea enables us
to design an optimized hyperuniform two-phase system
based on decorating the point pattern.

For a two-phase medium, hyperuniformity is defined in
terms of the spectral density 7y (k), as noted earlier. In
general, the spectral density can be written as |J(k)|?/V,
where J (k) is the Fourier transform of J(x) = I(x) — (I(x))
and /(x) is the particle-phase indicator function [19]. In the
small-k region, we have the following approximate expres-
sion for our binary system:

J(k) = zR31; (k) + nR3ity (k). (5)

To make |J(07)| as close to zero as possible, we immedi-
ately come to the relation that R}|7i;(07)| = R3|fi,(0")],
which leads to the optimal particle size ratio (see SM for a
formal derivation):

Ry _ (/M) (©)

R, /)1511(0+)

Generally, the susceptibility ratio y;/y, is only dependent
on the doping level, thus it can be independent of the size
ratio R;/R,. This provides great flexibility to tune the
system to the optimal hyperuniform state. Observe that in
Fig. 1, as the coupling strength increases, the values of the
structure factors S;;(0%) and S,,(0") approximately
remain the same. This insensitivity shows that the optimal
particle size ratio is essentially determined by the compo-
sition, but not the external field. This is particularly
important from an experimental point of view because it
means that the optimal colloid composition can be pre-
scribed and one only needs to tune the magnetic field to the
desired level.

To demonstrate the effectiveness of our protocol, we
consider decorating the simulated point pattern with particles
with different size ratios while keeping the volume fraction
of the particle phase fixed (here we use 0.15). Figure 3 shows
corresponding spectral densities 7y (k) for these systems.
Indeed, we find that the optimal size ratio (~1.3) gives the
smallest 7y (0"). To quantify how close the system is to
perfect hyperuniformity, we employ the “hyperuniformity
index,” H, defined as H = j7y(0")/7y(kpax), where
7v(kmax) is the value of the largest peak of the spectral
density [37]. We find for I'5, = 10, the hyperuniformity
index H is as small as 0.0004, which is 2 orders of
magnitude smaller than the value obtained from the system
with identical particle sizes. Moreover, we find empirically
that for the optimal structure, the relation 7y (07) o 1/T5,
holds, which is very similar to the behavior of the
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FIG. 3. Spectral densities (k) for binary systems with

different size ratios R,/R, for different values of the coupling
Strength: (a) F22 = 1, (b) F22 = 3, (C) F22 = 5, (d) F22 = 10.
Insets show that the small-k spectral density values for the
optimal size ratio is much smaller than those for nonoptimal
ratios. For 'y, = 10, the hyperuniformity index H is as small as
0.0004 for the optimal size ratio.

monodisperse structure factors. This interesting similarity
between the spectral density 7y (k) of the binary system
with the optimal size ratio and the structure factor of a
monodisperse system can be shown by substituting the
optimal size ratio into Eq. (5). We find that 7y (0") «
272 R} |71 (07)]?[1 4 cos ¢(0™)] o Tky. In the case of dense
dipolar systems, this implies that we approximately have
7v(07) o 1/T" [52], which indeed is what we find in
simulations, see SM. This finding suggests that we can
control the volume-fraction fluctuations at long wavelengths
by tuning the magnetic field, while retaining the isotropy of a
disordered system. We depict a realization of the optimal
system at I’y =5 in Fig. 4(a). In Fig. 4(b), we directly
compute the local volume-fraction variances 63 (R) associ-
ated with windows of radii R [19] for different size ratios.
Note that at the optimal size ratio (~1.3), the volume-fraction
variance indeed decreases fastest with R. Moreover, a scaling
of R=2? is found for the optimal configuration. These results
further confirm that our protocol gives the most hyperuni-
form configuration among all possible size ratios.

We have found similar results for other sets of parameters,
including spectral densities and local volume fraction
variances for two other binary systems (see the SM for
details). To provide a useful recipe, we use the RY
approximation to systematically study the manifold of the
optimal size ratio as a function of the coupling strength ratio,
Y12 = I'11/T5, and composition. The function Z(x,7,) =
R, /R, is computed from Eq. (6) where the partial structure
factors are determined using the RY approximation. This
quantity is plotted in Fig. 4(c). Interestingly, the optimal size
ratio is almost independent of the composition as long as y,
is not too large. Using the effective hard disk diameter
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(a) A realization of the optimal two-phase system at [',, = 5 with volume fraction 0.15. (b) The local volume-fraction variance
ot(R) as a function of the spherical observation window of radius R for different size ratios (optimal value 1.3). The scaling behaviors

for R=2 (nonhyperuniform) and R~ (hyperuniform) are included to guide the eye. (c) Optimal size ratio Z(x,,7;,) in terms of

composition and coupling strength ratio, y;,, as defined by Eq. (6).

Joo {1 — exp[—u(r)/kpT)}dr =~ 135473/ /o7, we find a
good empirical expression for the optimal ratio in this
region: Z(x1.712) ~ (71212 + y1,(/9 +1)/3, which is
represented by the wireframe in Fig. 4(c). Using this figure,
one may determine the experimental characteristics for our
colloidal mixture to become effectively hyperuniform.

Generalizations.—Our protocol can be applied to other
long-ranged interactions, dimensionalities, and/or polydis-
persity. Recall that to reach the key relation ¢ (k) ~ z, we
have not assumed anything about the exact form of the
interaction, nor dimensionality, as long as the system is
hard to compress. For polydisperse systems, incompress-
ibility means that there exists an eigenvector of the structure
factor matrix §;; which leads to a vanishing eigenvalue
at infinite wavelength [32]. Thus, there exists a vector a
such that

> ai8;(07)a; =0, ™)

To make the polydisperse system a hyperuniform two-
phase medium by decoration, note that the spectral density
J7v(01) has the following form:

Iv(07) Z VX V(R)S;(07) /x5 V(R;),  (8)

where V(R;) is the volume of a particle with radius R;.
Comparing Eq. (7) and Eq. (8) it immediately follows that
the optimal composition has the property that V(R;) «
a;/\/%;, ie., R; xa)?/x;'/%4_ For the dipolar system
we consider, one can verify that a = [1//S;;(07),
1/4/82,(07)] is the eigenvector that we are looking for
from Eq. (2). Plugging a and d = 2 into the scaling relation
for R;, we indeed recover relation Eq. (6). Simulation
results given in the SM for a three-component system
provide further confirmation of our methodology.

Furthermore, we note that our protocol can be general-
ized to treat random fields derived from particle configu-
rations as well as hyperuniformity with respect to
other types of fluctuations, e.g., by choosing R;/R, =
[0282,(0%)/p1S11(07)]1/2), the binary system is hyperuni-
form with respect to interfacial-surface-area fluctuations
[19]; see the SM for a detailed discussion.

In conclusion, we have proposed a highly feasible and
robust equilibrium protocol that can be employed in the
laboratory to fabricate large disordered hyperuniform
materials, using binary paramagnetic colloidal particles
confined in a 2D plane. The destructive interference of
scattering events between the two species of the binary
system at infinite wavelength enables us to design the
optimal size ratio. Although the present work stresses 2D
dipolar binary systems, our protocol turns out to be general
and suitable to systems with other sufficiently long-ranged
soft interactions, dimensionalities, and/or polydispersity.
Our methodology opens up avenues to synthesize large,
tunable photonic hyperuniform materials that function in
the visible to infrared range and thus may accelerate the
discovery of novel photonic materials.
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