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Among the family of hard convex lens-shaped particles (lenses), the one with aspect ratio equal to 2/3 is
“optimal” in the sense that the maximally random jammed (MRJ) packings of such lenses achieve the highest
packing fraction ¢yry = 0.73 [G. Cinacchi and S. Torquato, Soft Matter 14, 8205 (2018)]. This value is only a
few percent lower than ¢pxp = 0.762 10.. . ., the packing fraction of the corresponding densest-known crystalline
(degenerate) packings [G. Cinacchi and S. Torquato, J. Chem. Phys. 143, 224506 (2015)]. By exploiting the
appreciably reduced propensity that a system of such optimal lenses has to positionally and orientationally order,
disordered packings of them are progressively generated by a Monte Carlo method—based procedure from the
dilute equilibrium isotropic fluid phase to the dense nonequilibrium MR state. This allows us to closely monitor
how the (micro)structure of these packings changes in the process of formation of the MRJ state. The gradual
changes undergone by the many structural descriptors calculated here can coherently and consistently be traced
back to the gradual increase in contacts between the hard particles until the isostatic mean value of ten contact
neighbors per lens is reached at the effectively hyperuniform MRIJ state. Compared to the MRJ state of hard
spheres, the MRJ state of such optimal lenses is denser (less porous), more disordered, and rattler-free. This set
of characteristics makes them good glass formers. It is possible that this conclusion may also hold for other hard
convex uniaxial particles with a correspondingly similar aspect ratio, be they oblate or prolate, and that, by using

suitable biaxial variants of them, that set of characteristics might further improve.

DOI: 10.1103/PhysRevE.100.062902

I. INTRODUCTION

One defines a packing as a collection of hard (nonover-
lapping) particles in a d-dimensional Euclidean (R?) or non-
Euclidean space. Hard-particle packing problems are easy
to pose but highly nontrivial to solve. Indeed, given such
a collection of hard particles of a certain shape, finding
the arrangements that maximize the packing fraction ¢ is
a persistent discrete-geometric (optimization) problem [1-6]
relevant to other sectors of mathematics as well as to science
and technology. In particular, hard-particle packing problems
naturally emerge whenever the subject of the investigation is
a collection of many particles that mutually interact primarily
via steeply repulsive interactions irrespective as to whether
their typical length scale is micro- or meso- or macroscopic.
They are thus pertinent to most atomic, molecular, colloidal
dense multiparticle systems of interest to physics and physical
chemistry [7-10], materials science [11], and physicochemi-
cal biology [12].

The simplest and most studied among the hard-particle
models is the one in which the particle shape is a sphere.
Depending on the specific context and interest, packings and
systems of hard spheres have been extensively investigated
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from different perspectives and in a variety of situations:
monodisperse and polydisperse, equilibrium and nonequilib-
rium, in Euclidean and non-Euclidean spaces across dimen-
sions [3,4,13-18].

In the course of most of these studies, the structural
characterization of the hard-sphere packings [Fig. 1(a)] has
amounted to the structural characterization of the patterns
of points formed by their centers [Fig. 1(b)]. This involves
the calculation of suitable positional and bond-orientational
correlation functions. On many other occasions, hard-sphere
packings have also been viewed as two-phase media, with
the hard-particle exterior constituting the matrix phase V;
and the complementary union of the hard-particle interiors
constituting the particle phase V, [Fig. 1(c)] [19]. The corre-
sponding structural characterization involves the calculation
of a sequence of positional n-point probability functions as
well as a pore-size distribution function [19]. These functions
can then lead to an estimate of the effective electromagnetic,
mechanical, and transport properties of a heterogeneous ma-
terial made of phases V; and V), [19].

More recently, the hard-sphere model has been extended to
study dense packings and systems of hard nonspherical parti-
cles, which introduce rotational degrees of freedom [16,18].
Examples of nonspherical shapes examined include ellip-
soids [20-29], spherocylinders [30-36], cutspheres [37,38],
superballs [39,40], and polyhedra [41-51]. Characterizing
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FIG. 1. Left panels: schematic illustration of a packing of hard
circles (a) viewed as a pattern of points formed by the centers
(b) and as a two-phase medium with the matrix phase being the white
region and the particle phase being the gray region (c). Right panels:
schematic illustration of a packing of hard almond-shaped particles
(d) viewed as a pattern of points formed by the centroids, each one
associated with a unit vector along the respective particle symmetry
axis (e) and as a two-phase medium with the matrix phase being the
white region and the particle phase being the gray region (f).

the structure and physical properties of equilibrium and
nonequilibrium states of dense packings and systems of hard
nonspherical particles continues to present many fascinating
challenges [16,18].

Previously, we investigated the densest-known (crystalline)
packings, equilibrium phase behavior, and nonequilibrium
glassy and jammed states of hard convex lens-shaped particles
(lenses) [52,53]. These hard Don-symmetric discoidal parti-
cles correspond to the intersection volume of two congruent
three-dimensional spheres. By varying the radius of or the
center-to-center distance between these spheres, the class of
lenses can be generated. Each member of this class is identi-
fied by the aspect ratio ¥ = b/a, with a one of the infinite C,
axes and b the C, axis. The lens shape interpolates between
the hard infinitesimally thin disk (x = 0) and the hard-sphere
(k = 1) models.

(a)

FIG. 2. (a) Image of a lens with x =b/a =2/3. (b) Image
of a MRJ packing of lenses with x = 2/3 with particles colored
according to the angle that their C,, axis makes with an axis of
the laboratory reference frame: the cooler the color of a particle the
smaller the angle that its axis forms with that axis of the laboratory
reference frame.

This work reports on the characterization of the (mi-
cro)structure of monodisperse (positionally and orientation-
ally) disordered packings of lenses with k = 2/3 henceforth
designated as “optimal” lenses [Fig. 2(a)]. This distinguished
case is designated in this manner for two intertwined reasons:

(I) Systems of optimal lenses have a substantially re-
duced propensity to positionally and orientationally order
[53]. Disordered packings can then be generated by gently
compressing from their equilibrium isotropic fluid phase up
to the nonequilibrium maximally random jammed (MRJ) state
[54]. This state is the one among all strictly jammed [16,18]
states that minimizes suitably defined order metrics [54].
Such a gentle compression allows one to closely monitor
the formation of this special hard-particle state. In addition
to an extremal packing fraction ¢yry and an isostatic mean
number of contacts per particle Z = 2dy, where d; is the
number of degrees of freedom for a single particle [16,18], a
hard-particle MRJ state has the particularly important attribute
of (effective) hyperuniformity [55-58]. Hyperuniformity is
a global property of a system that involves an anomalous
suppression of density fluctuations at large length scales,
which is completely accessible via scattering in the infinite-
wavelength limit [55-58]. This unusual characteristic that spe-
cial disordered systems, including hard-particle MRJ states
[59-61], possess is shared with perfect crystals and quasicrys-
tals [55-58].
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(IT) The MRJ state of lenses with k ~ 2/3 [Fig. 2(b)] is the
one most densely packed: the graph of ¢yry versus « has its
absolute maximum at k¥ ~ 2/3 [53]. This maximal value of
omry = 0.73 is only ~4% smaller than ¢pgp = 0.76210.. .,
the packing fraction of the densest-known (positionally and
orientationally ordered, i.e., crystalline as well as degenerate)
packings of lenses with the same value of « [52]. Itis also very
close to the packing fractions reached by jammed packings of
lenses with different values of x in which positional (plastic-
crystalline) or orientational (nematic liquid-crystalline) or-
der are, however, present [53]. This fact suggests a strict
interrelationship between the propensity to form (plastic- or
liquid-crystalline) mesophases and the capability of reaching
very dense jammed states without the need of introducing
positional or orientational order [53].

In analogy with hard-sphere packings, the characteriza-
tion of the (micro)structure of packings of hard nonspheri-
cal particles, such as lenses, can be simplified by viewing
them as patterns of points formed by their centroids. This is,
however, insufficient: the nonsphericity necessarily leads to
associating the position of any centroid to a set of variables
defining the orientation of the corresponding particle. In the
case of Dyh-symmetric particles, such as lenses, this set is
formed by the two Euler angles defining the orientation of
the unit vector along the particle Co, axis. Thus, packings of
hard D,.p-symmetric particles, such as lenses [Fig. 1(d)], can
actually be viewed as patterns of points where each one is
associated with a unit vector [Fig. 1(e)] rather than patterns
of sole points. Consequently, their structural characterization
involves not only the calculation of suitable positional and
bond-orientational correlation functions, but also orientational
correlation functions. Naturally, packings of hard nonspheri-
cal particles, such as lenses, can also be viewed as two-phase
media [Fig. 1(f)]. Their structural characterization involves
the calculation of the same sequence of n-point probability
functions as well as the pore-size distribution function [19].

By calculating a number of structural descriptors, many
disordered packings of optimal lenses, generated by a Monte
Carlo method-based procedure from the dilute equilibrium
isotropic fluid phase up to the dense nonequilibrium MRJ
state, are characterized. Similarly to the hard-sphere MRIJ
state, the MRJ state of optimal lenses is found to be isostatic
and (effectively) hyperuniform but, compared to the former,
the latter is denser (less porous), more disordered, and rattler-
free. Thus, even though monodisperse, optimal lenses promise
to be very good (positional and orientational) glass formers.

The rest of this work consists of the following four sec-
tions: Sec. II, that lists all the quantities that have been
calculated to statistically describe the (micro)structure of
optimal-lens packings; Sec. III, that very briefly recalls how
these optimal-lens positionally and orientationally disordered
packings have been generated via a simple Monte Carlo
method-based procedure; Sec. IV, that presents all the results;
and Sec. V, that concludes this work.

II. LENS PACKING (MICRO)STRUCTURE
CHARACTERIZATION

In the characterization of their (micro)structure, the pack-
ings were viewed either as patterns of the N lens centroids

{ri,...,r; ..., ry}, cach one associated with the respective
unit vector along the lens C, axis {dy, ..., 0, ..., 4y}, or as
two-phase media with the lens exterior constituting the matrix
phase V), and the complementary union of the lens interiors
constituting the particle phase V;.

A. Real-space pair-correlation functions and reciprocal-space
structure factor

If lens packings are viewed as patterns of points, each one
associated with a unit vector, their (micro)structure can be
characterized by several real-space positional, orientational,
and bond-orientational pair-correlation functions along with
the reciprocal-space structure factor.

The set of real-space (real-distance) pair-correlation func-
tions includes g(r), the most basic positional pair-correlation
function, proportional to the conditional probability density
of finding the centroid of a lens j at a distance r from the
centroid of a lens i [9,13-19], along with the orientational
pair-correlation functions G3%(r) and the bond-orientational
pair-correlation functions gg; (r). The latter functions are
respectively defined as

N N S A~
N - . -Pn(u,-~u-5r—r,~
g;:(r) _ Zl—l ijét 2N 7)8( 7) (1)
2im Zj;éi‘s(r = 7ij)
and
i () — St X Pl - £)8(r — 1ij) )
2n - s
ngzl Zl};ia(r = 7ij)
where rij = |r5j| = |I'J' — I, f.ij = rij/rij; (S(I") is the radial

Dirac § function; P, (x) is the m-order Legendre polynomial,
and angular brackets indicate an average over configurations.
The gg‘,f‘(r)’s measure the degree of correlation in the orienta-
tions of two lenses whose centroids are separated by a distance
r. The gg; (r)’s measure the degree of orientational order of
the fictitious “bond” r;;, established between the centroids of
two lenses i and j, with respect to ;.

Together with these real-space pair-correlation functions,
the orientationally averaged structure factor S(k), essentially
the Fourier transform of A(r) = g(r) — 1 [9,13,16,18,55,58],

was also calculated. S(k) is defined as

2

k#£0 3)

11 .
— ikr;
Sk =+ Ze
Jj=1 Kk
with k = |Kk|, k a reciprocal-space vector and the symbol
(-)i(\ indicating an average over the reciprocal-space vectors

sharing the same value of k as well as over configurations.
The calculation of S(k), made directly according to Eq. (3)
rather than Fourier transforming A(r), is important because
its value in the limit £ — O informs one about the degree of
hyperuniformity of a system. In fact, a hyperuniform many-
particle system in R is one in which S(k) tends to zero in the
limit k — 0 [55-58]. Equivalently, it is one in which the local
number variance associated with a spherical window of radius
R, scaled by RY, vanishes in the large-R limit [55-58].
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B. Pair-correlation function of the scaled
distance and contact statistics

Given the hard, convex, and nonspherical character of the
particles constituting the packings, it is useful to define a
positional pair-correlation function g(s) of the scaled distance
Sij = rij/d(f',-j, a;, ﬁj), with d(f'ij, u;, ﬁj) the distance of clos-
est approach or contact distance between lens i and lens j.
One way to define g(s) is to mimic the most basic physical
interpretation of g(r) as the ratio between the mean number
of centroids found in a spherical shell of radii r and r + dr
centered on a given centroid and the mean number of such
centroids in an isodense ideal gas (Poissonian point pattern):

{dn(s))  (dn(s))
(dnig(s)) 30 (Vexe) s2ds’

gls) = “)
with (dn(s)) the number of centroids having a scaled distance
from a central centroid € [s, s + ds] averaged over central
centroids and configurations and (dnjq(s)) the analogous
mean number of centroids in an isodense ideal gas; in its turn,
(dniq(s)) is given by 30 (Vexc) s*ds, with o the number density
and (vexc) the expected excluded volume associated with one
lens completely averaged over @; and @; [62]. Differently than
the full many-variable pair-correlation function g(r;;, 0;, G;),
the positional pair-correlation function g(s) can be more di-
rectly compared to g(r) of a hard-sphere system, gns(7), and
its value in the lim,_, 1+ g(s) = g(1") is analogously related
to the pressure P of a statistically homogeneous and isotropic
system:

BP = o[1 + 30 (vexe) 8(17)], (5)

with 8 = 1/(kgT) and kg the Boltzmann constant and T
the absolute temperature. For a lens in a configuration, the
occupancy of the bin at s = 1 defines the number, n., of
lenses at contact with it. One can then calculate the probability
density that a lens has n, contact neighbors, IT (n.), along with
its first moment, the mean value of n., as a function of ¢,

(nc) (@) = Z(e).

C. Lens packings as two-phase media

It is useful to view lens packings as two-phase media, in
which phase 1 (matrix phase) comprises the space exterior to
the particles, V), and phase 2 (particle phase) comprises the
space occupied by the particles, V,, such that V, UV, =V C
R3. Their (micro)structure can then be characterized by an
infinite hierarchy of n-point probability functions [19]. These
functions are defined in terms of the phase indicator function:

=0 35 Q
withx e V c R3 as
Sp (X1, oy Xp) = ((X1).. (X)) . @)

This n-point function is the probability of finding n ran-
domly selected points at positions Xi, ..., X, in phase 2. For
statistically homogeneous media, the one-point function is
simply equal to the packing fraction, i.e., S1(x) = ¢, and the
two-point function depends only on the displacement vector,
SH(x1, X2) = S2(xp — x;). If the system is also statistically

isotropic, the two-point function depends only on the mod-
ulus of the distance between the two points: S>(Xp, Xp) =
S>(|x2 — x1|) = S2(x). Furthermore, statistical homogeneity
suffices to allow S,(x) to be separated into an “internal”
component, Sy, (x), that gives the probability that the two
randomly selected points will be at a distance x and lie inside
the same particle, and an “external” component, Sy, (x), that
gives the probability that the two randomly selected points
will be at a distance x and lie inside two different particles:

$2(x) = 82, (%) + 82, (x). ®)

While the former component is a single-particle quantity that
does not depend on ¢ except for a multiplicative factor, it
is the latter component that contains information on how
the (micro)structure of the packings changes with ¢ via pair
correlations. Then, it is convenient to write S;(x) in terms of
the positional pair-correlation functions X, _(x) and X,  (x):

SH(x) = ¢* [a, (%) + o, (V)] ©)

The one-body term X, (x) = ¢~2S,, (x) is calculable once
for each particle type and only contains information about
the particle shape and size. The two-body term X, (x) =
$~28,, (x) more importantly contains pair-correlation infor-
mation. Then, it is natural to introduce the autocovariance
function x (x) [19]:

X(x) = $H(x) — ¢* = ¢* 2o, () + Xo, () — 1] (10)

The Fourier transform of y (x) defines the spectral density
X (k) [19], which is analogously expressible as the sum of two
components, Xint(k) and Xex¢(k):

X (k) = Rin (k) + Kexi (k). (11)

The internal component is given by
. Q Y 2
Xint (k) = —/dk k)]~ 12)
47

where 7(k) is the Fourier transform of the single-particle
indicator function [19]

0 :x ¢ particle

m(x) = {1 : X € particle. (13)

The external component is given by

Feath = 9227 f " dxx sinen) [Za 00— 1. (14)
0

In analogy with what occurs with A(r) and S(k), knowledge
of m(k) and X,  (x) would allow one to calculate % (k) via
Egs. (11), (12), and (14). In analogy with S(k), X2(k) was
instead directly calculated using [19]

2

1[|& .
20y = T 1D e k#£0. (15
j=1

~

k

The calculation of ¥ (k) is important because its value in the
limit k — O informs one about the degree of hyperuniformity
for a two-phase medium. In fact, a hyperuniform two-phase
system in R¢ is one in which % (k) tends to zero in the
limit £ — 0 [56-58]. Equivalently, it is one in which the
local volume fraction variance associated with a spherical
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window of radius R, scaled by R?, vanishes in the large-R limit
[56-58]. One should note that, in a monodisperse system of
hard (non)spherical particles, the behavior of S(k) and that of
X (k) in the limit k — 0 are interconnected [57] such that the
two types of hyperuniformity, that of a point pattern and that
of a two-phase medium, are either both absent or both present.

One additional important quantity that characterizes a two-
phase medium is the pore-size distribution function P(§)
together with its first, (§), and second, (6%), moments. Here,
6 is the maximal radius of a hard sphere, whose center is a
random point in the V), phase, that is completely insertable
into this phase [19].

The quantities S, (x), (8), and (8%) can lead to an estimate
of the effective electromagnetic, mechanical, and transport
properties of a random heterogeneous material made of phases
Vl and Vz [19]

III. LENS PACKING GENERATION

Due to the appreciably reduced propensity of optimal
lenses to positionally and orientationally order [53], packings
of N = 1013 of them, each with a surface area S = 202, with
o the unit of length, were progressively generated by gently
compressing the low-density equilibrium isotropic fluid phase
until reaching the high-density nonequilibrium MRIJ state.
This compression was carried out via an isobaric(-isothermal)
Monte Carlo method-based procedure using a triclinic com-
putational box of volume V' and variable shape and size, and
periodic boundary conditions [63]. This allowed us to closely
monitor how the (micro)structure of these packings changes
in the process of formation of the MRIJ state.

IV. RESULTS

One very important attribute of any hard-particle packing
is its packing fraction ¢ = gv = N/V v, where v is the particle
volume. The change in ¢ as a dilute equilibrium isotropic fluid
system of optimal lenses is gently compressed until reaching
the dense nonequilibrium MRIJ state is shown in Fig. 3. In
this figure, the inverse compressibility factor, ﬁ%, is plotted as
a function of ¢. The monotonic gentle descent of % bends
further downwards at ¢ ~ 0.65. Then, it continues essentially
linearly, in accordance to free-volume theory (fvt) [64], until
the MRJ state is reached at the fvt-extrapolated value ¢pry >~
0.73. This bend is particularly well appreciated by comparing
the numerical simulation data to a past analytic equation of
state proposed for the isotropic fluid phase of monodisperse
systems of hard convex nonspherical particles [65]:

,B_P_ 1 N 3a¢ 3a?¢? — a(6a — 5)¢>
o 1—¢ (-9 (1—¢) ’

where o = RS/(3v) is a nonsphericity parameter written in
terms of the mean curvature radius R, S, and v. This analytic
equation of state works very well within the equilibrium fluid
and the metastable fluid states but, doomed by the unphysical
pole at ¢ = 1, significantly departs from the numerical simu-
lation data in the glassy and MRJ states. The value of ¢pgry >~
0.73 is only 4% smaller than the value of ¢pgp = 0.76210. ..
[52]. For a given dimensionality d of the Euclidean space,

(16)
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FIG. 3. Inverse compressibility factor -% as a function of pack-
ing fraction ¢ (black circles). Those marked with a colored cross are
the state points at which a detailed analysis of the (micro)structure
was carried out. These state points are representative of the equilib-
rium fluid (red), metastable fluid (green), glassy (cyan and blue), and
MR (indigo) states. The short-dashed curve is the analytic equation
of state of Eq. (16). The inset focuses on the high-¢ regime where the
high-¢ equation of state for the equilibrium crystal is also included as
a long-dashed curve and the two diagonal arrows indicate isotropic
fluid—crystalline solid coexistence [52] while the two vertical arrows
indicate the values of ¢ for, respectively, the maximally random
jammed (MRJ) state and the densest-known packings (DKP) [52].

the closer the value of the ratio ¢ymgry/¢dpkp 1S to unity the
greater the propensity of a monodisperse system of hard
particles is to form mechanically stable glassy states. The
equilibrium crystal equation of state starts from the value of
¢pkp [52]. The corresponding ﬁQ—P behaves essentially linearly
as a function of ¢, in accordance to fvt [64]. Its slope is similar
to that of % versus ¢ in the nonequilibrium glassy state.

In the following sections, the (micro)structure of packings
representative of the equilibrium fluid, metastable fluid, glassy
and MR states are characterized via the structural descriptors
from Sec. II.

A. Real-space pair-correlation functions and reciprocal-space
structure factor

The positional pair-correlation function g(r) is the most
basic function that describes the (micro)structure of a statis-
tically homogeneous and isotropic system [8,9,13—19]. This
function is given in Fig. 4 at several values of ¢ from the
dense equilibrium fluid phase to the nonequilibrium MRJ
state. These g(r)’s have the form that this function typically
takes on in the dense fluid state of a system composed
of hard moderately nonspherical particles. The positional
disordered character of the system is revealed, globally, by
the fast damped-exponential peak decay and valley rise to-
wards the long-distance limit value of unity. In addition, the
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FIG. 4. Pair-correlation function g(r) at several values of packing
fraction ¢ representative of the equilibrium fluid (red), metastable
fluid (green), glassy (cyan and blue), and MRJ (indigo) states. The
arrows indicate the value of a, one of the optimal-lens C, axes; b,
the optimal-lens C,, axis; and d, the in vacuo mean contact dis-
tance. The inset shows the optimal-lens in vacuo probability density
function of the contact distance p(d), i.e., the probability density
to find two randomly chosen optimal lenses whose contact distance
€ [d,d+dd].

principal peak abscissa value remains essentially stuck at
~d = [, dp(d)dd = 0.791...0, the value of the in vacuo
mean contact distance (main and inset panels of Fig. 4).
This fact suggests that these hard particles, even locally, do
not generally have a preferred positional organization. The
principal peak abscissa value is moderately, yet perceptibly,
moving towards the value of the in vacuo most probable
contact distance, 0.784 . ..o (inset of Fig. 4), as ¢ increases,
which causes more contacts to be established between the hard
particles. The successive peaks shift towards the principal
peak while the principal valley deepens as ¢ increases. During
this compression, there is no evident sign of the system
becoming glassy except, in retrospect, the moderate displace-
ment of the principal peak abscissa value, the appearance of a
tenuous shoulder at r & 1.50 and, especially, the progressive
roughness of the curve. This roughness is a direct conse-
quence of the rigidity that the system is acquiring and that
its relatively small size makes noticeable [66]. The form of
g(r) for a system of optimal lenses in a disordered state differs
from that of a system of hard spheres in a disordered state.
They differ not just in the principal peak shape but especially
in their overall smoothness as the MRJ state is approached.
Due to the nonsphericity of the hard particles, the principal
peak is rounded off rather than cusped. It is reminiscent of
g(r) of a monodisperse system of soft (attractive-repulsive)

spherical (e.g., Lennard-Jones) particles in its liquid phase
[9,13]. Due again to the nonsphericity of the hard particles, the
form of this function does not show any singularity or a split
second peak, both features of the hard-sphere MRIJ state g(r)
[16,18].

Directly connected to g(r) is the (orientationally averaged)
structure factor S(k). The overall form of S(k), particularly
its limit value of unity as k — o0, at values of ¢ in the dense
equilibrium fluid, nonequilibrium glassy and MRIJ states con-
firms the positionally disordered character of all these states
(Fig. 5). The strong similarity among all these curves indicates
that these states are cognate with one another (Fig. 5). In
parallel to what is observed for g(r) (Fig. 4), the progressive
roughness of the curve as ¢ increases (Fig. 5) is a reflection
of the progressive rigidity that the system is acquiring and
that the small size of the system makes noticeable [66]. In
the equilibrium fluid state, the value of S(0) > 0 obtained by
quadratically fitting the low-k S(k) data matches the value ob-
tained from the isothermal compressibility [Fig. 5(a)], which,
in equilibrium, is known to be related to S(0) [9]. In the denser
nonequilibrium states, the extrapolated value of S(0) keeps
progressively decreasing [Figs. 5(b) and 5(c)]. With the caveat
that the present system size is not so large to allow for very
small values of k to be investigated and the statistics of S(k) at
these very small &’s to be extremely good, one may conclude
that the values that S(k) takes on as k — 0 are so small
[Fig. 5(c)] that the system becomes effectively hyperuniform
on approaching the MRJ state: in the neighborhood of £ = 0,
S ~ 1073 while S ~~ 4 at its principal peak [58].

The nonsphericity of the present hard particles offers
the possibility to define and evaluate new, orientational,
pair-correlation functions as well as more precise bond-
orientational pair-correlation functions. Given the cylindri-
cally symmetric character of the present hard particles,
gg‘ﬁ(r) and gg'f (r) are the most basic orientational and bond-
orientational pair-correlation functions. Their form at several
values of ¢, from the moderately dense equilibrium fluid to
the dense nonequilibrium MRI states, are shown in Figs. 6
and 7. The vanishing of gg‘ﬁ(r) and gg‘f(r) as r — 0o demon-
strates the globally orientationally disordered character of all
considered packings. In each panel of these figures, Qg‘ﬁ(r)
and ggf (r) are compared to two functions. The first is the
limit form that gg‘ﬁ(r) and g;"f(r) respectively take on as
¢ — 0. This corresponds to a calculation where two particles
are taken at a fixed centroid distance r and whose orientations
are completely random except that the nonoverlap constraint
has to be complied with. The domain of these functions is
[b, 00). The second is the limit form that G¥%(r) and G2 (r)
respectively take on in a calculation where two particles are
taken whose orientations are completely random except that
the particles are constrained to touch. They are related to
the form respectively taken on by Gi%(r) and G¥f(r) as the
MRJ state is approached. The domain of these functions is
[b, a]. One can observe that gg‘ﬁ(r) and gg'f (r) progressively
pass from the respective first limit form and change so as to
“adhere” to the respective second limit form as ¢ increases.
Even in the dense packings, the second limit form cannot be
completely “adhered” to since, in general, the latter form is the
result of a purely two-body calculation and, in particular for
sufficiently large r, not all pairs of particles whose centroids
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FIG. 5. Orientationally averaged structure factor S(k) at several
values of packing fraction ¢: (a) equilibrium fluid at ¢ =0.614;
(b) glassy state at ¢ =0.668; (c) MRJ state at ¢ =0.728. In any
panel, the top-right inset focuses on the low-k regime with the dashed
curve being a quadratic fit. In (a) the arrow marks the value of S(0)
obtained from the isothermal compressibility; in (b) and (c) it had
better plot S(k) as a function of k* so as to more clearly show its
diminishing trend as k — 0.
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FIG. 6. Pair-correlation function g;‘ﬁ(r) at several values of
packing fraction ¢ representative of the equilibrium fluid [(a) ¢ =
0.378; (b) ¢ = 0.614], metastable fluid [(c) ¢ = 0.645], glassy
[(d) ¢ = 0.698], and MRIJ [(e) ¢ = 0.728] states. In each panel, the
black curves correspond to the limit forms this function takes on
when calculated considering two randomly chosen lenses either free
(dashed) or touching (continuous).

are separated by r are necessarily touching. Nonetheless, the
second limit form sets a paragon stone by which to understand
how gg'ﬁ (r) and gg‘f(r) changes as ¢ increases. The fact that
g;”'ﬁ(r) and Qg‘f(r) are taking on a form that closely resembles
the respective second limit form is an indication that the
packings are also locally orientationally disordered. Even
when only viewing g;‘ﬁ(r) and gg‘f(r), the process of for-
mation of the nonequilibrium MRIJ state from the equilib-
rium fluid state is one in which the salient features of the
(micro)structure “‘exasperate” quantitatively, as the degree
of contactedness between the particles a fortiori increases,
without, however, significantly changing qualitatively.

B. Pair-correlation function of the scaled distance and
contact statistics

The moderate nonsphericity of the present hard particles is
responsible for g(r) having a form resembling more that of liq-
uid argon [9,13] rather than that of the hard-sphere fluid [9,13—
19]. Considering the scaled distance s = r/d(f;;, i;, Gi;) in-
stead of the real distance r restores a pair-correlation func-
tion g(s) with a “hard-sphere-fluid-like” form (Fig. 8). By
construction, as ¢ — 0, g(s) is guaranteed to approach the
corresponding unit-diameter hard-sphere fluid g(r), gns(7),
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FIG. 7. Pair-correlation function gg‘f(r) at several values of pack-
ing fraction ¢ representative of the equilibrium fluid [(a) ¢ = 0.378;
(b) ¢ = 0.614], metastable fluid [(c) ¢ = 0.645], glassy [(d) ¢ =
0.698], and MRIJ [(e) ¢ = 0.728] states. In each panel, the black
curves correspond to the limit forms this function takes on when cal-
culated considering two randomly chosen lenses either free (dashed)
or touching (continuous).

i.e., the step function

0: 0<r«l1
@(r):{]. r>1." an
It becomes of interest to investigate how g(s) compares to
gns(r) as ¢ increases. This may be done by using, for the hard-
sphere positional pair-correlation function, the Percus-Yevick
(PY) approximation, ghY(r), known to be good throughout
the hard-sphere equilibrium fluid phase [9,13,14,17]. Indeed,
gﬁ}(r) compares well to g(s) up to moderate values of ¢
(top-left inset of Fig. 8). However, the two positional pair-
correlation functions progressively depart from one another
as ¢ increases and surpasses @y fr, = 0.494, the value of ¢ at
which the hard-sphere fluid freezes [9,13—18]. Beyond ¢y £z,
the PY approximation quickly deteriorates to such an extent
that, in the proximity of ¢nsMmry = 0.64, the value of ¢ at
the hard-sphere MRIJ state [54], gbY (r) displays unphysically
negative values. The “true” gns(r) progressively loses a flu-
idlike appearance to finally assume the characteristic form
with a singular split second peak that it exhibits at the MRJ
state (bottom-left inset of Fig. 8) [16,18]. On the contrary,
g(s) smoothly changes as ¢ increases towards ¢yry, always
maintaining a hard-sphere-fluid-like form (Fig. 8). Indeed,
g(s) is tending to acquire an approximate ‘“delta-plus-step-
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FIG. 8. Pair-correlation function g(s) of the scaled distance s,
obtained by dividing the distance r separating two lens centroids
by the appropriate contact distance, at several values of packing
fraction ¢ representative of the equilibrium fluid (red), metastable
fluid (green), glassy (cyan and blue), and MRJ (indigo) states. The
top-left inset shows g(s) in the moderately dense equilibrium fluid
phase at ¢ = 0.378 (continuous curve) compared to the Percus-
Yevick approximation result for the g(r) of the hard-sphere fluid at
the same value of ¢ (dashed curve). The bottom-left inset shows g(s)
at the MR state (continuous thinner curve) compared to the g(r) of
the hard-sphere MRJ state (dashed thicker curve) with the ordinate
axis on a logarithmic scale. The bottom-right inset shows the same
g(s)’s as the main panel but with the ordinate axis on a logarithmic
scale.

with-a-gap” form rather than the form characteristic of the
three-dimensional hard-sphere MRJ state (Fig. 8). This is an
example of the decorrelation principle that is acting as d
increases either because the dimensionality d of the Euclidean
space increases [67] and/or rotational degrees of freedom are
added. One can compare the abscissa value of the minimum of
g(s) at the MRJ state, s ~ 1.3 (Fig. 8), with the optimal value
of the gap parameter o * discussed in the analysis of three- and
higher-dimensional disordered hard-sphere systems aimed at
estimating the scaling of ¢yry as d — oo [67].

The numerical calculation of g(s) [Eq. (4) and Fig. 8] leads
to the estimate of the number of neighboring particles that
are in contact with a central particle. In fact, this number, n.,
is here defined as the number of particles whose s € [1, 1 +
ds] with ds = 0.01. By averaging over central particles and
configurations, one can calculate the probability, I1(n.), that a
particle has n. contact neighbors. The histograms of IT(n.)
at several values of ¢ from the dense equilibrium fluid to
the nonequilibrium MRI states are shown in Fig. 9. During
this compression, besides the expected progressive increase
of the mean value of n., (n.) = Z (Fig. 10) [68], and that of
the most probable value of n., the form of the histograms
passes from being left- to right-skewed. This fact decisively
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FIG. 9. Contact neighbor number probability IT(n.) at several
values of packing fraction ¢ representative of the equilibrium fluid
[(a) ¢ =0.562; (b) ¢ = 0.614], metastable fluid [(c) ¢ = 0.645],
glassy [(d) ¢ = 0.668; (e) ¢ = 0.698], and (quasi)MRIJ states [(f)
¢ = 0.726; (g) ¢ = 0.728]. In (e), the inset reproduces the main
panel with the ordinate axis on a logarithm scale.

contributes to the upswing of Z in the proximity of the MRJ
state until it reaches the isostatic mean value of 10 at the
MR state (Fig. 10). During this compression, the number of
“rattlers,” i.e., the particles with no contact neighbors, n, = 0,
quickly diminishes and vanishes in close proximity of the
MRI state (Figs. 9 and 10). This occurs at the setting in of
fully glassy behavior, in turn corresponding to the setting
in of a fvt-like linear behavior of o/BP versus ¢ (Fig. 3).
The number of “rattling” optimal lenses is rather large at
values of ¢ =~ ¢ns mry = 0.64 [54]. This is consistent with the
capability of a system of optimal lenses to form an equilibrium
fluid denser than the densest hard-sphere equilibrium fluid at
Ons.frz- 1t 1s also consistent with the capability of a system
of optimal lenses to reach a MRJ state not only ~14%
denser than the hard-sphere MRIJ state but also remarkably
devoid of any rattler. Thus far, no procedure has been able
to generate a rattler-free three-dimensional hard-sphere MRJ
state [16,18,58].

C. Lens packings as two-phase media
1. Two-point correlation function and spectral density

The most important component of the two-point proba-
bility function S,(x) is the external pair-correlation function
Yoext(x). This function is proportional to the conditional
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FIG. 10. Mean contact neighbor number Z as a function of
packing fraction ¢ (black circles and eye-guide dotted curve); the
horizontal and vertical dotted lines intercept at (¢mry,10). The inset
shows the number of “rattlers”, n. = 0, as a function of packing
fraction ¢ (black circles and eye-guide dotted curve).

probability to find the two points at a distance x and inside
two different particles (Fig. 11). Irrespective of the value
of ¢, this function rather quickly reaches its x — oo limit
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FIG. 11. The external part of the two-point correlation function
Yoext(x) at several values of packing fraction ¢ representative of the
equilibrium fluid (red: dotted, dashed, and continuous), metastable
fluid (green), glassy (cyan and blue), and MRJ (indigo) states.
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FIG. 12. Spectral density X (k) at several values of packing frac-
tion ¢ representative of the equilibrium fluid (red), metastable fluid
(green), glassy (cyan), and MRJ (indigo) states.

value of unity. On increasing ¢, Xex(x) is expectedly pro-
gressively “pushed” towards x = 0 while growing damped
oscillations are developed. They show the largest amplitude
in the moderately dense equilibrium fluid phase. Then, these
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FIG. 13. Pore-size distribution function P(§) at several values of
packing fraction ¢, from the low-¢ equilibrium fluid to the high-¢
MRIJ states. Red curves correspond to the equilibrium fluid state;
the green curve corresponds to the metastable fluid state; the cyan
and blue curves correspond to the glassy state; the indigo curve
corresponds to the MRJ state.

damped oscillations progressively fade away as ¢ approaches
the value corresponding to the equilibrium fluid phase at
freezing. From this point, on further increasing ¢, Xpext(x)
moderately changes its form: it keeps being pushed mildly
towards x = 0 and reduces its damped oscillations. This is
diametrically opposed to what happens to g(r) whose damped
oscillations increase with ¢. This suggests that an analytic
theory that reliably extrapolates Xjex(x) to x — oo might
be more feasible than an analogous analytic theory for g(7).
That analytic theory would allow one to calculate (k) by
Fourier transform even for k — 0. Short of such an analytic
theory, % (k) has directly been calculated (Fig. 12). Leaving
aside the expected progressive lowering of the curve as ¢
increases, consistent with the progressive decrease of S(k) at
small values of k (Fig. 5), the overall form of % (k) changes
little as the system goes from the equilibrium fluid to the
nonequilibrium MRJ states.

2. Pore-size statistics

One additional important quantity when characterizing a
two-phase medium is its pore-size distribution function P(§)
(Fig. 13). Its form significantly changes when going from
the dilute equilibrium fluid to the dense nonequilibrium MRJ
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FIG. 14. Inverse of mean pore size (§) and mean-square pore size
(6?) as a function of packing fraction ¢. The vertical dashed lines
mark the value of ¢ of the optimal-lens MRJ state. The asterisks are
the corresponding data for the hard-sphere MRJ state.
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states. In addition to the expected progressive sharpening and
shifting of this function upward as § tends to zero, P(§ =
0) is its maximal value and (consequently) its derivative at
8 = 0 changes from positive to negative at sufficiently high
¢. This occurs in correspondence to the system becoming
glassy and then reaching the MRIJ state. Either directly
or from P(§), one can calculate the first two moments of
this distribution function, (8) and (§%) (Fig. 14). It proved
important to report the inverse of these two quantities versus
¢ so as to reveal the quasisigmoidal form that these two
curves have on approaching the MRIJ state. This allows one
to appreciate how the graph of ¢ versus 1/ (6) and that of
¢ versus 1/(8%) mirror the graph of o/BP versus ¢ (Fig. 3):
the bend that these former curves have at ¢ &~ 0.65 parallels
the bend that this latter curve has at the same value of ¢. For
the hard-sphere MRJ state at ¢n mry 2 0.64, (§) >~ 0.063D
and (8%) ~ 0.006D?, with D the hard-sphere diameter [69].
The latter length is presently assimilable to d. Thus, for the
hard-sphere MRIJ state at ¢ns mry = 0.64, (§) >~ 0.0490 and
(8%) ~ 0.003702. These values are significantly larger than
the respective value for optimal lenses at the same value of
¢ =~ 0.64: another confirmation that optimal lenses are better
(ordered and disordered) packers than hard spheres.

V. CONCLUSIONS

In the class of hard convex lens-shaped particles, the
member with aspect ratio equal to 2/3 is optimal in the sense
that its maximally random jammed state is the densest, which
imparts them with a reduced propensity to positionally and/or
orientationally order on compressing from the equilibrium
isotropic fluid. This makes them a suitable hard nonspherical
particle model to carefully investigate the process of forma-
tion of the maximally random jammed state without inter-
ference from not only full but also partial, plastic or liquid,
crystallization while keeping the system monodisperse. Thus,
by using a simple Monte Carlo method-based procedure,
monodisperse packings of such hard nonspherical particles
are generated by compressing the equilibrium isotropic fluid
until reaching the nonequilibrium maximally random jammed
state.

To characterize how the (micro)structure of these pack-
ings changes in this process, many structural descriptors
are calculated. These structural descriptors undergo gradual,
quantitative but not qualitative, changes: the compression
“exasperates” features that are already present in the dense
equilibrium isotropic fluid. These changes can coherently and
consistently be traced back to the gradual increase of contacts
between these hard particles on densification until the isostatic
mean value of ten contact neighbors per particle is reached

at the effectively hyperuniform maximally random jammed
state. Even the bend in the inverse compressibility factor
versus packing fraction curve, a macroscopic signature of
glass formation, can be traced back to the pore-size distribu-
tion function assuming its absolute maximum at a pore size
equal to zero.

The analysis of contact statistics can be seen as part of the
calculation of the pair-correlation function of the scaled dis-
tance obtained by dividing the real distance by the orientation-
dependent contact distance. The form of this special pair-
correlation function compares well to that of a hard-sphere
fluid up to moderate values of packing fraction. For values
of the packing fraction approaching and surpassing the value
at hard-sphere freezing, the two pair-correlation functions
depart more and more from one another. The hard-sphere
pair-correlation function is known to acquire a form distinct
from that in the equilibrium fluid, with a singular split second
peak, as the maximally random jammed state is approached
and finally reached. Instead, the pair-correlation function of
the scaled distance always maintains a fluidlike form that
approximates a delta-plus-step-with-a-gap form as the maxi-
mally random jammed state is approached and finally reached.
This can be seen as an example of the decorrelation principle
acting as the number of degrees of freedom increases.

Compared to the hard-sphere maximally random jammed
state, the maximally random jammed state of the present hard
nonspherical particles is not only denser but also has a packing
fraction only a few percent smaller than the packing fraction
of the corresponding densest-known crystalline (degenerate)
packings. Based on the decorrelation principle, it can be
considered more disordered. In addition, it is less porous
and rattler-free. These characteristics make it a significantly
better glassy material and the investigation of its effective
electromagnetic, mechanical, and trasport properties [19,70]
opportune.

It is possible that other hard convex uniaxial particle
models with an aspect ratio equal to 2/3, if oblate, or 3/2,
if prolate, might also be found optimal in the same sense
used for lenses and that moderate biaxial variants of them
might form dense disordered packings with further improved
characteristics.
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