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Temperature control is essential for regulating material
properties in laser-based manufacturing. Motion and power
of the scanning laser affect local temperature evolution,
which in turn determines the a posteriori microstructure.
This paper addresses the problem of adjusting the laser
speed and power to achieve the desired values of key process
parameters: cooling rate and melt pool size. The dynamics
of a scanning laser system is modeled by a one-dimensional
heat conduction equation, with laser power as the heat in-
put and heat dissipation to the ambient. Since the model is
one dimensional, length and size are essentially the same.
We pose the problem as a regulation problem in the (moving)
laser frame. The first step is to obtain the steady-state tem-
perature distribution and the corresponding input based on
the desired cooling rate and melt pool size. The controller
adjusts the input around the steady state feedforward based
on the deviation of the measured temperature field from the
steady-state distribution. We show that with suitably defined
outputs, the system is strictly passive from the laser motion
and power. To avoid over-reliance on the model, the steady-
state laser speed and power are adaptively updated, result-
ing in an integral-like update law for the feedforward. More-
over, the heat transfer coefficient to the ambient may be un-
certain, and can also be adaptively updated. The final form
of the control law combines passive error temperature field
feedback with adaptive feedforward and parameter estima-
tion. The closed-loop asymptotical stability is shown using
the Lyapunov arguments and the controller performance is
demonstrated in a simulation.
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1 Introduction
Laser additive manufacturing (LAM) is gaining inter-

est in rapid prototyping, coating, parts repairing etc. due to
its ability to generate a wide range of configuration and ge-
ometries, through a layer-by-layer melting-solidification pro-
cess [?]. Although literature has suggested its capability of
creating superior properties compared to the wrought mate-
rial through rapid melting and cooling [?], variabilities and
inconsistencies in the fabrication process often degrade the
performance of the finished part. As a result, LAM has not
been widely applied to critical industries such as aerospace,
energy and automotive [?].

Material properties are largely determined by mi-
crostructure. Characterization of microstructure evolution in
LAM has been extensively studied [?, ?, ?, ?, ?]. Tight con-
trol of the processing conditions is necessary for optimiz-
ing the material microstructure, and in turn, physical proper-
ties [?,?]. Similar to metallic manufacturing processes, ther-
mal processing is critical to the microstructure of the finished
part. Suitable control of the thermal condition could achieve
parts with desired hardness, strength, etc. [?]. In [?, ?], the
thermal control problem is reduced to the regulation of the
real-time cooling rate. Thermal control in LAM is similar
to that in arc welding [?, ?, ?, ?]. Distributed parameter heat
transfer models have been developed [?,?,?], and process pa-
rameters, such as cooling rate and melt pool size, have been
identified as key indicators of the resulting material prop-
erties [?, ?]. Various methods have been proposed to regu-
late these parameters by estimating and feedback them back
to controlling the motion and power of the scanning laser,
including neural network [?], controller designed based on
identified linear models [?], and direct estimation and feed-



back of the cooling rating with an IR camera [?]. Recently,
multiple tracks and multilayer part fabrications have been in-
vestigated in [?,?] using iterative learning control techniques.
In the current literature, proposed models for laser manufac-
turing processes are open-loop stable and closed-loop control
approaches are used to achieve performance requirements
and to ensure robustness to perturbations.

In this paper, we propose an alternate approach of tem-
perature control in LAM. We regulate the distributed tem-
perature field in the laser frame, with the target temperature
field designed based on the desired values of key process pa-
rameters such as cooling rate and melt pool size. We model
the system dynamics as a one-dimensional heat conduction
problem, with Newtonian heat loss to the ambient and heat
input from the moving laser. This is a simplification of the
full problem, which is three-dimensional, involves solidifica-
tion and melting, and contains dynamics of the liquid-solid
interface (see Stephan problem [?,?] for the static heat source
case). We use the simplified model to develop the control
methodology, which would lay the foundation to tackle the
more complex full-scale problem. Our approach decomposes
the problem into two parts. The first part designs a desired
temperature distribution and the corresponding laser input
in the laser frame to meet certain criteria, e.g., the cooling
rate and melt pool size. By using an energy-like Lyapunov
function, we show that the input (deviation from the desired
values) to a set of suitably chosen outputs, which depend
on the temperature field error, is strictly passive. The Lya-
punov approach leads to a large family of stabilizing con-
trollers and also provides the framework for the adaptation
of uncertain heat transfer to the ambient. The strict pas-
sivity implies that any passive feedback is stabilizing. A
particular choice is simply a constant feedback as in propor-
tional control. The constant feedforward portion of the con-
troller depends on the model. It may be estimated based on
the temperature field error, resulting in an integral-like term.
The proportional-integral (PI) control is a special case of this
family of passive-integral stabilizing control laws. When the
heat transfer to the ambient is also uncertain, it may be adap-
tively estimated and incorporated into the control law. The
resulting control structure is a passive temperature field error
feedback combined with an integral control estimating the
feedfroward laser speed and power and an adaptation term
for the heat transfer coefficient of the ambient heat loss. We
use the one-dimensional (1D) partial differential equation
(PDE) model as the truth model for evaluating the controller
performance. For computation, we use the truncated modal
expansion as an approximation of the full model. For con-
troller design and stability analysis, we use the moving laser
frame by applying a coordinate transformation similar to [?],
resulting in a reaction-advection-diffusion equation. Simula-
tion results of open-loop response and closed-loop response
with and without incorporating the estimation of heat trans-
fer coefficient α are presented as demonstration of the pro-
posed control strategies. The PDE model is parabolic which
may be approximated a finite dimensional ordinary differen-
tial equation (ODE), e.g., using the modal coordinate. With
the laser motion and power as input variables, the control

problem contains a bilinear advective term which is a key
challenge addressed in this paper.

This paper is organized as follows: In Section II, we
discuss the derivation of the 1D PDE model. Section III
presents the formulation of the control problem, optimiza-
tion based on different criteria for desired temperature field
evolution, and statement of the control objective. Section IV
describes the control design to achieve set point regulation,
and in turn, the desired cooling rate and melt pool size. Sec-
tion V presents the simulation results.

2 Temperature Evolution Model
2.1 Inertial Frame Model

Within a single scan, we approximate the system dy-
namics in terms of the temperature distribution in a rod along
the scanning direction (as shown in Figure 1). This rod may
be considered as the active volume where crucial thermal
(and microstructure) evolution occurs. Let the cross sectional
area and perimeter of the rod be S̄ and Ā. Denote the tem-
perature distribution along the scan direction, x, by T (x, t).
The rod is heated by a moving laser heat source with power
P(t) with the laser beam centered at s(t) = s0 +

∫ t
0 v(τ)dτ,

where s0 denotes the initial position and v(t) ≥ 0 the scan-
ning speed. Represent the laser power distribution by a func-
tion Π(y) where y = x− s(t) is the position relative to the
laser beam center. Commonly used laser power distribution
includes δ distribution [?], rectangular function

Π(y) =
1
D
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where D is the effective diameter of laser beam, and the
Gaussian power distribution [?]
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1
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y2
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Figure 1. One dimensional domain of a single laser scan

Heat generated by the laser conducts along the x direc-
tion, and also transfers through the lateral surface of the rod.



This work only focuses on about temperature variation along
the laser scanning direction, we approximate the lateral heat
loss by a lumped heat sink with Newton’s law of cooling:
qloss = β(T −T∞) where T∞ is the ambient temperature and β

is a heat transfer coefficient. In free-form additive manufac-
turing, β may be both spatial and time dependent, caused by
different cooling conditions in different structures and mate-
rials. This is a key source of disturbance affecting the tem-
perature distribution.

In a thin slice of the rod of thickness ∆x, by the conser-
vation of energy, we have

∆xĀρCp(T (t +∆t)−T (t))
∆t

= k̄Ā(Tx(x+∆x)−Tx(x))− S̄∆xqloss +Q(x, t)∆x
(3)

where k̄, Cp, ρ are, respectively, thermal conductivity, spe-
cific heat, and density. The subscript in Tx denotes ∂T

∂x . The
volumetric heat flux due to the moving laser, Q(x, t), is

Q(x, t) = κP(t)Π(x− s) (4)

where κ ∈ (0,1) denotes the laser energy transfer efficiency,
which is usually between 30%-50% [?]. Define u(x, t) =
T (x, t)−T∞. With ∆x→ 0, (3) becomes

ut(x, t) = kuxx(x, t)−αu(x, t)+ p(t)Π(x− s(t)) (5)

where

k =
k̄

ρCp
, p(t) =

κP(t)
ĀDρCp

, α =
S̄β

ĀρCp
.

Material-related parameters k and κ are usually known, but
the heat-loss coefficient α is unknown and possibly varying
with time and position. Assuming a long rod with both ends
held at the ambient temperature. As an approximation, we
use a Dirichlet boundary condition u(−`, t) = u(`, t) = 0 for
a sufficiently large `. Also assume that the rod is initially in
equilibrium with the ambient: u(x,0) = 0. Consider the laser
velocity as the input, then the laser position s is given by

ṡ(t) = v(t), s(0) = s0. (6)

Eq. (5) and (6) describes the control model, with
(u(x, t),s(t)) as the state and (v(t), p(t)) as the input.

2.2 Laser Frame Model
Since the laser constantly moves, stability is not mean-

ingful in the inertial frame. Instead, we convert the dynamics
to the laser frame, similar to [?]. Define a coordinate system
attached to the laser:

y(t) = x− s(t). (7)

Define the temperature distribution in the laser frame as:

U(y, t) := u(y+ s(t), t) = u(x, t). (8)

Note that Uy(y, t) = ux(x, t). Hence, Uyy(y, t) = uxx(x, t) and

Ut(y, t) =
∂

∂t
U(y, t) = v(t)

∂

∂x
u(y+ s(t), t)+

∂

∂t
u(y+ s, t)

= v(t)Uy(y, t)+ut(y+ s, t)

Substituting into (5), we obtain an advection-diffusion-
reaction equation:

Ut = kUyy + v(t)Uy−αU + p(t)Π(y). (9)

For the boundary condition, assume that the temperature is at
ambient sufficiently far away from the laser, i.e., U(−L,0) =
U(L,0) = 0, for L sufficiently large.

2.3 Steady State Solution in Laser Frame
For constant laser speed and power, (v(t), p(t)) =

(v∗, p∗), we can solve for the steady state temperature dis-
tribution U∗(y) by setting Ut(y, t) to zero in (9):

kU∗yy(y)+ v∗U∗y (y)−αU∗(y)+ p∗Π(y) = 0

U∗(−L) =U∗(L) = 0.
(10)

This is a linear nonhomogeneous ODE, and may be readily
solved. Analytical solutions for three typical input laser pro-
files, delta, rectangular, and Gaussian functions, are derived
in Appendix 6. Furthermore, this equilibrium is globally ex-
ponentially stable as shown below.

Theorem 1. Given the temperature evolution equation in
the laser frame (9) with constant laser speed and power in-
put (v∗, p∗), the equilibrium U∗ given by (10) is globally ex-
ponentially stable.

Proof: Consider the Lyapunov function candidate

V1 =
1
2

∫ L

−L
Ũ(y, t)2dy, (11)

where Ũ(y, t) := U(y, t)−U∗(y). The derivative of V along
(9) and with the help of (10) is written as follows



V̇1 =
∫ L

−L
Ũ(y, t)

(
kUyy(y, t)+ v∗Uy(y, t)−αU(y, t)+ p∗Π(y)

)
dy

=
∫ L

−L
Ũ(y, t)

(
kŨyy(y, t)+ v∗Ũy(y, t)−αŨ(y, t)dy

= k
[
Ũ(y, t)Ũy(y, t)

]L
−L− k

∫ L

−L
Ũy(y, t)2dy

+
1
2

v∗
[
Ũ(y, t)2]L

−L−α

∫ L

−L
Ũy(y, t)2dy

=−k
∫ L

−L
Ũy(y, t)2dy−α

∫ L

−L
Ũy(y, t)2dy. (12)

Hence we get

V̇ ≤−2αV. (13)

It follows that V (t)≤ e−2αtV (0). Therefore, the equilibrium
U∗(y) is globally exponentially stable. �

3 Control Problem Formulation
The control problem is to adjust laser speed and power,

(v, p) in order to achieve a desired temperature field evolution
u∗(x, t). LAM and welding literature points to two critical
temporally and spatially varying process parameters, cooling
rate and melt pool size:

1. Cooling Rate: For each x, the thermal history u∗(x, t) di-
rectly determines the microstructure evolution at x, and
hence the final material properties. Cooling rate is a
widely adopted criterion for designing this thermal his-
tory [?, ?].

2. Melt Pool Size: For each t, the temperature distribution
around the laser u∗(x, t) affects the surface morphology
of the finished part. The melt pool size is determined by
the speed of propagation of the solidification front, and
consequently affects the geometric integrity of the final
part shape. It has been used in the welding [?] and laser
additive manufacturing [?] literature to characterize ge-
ometric consistency.

Our goal is to regulate both parameters to achieve consistent
microstructure and part geometry. If the objectives cannot be
met simultaneously because of constraints in scanning speed
and laser power, we form a linear combination of the objec-
tives with a tunable parameter to specify the relative empha-
sis of the objectives. This section will discuss the charac-
terization of these two criteria and the corresponding control
problem formulation.

3.1 Cooling Rate
Figure 3 illustrates the typical thermal history at a spe-

cific point on the part. The laser heats up the part beyond
melting and the part cools as the laser moves away. The cool-
ing history is critical to the determination of the final material

microstructure. Following [?], we define the cooling rate as
the time rate of change at a critical temperature.

Cr(x) =−∂u
∂t

(x, t)|t=tcr , (14)

where u(x, tcr(x)) = Tcr and ∂u
∂t (x, t)|t=tcr < 0. The cooling

rate only accounts for one single point on the cooling curve
(see Figure 3) and is easy to implement in closed-loop con-
trol. Its value at the point of solidification is important to the
microstructure, so Tcr is typically chosen as the solidification
temperature. Cooling rate is by its nature a posteriori and
location-based as it is characterized by the thermal history at
a specific location. An illustration of the concept of Cr(x) is
shown in Figure 2a. To obtain Cr(x) at x = x̄, one needs to
first get the temperature history u(x̄, t), find tcr(x̄), and then
compute the time derivative at that point.

In contrast to the location-based cooling rate, [?, ?, ?]
proposed a time-based cooling rate which is the time deriva-
tive at the current critical temperature position xcr(t):

Cr(t) =−∂u
∂t

(x, t)|x=xcr(t) (15)

where xcr is defined as the part location currently at the crit-
ical temperature:

u(xcr(t), t) = Tcr. (16)

Figure 2b shows the definition of Cr(t). To obtain Cr(t)
for t = t̄, one needs to get xcr(t̄) from the current tempera-
ture snapshot u(x, t̄), then compute Cr(xcr(t̄)) following the
procedures of location-based cooling rate mentioned above.
Transformed into the laser frame, (15) becomes

Cr(t) =− ∂

∂t
U(y(t), t)|y(t)=ycr

= (Uy(y, t)v(t)−Ut(y, t)) |y=ycr(t)

:= F(U(t),v(t))

(17)

where ycr is the part location in the laser frame at the critical
temperature: U(ycr, t) = Tcr.

3.2 Melt Pool Size
To achieve uniform part quality, the average temperature

in the melt pool [?] or the size of the melt pool [?] have been
identified as critical parameters. Originally, melt pool size
W is defined as the width of the melt pool along the direction
perpendicular to the scanning direction, which directly de-
termines the geometry and size of the finished clad [?], and
hence the overall surface morphology of the finished part.
However, in 1D model, we can only use the size along the
scanning direction as a proxy. At each t, define the melt pool



(a) (b) (c)

Figure 2. Definition of melt pool size and cooling rate defined with respect to location and time. (a) explains Cr(x) for a spatial position
x = x̄. (b) presents Cr(t) and W (t) for a time instance t = t̄ . (c) illustrates W (x) for a spatial position x = x̄.

Figure 3. Typical thermal history of a fixed point on the part

as

W (t) = {x ∈ [−`,`] : u(x, t)≥ Tmelt}
= {y ∈ [−L,L] : U(y, t)≥ Tmelt} .

The melt pool size W (t) at each time instance t is then

W (t) = max
y∈W (t)

y− min
y∈W (t)

y := G(U). (18)

Note that W may be similarly defined using U , resulting in
the same W . If the peak temperature is lower than Tmelt , W
is empty. In that case, W = 0.

We also characterize the melt pool size, W (x), corre-
sponding to a given location x, as the melt pool size when
the laser passes through x.

Define the time when the laser passes through x as
tpass(x), i.e., x = s(tpass(x)). The location-based melt pool
size is then defined as

W (x) =W (tpass(x)). (19)

3.3 Design of Steady State Temperature Distribution
As shown in Section 2.3, for constant (v∗, p∗), U(y, t)

converges to a steady temperature distribution U∗(y) expo-

nentially. We now choose (v∗, p∗) based on desired cooling
rate and melt pool size. For the cooling rate, we use the
time-based cooling rate (17). Given U∗(y) (corresponding to
specified (v∗, p∗)), it becomes

Cr∗ =U∗y (ycr)v∗, U∗(ycr) = Tcr. (20)

where Tcr is a specified critical temperature, and ycr is define
with the implicit equation above. The weld pool size corre-
sponding to U∗ is given by

W ∗ = {y : U∗(y)≥ Tmelt}
W ∗ = maxW ∗−minW ∗.

(21)

The steady state temperature design is now posed as a static
optimization problem:

Given desired cooling rate and melt pool size,
(Crdes,Wdes), (Cr∗,W ∗) from (20)–(21), and con-
stant weights (w1,w2), find (v∗, p∗), v∗ ∈ [0,vmax],
p∗ ∈ [0, pmax], to minimize

J = w1(Cr∗−Crdes)
2 +w2(W ∗−Wdes)

2. (22)

In general, this problem may be numerically solved. In the
case of Π(y) = δ(y), (v∗, p∗) may be analytically related to
the specified (Cr∗,W ∗) (given by (43)) and (46), as shown in
Appendix 6). Denote the solution as

v∗ = f (α,Crdes), p∗ = g(α,v∗,Wdes)

where the dependence on α is highlighted. These expres-
sions may be used as an approximation of rectangular power
input function. As shown in Figure 4, U∗(y)’s correspond-
ing to the delta function and rectangular function of various
width D, are reasonably close.
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Figure 4. Analytical solution of the steady state under Rectangular
laser power distribution function Π(y) defined by (1).

3.4 Control Objective
The control objective is to drive the temperature dis-

tribution in the laser frame U(y, t) to the desired U∗(y) by
adjusting the laser speed and power (v, p) based on the
measured U(y, t). The desired U∗(y) is designed based
on the specified desired cooling rate and weld pool size,
(Crdes,Wdes) as described in Section 2.3. The measurement
of the temperature distribution U(y, t) may be performed
with an IR camera mounted with the laser. The control ob-
jective needs to be robust with respect to unmodeled distur-
bances, such as stray ambient heat, model uncertainties, such
as the heat transfer coefficient, α, for loss to the ambient, and
non-zero initial conditions.

4 Control Design
4.1 Passivity-Based Output Feedback

With U∗(y) given by (10) (and (v∗, p∗) computed based
on (Crdes,Wdes)), the temperature error is governed by

Ũt(y, t) = kŨyy(y, t)−αŨ(y, t)+ vŨy(y, t)

+ ṽ(t)U∗y (y, t)+ p̃(t)Π(y), (23)

Ũ(−L,0) = Ũ(L,0) = 0, (24)

where

Ũ(t) =U(y, t)−U∗(y), ṽ(t) = v(t)− v∗, p̃(t) = p(t)− p∗.

If (v∗, p∗) are known, we show that (ṽ(t), p̃(t)) is strictly pas-
sive [?] with respect to certain specified outputs.

Proposition 1. The temperature error system (23) is
strictly passive with respect to inputs (ṽ(t), p̃(t)) and outputs
(yv,yp) given by:

yv(t) =
∫ L

−L
Ũ(y, t)U∗y (y)dy, (25a)

yp(t) =
∫ L

−L
Ũ(y, t)Π(y)dy. (25b)

Proof: The statement follows from the same Lyapunov anal-
ysis as in the proof of Theorem 1. Taking the derivative of
the Lyapunov function (11) along (23) abd (24) one gets

V̇1 =−k
∫ L

−L
Ũy(y, t)2dy−α

∫ L

−L
Ũ(y, t)2dy

+ ṽ(t)
∫ L

−L
Ũ(y, t)U∗y (y)dy+ p̃(t)

∫ L

−L
Ũ(y, t)Π(y)dy.

Integrating both sides, the stated strict passivity property fol-
lows. �
It then follows that with any passive feedback, the system
remains globally exponentially stable, as shown below.

Theorem 2. Given the feedback control law

ṽ(t) =−Kvyv(t), p̃(t) =−Kpyp(t) (26)

where Kv and Kp are passive maps and (yv(t) ,yp(t)) is de-
fined in (25), the closed loop system (23) is globally expo-
nentially stable.

Proof: Substituting (26) into V̇ in the proof of Proposition 1,
we have

V̇ ≤−2αV − yvKvyv− ypKpyp.

Integrating both sides and applying the passivity property of
Kv and Kp, it follows that the zero equilibrium, Ũ = 0 is
globally exponentially stable. �
A common choice of Kv and Kp is simply a constant gain
which results in a proportional output feedback control law.

4.2 Estimation of (v∗, p∗): Integral Control
The control law (26) requires the knowledge of (v∗, p∗).

If they are uncertain or unknown, they may be estimated us-
ing the same Lyapunov analysis as before. The result is sum-
marized below.

Theorem 3. Consider the feedback control law

v(t) = v̂∗−Kvyv(t), p(t) = p̂∗−Kpyp(t) (27a)
˙̂v∗ =−KIvyv(t), ˙̂p∗ =−KIpyp(t). (27b)

Then the zero equilibrium of the closed loop system (23) is
globally asymptotically stable.

The controller structure from the above is essentially
proportional-integral (PI) control with output feedback of
(yv,yp). This control law means that the temperature dis-
tribution U(y, t) would still converge to U∗(y), despite the
possible use of an erroneous model and (v∗, p∗).



Remark 1. The control design relies on the real-time mea-
surement of the distributed temperature along with the spa-
tial domain. This may be obtained using an infrared cam-
era [?]. In [?], acoustic and electromagnetic signatures are
used to measure temperature as well as the thermal history
of materials. Standard CCD or CMOS image arrays have
also been used to estimate melt pool shape and temperature
profiles [?, ?, ?, ?, ?].

4.3 Estimation of α

If the model is erroneous, then U∗(y) may not cor-
respond to our ultimate control objective of regulating
(Cr(t),W (t)). We consider the case where the major model
uncertainty is the heat transfer coefficient α. In this case, we
construct an estimator for α by replicating the nominal plant.
The convergence property of the estimator is summarized be-
low.

Proposition 2. Let Û(y, t) be the solution of

Ût(y, t) = kÛyy(y, t)+ v(t)Ûy(y, t)− α̂Û(y, t)+ p(t)Π(y)

+Ke(U(y, t)−Û(y, t)), (28)

Û(−L, t) = Û(L, t) = 0, (29)

where α̂ is updated with

˙̂α(t) = γ

∫ L

−L
Û(y, t)(U(y, t)−Û(y, t)dy. (30)

Then
∥∥Û−U

∥∥ converge to zero as t→ ∞.

Proof: Define the Lyapunov function candidate

V2 =
1
2

∫ L

−L
Ǔ(y, t)2dy+

1
2γ

α̌
2(t)

where Ǔ(y, t) :=U(y, t)−Û(y, t), α̌ := α− α̂ and γ is a pos-
itive gain parameter. The derivative along (9), (28), and (30)
is written as follows

V̇2 =
∫ L

−L
kǓ(y, t)Ǔyy(y, t)dy− (α+Ke)

∫ L

−L
Ǔ(y, t)2dy

+ v(t)
∫ L

−L
Ǔ(y, t)Ǔy(y, t)dy+ α̌(t)

∫ L

−L
Ǔ(y, t)Û(y, t)dy

− γ
−1

α̌(t) ˙̂α(t)

=−k
∫ L

−L
Ǔy(y, t)2dy− (α+Ke)

∫ L

−L
Ǔ(y, t)2dy.

Note that the terms involving α̌ are cancelled with the choice
of the α̂ update rule (30). Integrating both sides and applying
Barbalat’s Lemma [?], it follows that

∥∥Ǔ∥∥→ 0 as t→ ∞. �
As typical in parameter estimation, additional persistent ex-
citation condition [?] on Û needs to be satisfied to ensure the

convergence of α̂ to α. Since there is only one parameter
to estimate (α is a scalar), this condition is satisfied unless
the system is already at steady state. The estimator involves
the solution of a partial differential equation. Any numerical
scheme may be used, e.g., the finite difference method or the
proper orthogonal decomposition with the eigenfunctions of
k(·)yy as the basis of the projection (described in Section 5.1).

4.4 Overall Control Structure
The overall control system is shown in Figure 5. The

estimator (28)–(30) generates α̂(t) which feeds into the set-
point optimizer (as described in Section 3.3) to compute
U∗(y). The feedback controller uses the measured and tar-
get temperature distribution, U(y, t) and U∗(y), to updates
the laser speed and power, (v(t), p(t)), as in (27).

5 Simulation Results
5.1 Simulation Model

A variety of numerical schemes may be used to compute
the solution of (5) and (6) under input (v, p). In this paper,
we apply the modal approximation using the natural mode of
the unforced system (see Appendix 6). Express u(x, t) in the
modal basis for each t:

u(x, t) =
∞

∑
i=0

qi(t)φi(x). (31)

Projecting (5) onto φi, we have

q̇i =−(λi +α)qi +bi(s)p, qi(0) = 0. (32)

The ith input coefficient bi(s) is given by

bi(s) = 〈φi,Π(·− s)〉=
∫ `

0
φi(x)Π(x− s)dx (33)

where 〈·, ·〉 denotes the L2[0, `] inner product. For the delta
function laser input, bi(s) = φi(s). For the rectangular laser
pulse,

b0 =
D√
`
, bi =

2
√

2`
iπ

sin(
iπD
2`

)sin(
iπs
2`

), i > 0 (34)

For the Gaussian laser pulse, bi’s may be computed by nu-
merical integration. For the simulation results presented in
this section, we approximate u(x, t) by the first N modes,
where N is determined by a specified convergence criterion.
Because of the moving heat source and the large domain size
`, a large N is typically needed.

5.2 Choice of Parameters
The material for simulation is chosen as stainless

steel 316 (as in [?]). Table 1 lists the material properties



Figure 5. The structure of control design.

used in the simulation. The critical microstructure evolu-
tion during cooling of stainless 316 happens between 700 oC
and 1300 oC [?]. We choose the midpoint of this temper-
ature range as the critical temperature (Tcr = 1000 oC) for
measuring type-II cooling rate. Other non-material-related
simulation parameters are provided in Table 2. We select Ā,
S̄, β (and the associated α) to match the experimental results
in [?]. A comparison of the steady state melt pool tempera-
ture and cooling rate between the 1D model simulation and
the experimental data from [?] is shown in Figure 6. The ex-
traction of these values from the simulated data follows the
description in [?]. The maximum temperature is used as the
melt pool temperature (corresponding to the maximum pixel
temperature in the infrared image used in the experiments).
The cooling rate is calculated based on the change of the
maximum temperature at ∆T = 0.91s apart. The comparison
between the transient responses of the melt pool tempera-
ture under various scanning speed is shown in Figure 7. The
simulation captures the trend of melt pool temperature and
cooling rate versus scanning speed, and the time constant of
the transient response. However, there are significant differ-
ences in numerical values. The discrepancies may be due to
the 3D heat transfer and melting and solidification process
ignored 1D model approximation.

Table 1. Material-related parameters

Parameter Value

k′ 1.3×10−2 W ·m−1 ·K−1

Cp 490 J ·kg−1 ·K−1

ρ 7.87×10−6 kg ·mm−3

Tmelt 1400 oC

Tcr 1000 oC

The desired cooling rate for simulation is chosen as
Crdes = 500 K · s−1, which corresponds to an a posteriori
hardness of 258 HV1000 [?]. The desired melt pool size for
simulation is chosen as Wdes = 3 mm. In practice, choice of

Figure 6. Comparison of the steady state response of the maximum
melt pool temperature and cooling rate between 1D simulation and
experimental data from [?].

Figure 7. Comparison of the transient response of the maximum
melt pool temperature between 1D simulation and experimental data
(B1: ν = 25mm/min, B2: ν = 50mm/min, B3: ν = 100mm/min,
B4: ν = 200mm/min. Experimental plot is from Fig. 9 in [?]).



Table 2. Other simulation parameters

Parameter Value

κ 50%

Ā 11mm2

S̄ 20 mm

β 0.6 J ·mm−2 ·K−1

T∞ 21 oC

` 100mm

s0 20mm

N 200

∆t 0.01s

α 0.7

Wdes needs to consider the two-dimensional spacing between
the adjacent laser scans, or the desired width of the finished
part when building a thin-wall structure.

5.3 Open-loop Response to Optimized Input
We first present the simulation results on open-loop re-

sponse, as shown in Figure 8. In this case, α = 0.7 is cor-
rectly known. The inputs are chosen as time-constant val-
ues optimized based on Crdes, Wdes and (43), (46): v = v∗ =
129.32 mm/min, P = ĀDρCp p∗/κ = 768.32 W. As shown
in Table 2, on a 100mm long part, the laser starts from
s0 = 20mm. Initial condition for temperature is set at am-
bient. To exclude the effect of boundaries, the area of inter-
est for temperature control is from x = 20mm to x = 80mm.
The simulation is terminated at t = 30s, before which the
location-specific cooling rate and melt pool size over the en-
tire area of interest become valid.

Figure 8b shows the full temperature field evolution as a
3-dimensional surface. Plots in Figure 8a are 2-dimensional
slices of the 3-dimensional surface with respect to specific
locations, representing their temperature histories. Figure 8c
plots the temperature field snapshots (slides with respect to
specific time instances) in the (moving) laser frame. Based
on all these slices, location-based and time-based cooling
rate and melt pool size are then calculated and plotted in Fig-
ure 8d and 8e. It can be seen that after about 4s, the temper-
ature distribution in the laser frame goes to the steady state
U∗. The time-based cooling rate Cr(t) and melt pool size
W (t) also reach steady state after respectively around 3s and
4s. Note that a small steady state error exists due to using
delta laser pulse as approximation for solving the optimal
input. From the location-based cooling rate and melt pool
size, we conclude that except for the initial portion (x =20 to
28mm), the control objective is well-achieved on the area of
interest.

Another case of open-loop response is shown in Fig-
ure 9, where the the true α = 0.7 is incorrectly known as
α̂ = 0.6. The input is optimized according to the wrong α̂ as

v = v∗ = 180.30 mm/min, P = ĀDρCp p∗/κ = 757.93 W.
The simulation is terminated at t = 21 s. A steady state dif-
ferent from U∗ has been reached (Figure 9c), resulting in de-
viation of both Cr and W from the desired values (Figure 9d
and Figure 9e).

5.4 Closed-loop Response With Known α

In this part, we show that the same control objective can
be achieved by the proposed closed-loop control scheme in-
tegrating passivity-based output feedback and adaptation of
v∗, p∗. A constant proportional gain is used for the passiv-
ity feedback. We assume that the heat transfer coefficient
α = 0.7 is known. Figure 12 shows the simulated results of
using the PI control with U∗(y) computed with the correct
α. PI control gains, (Kv,Kp,KIv ,KIp), are tuned to minimize
both response time and overshoot of time-based cooling rate
and melt pool size. The selected gains are presented in Ta-
ble 3. Anti-windup strategies are applied for the integral con-
trol. The maximum laser power and scanning velocity are
chosen as Pmax = 2000W, vmax = 300mm ·min−1. From Fig-
ure 12c, it is seen that U(y, t)→ U∗(y). Figure 12d shows
that a steady state is reached in 2.3s for Cr(t) and 2.5s for
W (t), significantly faster than in the open-loop response. As
a result, the control objective is achieved in all area of inter-
est except for the initial portion x = 20 to 25mm, shorter than
that in the open-loop case.

We also present another case of closed-loop response
in Figure 11 with α incorrectly known. With proportional-
integral-like feedback applied, U(y, t) converges to a steady
state (Figure 11c) very close to U∗(y). As a result, the steady
state melt pool size converges very close to the desired value
(Figure 11e & 11f). However, the cooling rate settled at
20% higher compared to the desired value, mainly due to the
higher scanning speed than v∗ reached at steady state (Fig-
ure 11d).

5.5 Closed-loop Response With α Estimation
In practice, the heat transfer coefficient α may not be

readily known and also may vary between different scans.
Therefore, we further simulate a case with estimation of α

integrated in the control loop. The true value is still chosen
as α = 0.7. Initially, α̂ = 0.6, the same as the known but
incorrect value shown in the previous cases. The same PI
gain selection as shown in Table 3 is applied. The estima-
tor gains γ and Ke are tuned to minimize the response time
of α̂, and are also included in Table 3. Simulation of the
estimator PDE (28) is conducted based on finite difference
method with L = 50mm, a linear spacing of ∆y = 0.1mm,
and the time increment of ∆t = 0.005s. Simulated results are
plotted in Figure 12. Convergence of α̂ is achieved within
0.5s. Similar response time for Cr(t) (2.5s) and W (t) (2s)
is demonstrated. As a result, the control objective is well
achieved in all area of interest except for the initial portion
x = 20 to 25mm.
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Figure 8. Open-loop response under optimized control inputs when α = 0.7 is correctly known. v = v∗ = 129.32 mm/min, P =
ĀDρCp p∗/κ = 768.32 W. (b) plots the full temperature field evolution. (a) and (c) plot, respectively, the temperature evolution at specific
spatial location x’s and the temperature distribution snapshots at specific time instance t ’s. (d) plots the evolution of cooling rate and melt
pool size. (e) shows the a posteriori spatial distribution of cooling rate and melt pool size. The area of interest for temperature control is
from x = 20mm to x = 80mm.

Table 3. Gains Selection

Kv KIv Kp KIp γ Ke

1.2×10−3 8×10−5 8×103 100 7×10−3 300

6 Conclusion
This paper presents a PDE-based approach to the ther-

mal control problem in laser-based manufacturing. The con-
trol problem involves using the laser velocity and power to
regulate the temperature in the moving laser frame to achieve
the desired performance in terms of the cooling rate and melt
pool size. We first show that the target temperature distribu-
tion corresponding to the desired performance is globally ex-
ponentially stable under a suitably chosen constant feedfor-
ward in laser velocity and power. A passive temperature error
feedback, such as a proportional feedback gain, counteracts
noise and model uncertainty while preserving stability. The
feedforward itself may be adaptively updated resulting in an
integral control term. Though the proportional-integral feed-
back is robust, the desired temperature distribution requires
accurate model information. We construct an estimator for a

key model parameter, the heat transfer coefficient to the am-
bient, to reduce the model dependence of the controller. Sim-
ulation results are presented for both known and unknown
heat transfer coefficient to demonstrate the convergence of
the cooling rate and melt pool size to the desired values.

Our current formulation is based on the 1D PDE model
which is a highly simplified description of the actual LAM
process. In addition to the three-dimensional nature of ther-
mal physics, there are other physical phenomena not ad-
dressed in the paper, such as the melting and solidification
processes (which may be modeled using the Stefan condi-
tion [?, ?]) and inaccurate material properties. The passiv-
ity based control methodology presented in this paper lays
the foundation for our future work in controlling the LAM
process in the more realistic 3D PDE model and ultimately
experimental implementation.
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Figure 9. Open-loop response under optimized control inputs when the known α̂ = 0.6 but the true α = 0.7. v = v∗ = 188.30 mm/min,
P = ĀDρCp p∗/κ = 757.93 W. (b) plots the full temperature field evolution. (a) and (c) plot, respectively, the temperature evolution at
specific spatial location x’s and the temperature distribution snapshots (represented in the moving laser frame) at specific time instance t ’s.
(d) plots the evolution of cooling rate and melt pool size. (e) shows the a posteriori spatial distribution of cooling rate and melt pool size.
The area of interest for temperature control is from x = 20mm to x = 80mm.
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Appendix A: Analytical Solution of the Steady State Tem-
perature Distribution in the Laser Frame

The steady state solution of (9) satisfies

kU∗yy(y)+ v∗U∗y (y)−αU∗(y)+ p∗Π(y) = 0 (35)

which is a non-homogeneous second-order ordinary differ-
ential equation (ODE). The homogeneous part has two real
eigenvalues

r1 =
−v∗+

√
v∗2 +4kα

2k
, r2 =

−v∗−
√

v∗2 +4kα

2k
.

The solution is the sum of the homogeneous and particular
solutions:

U∗(y) = er1y
(

c1 +
∫ y

−L
w′1(z)dz

)
+ er2y

(
c2 +

∫ y

−L
w′2(z)dz

)
(36)

where

w′1(y) =−
p∗

k(r1− r2)
Π(y)e−r1y (37)

w′2(y) =
p∗

k(r1− r2)
Π(y)e−r2y (38)



Substituting in (36) the boundary condition U∗(−L) =
U∗(L) = 0 where L is large, and noting that r1 > 0 and r2 < 0,
we get

c1 ≈−
∫ L

−L
w′1(y)dy≈

∫
∞

−∞

w′1(y)dy (39a)

c2 ≈−
∫ −L

−L
w′2(y)dy = 0. (39b)

If Π is the delta function,

U∗(y) =
p∗

k(r1− r2)
(111(−y)er1y +111(y)er2y), (40)

where 111(·) denotes the Heaviside function.
The solution for rectangular power distribution Π is

U∗(y) =



p∗(e
r1D

2 −e−
r1D

2 )
kDr1(r1−r2)

er1y, y <−D
2

p∗

kD(r1− r2)
(

1− er1(y−D
2 )

r1

+
er2(y+D

2 )−1
r2

)

, −D
2 ≤ y≤ D

2

p∗(e
r2D

2 −e−
r2D

2 )
kDr2(r1−r2)

er2y, y > D
2

(41)

Note that when D→ 0, (41) approaches (40). The solution
for the Gaussian power distribution Π is

U∗(y) =
p∗

2k(r1− r2)

{
e

r2
2σ2

2 +r2yerf
(

y+σ2r2√
2σ

)
− e

r2
1σ2

2 +r1y
[

erf
(

y+σ2r1√
2σ

)
−1
]} (42)

where erf(·) is the error function.

Appendix B: Analytical Expression of (Cr∗,W ∗) as Func-
tions of (v∗, p∗)

Given U∗(y) from Appendix A, we can related the
steady state performance measures (Cr∗,W ∗) to the inputs
(v∗, p∗). We will also explicitly highlight the dependence on
the heat transfer coefficient α, as it is typically the least de-
termined component in the model. We will consider the case
that Π(y) = δ(y) only, to obtain the analytical relationship.
From (40), we have

U∗(ycr) =
p∗

k(r1− r2)
er1ycr = Tcr.

From (20), the steady state cooling rate is given by

Cr∗ =U∗y (y)|y=ycr v
∗ =

p∗r1

k(r1− r2)
er1ycr v∗ = r1v∗Tcr

=
Tcr

2k
v∗(−v∗+

√
v∗2 +4kα).

(43)

Solving v∗, we obtain:

v∗ =

√
k

Tcr

Cr∗√
αTcr−Cr∗

:= f (α,Cr∗) (44)

which implies that Cr∗ must be less than αTcr (sufficiently
slow cooling rate) in order for a feasible velocity to exist.
For the melt pool size, first solve for the boundary locations
of the melt pool:

U∗(y`) =U∗(yr) = Tmelt ,yr > y`.

If there is no solution, then W ∗ = 0. Substituting in (40), we
have

p∗

k(r1− r2)
er1y` =

p∗

k(r1− r2)
er2yr = Tmelt .

This implies that

r1y` = r2yr.

Then

W ∗ = yr− y` =
r1− r2

r1r2
ln
(

Tmeltk(r1− r2)

ps

)
. (45)

Solving for p∗, we obtain

p∗ = Tmelt

√
v∗2 +4kα exp(

αW ∗√
v∗2 +4kα

)

:= g(α,v∗,W ∗)
(46)

Appendix C: Eigen-Solution of the Laplace Operator
Consider the eigenvalue problem corresponding to the

Laplace operator

φxx =−λφ, φ(0) = φ(`) = 0. (47)

Since the Laplace operator is self-adjoint and negative semi-
definite, its spectrum consists of non-positive eigenvalues
with eigenfunctions forming an orthonormal basis in L2(0, `)
[?]. The eigen-solution is given by solving (47) and normal-
izing φ:

λn =
(nπ

2`

)2
, n≥ 0

φn(x) =

{
1√
2`

sin( nπ(x+`)
2` ) n > 0

1√
2`

n = 0
.

(48)
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