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Abstract— The demand for computational accelerators (GPUs,
FPGAs, ASICs, etc.) is growing due to the widening variety of
datacenter applications fueled by recent scientific breakthroughs
that leverage artificial intelligence (AI). As much as these
applications (e.g., cosmology, physics, etc.) have continued to
witness record-breaking accuracy in predictive capabilities due to
Al widespread influence, the infrastructure and workflow to take
these applications out of research labs into production and
business use-cases continues to lag. To address these important
infrastructural challenges, we present SCAIGATE, a prototype
science gateway with a simplified workflow aimed at facilitating
model building/validation workflows in large-scale scientific
applications.

1. INTRODUCTION

Deep neural networks (DNNs) are witnessing explosive
growth in big data analytics applications [1]. While CPUs and
GPUs have been widely used for DNN inference (the task of
predicting fast, accurate results) inference engines accelerated
with FPGAs have recently emerged. Recent improvements in
FPGA technologies greatly increased the performance for DNN
applications, e.g., with a reported performance of 9.2 TFLOPS
for Intel Agilex with Stratix 10 FPGA [2]. Furthermore, FPGAs
have other advantages important to many mission-critical
applications such as deterministic low latency, energy
efficiency, and re-configurability. As a result, the amount of
research and development on accelerating DNNs on FPGAs and
other accelerators in recent years has grown, demonstrating
great interest in both academia and industry.

While some of these DNN acceleration works focus on
optimizing DNN graphs for accelerator devices (e.g., TVM),
other commercial ones focus on providing a more generalized
FPGA platform for developers to build their custom
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Fig 1. SCAIGATE’s ecosystem.
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applications [3]. Yet, other academic research efforts such as
HGC framework [4] focus on the tools for accelerating domain-
specific applications, e.g., cosmology, physics, etc.

As much as these applications have continued to witness
the
workflow to take these applications out of research labs into

record-breaking accuracy in predictive capabilities,

production use-cases continues to lag. Science gateways with
community-based access to shared, distributed, advanced
technologies and workflows present an opportunity to address
these domain-centric infrastructural challenges.

II. THE SCAIGATE SCIENCE GATEWAY

SCAIGATE is a science gateway that integrates FPGAs
and DNNs to facilitate machine learning through data
preprocessing, training, and inference [5]. Using a set of
software building blocks (Fig 1), SCAIGATE helps
computational scientists and researchers accelerate their data
analyses workflows at a fraction of the processing time and
effort as compared to existing systems. The gateway also
supports the integration of custom scientific workflows,
allowing for the rapid acceleration of scientific applications
with reconfigurable architectures.

The SCAIGATE prototype, depicted in Fig 1, consists of
three main layers: (1) FPGA accelerators, (2) a workflow
management framework, and (3) a gateway interface for
community-based access. The rest of this paper focuses on
using the HGC framework as the workflow management
layer within SCAIGATE.

III. MANAGING WORKFLOWS WITH HGC

A major shortcoming of many scientific workflows is
limited interoperability, lack of component reusability, and
curbed portability to new, advanced hardware (e.g.,
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Fig 2. Overview of the HGC framework.
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FPGAs). By abstracting key data processing workflows
(data preprocessing, deep learning training, and deep
learning inference) the HGC framework facilitates scientific
deep learning model development, end-to-end, from data
preparation and model training to model deployment as
summarized in Fig 2. As shown, the framework consists of
three stages. First, the Data Analysis and Pre-processing stage
converts raw data from an application of interest into a form that
is suitable for model training using any of the training
frameworks. Next, the preprocessed data is used as inputs to the
training tools in the Model Training stage. The output of the
Training stage are the trained models which are then forwarded
to the inference engines in the Deployment and Inferencing
stage, the final stage of the workflow.

In the following section, we describe two representative
scientific applications and their inference performance at the
completion of the workflow stages.

IV. APPLICATION BENCHMARKS
A. HEP-CNN

HEP-CNN is a variation of the AlexNet model for high-
energy physics (HEP) [6]. Trained with the ADAM optimizer,
it comprises 5 convolution layers with ReLU activation
functions. The kernel and stride sizes are 3x3 and Ix1
respectively, and it employs 128 filters per layer. The final set
of layers consists of an average pooling across the dimensions
output image followed by a fully connected layer with softmax
activation which performs binary classification.

A. CosmoGAN

CosmoGAN is a deep convolutional generative adversarial
network (DC-GAN) which was designed to serve as an
emulator for cosmology and weather simulations [7]. The
network input is a 64-dimensional vector of uncorrelated
gaussian noise, followed by a fully-connected layer to cross-
correlate all inputs, followed by a series of 4 transpose
convolutions, leading to a single 256x256 output image. Each
inner layer is batch-normalized and uses ReLU activation while
the output layer uses a Tanh activation.

IV. RESULTS

Leveraging SCAIGATE’s microservices design, we note
that the design introduces little to no overhead in an event of a
rare occurrence of component/microservice failure. It takes less
than a second to restart a component.

We setup the HGC framework on an Intel-based Skylake
Gold CPU on a Dell EMC R740 server. The FPGA accelerator
image was modified with several optimizations to the compute
kernels within the underlying Intel Deep Learning Accelerator
(DLA) stack, including optimizations to the deconvolution,
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Fig 3. Throughput of HEP-CNN and CosmoGAN.

normalization, and pooling layers as well as to the PE array
configurations.

In the HEP-CNN benchmark, the FPGA achieved a
throughput of 165 frames/sec, a speedup of 3.3x against a single
core (multi-thread) Skylake processor representing a mission-
critical application with space, weight and power (SWaP)
constraints. In the CosmoGAN benchmark, the FPGA achieved
68 frames/sec throughput, a speedup of 1.6x compared to the
CPU. In this particular scenario, the application is bottlenecked
by data ingress into the FPGA accelerator. With planned
optimizations to the DLA stack and enhancements to its data
organization architecture, we anticipate improved performance
of both CosmoGAN and HEP-CNN benchmarks.

IV. CONCLUSIONS AND FUTURE WORK

We presented the HGC framework for managing scientific
workflows in SCAIGATE science gateway. Specifically, using
the the inference
performance of two scientifically important applications to spur

HGC framework, we demonstrated

interests in the community in the usage of science gateways
enabled with FPGAs and other accelerators. Future work will
incorporate studies from more scientific applications (beyond
HEP-CNN and CosmoGAN), explore more complex DNN
models such as 3D-GANs, and seek to further develop the
SCAIGATE infrastructure to support access by the scientific
communities.
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