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Abstract. Collaboration is a 21st Century skill as well as an effective method
for learning, so detection of collaboration is important for both assessment and
instruction. Speech-based collaboration detection can be quite accurate but
collecting the speech of students in classrooms can raise privacy issues. An
alternative is to send only whether or not the student is speaking. That is, the
speech signal is processed at the microphone by a voice activity detector before
being transmitted to the collaboration detector. Because the transmitted signal is
binary (1 = speaking, O = silence), this method mitigates privacy issues.
However, it may harm the accuracy of collaboration detection. To find out how
much harm is done, this study compared the relative effectiveness of collabo-
ration detectors based either on the binary signal or high-quality audio. Pairs of
students were asked to work together on solving complex math problems. Three
qualitative levels of interactivity was distinguished: Interaction, Cooperation and
Other. Human coders used richer data (several audio and video streams) to
choose the code for each episode. Machine learning was used to induce a
detector to assign a code for every episode based on the features. The binary-
based collaboration detectors delivered only slightly less accuracy than collab-
oration detectors based on the high quality audio signal.
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1 Introduction

Collaboration is a 21%" century skill as well as an effective method for learning [1].
However, learning to collaborate is not straightforward. Students may require feedback
to develop collaboration skills [2]. For scaling up feedback and assessment of col-
laboration, automated methods for collaboration detection are required. Fortunately,
when students interact via speech, collaboration can be differentiated from non-
collaboration using current technology, as reviewed below.

However, monitoring collaboration in spoken conversations between students rai-
ses concerns about privacy. Although teachers are always entitled to hear the speech of
their students, giving third parties access to student conversations may raise significant
privacy concerns. An alternate approach would be to process the audio signal at the
microphone by using a voice activity detector (also called speech activity detector),
which converts the raw audio signal into a binary signal (1 = Speech, 0 = Silence).
Once the audio signal is converted to a binary signal, it can be transmitted or stored for
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collaboration analysis. Because the binary signal is incomprehensible, privacy is pre-
served. However, the loss of information may prevent effective classification of
collaboration.

This paper compares the relative effectiveness of measuring collaboration based on
either a high quality audio signal or its binary version. Since the total amount of
information transmitted by high quality signal is many orders of magnitude greater than
the binary version, we expected a large difference in classifier performance. The high
quality audio signal was collected by headset microphones connected to tablets being
used by small groups of students who were solving problems in a laboratory setting.
Only low level analysis was performed on both signals. Spoken words were not used as
part of the analysis. For analysis of high quality speech data, low level features such as
pitch, shimmer and linear spectral features were used. For the binary signals, time
series features such as absolute energy, approximate entropy and symmetry were used.
All features were extracted by algorithms and no human coders were involved.

In order to create and evaluate collaboration detectors, the judgments of human
coders were used as the ‘gold standard’ classification of the group’s interactions. The
coders had both high quality audio and several videos to aid their judgment. Collab-
oration detectors were then machine-learned from the human judgments. Their accu-
racies were measured using 10 fold cross validation.

2 Prior Work on Speech-Based Collaboration Detection

Many systems have explored automated analyses of interaction among group members
[3]. Instead of speech, most such systems input typed text from students collaborating
via forums, chat or email. Of the projects that used speech-based collaboration
detectors [4—11], only 3 measured the accuracy of the classification. These 3 projects
are the most similar to our project, so they will be reviewed here.

Just as we did for our high quality speech classifier, Gweon et al. [6, 13] used
machine-learned classifiers based on low-level speech features. Although the amount of
speech and silence were included as features, the temporal pattern of speech and silence
were not considered in their analysis. Secondly, whereas collaboration was the focal
code, Gweon et al. two projects chose different non-collaboration codes. This choice
may impact accuracy, so we measured the accuracy of classifiers trained with different
combinations of non-collaboration codes.

Just as we did for our binary-signal classifier, Martinez Maldonado et al. [9] used a
voice activity detector to convert speech into binary. However, they used counting and
proportions in their classifiers; they did not consider temporal patterns. Later, this
group did consider temporal patterns [4, 8]. They used differential sequence mining to
find temporal patterns of speech and silence that would reliably split groups into high
and low collaborators. However they did not convert their findings into a collaboration
detector and measure its accuracy.

Bassiou et al. [11] conducted studies that are quite similar to ours. They found that
collaboration detectors induced from a binary signal were more accurate than collab-
oration detectors induced from low-level acoustic features. They also found that
accuracy could be further improved by combining the two types of features. Their
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studies differed from ours in several ways. Most importantly, they used a coarser
coding scheme for collaboration. The scheme merely indicated how many students in
the group were participating actively in problem solving.

3 Data Collection

This section describes the context in which the data were gathered.

3.1 Task: Collaborative Writing

The subjects collaboratively solved a problem (“Boomerangs”) that was developed by
the Mathematics Assessment Project and appears on their site [14]. Like prior work on
spoken collaboration detection, it is a math problem. However, unlike the prior work,
students are required to write paragraph-long explanations (See Fig. 1). They were
given solutions to an optimization problem done by 4 hypothetical students and were
asked 3 questions about each solution. Thus, this task is actually a collaborative writing
task. It clearly has a different cadence than most mathematical problem solving. In
particular, there can be significant periods of time when one student is writing out an
explanation developed by one or both students. Because collaborative writing is
required in many tasks from outside mathematics, it is important to investigate the
accuracy of speech-based collaboration detection while student are thus engaged.

3.2 Technology, Participants and Duration

Students worked together in pairs. Each student had their own tablet, a Samsung
Galaxy Note 10.1. This tablet had active digitizer technology which allowed students to
write easily and legibly on the tablet screen using a stylus. These tablets are connected
to the Server via a Wireless network. The software used by participants is called FACT
[22]. The FACT user interface mimicked a large poster on which students can write and
draw content. Anything written by one group member was immediately visible to the
other. Both members of the group could scroll and zoom independently of each other
thus allowing them to focus on different parts of the poster.

The study was conducted in a laboratory setting. The participants were 38 graduate
and undergraduate students from our university who were paid for their time. Prior to
doing the collaborative writing task, students solved the optimization problem them-
selves in order to become familiar with it. All students were able to solve it easily. The
overall task, including both problem solving and collaborative writing, took around 45
to 55 min to complete.

3.3 Raw Data Collection

The recording setup generated input streams from two unidirectional headset micro-
phones, one omnidirectional microphone, two tablet screen and two Web cameras.
A desktop screen recorder was used to combine these input signals for easier annotation
by the human coders.
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Fig. 1. Snapshot of students working on shared workspace

3.4 Coding Categories

This section describes the collaboration codes assigned by human coders. Because the
coders could see all the input streams, whereas the collaboration detectors could only
hear the audio from the two headset mics, the human coders’ judgements were used as
the “gold standard” against which the collaboration detectors were judged.

Several coding schemes for human judgement of collaboration have been devised
[1, 11, 15-17]. The simplest merely count the number of members of the group that are
actively participating. Thus, if both members of our groups were speaking or writing,
then the group would be coded as collaborating.

However, even if all members of a group are participating, they may be interacting
to varying degrees. On one end of this scale, they have split up the task and each
member is working individually on a different subtask; this end of the scale is often
called cooperation. On the other extreme, the members are essentially pursuing one
line of reasoning or argumentation with all members contributing to it. That is, each
member’s utterance or action refers to and builds upon the prior contributions of other
members. This end of the scale is often called co-construction, transactivity or just
collaboration. The degree of interaction among group members manifests itself in
different ways, so most coding schemes are multi-dimensional, where each dimension
alerts coders to one way in which the cooperation/collaboration distinction can be
observed.

When a collaboration detector is used in a classroom, it should help the teacher
make a binary decision - whether to visit a group or not. Similarly, when it is used in a
tutoring system, it should help the system make a binary decision — to intervene or not.
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Different teachers and systems might have different concerns, but our sense of the
literature is that most use cases can be covered if the collaboration detector outputs
these three classifications:

1. Interactive: Students are working on the same part of the poster, and they contri-
butions build upon each other. This is often called co-constructive or transactive
behavior.

2. Cooperation: Both students are working, but they are working separately and
independently, usually on different parts of the poster.

3. Other: At least one student is not working or contributes minimally to the task.

When the collaboration detector is used by a teacher who only cares that all students
are participating, then the first two categories can be lumped together as “good” and the
teacher only receives alerts about groups classified into the third category. On the other
hand, if the teacher wants student to interact more intensely, then only the first category
can be treated as “good” and the teacher receives alerts about groups classified into the
second and third category.

This design matches the Chi’s ICAP framework [1], which uses “Interactive” for
category 1 (the I of ICAP). Category 2 means both students are “Constructive” (the C
of ICAP). Category 3 means at least one student is Active, Passive or disengaged. The
framework predicts that I > C > A > P for learning gains, which implies 1 > 2 > 3 for
our categories. We used Chi’s term “interactive” for the first category above.

Thus, we asked human judges to make the 3-way distinction above. However,
during our analysis of accuracy, we considered the 3-way classification accuracy as well
as several binary classifications obtained by lumping together 2 of the 3 categories.

Because our study was conducted in a camera-infused laboratory, we saw very little
disengagement. Thus, the typical behavior of groups classified as “Other” was for one
student to be doing all the work, while the other student watched and occasionally
uttered brief agreements. In earlier work, we termed these categories “collaboration”,
“cooperation” and “asymmetric contribution” [21].

4 Analysis Methods

4.1 Audio Processing and Extraction of Audio Logs

The inputs to the collaboration detectors came only from the headset microphones; the
other audio and video streams were seen only by the human coders. The first step in
processing the headset mic audio was removal of background noise. Signal processing
was carried out as proposed by Rafi et al. [18] along with few modifications. FFT
windows was reduced to 0.25 from 0.5 and a soft mask by Wiener filtering method
instead of a hard filter.

The binary version of the audio signal was obtained from the cleaned-up mic audio
using a standard voice activity detector (WebRTC). The non-speech segments in the
high quality audio signal was removed based on output from the voice activity detector.
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4.2 Segmentation

As students answered the 12 questions, we noticed that they sometimes shifted their
interaction patterns when transitioning from one question to the next. In order to avoid
mixing up two different patterns of interactions, we placed segment boundaries
between subtasks. More specifically, we used these criteria for placing a segment
boundary: First, when there was a switch from one subtask to the other by any par-
ticipant, a segment boundary was placed Second, if the particular activity took more
than 4 min, then a segment boundary was placed immediately after the writing activity
stopped for a brief time (like 5 s). This prevented overly long segments. Third, if a
student went back to a different card and started writing, a segment boundary was
placed. The average length of the segment was 110 s with standard deviation of 83 s.

4.3 Human Coding

Once the segmentation was performed, human annotators classified each segment as
either interactive (I), cooperative (C) or other (O). The annotators used the audio-video
stream obtained by the screen recorder and also used log data to understand various
write events. If characteristics of multiple codes are found in the same segment, then
the category with the greatest amount of time was assigned to the segment. Two human
annotators tagged a sample of 80% of the overall segments. Inter rater agreement was
considered acceptable with Cohen’s kappa K = 0.76. For consistency across the whole
dataset, the classifications of one annotator (the first author) were used in subsequent
analysis.

4.4 Feature Extraction

In order to use standard machine learning algorithms to induce collaboration detectors
for both the audio signal and the binary signal, the signals were represented as features.

The audio signal’s features were from the OpenSMILE [20] audio feature set,
which represents the state of the art in affect and paralinguistic recognition. Features
were generated by a toolkit from the speech signal of each subject. The two individual
subject feature vectors were then concatenated into one single feature vector for every
segment.

The binary speech signal was characterized as a time series signal. This is obtained
one per person. At a segment level, tsfresh [19] computes 794 time series features
based on variations of both these signals with respect to time. The entire set of features
obtained from tsfresh can be found in [19] and for OpenSMILE can be found in [20].

Group level features such as the duration of time when students spoke with each
other (speech time per segment) and the duration of time when they did not speak
(silence time) with each other were also extracted from the signal.

4.5 Feature Selection

Feature selection was performed because the number of features was greater than the
number of observations. Pairwise correlations were performed on features likely to be
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redundant. Sets of highly correlated features (coefficient > 0.9) were reduced to a single
feature chosen arbitrarily from the set.

For the high quality audio signal, recursive feature elimination is used to eliminate
features that have low discriminative power across different classes.

For the binary signals, both the students’ time series characterization along with its
the collaboration class (I, C or O) was fed into tsFresh [19]. For each feature, it used
Chi-square and other statistical tests to determine whether the features’ value was
reliability associated with the collaboration class. Only features whose p-value
exceeded 0.05 were kept.

5 Results

As mentioned earlier, we developed collaboration detectors for several use cases. One
pair of detectors distinguished all three categories (Interaction, Cooperation and Other).
In addition, we generated binary classifiers focused on every single category.

5.1 Binary Classifier Focused on Cooperation

This section reports the accuracy of the binary classifier that was trained to discriminate
Cooperation (C) from Non Cooperation (NC). We built classifiers using both high
quality audio signal and the binary signal. Random Forests yielded the best results
when compared to other algorithms such as logistic regression, bagging and boosting.
The models were validated using tenfold cross validation. As Table 1 shows, the
accuracy of the binary signal classifier (K = 0.53) was similar to the accuracy of the
high quality audio classifier (K = 0.66).

Table 1. Confusion matrices for binary classifier focused on cooperation

High Quality Audio (F= 0.83, K= 0.66) Binary Logs (F,= 0.76, K= 0.53)
Predictions Predictions
NC C NC C

True | NC 297 16 True | NC 294 19

Class | C 15 38 Class | C 22 31

5.2 Binary Classifier Focused on Interaction

This section reports the accuracy of the binary classifier that trained to discriminate
Interaction (I) from Non Interaction (NI). We built classifiers using both the high
quality audio signal and the binary signal. Random Forests yielded the best results
when compared to other algorithms. These models were validated using tenfold cross
validation. As Table 2 shows, the accuracy of the binary signal classifier (K = 0.54)
was similar to the accuracy of the high quality audio classifier (K = 0.62).
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Table 2. Confusion Matrices of Binary Classifiers focused on Interaction

High Quality Audio (F;= 0.80, K= 0.62) Binary Logs (F=0.77, K= 0.54)
Predictions Predictions
I NI 1 NI
True I 136 35 True 1 129 | 42
Class NI 36 159 Class NI | 40 155

5.3 Binary Classifier Focused on Other Category

This section reports the accuracy of the binary classifier that trained to discriminate
Other (O) from Non Other (NO). We built classifiers using both high quality audio
signal and the binary signal. Random Forests yielded the best results when compared to
other algorithms. The models were validated using tenfold cross validation. As Table 3
shows, the accuracy of the binary signal classifier (K = 0.28) was similar to the
accuracy of the high quality audio classifier (K = 0.36), but neither accuracy was high.

Table 3. Confusion Matrices for Binary Classifier Focused on Cooperation

High Quality Audio (F,=0.69, K= 0.36) Binary Logs (F,= 0.64, K= 0.28)
Predictions Predictions
O NO O NO
True | O 82 60 True | O 95 47
Class | NO 50 174 Class | NO 84 140

5.4 Ternary Classifier

This section reports the accuracy of the results of ternary classifier that is trained to
discriminate three categories: Interaction (I), Cooperation (C) and Other (O). We built
classifiers using both high quality audio signal and binary signal. Random Forests
yielded the best results when compared to other types of algorithms. The models were
validated using tenfold cross Validation. As Table 4 shows, the accuracy of the binary

signal classifier (K = 0.44) was similar to the accuracy of the high quality audio signal
classifier (K = 0.55).

Table 4. Confusion Matrices of Three way Classifiers

High Quality Audio (F,=0.70, k=0.55) Binary logs (F, = 0.63, k=0.44)
Predictions Predictions
1 0] C I O C
True |1 94 31 17 True |1 84 38 20
Class | O 35 135 1 Class | O 46 123 2
C 17 0 36 C 20 1 32
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6 Discussion and Conclusion

When this project began, we did not think that detectors based on binary signals would
perform well compared to collaboration detectors based on high quality audio signal.
Against low expectations we got modest kappa scores - 0.53, 0.54, 0.44 except for the
Other-focused binary classifier (0.28). To explain the Other classifier’s inaccuracy, we
can examine the results from the ternary classifier.

The contingency table of the ternary classifier (Table 4) shows that some of
samples from the Interaction category are mistaken as Other category and vice versa.
On the other hand, the Cooperation category was clearly separated from the Other
category. This phenomenon is due to the fact that in some cases, when students worked
alone with their partner watching, they continued to verbalize their writing and hence
the machine learner assumed that they were Interacting with each other.

The binary classifier focused on Other category was minimally reliable since the
classifier has to differentiate Other from Interaction and Cooperation combined together
into one. The reliability was compromised since Interaction and Cooperation have
entirely different audio characteristics and the Other category shares some character-
istics of both. As a result, neither the binary nor full audio features could differentiate
between them reliably. If the use case requires the Other category to be distinguished
from non-Others, the ternary classifier should be used.

Although the collaboration detectors based on the binary signal performed rea-
sonably well, there are a few caveats to consider. The first limitation is that synchro-
nization of different data streams needs to be improved so that significant of manual
labor can be avoided. Until this is achieved, our method cannot be used in classroom in
real-time.

The second limitation is the usage of cards to automatically mark segment
boundaries. This also allowed us to detect a change in subtask when subjects worked
with each other. Although this helped in segmentation and improving reliability, we are
not sure about the performance of the classifier when the boundaries are less salient.

Third, this study did not encounter off task behavior since it was a laboratory study
recorded under a camera. Analysis of the semantic content of the speech may be
necessary to detect off task behavior.

The fourth limitation is that the study was performed in artificial laboratory setting
and it only involved two people at a time. This may have increased the accuracy of the
full-audio classifier because there was no interference from other audio sources. This
would also explain why Bassiou et al. [11] found that their collaboration detector based
on a binary signal was more accurate than their collaboration detector based on a full
audio signal: their speech was collected in a noisy classroom. Thus, their results
combined with ours suggest a bright future for collaboration detection based on binary
signals.

These finding suggest a clear direction for our future work, because they appear to
solve several practical problems.

First, when a collaboration detection system needs high quality audio, the analog
signal from the microphone must be sampled at a high bitrate. Transmitting these
bitstreams wirelessly from 30 students can overload classroom radios, but using wires
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instead invites physical damage to the equipment when students or staff become
entangled. In contrast, binary signals require less bandwidth, so 30 of them can
probably be transmitted wirelessly reliably.

Finally, throat microphones can probably be used instead of headset microphones.
These microphones detect noise only from the speaker and not ambient noise. Thus, the
noise removal we performed prior to voice activity detection may not be necessary.
Affordable throat microphones often produce somewhat distorted audio, so they would
probably not work well for collaboration detection based on acoustic features.
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