

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

A Data-Driven Reverse Engineering Algorithm Development (D-READ) Method for Developing Interoperable Quantity Takeoff Algorithms Using IFC-Based BIM

**Temitope Akanbi¹; Jiansong Zhang, Ph.D., A.M.ASCE²
and Yong-Cheol Lee, Ph.D. A.M.ASCE³**

6 Abstract

7 One main gap in the automation of construction quantity takeoff (QTO) is the lack of a systematic
8 method to address building information models (BIMs) created from different BIM authoring
9 tools/workflows. Even the industry foundation classes (IFC), one of the ISO standard data
10 schema, has been used in a variety of ways, some of which could be proprietary. To address this
11 gap, the authors proposed a new Data-Driven Reverse Engineering Algorithm Development (D-
12 READ) method for developing QTO algorithms based on IFC geometric analysis. The proposed
13 method enables the development of QTO algorithms for IFC-based BIMs resulted from different
14 BIM authoring tools/workflows and therefore enhances robustness of BIM-based QTO. It takes
15 a novel bottom-up approach in QTO algorithm development comparing to the traditional top-
16 down approach. A model view definition (MVD) model for IFC model checking was developed
17 and incorporated with the QTO algorithms. The proposed method was tested on nine different
18 BIM instance models from different sources. A comparison with state-of-the-art commercial

¹ Graduate Student, School of Construction Management Technology, Purdue University, West Lafayette, IN 47907. E-mail: takanbi@purdue.edu

² Assistant Professor, School of Construction Management Technology, Purdue University, West Lafayette, IN 47907 (corresponding author). E-mail:zhan3062@purdue.edu

³Assistant Professor, Department of Construction Management, Louisiana State University, Baton Rouge, LA 70803; E-mail: yclee@lsu.edu

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

19 software showed consistent QTO results whereas the proposed D-READ method resulted in QTO
20 algorithms that were more robust with regard to the different BIM authoring tools/workflows
21 used.

22 **Keywords:** Quantity Takeoff, Industry Foundation Classes, Automation, BIM Interoperability,
23 Model View Definition.

24 **1. Introduction**

25 Cost estimation is critical to the success of a construction project (Yu et al. 2006; Choi et al.
26 2015). Manual cost estimation is a tedious, time-consuming, and cumbersome task that usually
27 involves human errors (Samphaongoen 2009). Studies showed that building information
28 modeling (BIM) tools can provide benefits to owners and construction professionals through cost
29 estimation automation. However, a review on BIM literature between 2005 and 2015 showed that
30 only a few BIM studies focused on cost estimation (Santos et al. 2017). Present BIM research
31 heavily focused on other tasks such as 3D coordination, clash detection (Kreider et al. 2010;
32 Franz and Messner 2017), safety checking (Zhang et al. 2015) and facility management (Liu and
33 Issa, 2013, 2014, 2015). While futuristic BIM studies already look into cyber-security in cloud
34 computing (Mutis and Paramashivam 2019) and human BIM robot interactions (Mutis et al. 2019),
35 much research is still needed to support eminent BIM development for its practical applications
36 to meet the increasing demands of the architecture, engineering, and construction (AEC) industry
37 (McGraw-Hill Construction 2014). Automated quantity takeoff (QTO) is one of the most useful
38 such development (Monteiro and Martins 2013; Franco et al. 2015; Plebankiewicz et al. 2015).
39 Currently, several methods, techniques, and software programs are available for QTO purposes.
40 However, most commercial software programs such as D-profiler, Autodesk Revit, Assemble

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

41 and Navisworks, Sigma Estimates, and Vico Estimator use their proprietary data formats which
42 cause errors and missing data when exchanging model with other software or are not able to
43 exchange data with other software at all (Lee et al. 2014). Such lack of interoperability hinders
44 the adoption of BIM in QTO automation to realize its benefits. The use of a standardized format
45 such as industry foundation classes (IFC) may solve this interoperability (successful data
46 exchanges) problem and enable wide adoption of BIM in QTO automation (Choi et al. 2015;
47 Zhang 2018).

48 There are different QTO solutions geared towards solving specific issues in the
49 construction industry. In the 2D realm, there are tools that enable construction professionals to
50 digitally perform QTO using 2D drawings such as eTakeoff, On-Screen Takeoff, PlansSwift, etc.
51 In the use of 3D BIM, which is the focus of this research, there are advanced tools that enable
52 construction professionals to perform model-based QTO such as Sigma Estimates and
53 Navisworks. However, despite the advent of these 3D BIM-based QTO solutions, there are major
54 barriers in their wide adoption due to the interoperability problem. Such QTO solutions require
55 the importation of a building design in BIM, but they are not necessarily compatible with all BIM
56 authoring tools/workflows.

57 To solve this interoperability problem, an IFC-based approach is widely accepted as the
58 most promising direction. There have been many researches investigating information extraction
59 from IFC-based BIM for various purposes (Zhang and El-Gohary 2015a, Ding et al. 2017, Ramaji
60 and Memari 2018a), and few among them focused on QTO from IFC-based BIM (Choi et al.
61 2015, Ma et al. 2013). However, there is a lack of a systematic method to address QTO from
62 building information models (BIMs) created from different BIM authoring tools/workflows.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

63 Such a capability is critical to enable a wider adoption of BIM-based QTOs. To address this gap,
64 the authors propose a new Data-driven Reverse Engineering Algorithm Development (D-READ)
65 method which is an iterative method to generate QTO algorithms that can cover a variety of (and
66 eventually all) types of BIM representations in IFC.

67 **2. Background**

68 ***2.1. BIM Interoperability and Industry Foundation Classes (IFC)***

69 Although BIM was intended to be interoperable since its introduction, a seamless BIM
70 interoperability is far from reality (Nawari 2012; Cheung et al. 2012; Santos et al. 2017; Zhang
71 2018; Ramaji and Memari 2018a). With the growing predominance of BIM in the construction
72 industry, the most common synergy across BIM applications is still a one-to-one relationship
73 (Lai et al. 2018). However, interoperability based on such one-to-one relationship is inefficient
74 because it would require the development of C^2_n conversion algorithms for interoperability
75 between n BIM software. In comparison, interoperability based on a many-to-one relationship
76 would be much more efficient. The industry foundation classes (IFC) standard is widely accepted
77 as the most promising potential solution for BIM interoperability enabled by the many-to-one
78 relationship (Wu and Zhang 2019) which helps form a "closed-world response to an open-world
79 problem" (Costin and Eastman 2019). It is an ISO registered data standard for building and
80 construction industry data (ISO 16739) and provides an open and neutral platform for information
81 exchange within the AEC industry in a standardized way. Much research efforts have developed
82 IFC-based approaches in solving interoperability issues in the construction domain. For example,
83 Hernandez et al. (2018) addressed the lack of interoperability between the multiple equipment
84 deployed on site to perform self-inspection of buildings through developing a framework that

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

utilizes an IFC-based approach to merge data from different resources for use in such building inspection applications. Ding et al. (2017) developed an IFC-based inspection process to fuse inspection data represented in different formats and stored in different locations to enable real-time quality monitoring and control. Zhang and El-Gohary (2013, 2015b) developed an information extraction and transformation method that automatically extracts information from textual building regulations and transforms the information into computable logic rules to check design information from IFC-based BIMs, to enable interoperability between BIM and textual information systems. Ramaji and Memari (2018a) developed an Interpreted Information Exchange (IIE) mechanism for transformation of IFC-based BIMs in the Coordination View to their equivalent structural models in IFC Structural Analysis View.

Golabchi and Kamat (2013) stated that although interoperability among various BIM software applications can be achieved using IFC data exchange, complete interoperability cannot be achieved until the BIM authoring tools become IFC-certified. Moreover, even between BIM authoring tools that are IFC-certified, a complete interoperability is still not guaranteed. For example, Choi and Kim (2011) conducted a study to test interoperability between IFC-certified BIM-based environmental analysis software by exporting and importing IFC files. The results found that although the software supports IFC, the data exchange between the tools wasn't seamless. One main reason for such incapability to achieve seamless interoperability through IFC-based data exchange is the lack of conformity between the ways IFC schemas are adopted by individual BIM tools (Steel and Drogemuller 2009; Cheung et al. 2012; Zhang 2018; Wu and Zhang 2019). The IFC files generated from different platforms vary significantly (Sun et al. 2015). For example, Lee et al. (2011) conducted an experiment by comparing the similarities and

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

107 differences in the IFC data for the same model but exported from two different BIM applications
108 (Revit and ArchiCAD), which found only about 54% of common IFC entities between the two
109 exports.

110 ***2.2. IFC-based Quantity Takeoff***

111 Few researchers explored IFC-based QTO. For example, Drogemuller (2003, 2005)
112 introduced an automatic estimator that takes IFC-based BIM as input and automatically generates
113 a bill of quantities for "reinforced concrete, post tensioning, formwork, masonry, and steel work".
114 Ma et al. (2013) developed an IFC-based semi-automatic cost estimation model that can take off
115 quantities according to the Chinese standard GB50500 for bill of quantity of construction works.
116 Choi et al. (2015) developed a statistical calculation method that extracts quantities from IFC-
117 based architectural elements for material QTO. However, there is a lack of IFC-based QTO
118 methodology that supports data created from different BIM authoring tools/workflows that may
119 use IFC entities and attributes in different ways.

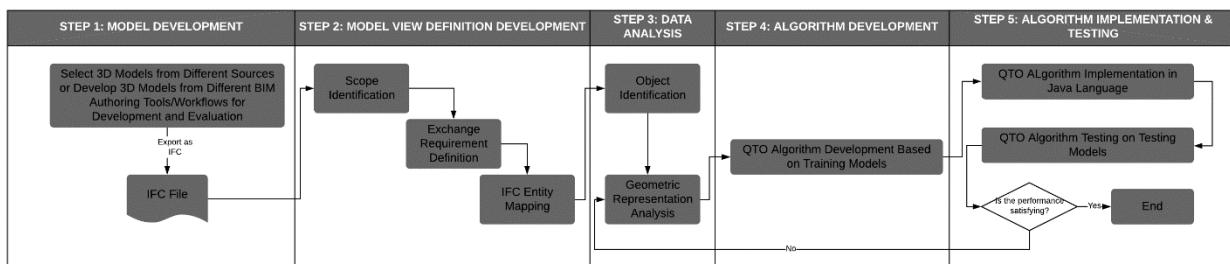
120 ***2.3. Model View Definitions***

121 The quality of IFC models varies and therefore the accuracy of an IFC instance file
122 exported from BIM authoring tools needs to be evaluated (Weise et al. 2009). The National BIM
123 Standard (NBIMS) was established in an effort to eliminate the uncertainties of information
124 exchange between the users of BIM information (Lee et al. 2016). The development of such
125 information exchange frameworks introduced by buildingSMART entails the following two
126 foundational components - the information delivery manual (IDM) and the model view
127 definitions (MVDs). IDM, which is the aggregated specifications of BIM data exchange
128 requirements defined for a specific discipline, plays a pivotal role to provide a baseline for

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

129 developing MVD with the IFC schema. MVDs provide comprehensive specifications of the BIM
130 data exchange translated from domain knowledge in the IDM into the IFC schema (Eastman et
131 al. 2009; Lee et al. 2016). Over the last two decades, several MVDs have been developed to
132 support and enhance interoperability (Ramaji and Memari 2018b). Despite the establishment of
133 this standard, there are still gaps in data exchange processes because of data mapping errors of
134 IDM and MVD, insufficient consensus of domain experts, and translation problems from/to
135 native BIM models to/from IFC instance files (Lee et al. 2015; Lee et al. 2016). To evaluate
136 whether BIM data fulfil data exchange requirements, an MVD-based checking should be adopted
137 to validate the accuracy of the IFC file (Lee et al. 2019). An MVD consist of a sequence of
138 specification units referred to as 'concept,' which includes blueprint of IFC entities, their
139 attributes, relationships, and properties (Venugopal et al. 2012). MVDs pinpoints portions of an
140 IFC data structure supported within a particular model view (buildingSMART 2011). One of the
141 main characteristics of an MVD is its reusability, allowing these concepts to be continuously
142 applied in developing other specifications across several domains (Lee et al. 2018). An MVD
143 allows a user to declare the necessary attribute/entity relationships for the specific use of the IFC
144 file such as QTO.

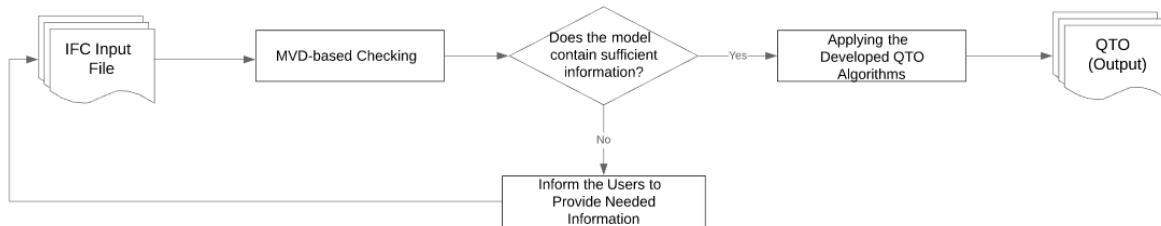

145 3. Proposed Method

146 To address the research gap in IFC-based QTO that supports BIM data from different sources
147 (i.e., BIM authoring tools/workflows), the authors propose a new data-driven method for
148 developing automated QTO algorithms using IFC-based BIMs. This method can be utilized to
149 develop QTO algorithms for any building component and the developed QTO algorithms can be
150 applied to models created from any IFC-compatible BIM authoring tools/workflows. The authors

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

151 named it Data-driven Reverse Engineering Algorithm Development (D-READ) method, which
152 includes five main steps to reverse engineer the found representations of building components in
153 an IFC model to develop algorithms for QTO purposes (Fig. 1). Step 1: Model development, this
154 step identifies or establishes 3D models in different BIM authoring tools/workflows; Step 2:
155 Model View Definition (MVD) development, this step creates an MVD for checking if an input
156 IFC model contains the necessary information needed for QTO, e.g., geometric attributes. This
157 step includes three sub-steps: scope identification, exchange requirements definition, and IFC
158 entity mapping; Step 3: Data analysis, this step includes object identification and geometric
159 representation analysis. Step 4: Algorithm development, this step reverse engineers quantity
160 takeoff algorithms based on data analysis results; and Step 5: Algorithm implementation and
161 testing, this step implements the developed QTO algorithms, tests the performance, and
162 iteratively improves the algorithms through testing until a satisfying performance is achieved.
163 The D-READ is not an algorithm nor a software per se but a method for developing interoperable
164 QTO algorithms for BIM. The research question that is being addressed is whether such a data-
165 driven, reverse engineering method could produce more robust QTO algorithms than what is
166 available in the state of the art.



167
168 **Fig. 1. Proposed Data-Driven Reverse Engineering Algorithm Development (D-READ)**
169 **Method**
170

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

171 An illustration of how developed QTO algorithms as a result of the D-READ method
172 should be applied is shown in Fig. 2. There are two main processes, (1) MVD-based checking,
173 and (2) applying the developed QTO algorithms. The MVD-based checking uses the MVD
174 developed from Step 2 of the D-READ method to check an input IFC model and informs users
175 to provide more input if the model does not contain all necessary information needed for QTO.
176 If the input IFC model contains sufficient information, the developed QTO algorithms
177 automatically extracts the quantities of building components from it. The developed algorithms
178 achieve these by analyzing the model-specific geometric representations of building objects,
179 which are based on arbitrary choices made in the proprietary BIM authoring tools/workflows,
180 under the constraints set by IFC schemas.

181
182 **Fig. 2. An Illustration of the Application of Developed QTO Algorithms**

183 The proposed D-READ method takes IFC models as input, which can be obtained from
184 many different BIM authoring tools/workflows. According to buildingSMART (2019), eighty-
185 three BIM software platforms are IFC-certified and therefore compatible with IFC. Different
186 workflows can be built based on these BIM platforms together with other BIM/Non-BIM
187 platforms. As an example, an original architectural design in ArchiCAD can be exported to IFC
188 and imported into Autodesk Revit, however, manual modifications might be needed in Autodesk

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

189 Revit. The details of the five steps of the D-READ method are described in the following
190 subsections, respectively.

191 ***Step 1: Model Development***

192 In this step, the model data to be used in QTO algorithm development and evaluation are
193 selected or generated, including training data and testing data for algorithm development, and
194 evaluation data for algorithm evaluation. The training data are used to develop the QTO
195 algorithms. The testing data are used to test the developed QTO algorithms for potential
196 improvements. The evaluation data are used to evaluate the robustness of the developed QTO
197 algorithms. To cover different possible IFC entity/attribute usage patterns, the similar model data
198 are created from different BIM authoring tools or workflows. For example, the same building
199 design can be created using Autodesk Revit, Trimble SketchUp, GRAPHISOFT ArchiCAD, and
200 other BIM authoring tools/workflows. Existing models can be used if their sources or creation
201 workflows are known. The only constraint is that they should be able to convert to IFC data,
202 either through direct exportation in a selected BIM authoring tool, or through proprietary or third-
203 party conversion tools/workflows. For each source or authoring tool/workflow, there should be
204 a training model, a testing model and an evaluation model.

205 ***Step 2: Model View Definition (MVD) Development***

206 In the development of the MVD, there are the three following sub-steps: scope
207 identification, exchange requirement definition, and IFC entity mapping. In an AEC project, there
208 are different user groups (e.g. clients, architects) requiring information for different applications
209 (e.g. thermal comfort analysis, cost estimation). In the scope identification sub-step, the user
210 group/applications for which information is to be exchanged is identified. In the sub-step for

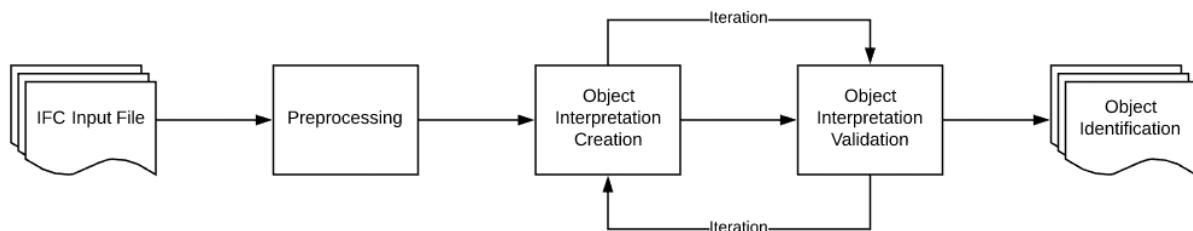
Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

211 exchange requirement definition, the functional requirements for the information exchange are
212 identified and organized into a set of MVD concepts. An MVD concept is defined based on a
213 concept template and in reference to an IFC entity. A visual representation of entities and
214 attributes involved in this MVD concept, as well as constraints and parameters set for selected
215 attributes and entity instance types is created. Optional and mandatory entities for the data
216 exchange are also defined according to IDM specifications. In the IFC entity mapping sub-step,
217 the MVD concepts are mapped to IFC entities where the attributes and constraints are also
218 mapped to the corresponding components according to the IFC schema.

219 ***Step 3: Data Analysis***

220 In this step, there are two sub-steps: (1) object identification; and (2) geometric
221 representation analysis. The two sub-steps are described in detail below:


222 *Object Identification*

223 The object identification step is necessary for deriving the needed information required in
224 developing the QTO algorithms. As shown in Fig. 3, the operations of this step include
225 preprocessing, object interpretation creation, and object interpretation validation. This is
226 necessary to determine how objects are represented using the IFC schema, that is, what are the
227 important attributes that differentiate each AEC object. First the IFC files are preprocessed –
228 filtered and segmented so that only the entities and attributes related to the target object remain.
229 Secondly, the object interpretation creation is performed, which is a determination of how objects
230 can be represented therefore identified. Thirdly, the object interpretation validation is performed
231 by verifying the representation interpretation with a collection of examples. For example, a wall
232 is usually (but not always) represented using an *IfcWallStandardCase* instance in IFC, with the

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

233 following attributes as per the IFC schema: "*GlobalId*," "*OwnerHistory*," "*Name*,"
234 "*ObjectType*," "*ObjectPlacmenet*," "*Representation*," and "*Tag*." The IFC schema also showed
235 the *Representation* attribute uses an *IfcProductDefinitionShape* entity which, in turn has an
236 attribute called "*Representations*," which is a list of representations. However, the IFC schema
237 does not specify how many representations there should be in the list, and what type each
238 representation will be. Thus, not until training data is analyzed that it could be figured out
239 where/how to process the geometric representation of this wall object. A simple piece of IFC data
240 showing the use of two representations (i.e., one for "body" and one for "axis") in the
241 representation list of a wall is shown in Fig. 4. Such arbitrary choice in the use of entities and
242 attributes can occur throughout the IFC data, and this is what the object interpretation sub-step is
243 designed to address.

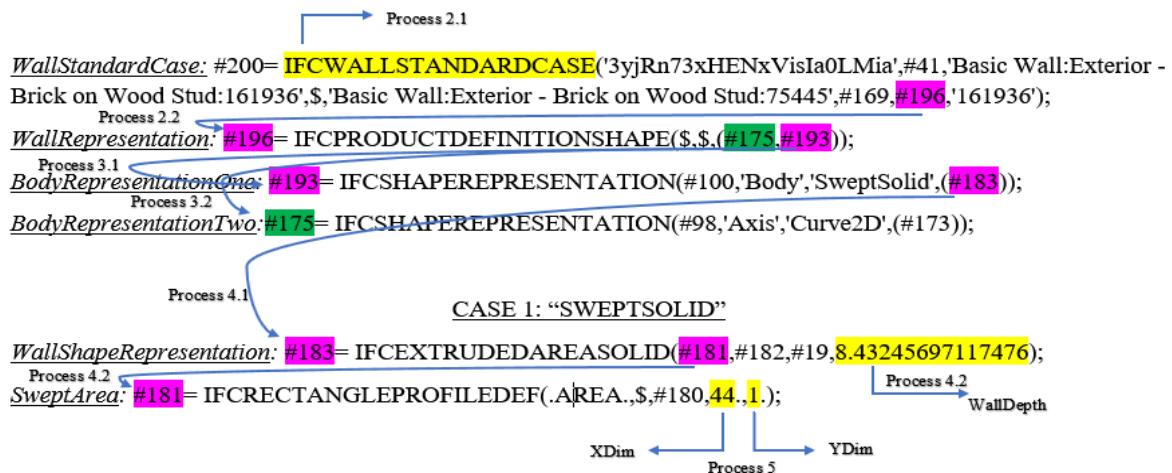
244
245 **Fig. 3.** Object Identification Processes

246 *Geometric Representation Analysis*

247 In this step, the IFC files are further analyzed. Specifically, the patterns in the use of IFC
248 data structure and the attributes of the target component's geometric representations in the IFC
249 data are analyzed (Fig. 4). The analysis result is used to create data tracing patterns for QTO
250 purposes. To illustrate this process, the tracing patterns in retrieving the height (*WallDepth*),
251 length (*XDim*), and width (*YDim*) of a rectangular wall will be explained below.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). “Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM.” *J. Comput. in Civ. Eng.*, 34(5), 04020036.


252 As shown in Fig. 4, *Process 2.1* extracts the “IFCWALLSTANDARDCASE” entity into
253 a variable named *WallStandardCase*. *Process 2.2* extracts the seventh attribute of
254 *WallStandardCase*, which is an “IFCPRODUCTDEFINITIONSHAPE,” as *WallRepresentation*.
255 *Process 3.1* extracts the second element of the third attribute of *WallRepresentation*, which is an
256 “IFCSHAPEREPRESENTATION,” as *BodyRepresentationOne*. *Process 3.2* extracts the first
257 element of the third attribute of *WallRepresentation*, which is an
258 “IFCSHAPEREPRESENTATION,” as *BodyRepresentationTwo*. There are several
259 representation types for shape representations. In “*CASE 1*,” the representation type is
260 “*SweptSolid*.”

261 *CASE 1: “SweptSolid” BodyRepresentation*

262 If *BodyRepresenationOne* is using the “*SweptSolid*” type of shape representation,
263 *Process 4.1* extracts the first element of the fourth attribute of *BodyRepresentationOne*, which is
264 an “IFCEXTRUDEDAREASOLID,” as *WallShapeRepresentation*. *Process 4.2* further extracts
265 the first and fourth attributes of *WallShapeRepresentation*, as *SweptArea* and *WallDepth* (i.e., the
266 height of the wall), respectively. If the *SweptArea* uses “IFCRECTANGLEPROFILEDEF,”
267 *Process 5* extracts the fourth and fifth attribute of the entity as *XDim* (i.e., the length of the wall)
268 and *YDim* (i.e., the width of the wall), respectively.

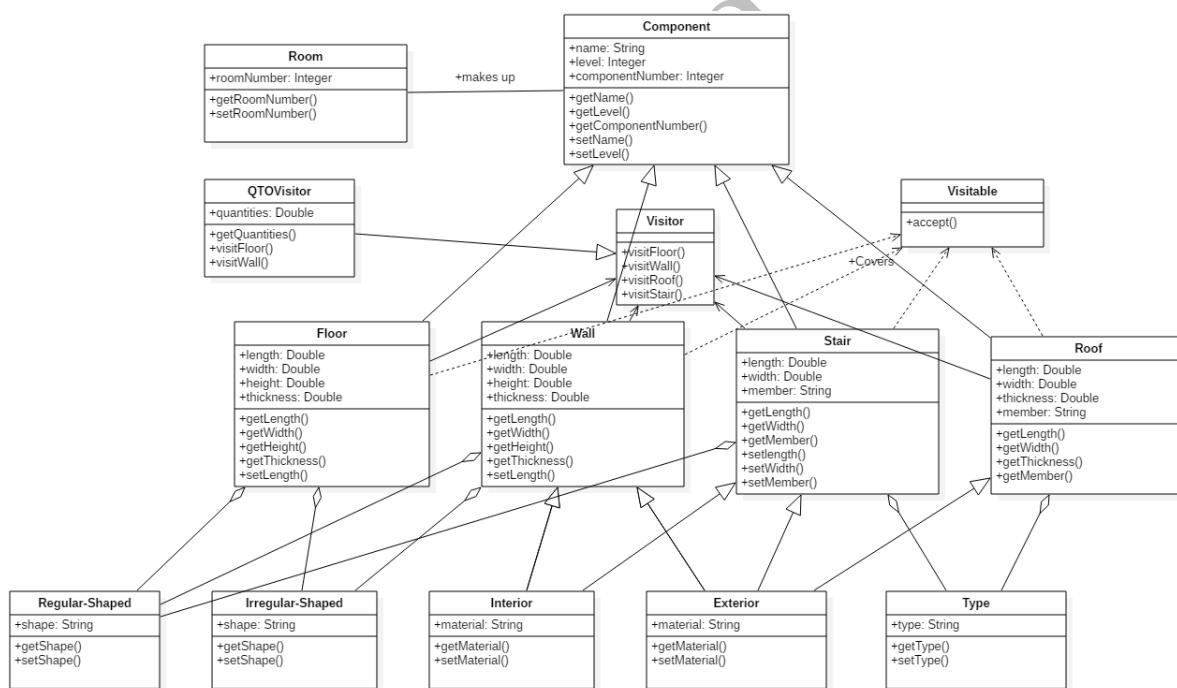
Final published version is found in the ASCE Library here: [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

269

270 **Fig. 4.** Tracing Pattern of a "SweptSolid" Representation of a Rectangular Wall

271 **Step 4: Algorithm Development**


272 This step develops the QTO algorithms for taking off the needed linear, areal, and/or
273 volumetric quantities of the analyzed building object. The algorithms follow the tracing patterns
274 identified in Step 3 to extract the needed parameters and perform quantity computations using
275 these parameters to obtain the needed quantities.

276 **Step 5: Algorithm Implementation & Testing**

277 The developed algorithms are implemented in a java program and tested on the testing
278 data. In the development of the java program, java implementation methods are created to access
279 the different building elements classes (e.g., walls, floors, stairs, roofs) to identify a building
280 element and the corresponding QTO algorithm that needs to be activated. A Unified Modeling
281 Language (UML) class diagram is used to help design the structure of the program. The UML
282 diagram describes the system by showing the classes, the attributes, the operations and the
283 interrelationships between the classes (Fig. 5). For example, "Room" and "Component" are two
284 class elements of the system. A "Room" has multiple "Components", where a single

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

285 "Component" can only belong to one "Room." Therefore, the two classes have a one-to-many
 286 relationship. The "Component" class has several sub-classes: the "Floor," "Wall," "Stair," and
 287 "Roof" classes, which inherit all the attributes of the "Component" class and have additional
 288 attributes to satisfy the modeling of each type of building component, respectively. The "Wall"
 289 and "Stair" classes could either be "Interior" or "Exterior" while the "Roof" class could have
 290 several different types (e.g., flat roof, gable roof). The "Visitor" class is used to declare the visit
 291 operations for the "Component" classes. The "Visitor" class has a subclass "QTOVisitor" used
 292 for the QTO operations; Other visitor subclasses can be further added to extend the computational
 293 operations.

294
 295 **Fig. 5.** UML Class Diagram for the Algorithm Development

296 **Experiment**

297 To test the effectiveness of the proposed D-READ method, the authors conducted an experiment
 298 with details described in the following subsections.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

299 *Experimental Setup*

300 The system's setup composed of a 64-bit windows laptop with a 17" screen connected to
301 two 17" display monitors via a VGA cable and an optic mouse. The laptop was operating on
302 Windows 10 pro; the processor was an Intel ® core™ i7 – 3720 QM CPU @ 2.60 GHz and the
303 RAM was 16GB. The computing system's specifications – a system's memory (RAM) and
304 storage affect the speed at which a system performs computational operations.

305 *QTO Algorithm Development Using the D-READ Method*

306 Step 1: Model Development

307 Nine building models (Models *A* – *I*) were used for training, testing and evaluation
308 purposes. Six building models (Models *A* – *F*) were developed for training and testing of QTO
309 algorithms. Three models (Models *G* – *I*) were utilized in evaluating the accuracy and robustness
310 of the D-READ method.

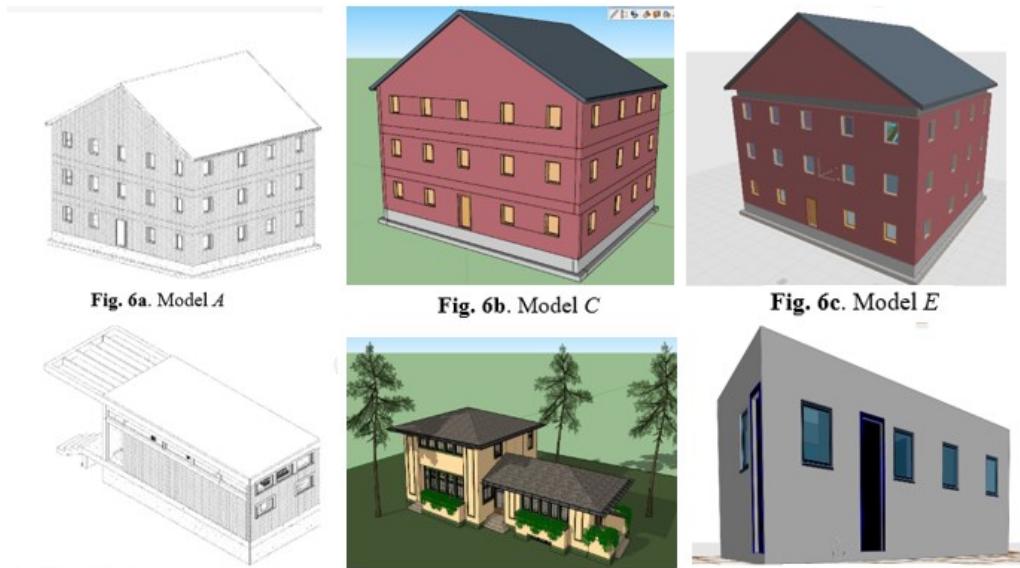
311 *Training and testing data:* Three models were created based on the same apartment complex
312 building project in Kalamazoo, Michigan. Hard copy architectural drawings were obtained from
313 the project owner and 3D models of the building were created by the authors in three different
314 BIM authoring tools according to the drawings, namely, Revit (Model *A*) (Fig. 6a), SketchUp
315 (Model *C*) (Fig. 6b), and ArchiCAD (Model *E*) (Fig. 6c). The 3D model data were further
316 converted into IFC format through the built-in exportation functions in the BIM authoring tools.
317 Models *A*, *C*, and *E* were used for training. The testing Models *B*, *D*, and *F*, are shown in Figs.
318 6d, 6e, 6f, respectively. Model *B* was based on a residential building model retrieved from an
319 online source Maro Design (2018) created in Autodesk Revit. Model *D* was based on a residential

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

320 building created by Razin Kahn in Trimble SketchUp, retrieved from the online 3D Warehouse.

321 Model *F* was based on a residential building created in GRAPHISOFT ArchiCAD.


322 *Evaluation data*: Fig. 7 shows the three BIM instance models developed for evaluation purpose.

323 Similar to the training and testing data, the three models were created in the three BIM authoring

324 tools. Models *G* (Fig. 7a) and *I* (Fig. 7c) were created by the authors using Autodesk Revit and

325 GRAPHISOFT ArchiCAD while Model *H* (Fig. 7b) was retrieved from the online 3D Warehouse

326 based on a residential apartment building created by Razin Kahn in Trimble SketchUp.

327
328 **Fig. 6.** Visualization of the Training and Testing Data.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

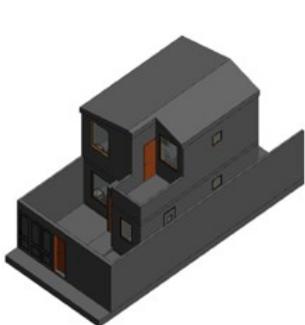


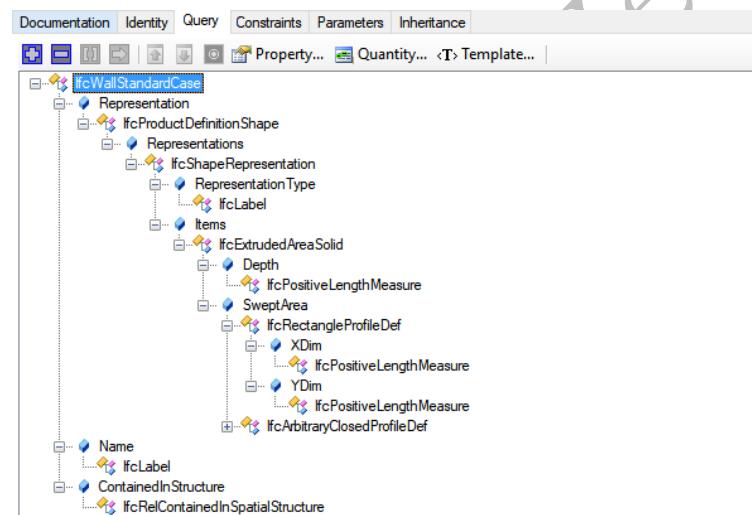
Fig. 7a. Model G

Fig. 7b. Model H

Fig. 7c. Model I

Fig. 7. Visualization of the Evaluation Data

Step 2: Model View Definition Development


To develop the MVD, the authors utilized the ifcDOC tool (buildingSMART 2015), which is an open-source MVD creation tool for creating model views, concept templates, concept roots, and concept leafs (Fig. 8).

In the scope identification sub-step, the main application was QTO. The other related application would usually be a BIM authoring tool (i.e., mostly an architectural BIM tool), or other BIM sources that may provide models for QTO purposes. This MVD was developed based on the CV V2.0, which has been developed by buildingSMART and supports IFC 2X3 exchange requirements in the areas of architectural exchange, structural exchange and building services exchange. In the exchange requirements definition sub-step, using the ifcDOC tool and the existing CV V2.0, the authors defined rules for supporting the QTO exchange requirements needed for exporting the IFC 2X3 file corresponding to a subset of the CV V2.0 from an architectural BIM tool. Four MVD concepts were defined including wall, floor, stair and roof. In the IFC entity mapping sub-step, the MVD concepts were mapped into IFC entities, together with attributes and constraints. As an example, in Fig. 8, an exchange requirement was defined for an

Final published version is found in the ASCE Library here: [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

347 MVD concept wall, which in turn maps into the IFC entity *IfcWallStandardCase* with mandatory
348 attributes "Representation," "Name," and "ContainedInStructure;" the "Representation"
349 attribute uses *IfcProductDefinitionShape*, which in turn, uses *IfcShapeRepresentation* and the
350 *IfcShapeRepresentation* further uses *IfcExtrudedAreaSolid*. The *IfcExtrudedAreaSolid* is used to
351 represent the details of a 3D shape, from which the needed geometric parameters for QTO can
352 be found. The developed MVD validates if entities required for QTO correctly exist in the IFC
353 instance files to ensure a successful QTO algorithm execution.

354
355 **Fig. 8.** Exchange Requirement for an MVD Concept Wall in the ifcDOC Interface

356 Fig. 9 shows an example HTML validation report generated from the MVD-based
357 checking of a wall from the Model B IFC file. The results showed there were (1) an instance of
358 *IfcWall*, (2) an instance of *IfcWallStandardCase*, and (3) an instance of *IfcWindow* in the IFC
359 file. Two scenarios could arise from the validation results using this developed MVD: (1)
360 insufficient information (as shown in Fig. 2, the system would inform the users to provide the
361 needed information); or (2) sufficient information (the IFC file is passed on to the developed

Final published version is found in the ASCE Library here: [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

362 QTO algorithms for data extraction). The validation results were extracted using jsoup Java

363 HTML parser API (jsoup 1.11.3).

Validation Results

Instance File	C:\Users\PIXIE\OneDrive - purdue.edu\Research\JCCE 001\testing data\Testing Data File Wall 1.ifc
Project File	E:\Misc\IFC2x3TC1_Properties_CV.ifc.doc
Model View	CoordinationView_2.0
Exchange	CV2.0-Arch
Tests Executed	43
Tests Passed	43
Tests Ignored	0
Tests Percentage	100%

IfcWall (1)

- ▶ GUIDs (Operator: And)
- ▶ History (Operator: And) [OPTIONAL]
- ▶ Naming (Operator: And)
- ▶ CAD Layer (Operator: And)
- ▶ Spatial Containment (Operator: And)
- ▶ Classification (Operator: And) [OPTIONAL]

IfcWallStandardCase (1)

- ▶ GUIDs (Operator: And)
- ▶ History (Operator: And) [OPTIONAL]
- ▶ Naming (Operator: And)
- ▶ CAD Layer (Operator: And)
- ▶ Spatial Containment (Operator: And)
- ▶ Classification (Operator: And) [OPTIONAL]

IfcWindow (1)

- ▶ GUIDs (Operator: And)
- ▶ History (Operator: And) [OPTIONAL]
- ▶ Naming (Operator: And)
- ▶ CAD Layer (Operator: And)
- ▶ Spatial Containment (Operator: And)
- ▶ Classification (Operator: And) [OPTIONAL]

364
365

Fig. 9. An Output Report from an Example MVD Validation

366 Step 3: Data Analysis

367 *Object Identification and Geometric Representation Analysis*

368 Each object in the IFC files of the training models (Models *A*, *C*, and *E*) was identified
369 and analyzed for their fundamental geometric representations in the IFC-based BIM. In total 61
370 objects were analyzed to identify tracing patterns for seven types of objects in the use of IFC
371 entities and attributes.

372 In addition to the tracing pattern in the use of IFC data for the geometric representations of a
373 rectangular wall (Fig. 4), tracing pattern of a curved wall was also analyzed to extract: (1) the
374 radius of its center curve (*Radius1*); (2) the radius of its inner curve (*Radius2*); (3) the radius of

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

375 its outer curve (*Radius3*); (4) the thickness of the wall (*WallDepth*); (5) the end point of the wall
376 (*TrimOne*); and (6) the starting point of the wall (*TrimTwo*). These parameters are used in
377 Equation [1] and Equation [2] to calculate the length (*L*) and width (*W*) of the wall, respectively.
378 Fig. 10 below shows the detail of this tracing pattern. Similarly, the tracing patterns of a floor
379 and a roof were analyzed to extract the corresponding parameters. For stairs, two different tracing
380 patterns were found and analyzed. The first tracing pattern was used by Models A and C (Pattern
381 *S₁*) (Fig. 11) and the second tracing pattern was used by Model E (Pattern *S₂*) (Fig. 12). The
382 tracing pattern *S₁* of the stairs was analyzed to extract: (1) the height of the riser (*RiserHeight*);
383 (2) the depth of the thread (*ThreadDepth*); (3) the number of risers (*RiserNumber*); and (4) the
384 number of threads (*ThreadNumber*). These parameters are used in Equation [3] to calculate the
385 length of the flight (*FlightLength*). The tracing pattern *S₂* of the stairs was analyzed to extract:
386 (1) the height of the riser (*RiserHeight*); (2) the number of risers (*RiserNumber*); and (3) the
387 number of threads (*ThreadNumber*). These parameters are used in Equations [3] and [4] to
388 calculate the length of the flight (*FlightLength*). The main difference between these two tracing
389 patterns of stairs are in the parameters used. While the *RelDefinesByProperties* in Pattern *S₁*
390 contained *ThreadDepth*, the *RelDefinesByProperties* in Pattern *S₂* does not contain *ThreadDepth*.

$$391 \quad L = 2 \times \pi \times \text{Radius1} \times \left\{ 1 - \left[\frac{\text{TrimOne} - \text{TrimTwo}}{360} \right] \right\} \quad [1]$$


$$394 \quad W = \text{Radius3} - \text{Radius2} \quad [2]$$

$$395 \quad \text{FlightLength} = \text{ThreadNumber} \times \text{ThreadDepth} \quad [3]$$

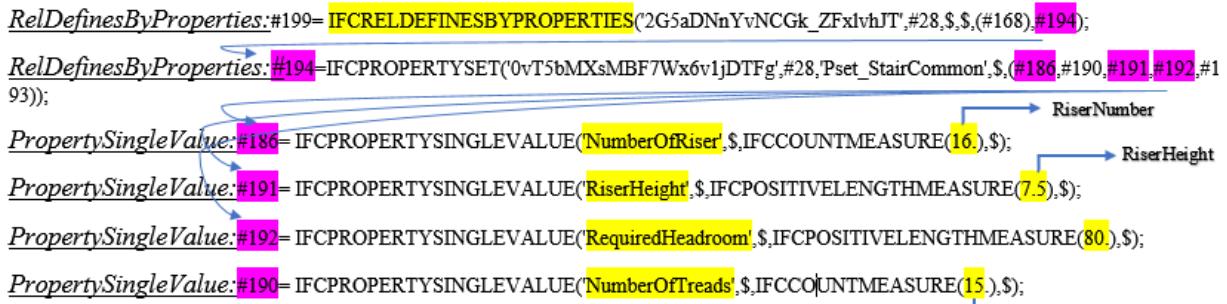
$$396 \quad \text{ThreadDepth} = 17.5" - \text{RiserHeight} \quad [4]$$

397
398 The window and door tracing patterns were not considered separately but included as part of the
399 wall tracing patterns and taken into account as openings.

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." J. Comput. in Civ. Eng., 34(5), 04020036.

400
401

Fig. 10. Tracing Pattern of a "SweptSolid" Representation of a Curved Wall



402
403

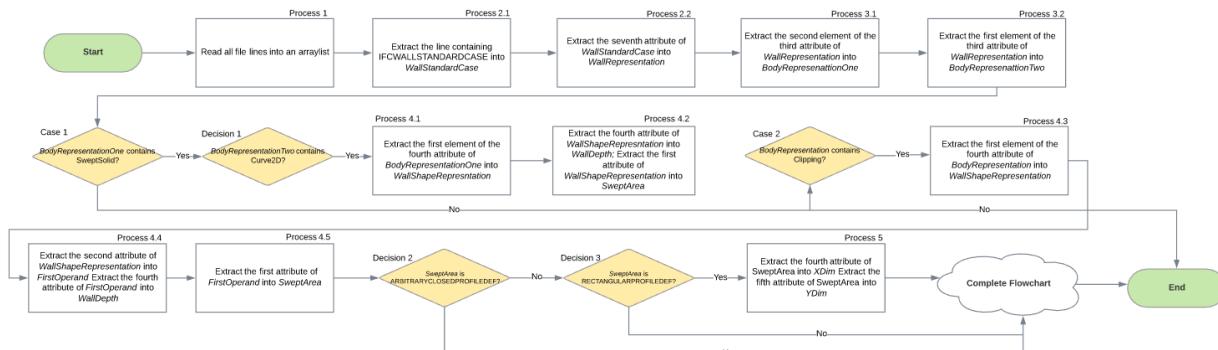
Fig. 11. Tracing Pattern S_1 of Stairs

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." J. Comput. in Civ. Eng., 34(5), 04020036.

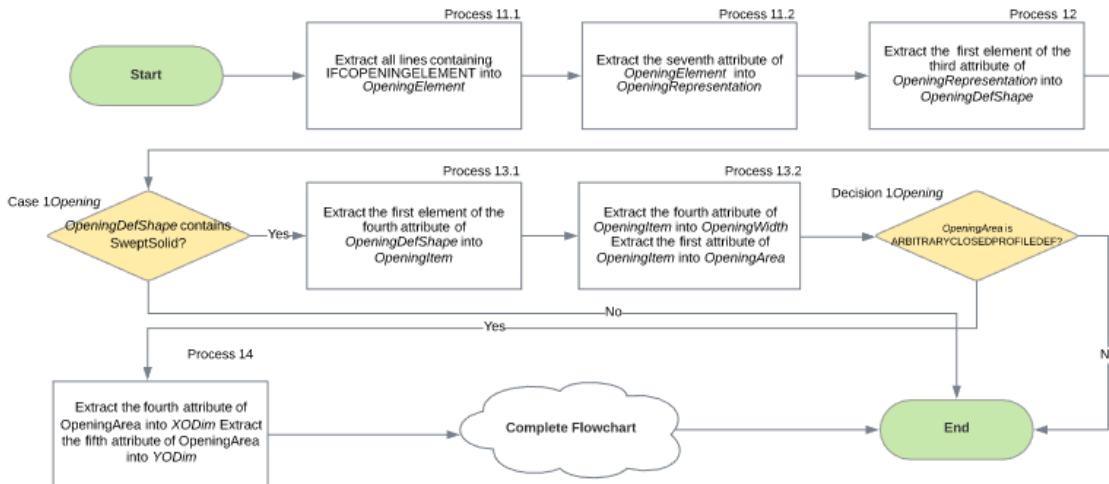
404
405

Fig. 12. Tracing Pattern S_2 of Stairs


406 **Step 4: Algorithm Development**

407 The algorithms developed made use of tracing patterns in the IFC data structure and the
408 component's geometric representations in the IFC training data to generate the needed QTO. For
409 example, the algorithms were developed to extract the height, length & width of a wall
410 (rectangular or curved), and the height, length & width attributes of all its openings from its
411 geometric representations in an IFC file. An example QTO algorithm for taking off the quantities
412 of a rectangular wall is illustrated below.

413 *Rectangular Wall - extracting the length, width and height attributes*


414 Fig. 13 shows the partial QTO algorithm developed for a rectangular wall. Fig. 13a shows
415 the part of the algorithm for extracting the height, length & width attributes of the rectangular
416 wall; while Fig. 13b shows the part of the algorithm for extracting the height, length & width
417 attributes of all of its openings from its geometric representation in an IFC file.

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

418
419

Fig. 13a. Partial Flow Chart of the QTO Algorithm for a Rectangular Wall

420
421

Fig. 13b. Partial Flow Chart of the QTO Algorithm for the Openings of a Rectangular Wall

422 **Step 5: Algorithm Implementation and Testing**

423 The developed QTO algorithms were tested in generating the QTO for objects in the three testing
 424 models (Models *B*, *D* and *F*), which were created in three different BIM authoring tools. In this
 425 way, we can evaluate the performance of the D-READ method in generating QTO for models
 426 using different authoring tools/workflows. One example object of each type was selected from
 427 each of the building models and the QTO results were tabulated in Table 1. Fig. 14 shows an

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." J. Comput. in Civ. Eng., 34(5), 04020036.

428 interface of output results of a wall instance (Model *B*) using the implemented QTO algorithms
 429 in Java.

430 **Table 1.** Testing results of selected objects

Component	Model	Length (ft.)	Width (ft.)	Height (ft.)	Area (sq.ft.)	Volume (cu.ft.)
Wall 1	B	18.3333	0.4167	7.2433	132.7944	55.3310
Wall 2	D	3.7989	0.625	29.2561	111.1408	69.463
Wall 3	F	3.655	0.4922	8.0	29.24	14.3919
Floor 1	B	26.3333	9.125	1.250	240.2914	300.3642
Floor 2	D	23.2550	18.5	0.9125	430.2175	392.5735
Floor 3	F	22.4269	8.780	0.8725	196.9082	171.8024
		Length (ft.)	Width (ft.)	Area (sq. ft.)	Volume (cu. ft.)	Slope (°)
Roof 1	B	25.3550	10.82	274.3411	1667.4452	-
Roof 2	D	53.0990	47	4991.306	30337.1579	30
Roof 3	F	21.3143	8.280	176.4824	926.5326	-
		Riser height (ft.)	Thread Length (ft.)	Stairs width (ft.)	Flight Length (ft.)	
Stairs 1	B	-	-	-	-	
Stairs 2	D	0.5577	0.7546	3.0348	18.62	
Stairs 3	F	-	-	-	-	


```

workspace - Java - temstop/resources/database.properties - Eclipse
File Edit Navigate Search Project Express Run Window Help
Problems @ Javadoc Declaration Console
New_configuration (8) [Java Application] C:\Program Files\Java\jdk1.8.0_101\bin\javaw.exe (Jan 7, 2019, 5:14:25 PM)

WALL: MVD Layer CHECK PASSED

following are item list found from MVD Layer
IfcWallStandardCase(1)
IfcDoor(1)
IfcWindow(1)
IfcSlab(0)

Height of wall is: 7.243312636319131
Length of Wall is: 18.33333847112861
Width of Wall is: 0.4166666666666671
Area of Wall is: 165.7943760777283
Volume of Wall is: 69.08205251566868
Total Area of Opening: 33.0
Net Area of Wall is: 132.7943760777283
Total Volume of Openings: 13.751100000000001
Net Volume of Wall is: 55.33095251566866

```

431
 432 **Fig. 14.** An Example Output Result from a Wall Instance Using the Implemented QTO
 433 Algorithms in Java
 434

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

435 *Experimental Evaluation Results and Discussion*

436 *Accuracy of results:* To evaluate the accuracy of the QTO algorithms produced by D-READ
437 method, a comparison of the quantities obtained for Models *G* and *H* with those from a state-of-
438 the-art estimating tool (Autodesk Navisworks) were recorded. As at the time of this research, the
439 Autodesk Navisworks the authors had access to could only support models *G* and *H*. In contrast,
440 the QTO algorithms developed using the D-READ method was successfully used in extracting
441 the quantities from all the three models. A measurement of deviations between the results
442 achieved using the commercial software (if the commercial software were able to provide the
443 results), and the results achieved using the proposed method were tabulated in Table 2 and Table
444 3. The comparison of the tabulated quantities in these two tables shows that the proposed method
445 and developed algorithms provided consistent results with that from the state-of-the-art
446 commercial software, if the commercial software were able to provide the results.

447 **Table 2.** Accuracy of results (Model *G*)

	Method	Length (ft.)	Width (ft.)	Height (ft.)	Area (sq. ft.)	Volume (cu. ft.)
Wall 1	Algorithm	13.0577	0.4167	7.4602	97.4134	40.5922
	Commercial Software Deviation (%)	13.0577	0.4167	7.4602 0%	97.4134	40.5922
Wall 2	Algorithm	20.6693	0.4167	7.9193	163.6868	68.2083
	Commercial Software Deviation (%)	20.6693	0.4167	7.9193 0 %	163.6868	68.2083
Wall 3	Algorithm	20.21	0.4167	7.1768	145.0437	60.4397
	Commercial Software Deviation (%)	20.21	0.4167	7.1768 0 %	145.0437	60.4397
Wall 4	Algorithm	6.7453	0.4167	7.4602	50.3213	20.9689
	Commercial Software Deviation (%)	6.7453	0.4167	7.4602 0 %	50.3213	20.9689
Floor						

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

	Algorithm	39.0420	17.2498	0.6561	673.4656	441.8924
	Commercial Software Deviation (%)	39.0420	17.2498	0.6561 0 %	673.4656	441.8924
		Length (ft.)	Width (ft.)	Area (sq. ft.)	Volume (cu. ft.)	Slope (°)
Roof	Algorithm	47.0	0.7916	2929.9364	2319.3349	30
	Commercial Software Deviation (%)		0.7916	2929.9364 0 %	2319.3349	
		Riser height (ft.)	Thread Length (ft.)	Flight Length (ft.)	Stairs width (ft.)	
Stair	Algorithm	0.4261	0.8202	14.7638	2.9528	
	Commercial Software Deviation (%)			0 %	2.9528	

448

449 **Table 3.** Accuracy of results (Model H)

	Method	Length (ft.)	Width (ft.)	Height (ft.)	Area (sq. ft.)	Volume (cu. ft.)
Wall 1	Algorithm	21.1942	0.4167	9.0914	159.6839	66.5350
	Commercial Software Deviation (%)	21.1942	0.4167	9.0914 0 %	159.6839	66.5350
Wall 2	Algorithm	20.3280	0.4167	8.8583	131.8486	54.9369
	Commercial Software Deviation (%)	20.3280	0.4167	8.8583 0 %	131.8486	54.9369
Wall 3	Algorithm	20.7283	0.4167	8.8583	177.6169	74.0070
	Commercial Software Deviation (%)	20.7283	0.4167	8.8583 0 %	177.6169	74.0070
Wall 4	Algorithm	14.5647	0.4167	8.8583	123.0178	51.2574
	Commercial Software Deviation (%)	14.5647	0.4167	8.8583 0 %	123.0178	51.2574
Floor	Algorithm	29.3044	21	1.0625	615.3937	653.8558
	Commercial Software Deviation (%)	29.3044	21	1.0625 0 %	615.3937	653.8558

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

450 *Robustness of method:*

451 To evaluate the robustness of the proposed D-READ method, a comparison of the D-READ
452 method in generating QTO of components from various BIM authoring tools against different
453 state-of-the-art commercial software were tabulated in Table 4. Three BIM instance models
454 (Models *G*, *H* and *I*) were utilized in performing the robustness test. Three state-of-the-art
455 estimating tools from the three parent-company of the used BIM authoring tools (i.e., Autodesk,
456 Trimble and GraphiSOFT) were chosen to check if each tool can perform QTO on each of the
457 three models. The three estimating tools were Autodesk Naviswork, Trimble GCEstimator, and
458 GraphiSOFT ArchiCAD. As at the time of this research, the authors had access to only Autodesk
459 Naviswork and GraphiSOFT ArchiCAD. The review of Trimble GCEstimator in supporting other
460 formats was conducted via the software's support page. The results suggest that while the state-
461 of-the-art software are not comprehensive in supporting the different BIM authoring tools, the D-
462 READ method successfully developed QTO algorithms that extracted the quantities from models
463 created in all the three BIM authoring tools.

464 **Table 4.** Robustness evaluation

BIM platform	QTO tool compatibility			
	D-READ	Autodesk Naviswork	Trimble GCEstimator	GraphiSOFT ArchiCAD
Autodesk Revit (Model G)	Yes	Yes	No	Yes
Trimble SketchUp (Model H)	Yes	Yes	Yes	No
GraphiSOFT ArchiCAD (Model I)	Yes	No	No	Yes
Other BIM Platforms	Yes	?	?	?

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

465

466 **Contributions to the body of knowledge**

467 This research contributes to the body of knowledge in two main ways: First, this study
468 brings a new data-driven method for automated QTO algorithm development using IFC-based
469 BIMs. The proposed method leveraged model-specific geometric representations of building
470 components in an IFC file directly. In contrast to existing BIM-based QTO methods that only
471 deal with specific/selected/proprietary BIM-authoring tool/workflow, this method can be utilized
472 to develop QTO algorithms that can be applied to models created from any IFC-compatible BIM
473 authoring tools/workflows. This is more robust than workflows built on proprietary data formats
474 and therefore can provide QTO algorithms with a higher level of support to BIM interoperability.
475 The QTO algorithms developed can be accumulatively grown into a comprehensive set to cover
476 different objects in different types of construction projects. Second, the presented work extended
477 the current available architectural MVD specifications to one that checks IFC instance files for
478 architectural QTO purposes. This is a pioneer research effort in systematically solving
479 interoperability and automation of BIM-based QTO.

480 **Conclusions, Limitations and Future Work**

481 To establish interoperable QTO methods using BIMs created from different BIM
482 authoring tools/workflows, the authors developed a new D-READ method that can be applied to
483 develop algorithms for extracting the needed quantities from any building object by leveraging
484 the geometric shape representations of the objects in an IFC model. The proposed method was
485 tested using nine BIM instance models from three different BIM authoring tools/workflows –
486 three for training, three for testing, and three for evaluation. QTO algorithms were produced for

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

487 wall, roof, floor, and stairs as a result of applying the proposed method. These produced QTO
488 algorithms were applied to the evaluation models to test their accuracy and robustness, in
489 comparison with state-of-the-art QTO tools. The algorithms successfully extracted the quantities
490 of the evaluation models in consistent with the state-of-the-art tools. While none of the state-of-
491 the-art tools could successfully process all the different evaluation models because of their
492 different sources and therefore the different uses of IFC entities/attributes, the developed QTO
493 algorithms were able to achieve that. The D-READ method proposed in this study therefore
494 establishes an approach that can be applied to the development of QTO algorithms of building
495 components using a broad range of IFC-based BIMs (e.g., by different BIM authoring
496 tools/workflows) to support BIM interoperability.

497 One main limitation is acknowledged: currently the D-READ method produces QTO
498 algorithms that could only address geometric representations that were observed in the training
499 data. A boosting strategy will be investigated in future research to enable the D-READ method
500 to cover a broader set of IFC data patterns than those observed in training data.

501 **Acknowledgement**

502 The authors would like to thank the National Science Foundation (NSF). This material is
503 based upon work supported by NSF under Grant No. 1745374. Any opinions, findings, and
504 conclusions or recommendations expressed in this material are those of the authors and do not
505 necessarily reflect the views of NSF.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

506 **References**

507 buildingSMART. (2011). "An Integrated Process for Delivering IFC Based Data Exchange." <
508 https://www.standard.no/Global/PDF/ISO-TC59-SC13/N_287_Integrated_IDM-MVD_Process_for_IFC-formats.pdf> (June. 25, 2019).

510 buildingSMART. (2015). "ifcDoc Tool Summary." <<http://www.buildingsmart-tech.org/specifications/specification-tools/ifcdoc-tool/ifcdoc-beta-summary>> (July 6th,
511 2015)

512 buildingSMART. (2019). "Software Compliance: Certified Software." <
513 <https://www.buildingsmart.org/compliance/software-certification/certified-software/>>
514 (June. 25, 2019).

515 Cheung, F., Rihan, J., Tah, J., Duce, D., and Kurul, E. (2012). "Early stage multi-level cost
516 estimation for schematic BIM models." *Automation in Construction*, 27(2012), 67-77.

517 Choi, J., Kim, H., and Kim, I. (2011). "Interoperability tests between IFC certified Software for
518 Open BIM based quality assurance." *Proc., 28th International Symposium on Automation
519 and Robotics in Construction, Seoul, Korea*, 231-244.

520 Choi, J., Kim, H., and Kim, I. (2015). "Open BIM-based quantity takeoff system for schematic
521 estimation of building frame in early design stage." *Journal of Computational Design and
522 Engineering*, 2(2015), 16-25.

523 Costin, A., and Eastman, C. (2019). "Need for interoperability to Enable Seamless Information
524 Exchanges in Smart and Sustainable Urban Systems." *J. Comput. Civ. Eng.*, 2019, 33(3):
525 04019008

526

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

527 Ding, L., Li, K., Zhou, Y., and Love, P. (2017). "An IFC-inspection process model for
528 infrastructure projects: Enabling real-time quality monitoring and control." *Automation*
529 *in Construction*, 84, 96-110.

530 Drogemuller, R. (2005). "Model based estimating system for civil concrete structures." Final
531 Report 2005-0008-C-01, CRC for Construction Innovation, Queensland University of
532 Technology, Brisbane City, Australia.

533 Drogemuller, R.M. (2003). "Managing information flows with models and virtual environments."
534 Project Report, CRC-CI Report No. 2001-007-C-01, CRC for Construction Innovation,
535 Queensland University of Technology, Brisbane City, Australia.

536 Eastman, C., Sacks, R., Panushev, I., Aram, S., and Yagmur, K. (2009). "Information Delivery
537 Manual for Precast Concrete" <
538 http://dcom.arch.gatech.edu/pcibim/documents/IDM_for_Precast.pdf> (Jan. 26, 2019).

539 Franz, B., and Messner, J. (2017). "Evaluating the impact of BIM on project performance." <
540 [https://www.bim.psu.edu/download/franz-and-messner-evaluating-the-impact-of-bim-
541 on-project-performance-2018.pdf](https://www.bim.psu.edu/download/franz-and-messner-evaluating-the-impact-of-bim-on-project-performance-2018.pdf)> (Jun. 15, 2019).

542 Golabchi, A., and Kamat, V (2013). "Evaluation of industry foundation classes for practical
543 building information modeling interoperability." Proc., 30th International Symposium on
544 Automation and Robotics in Construction, Montreal, Canada, 17-26.

545 Franco, J., Mahdi, F., and Abaza, H. (2015). "Using Building Information Modeling (BIM) for
546 estimating and scheduling, adopting barriers." *Universal Journal of Management*,
547 9(2015), 376-384.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). “Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM.” *J. Comput. in Civ. Eng.*, 34(5), 04020036.

548 Hernandez, J., Lerones, P., Bonsma, P., Delft, A., Deighton, R., and Braun, J. (2018). “An IFC
549 Interoperability Framework for Self-Inspection Process in Buildings.” *Buildings* 2018,
550 8(2), 32.

551 Jsoup Java HTML Parser 1.11.3. [Computer Software]. (<<https://jsoup.org/news/release-1.11.3>>), 2018.

553 Khan, R. (2015). “American system built homes 2.”
554 <<https://3dwarehouse.sketchup.com/model/uaac930c6-9933-4c54-9df8-831a84756b1f/American-system-built-homes-2>> (Jun. 26, 2019).

556 Khan, R. (2016). “Darwin D. Martin Gardener’s Cottage.”
557 <<https://3dwarehouse.sketchup.com/model/44562ca4-d01c-4038-8c49-bb067cf92d40/Darwin-D-Martin-Gardeners-Cottage>> (Jun. 26, 2019).

559 Kreider, R., Messner, J., and Dubler, C. (2010). “Determining the frequency and impact of
560 applying BIM for different purposes on building projects.” *Proc., 6th Int. Conf. on
561 Innovation in Architecture, Engineering and Construction (AEC)*, Pennsylvania State
562 Univ., University Park, PA, USA.

563 Lai, H., and Deng, X. (2018). “Interoperability analysis of IFC-based data exchange between
564 heterogeneous BIM software.” *Journal of Civil Engineering and Management*, 24(7),
565 537-555.

566 Lee, J., Smith, J., and Kang, J. (2011). “The role of IFC for sustainable BIM data management.”
567 *Proc., 28th International Symposium on Automation and Robotics in Construction*,
568 IAARC, Seoul, Korea, 764-769.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

569 Lee, S., Kim, K., and Yu, J. (2014). "BIM and ontology-based approach for building cost
570 estimation." *Automation in Construction*, 41(2014), 96-105.

571 Lee, Y., Eastman C., and Lee, J. (2015). "Validations for ensuring the interoperability of data
572 exchange of a building information model." *Automation in Construction*, 58(2015), 176-
573 195.

574 Lee, Y., Eastman C., and Solihin, W. (2016). "An ontology-based approach for developing data
575 exchange requirements and model views of building information modeling." *Advanced
576 Engineering Informatics*, 30(2016), 354-367.

577 Lee, Y., Eastman, C., Solihin, W. (2018). "Logic for ensuring the data exchange integrity of
578 building information models." *Automation in Construction*, 85, 249-262.

579 Lee, Y., Solihin, W., Eastman, C. (2019). "The Mechanism and Challenges of Validating a
580 Building Information Model regarding data exchange standards." *Automation in
581 Construction*, 100, 118-128.

582 Liu, R., and Issa, R.R.A. (2013). "Issues in BIM for Facility Management from Industry
583 Practitioners' Perspectives." Proc., International Workshop on Computing in Civil
584 Engineering, 2013, ASCE, Reston, VA, 411-418.

585 Liu, R., and Issa, R.R.A. (2014). "Design for maintenance accessibility using BIM tools."
586 *Facilities*, 32(3/4), 153-159.

587 Liu, R., and Issa, R.R.A. (2015). "Survey: Common Knowledge in BIM for Facility
588 Maintenance." *Journal of Performance of Constructed Facilities*, 30(3), 04015033.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

589 Ma, Z., Wei, Z., and Zhang, X. (2013). "Semi-automatic and specification-compliant cost
590 estimation for tendering of building projects based on IFC data of design model."
591 *Automation in Construction*, 30(2013), 126-135.

592 Maro Design. (2018). "Wood House 1 revit 3D model." <<https://www.turbosquid.com/3d-models/wood-house-1-revit-3d-model-1313024>> (Jan. 30, 2019).

594 McGraw-Hill Construction. (2014). "The business value of BIM in construction for major global
595 markets: How contractors around the world are driving innovation with building
596 information modeling." Bedford, MA.

597 Monteiro, A., and Martins, J. (2015). "A survey on modeling guidelines for quantity takeoff-
598 oriented BIM-based design." *Automation in Construction*, 35(2013), 238-253.

599 Mutis, I., and Paramashivam, A. (2019). "Cybersecurity management framework for a cloud-
600 based BIM model." I. Mutis and T. Hartmann (eds.), *Advances in Informatics and
601 Computing in Civil and Construction Engineering*, Springer Nature Switzerland AG
602 2019, Basel, Switzerland, 325-333.

603 Mutis, I., Ramachandran. A., and Martinez, M.G. (2019). "The BIMbot: A cognitive assistant in the BIM
604 room." I. Mutis and T. Hartmann (eds.), *Advances in Informatics and Computing in Civil and
605 Construction Engineering*, Springer Nature Switzerland AG 2019, Basel, Switzerland, 155-163.

606 Nawari, N. (2012). "BIM standardization and wood structures." *Proc., ASCE International
607 Conference on Computing in Civil Engineering*, ASCE, Reston, VA, 293-300.

608 Plebankiewicz, E., Zima, K., and Skibniewski, M. (2015). "Analysis of the first polish BIM-
609 Based cost estimation application." *Procedia Engineering*, 123(2015), 405-414.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

610 Ramaji, I., and Memari, A. (2018a). "Interpretation of structural analytical models from the
611 coordination view in building information models." *Automation in Construction*,
612 90(2018), 117-133.

613 Ramaji, I., and Memari, A. (2018b). "Extending the current model view definition standards to
614 support multi-storey modular building projects." *Architectural Engineering and Design
615 Management*, 14(1-2), 158-176.

616 Santos, A., Costa, A., and Grillo, A. (2017). "Bibliometric analysis and review of Building
617 Information Modeling literature published between 2005 and 2015." *Automation in
618 Construction*, 80(2017), 118-136.

619 Samphaongoen P. (2010). "A visual approach to construction cost estimating." Master's Theses.
620 Marquette University, Milwaukee, Wisconsin. Paper 28
621 <https://epublications.marquette.edu/theses_open/28> (May 28, 2017).

622 Sun, J., Liu, Y-S., Gao, G., and Han, X-G. (2015). "IFCCompressor: A content-based
623 compression algorithm for optimizing Industry Foundation Classes files" *Automation in
624 Construction*, 50 (2015), 1-15.

625 Steel, J., Drogemuller, R. & Toth, B. (2012). "Model Interoperability in Building Information
626 modelling." *Softw. Syst. Model*, 11(1), 99-109.

627 Venugopal, M., Eastman, C., Birgonul, T., Sacks, R., and Teizer, J. (2012). "Semantics of model
628 views for information exchanges using the industry foundation class schema." *Adv. Eng.
629 Inform*, 26 (2) (2012), 419-432.

630 Wu, J., and Zhang, J. (2019). "A new automated BIM object classification method to support
631 BIM interoperability." *J. Comput. Civ. Eng.*, in press.

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). "Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM." *J. Comput. in Civ. Eng.*, 34(5), 04020036.

632 Weise, M., Liebich, T., and Wix, J. (2008). "Integrating use case definitions for IFC
633 developments." in RS. Alain Zarli (Ed.), *ECPPM 2008: eWork and eBusiness in*
634 *Architecture, Engineering and Construction*, Taylor & Francis, 2008, 637-645.

635 Yu, W., Lai, C., and Lee, W. (2006). "A WICE approach to real-time construction cost
636 estimation." *Automation in Construction*, 15(2006), 12-19.

637 Zhang, J., and El-Gohary, N. (2015a). "Automated extraction of information from building
638 information models into a semantic logic-based representation." Proc., 2015 ASCE Intl.
639 Workshop on Comput. in Civ. Eng., ASCE, Reston, VA, 173-180.

640 Zhang, J., and El-Gohary, N. (2015b). "Automated information transformation for automated
641 regulatory compliance checking in construction." *J. Comput. in Civ. Eng.*, 29(4),
642 B4015001.

643 Zhang, J., and El-Gohary, N. (2013). "Semantic NLP-based information extraction from
644 construction regulatory documents for automated compliance checking." *J. Comput. in*
645 *Civ. Eng.*, 30(2), 04015014.

646 Zhang, J. (2018). "Towards systematic understanding of geometric representations in BIM
647 standard: an empirical data-driven approach." Proc., ASCE Construction Research
648 Congress, ASCE, Reston, VA 96-105.

649 Zhang, S., Sulankivi, K, Kiviniemi, M., Romo, I., Eastman, C.M., and Teizer, J. (2015). "BIM-
650 based fall hazard identification and prevention in construction safety planning." *Safety*
651 *Science*, 72(February), 31-45.

652

653 **Figure Captions List**

654 Fig. 1. Proposed Data-Driven Reverse Engineering Algorithm Development (D-READ) Method

Final published version is found in the ASCE Library here:
[https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000909](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909)

Akanbi, T., Zhang, J., and Lee, Y.C. (2020). “Data-driven reverse engineering algorithm development (D-READ) method for developing interoperable quantity takeoff algorithms using IFC-based BIM.” *J. Comput. in Civ. Eng.*, 34(5), 04020036.

655 Fig. 2. An Illustration of the Application of Developed QTO Algorithms

656 Fig. 3. Object Identification Processes

657 Fig. 4. Tracing Pattern of a “SweptSolid” Representation of a Rectangular Wall

658 Fig. 5. UML Class Diagram for the Algorithm Development

659 Fig. 6. Visualization of the Training Data and Testing Data

660 Fig. 7. Visualization of the Evaluation Data

661 Fig. 8. Exchange Requirement for an MVD Concept Wall in the ifcDOC Interface

662 Fig. 9. An Output Report from an Example MVD Validation

663 Fig. 10. Tracing Pattern of a “SweptSolid” Representation of a Curved Wall

664 Fig. 11. Tracing Pattern S_1 of Stairs

665 Fig. 12. Tracing Pattern S_2 of Stairs

666 Fig. 13a. Partial Flow Chart of the QTO Algorithm for a Rectangular Wall

667 Fig. 13b. Partial Flow Chart of the QTO Algorithm for the Openings of a Rectangular Wall

668 Fig. 14. An Example Output Result from a Wall Instance Using the Implemented QTO
669 Algorithms in Java