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Shuffle Scheduling for MapReduce Jobs Based
on Periodic Network Status

Yuqi Fan , Wenlong Liu, Dan Guo , Weili Wu, and Dingzhu Du

Abstract— MapReduce jobs need to shuffle a large amount of
data over the network between mapper and reducer nodes. The
shuffle time accounts for a big part of the total running time of the
MapReduce jobs. Therefore, optimizing the makespan of shuffle
phase can greatly improve the performance of MapReduce jobs.
A large fraction of production jobs in data centers are recurring
with predictable characteristics, and the recurring jobs split the
network into periodic busy and idle time slots, which allows
us to better schedule the shuffle data in order to reduce the
makespan of shuffle phase with the future predictable network
status available. In this paper, we formulate the shuffle scheduling
problem with the aim to minimize the makespan of MapReduce
shuffle phase by leveraging the predictable periodic network
status. We then propose a simple yet effective network-aware
shuffle scheduling algorithm (NAS) to reduce the number of idle
time slots required to transfer the shuffle data so as to reduce
the shuffle makespan. We also prove that the proposed algorithm
NAS is a 3

2
-approximation algorithm to the shuffle scheduling

problem when all the future idle time slots have the same
duration. We finally conduct experiments through simulations.
Experimental results demonstrate the proposed algorithm can
effectively reduce the makespan of MapReduce shuffle phase and
increase network utilization.

Index Terms— MapReduce, network-aware, shuffle scheduling,
makespan.

I. INTRODUCTION

OVER the past decade, the rapid growth of Internet
has produced increasingly more data. Highly scalable

data-parallel frameworks are born to process massive data
and tens of thousands of jobs. MapReduce [1] is a popular
data-parallel processing framework proposed by Google in
2004, and has been deployed by many firms, such as Google,
Facebook, Yahoo!, etc. The basic rationale of MapReduce
is to split jobs submitted by users into multiple map and
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reduce tasks, assign the tasks to some servers to compute, and
merge the computation results which are returned to the users.
A MapReduce job consists of three phases: Map, Shuffle, and
Reduce. The nodes running the map tasks and the reduce
tasks are called mapper nodes and reducer nodes, respectively.
During the shuffle phase, significant amount of communication
is required from the mapper nodes to the reducer nodes so
that the reduce tasks can be executed [2]. The traces from
Facebook show that transferring data accounts for 33% of the
job running time on average [3].

Researchers try to reduce the time spent in the shuffle
phase to improve the performance of MapReduce by network
resources scheduling [4], [5], task scheduling [6], [7], and data
flow scheduling [8], [9]. Network resource scheduling opti-
mizes MapReduce by careful network bandwidth allocation,
network load balancing, etc. Task scheduling is engaged in
map tasks scheduling and reduce tasks scheduling. Map tasks
scheduling usually achieves data locality to reduce the network
traffic required for fetching data from the data storage nodes
before running map tasks. Similarly, the scheduling of reduce
tasks generally selects appropriate nodes to reduce the network
transmission from the mapper nodes to the reducer nodes. Data
flow scheduling transfers the data between the nodes based on
data priority, data categories, real-time demand, etc.

After the mapper and reducer nodes are allocated, data
transmission is required between the nodes so that the reducer
nodes can obtain the data to run the reduce tasks. Network
status has a direct and significant impact on the performance
of data flow scheduling in the shuffle phase. A good under-
standing of future network status enables us to plan the
data transmission in advance, such that we can effectively
improve the performance of MapReduce shuffle scheduling by
making good use of the network resources as demonstrated in
Example. 1.

Example 1: As shown in Fig. 1, four shuffle data items are
to be transmitted, and the data items are generated one by
one in turn. The sizes of the data items are 8, 5, 11, and 2,
respectively. Assume there exist 4 future idle time slots with
sizes of 12, 10, and 6, and 12, respectively. Without knowing
the future network status, the four data items will be scheduled
in turn. That is, the first and the second data items will be
scheduled in the first two time slots, respectively; the third
data item will be transmitted in the fourth time slot, since the
first three time slots have no enough idle resource for the
third data item; the fourth data item will be scheduled in the
first time slot. The makespan of shuffle scheduling will be 71.
If we consider the future network status, we can schedule
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Fig. 1. Example of data transmission scheduling considering future network
status.

the four data items in the second, third, first, and second
time slots, respectively, which makes the makespan of shuffle
scheduling be 51. Obviously, we can reduce the makespan
of shuffle scheduling by predicting and exploiting the future
network status.

It is reported that a large fraction of production jobs in data
centers are recurring with predictable characteristics so that
the data center network has predictable periodic busy and idle
time, and the future job characteristics (e.g., execution time)
of such jobs can be predicted with a high precision [10], [11].
With the emerging technology of software defined networking
(SDN), SDN-enabled data centers can facilitate the prediction
of the busy and idle time slots of the network by obtaining the
network status such as network load, link bandwidth, etc [12].
However, to the best of our knowledge, limited research on
the data transmission scheduling in MapReduce shuffle phase
considers the predictable future networks status. This paper
tackles the problem of shuffle scheduling for MapReduce jobs
with the objective to minimize the makespan of shuffle phase
by leveraging the periodic busy and idle states of the data
center network.

The main contributions of this paper are as follows:

• We investigate the shuffle scheduling problem to reduce
the makespan of MapReduce shuffle phase by exploiting
the predictable future periodic network status.

• We formulate the shuffle scheduling problem and propose
a simple yet effective network-aware shuffle scheduling
algorithm (NAS) to reduce the number of idle time slots
required to transfer the shuffle data so as to reduce the
shuffle makespan with predictable future network status
available. We prove that the proposed algorithm NAS is
a 3

2 -approximation algorithm to the shuffle scheduling
problem when all the future idle time slots have the same
duration.

• We conduct simulations to evaluate the performance
of the proposed algorithm. Simulation results demon-
strate the proposed algorithm can effectively reduce the
makespan of MapReduce shuffle phase and increase
network utilization.

The rest of the paper is organized as follows. The related
work is introduced in Section II. The problem is defined
in Section III. The proposed algorithm and the analysis of
the algorithm are presented in Section IV. The performance

evaluation of the proposed algorithm is given in Section V,
and the conclusions are detailed in Section VI.

II. RELATED WORK

The transmission of intermediate data from mapper nodes
to reducer nodes, i.e. shuffle, introduces a large amount of
network traffic during the execution of MapReduce jobs. Opti-
mizing data transmission scheduling in the shuffle phase helps
MapReduce improve the job performance. Some research has
been conducted on optimizing the data transmission schedul-
ing in MapReduce.

Completion time is an important metric for flow scheduling.
A priority queue based mathematical model was proposed to
evaluate the performance of different strategies, the expression
of flow completion time (FCT) was derived, and then several
scheduling strategies for reducing the value of FCT were
designed via the analysis on the expression [13]. A priority-
based flow scheduling algorithm (PFO) was constructed for
online social network (OSN) data center to decrease the
average completion time for bursty flows and ensure a high
throughput, where PFO divided the flows based on different
metrics and allocated different rates to different flows on the
basis of flow size and deadline information [14].

Some research aims to minimize the completion time
for coflow. A heuristic algorithm called Fastest-Volume-
Disposal-First was proposed to implement flow-level traffic
compression and scheduling system (Swallow) by using traffic
compression to reduce the amount of data transmitted over
the network with the objective of minimizing coflow com-
pletion time (CCT) [15]. A multiple-attributes-based coflow
scheduling (MCS) mechanism was presented to reduce the
coflow completion time; at the start of a coflow, a shortest
and narrowest coflow first algorithm was designed to assign
the initial priority based on the coflow width; during the
transmission of coflows, based on the sent bytes of coflows,
a double-threshold scheme was proposed to adjust the pri-
orities of different classes of coflows according to different
thresholds [9].

Some research focuses on scheduling the data transmission
to meet deadline. A soft real-time transport protocol with dead-
line constraint in data centers was designed and a flow-based
deadline scheduling scheme for data center networks (FBDS)
was proposed to improve the deadline meeting rate [16].
A deadline-aware flow scheduling (DAFS) was proposed to
decrease the deadline mismatch and blocking probabilities,
thereby improving the average application throughput [17].

Some algorithms have been proposed to strike a tradeoff
between the latency and the throughput of the network.
A hybrid network architecture (HybridPass) for data center
networks was introduced with the objective to support both
time-triggered and event-triggered scheduling with respect to
latency-sensitive and throughput-intensive flows; HybridPass
introduced an arbiter which uses a loosely synchronized
time-triggered manner to allocate the network bandwidth for
latency-sensitive and throughput-intensive flows from a global
perspective [18]. A flow scheduling scheme (Freeway) adap-
tively partitioned the available paths into low latency and high
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throughput paths, and then provided different transmission
services for each category; Freeway proposed a dynamic path
partitioning algorithm to adjust dynamically the number of low
latency and high throughput paths, where mice flows were
transmitted over low latency paths using simple equal cost
multiple path (ECMP) scheduling and elephant flows were sent
on different high-throughput paths [19].

Some research combines SDN and Hadoop to improve
MapReduce performance by exploiting the flexible network
management capability provided by SDN. Cormorant com-
bined flow scheduling algorithm (Hedera) and task place-
ment algorithm (Mantri) to optimize MapReduce-based query
processing system with SDN, by reducing the overhead caused
by network congestion [20]. An SDN app for Hadoop clusters
was proposed to control the network traffic to effectively
alleviate network congestion during the shuffle phase by
combining SDN and Hadoop, thereby improving MapReduce
execution speed [21]. A dynamic network resource cooper-
ation scheduling method was proposed to allocate network
bandwidth and reduce data flow conflict with distributed
SDN [22]. A responsive multipath TCP algorithm was pro-
posed in SDN-based datacenters to improve the throughput of
MapReduce with the SDN features [23]. A dynamic network
scheduler was designed to provide different scheduling strate-
gies for different network flows to reduce bandwidth compe-
tition, balance the workload of network links, increase band-
width utilization, and utilize the OpenFlow to adjust transfers
of flows dynamically [8]. An application-aware SDN routing
algorithm was designed to optimize the total completion time
of communication between servers by combining SDN and
Hadoop [24]. A centralized flow-scheduling framework called
Phurti was implemented and a heuristic was proposed with
the goal of improving the completion time of jobs in a cluster
shared by multiple tenants, by using OpenFlow collecting
application and network information [25]. An SDN-based
online scheduling framework was proposed to combine task
scheduling and flow scheduling, and the framework selects the
task placement based on the available bandwidth on the SDN
switches and meanwhile optimally allocates the bandwidth
to each data flow with the goal of increasing bandwidth
utilization and reducing job completion time [26].

It is reported that a large fraction of production jobs in data
centers are recurring with predictable characteristics, so the
data center network has predictable periodic busy and idle
time [10], [11]. However, limited research on the data flow
scheduling in shuffle phase considers the predictable future
networks status.

III. PROBLEM FORMULATION

The symbols and notations used in the paper are listed
in Table I. A large amount of data are transferred from
mapper nodes to reducer nodes during the shuffle phase. Each
mapper node transmits data to multiple reducer nodes, and
each reducer node receives data from multiple mapper nodes.
If there are data to be transmitted from mapper node m to
reducer node r, these two nodes constitute a node pair (m, r).
Multiple data items are transmitted between node pair (m, r),
and the data are transmitted on path pm,r which is the shortest

TABLE I

TABLE OF NOTATIONS

path between mapper node m and reducer node r by default.
If the transmission time of a data item overlaps with that of
another data item, we say these two data items collide with
each other; otherwise, we say they are compatible with each
other. If two paths share one or multiple links, we say these
two paths conflict with each other; otherwise, we say they are
compatible with each other. The data items colliding with each
other cannot be transmitted on the conflicting paths.

The data can be transfered when the transmission path
is idle. We can schedule the data transmission in shuffle
phase efficiently, if the busy and idle time of the network
is available, which is possible in SDN-enabled data center
networks. A large number of business-critical jobs are recur-
ring with pre-defined submission time and predictable resource
requirements, and hence we can predict the network status with
the network control capability provisioned by SDN.

In this paper, we aim to find an efficient strategy to schedule
the data transmission during the shuffle phase. That is, for
a MapReduce job, given a set of node pairs and the data
to be transferred during the shuffle phase, our objective is
to minimize the makespan of shuffle phase with the future
predictable periodic network status available. In other words,
our objective is to

Minimize max
m∈M,r∈R

{τe
m,r} (1)

Subject to: τn
m,r =

sn
m,r

Cm,r
, ∀m∈M, ∀r∈R, ∀n ∈ Dm,r

(2)

τs,k
m,r + xk,n

m,r · τn
m,r ≤ τe,k

m,r, ∀m ∈ M, ∀r ∈ R,

∀n ∈ Dm,r, ∀k ∈ Lm,r (3)
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τe
m,r = max

k∈Lm,r

{τs,k
m,r +

|Dm,r |∑

n=1

(
xk,n

m,r · τn
m,r

)},

∀m ∈ M, ∀r ∈ R (4)
|Lm,r|∑

k=1

xk,n
m,r =1, ∀m∈M, ∀r∈R, ∀dn

m,r∈Dm,r

(5)

xk,n
m,r ∈ {0, 1} (6)

Eq. (2) defines the transmission time of the intermediate
data. Eq. (3) ensures that each data item should finish transmis-
sion in an idle time slot. Eq. (4) determines the transmission
finish time of data item list Dm,r. Eq. (5) signifies that each
data item is transmitted once. Eq. (6) mandates that each xk,n

m,r

is a binary variable.

IV. NETWORK-AWARE SHUFFLE SCHEDULING

ALGORITHM FOR MAPREDUCE JOBS

The recurring jobs split the network into periodic busy and
idle time slots, and we need to schedule all the data into
different idle time slots. Each time slot can be used to transmit
multiple data items. The problem of scheduling data in one
time slot is similar to the bin packing problem which is an
NP-complete problem. Our problem needs to schedule the
data in multiple time slots to minimize the makespan, and
obviously our problem is also NP-complete.

In this section, we propose a Network-Aware Shuffle
scheduling algorithm (NAS) to schedule the data in the shuffle
phase for MapReduce jobs with the future predictable periodic
network status available. Two data items colliding with each
other cannot be transmitted on the conflicting paths. When
conflict happens between the paths of two node pairs, we need
to find an alternative path for one of the node pairs. Different
node pairs have different amount of data to be transferred.
We sort the node pairs by the amount of data between the node
pairs so that the data are scheduled in sequence. The data are
transmitted in different time slots on different paths such that
the makespan of shuffle phase is minimized. Algorithm NAS
consists of three stages: (1) node pairs and data sorting, (2)
conflict reduction, and (3) data scheduling.

A. Node Pairs and Data Sorting

The sorting algorithm sorts the node pairs and the data
between each node pair. Each node pair may transmit mul-
tiple data items. The node pairs are sorted according to the
non-ascending order of the amount of data to be transmitted
between the node pairs. If multiple node pairs need to transmit
the same amount of data, the sorting algorithm sorts the
node pairs by the non-ascending order of the path lengths
between node pairs. After sorting the node pairs, the sorting
algorithm sorts the data between each node pair according to
the non-ascending order of data sizes.

B. Conflict Reduction

The algorithm shown in Algorithm 1 reduces the conflicts
among the paths by changing the paths of node pairs, if two

Algorithm 1 Conflict Reduction

Input: Two node pairs of (ma, ra) and (mb, rb) conflict in
transmission paths; idle time lists Lma,ra and Lmb,rb

.
Output: The updated transmission path of the node pair which

needs to change the transmission path; the idle time lists
of the updated transmission path.

1: if Lmb,rb
∩ Lma,ra = ∅ then

2: return;
3: end if
4: if |Dma,ra | > |Dmb,rb

| then
5: (m′, r′) = (mb, rb)
6: else if |Dma,ra | < |Dmb,rb

| then
7: (m′, r′) = (ma, ra)
8: else
9: if the path length of (ma, ra) ≥ the path length of

(mb, rb) then
10: (m′, r′) = (mb, rb)
11: else
12: (m′, r′) = (ma, ra)
13: end if
14: end if
15: Set the conflicting links as invalid links;
16: Recalculate the shortest path for (m′, r′) using Dijkstra’s

algorithm as the alternative transmission path and get the
idle time X on the alternative transmission path;

17: if the transmission path exists then
18: Update the transmission path of (m′, r′);
19: end if
20: return the updated transmission paths, X .

node pairs have conflict paths. When the idle time lists of
two node pairs (ma, ra) and (mb, rb) overlap with each
other, we determine which node pair needs to change the
path. Let the node pair to change the path be (m′, r′) ∈
{(ma, ra), (mb, rb)}. We select the node pair with fewer data
to change the transmission path so that more data can go
through the shortest path. If the two node pairs need to transfer
the same amount of data, the node pair with the shorter path
length will change the transmission path, such that the path
change may potentially affect fewer other node pairs. If the
conflict cannot be avoided by changing the transmission path,
we use the shortest path as the transmission path between the
node pair which waits to transfer the data until the path is idle.

C. Data Scheduling
After reducing the path conflicts, the data of each node pair

are scheduled in the idle time slots as shown in Algorithm 2.
Assume that the scheduling process will use SlotNum time
slots to transmit the data in list Dm,r. The algorithm proceeds
iteratively. Within each iteration, we try to fully utilize each
time slot by putting the biggest data and the smallest data in
terms of data sizes among all the data in the time slot. For time
slot lkm,r, we check whether the biggest data can be transferred
in the slot. If yes, we check wether the smallest data can be
transferred in slot lkm,r. If yes, we try the second biggest data.
If it can also be put in slot lkm,r, the second smallest data will
be tried. If the biggest data cannot be transmitted in slot lkm,r,
we try to use the next time slot lk+1

m,r . The scheduling repeats
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Algorithm 2 Data Scheduling
Input: Data list Dm,r, idle time slot list Lm,r.
Output: The transmission completion time of Dm,r; number

of idle time slots used to transfer Dm,r.
1: Initialize left = 1, right = |Dm,r|, k = 1, Flag = false;
2: while left ≤ right do

3: if τs,k
m,r + sleft

m,r

Cm,r
≤ τe,k

m,r then
4: Use lkm,r to transfer dleft

m,r ;

5: τs,k
m,r = τs,k

m,r + sleft
m,r

Cm,r
;

6: left = left + 1, Flag = true;
7: else if Flag = false then
8: k = k + 1;
9: end if

10: if τs,k
m,r +

sright
m,r

Cm,r
≤ τe,k

m,r and Flag then
11: Use lkm,r to transfer dright

m,r ;

12: τs,k
m,r = τs,k

m,r + sright
m,r

Cm,r
;

13: right = right − 1;
14: else if Flag then
15: k = k + 1, Flag = false;
16: end if
17: end while
18: SlotNum = k;
19: return τs,SlotNum

m,r , SlotNum.

the process of putting big and small data items in the time slot.
When slot lkm,r cannot accommodate the big data any more,
we continue to try the small data until the time slot cannot
transfer any more data items.

D. Algorithm Proof
When all the idle time slots have the same duration,

we prove our algorithm is a 3
2 -approximation algorithm to the

shuffle scheduling problem.
Lemma 1: Assume SlotNum is the number of idle

time slots returned by Algorithm 2. If there are at
least SlotNum− 1 idle time slots and anyone of these
SlotNum− 1 idle time slots transfers no less than 2 data
items, e.g. σ(lkm,r) ≥ 2, each of these SlotNum− 1 idle time
slots takes more than 2

3 of the slot duration time to transfer
data.

Proof: Assuming that there are two idle time slots lim,r

and ljm,r, let the data transferred in lim,r be di,1
m,r, di,2

m,r,

…, d
i,σ(lim,r)
m,r , and the data transferred in ljm,r be dj,1

m,r,

dj,2
m,r, …, d

j,σ(ljm,r)
m,r . di,n

m,r and dj,n′
m,r are the n-th data trans-

ferred in slot lim,r and the n′-th data item transferred in
slot ljm,r, respectively, where n ∈ {1, 2, . . . , σ(lim,r)}, n′ ∈
{1, 2, . . . , σ(ljm,r)}. According to Algorithm 2, data d

i,σ(lim,r)
m,r

and d
j,σ(ljm,r)
m,r are the last data transferred in slots lim,r and

ljm,r, respectively. Both of these two slots take less than 2
3 of

the duration time to transfer data; that is, f(lim,r) ≤ 2
3 · tim,r,

f(ljm,r) ≤ 2
3 · tjm,r (1 ≤ i < j ≤ SlotNum).

According to the assumption above, we can get

f(lim,r) = s(di,1
m,r) + s(di,2

m,r) + . . . + s(d
i,σ(lim,r)
m,r ) ≤ 2

3
· tim,r

(7)

f(ljm,r) = s(dj,1
m,r) + s(dj,2

m,r) + . . . + s(d
j,σ(ljm,r)
m,r ) ≤ 2

3
·tjm,r

(8)

According to Algorithm 2, Eqs. (9) and (10) are established

s(di,2
m,r) ≤ s(d

i,σ(lim,r)
m,r ) ≤ s(di,1

m,r) (9)

s(dj,2
m,r) ≤ s(d

j,σ(ljm,r)
m,r ) ≤ s(dj,1

m,r) (10)

Because i < j, we have s(di,1
m,r) ≥ s(dj,1

m,r) and tim,r ≥
tjm,r. Assuming that data di+1,2

m,r is the second data item
transferred in li+1

m,r, according to Algorithm 2, we can know
that

f(lim,r)+s(di+1,2
m,r )>tim,r (11)

Otherwise, data di+1,2
m,r can be transferred in lim,r.

We discuss two different cases as follows:
Case 1: when s(dj,1

m,r) ≥ 1
3 · tjm,r, there must be 2

3 · tim,r ≥
s(di,1

m,r) ≥ s(dj,1
m,r) ≥ 1

3 · tjm,r. According to Eqs. (7) and (8),
we can get f(lim,r)+f(ljm,r) ≤ 2

3 · (tim,r+tjm,r), which means

s(di,1
m,r)+ s(di,2

m,r)+ . . .+ s(d
i,σ(lim,r)
m,r )+ s(dj,1

m,r)+ s(dj,2
m,r)+

. . .+s(d
j,σ(ljm,r)
m,r ) ≤ 2

3 ·(tim,r+tjm,r), s(di,1
m,r)+s(di,2

m,r)+. . .+

s(d
i,σ(lim,r)
m,r )+s(dj,2

m,r)+. . .+s(d
j,σ(ljm,r)
m,r ) ≤ 2

3 ·(tim,r+tjm,r)−
s(dj,1

m,r) ≤ 2
3 · tim,r + 1

3 · tjm,r ≤ tim,r, and s(di,1
m,r)+ s(di,2

m,r)+

. . . + s(d
i,σ(lim,r)
m,r ) + s(dj,2

m,r) ≤ tim,r, so f(lim,r) + s(dj,2
m,r) ≤

tim,r.
Case 2: when s(dj,1

m,r) < 1
3 · tjm,r, according to Eq. (10),

we can get s(dj,2
m,r) ≤ s(d

j,σ(ljm,r)
m,r ) ≤ s(dj,1

m,r) < 1
3 · tjm,r ≤

1
3 ·tim,r. Based on the assumption f(lim,r) ≤ 2

3 ·tim,r, we can get
f(lim,r)+s(dj,2

m,r) ≤ 2
3 ·tim,r+ 1

3 ·tim,r, and f(lim,r)+s(dj,2
m,r) <

tim,r.
According to Algorithm 2, we can get s(di+1,2

m,r ) ≤ s(dj,2
m,r).

Since f(lim,r) + s(dj,2
m,r) < tim,r, we know f(lim,r) +

s(di+1,2
m,r ) < tim,r, which contradicts to Eq. (11). Therefore,

if there are two such idle time slots lim,r and ljm,r, 1 ≤ i <
j ≤ SlotNum, making f(lim,r) ≤ 2

3 · tim,r and f(ljm,r) ≤
2
3 · tjm,r, the second data di+1,2

m,r transferred in li+1
m,r can also be

transferred in lim,r, which contradicts to Eq. (11) obtained by
Algorithm 2. The lemma is proven.

Lemma 2: Assume SlotNum is the number of idle time
slots which is returned by Algorithm 2 used to transfer the
data in list Dm,r and the k-th idle time slot transfers σ(lkm,r)
number of data items. If there are at least SlotNum − 1
idle time slots and anyone of these SlotNum − 1 idle time
slots transfers no less than 2 data items, i.e σ(lkm,r) ≥ 2,
(k ∈ 1, 2, . . . , SlotNum), Algorithm 2 is a 3

2 -approximation
algorithm to the shuffle scheduling problem.

Proof: We assume the optimal number of time slots to
schedule the data is OPT . ∃m∗ ∈ {1, 2, . . . , SlotNum},

∀j ∈ {1, 2, . . . , SlotNum} \ {m∗},
SlotNum∑

j=1

f(ljm,r) =

SlotNum∑
j=1

j �=m∗

f(ljm,r) + f(lm
∗

m,r).

Now, we claim f(lm
∗

m,r) > tm
∗

m,r − f(ljm,r), which means
all the data transferred in any idle time slot of the other
SlotNum − 1 idle time slots cannot be transferred in lm

∗
m,r.
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To prove the claim, we assume there is an idle time slot lhm,r

and all the data transferred in lhm,r can be transferred in lm
∗

m,r,
which means f(lm

∗
m,r) + f(lhm,r) ≤ tm

∗
m,r.

We discuss two different cases as follows:
Case 1: h < m∗. According to Algorithm 2, s(dh+1,2

m,r ) ≤
f(lm

∗
m,r), and we can get f(lhm,r) + s(dh+1,2

m,r ) ≤ f(lhm,r) +
f(lm

∗
m,r) ≤ tm

∗
m,r ≤ thm,r. That is, data dh+1,2

m,r transferred in idle
time slot lh+1

m,r can also be transferred in lhm,r, which contradicts
to f(lhm,r) + s(dh+1,2

m,r ) > thm,r obtained by Algorithm 2.
Case 2: m∗ < h. Because f(lm

∗
m,r) + f(lhm,r) ≤ tm

∗
m,r and

s(dm∗+1,2
m,r ) ≤ f(lhm,r), we can know f(lm

∗
m,r) + s(dm∗+1,2

m,r ) ≤
tm

∗
m,r. That is, data dm∗+1,2

m,r transferred in idle time slot lm
∗+1

m,r

can also be transferred in lm
∗

m,r, which contradicts to f(lm
∗

m,r)+
s(dm∗+1,2

m,r ) > tm
∗

m,r obtained by Algorithm 2. The claim is
proven.

With the claim above, we can get f(lm
∗

m,r) > max{tm∗
m,r −

f(lim,r)} ≥ 1
SlotNum−1 ·

SlotNum∑
i=1

i�=m∗

(tm
∗

m,r − f(lim,r)) = tm
∗

m,r −

1
SlotNum−1 ·

SlotNum∑
i=1

i�=m∗

(f(lim,r)), i = 1, 2, . . . , SlotNum, i 	=

m∗, so f(lm
∗

m,r) − 1
SlotNum−1 · f(lm

∗
m,r) > tm

∗
m,r − 1

SlotNum−1 ·
SlotNum∑

i=1

(f(lim,r)) > tm
∗

m,r − 1
SlotNum−1 ·OPT · t1m,r, and

then SlotNum−2
SlotNum−1 · f(lm

∗
m,r) > tm

∗
m,r − 1

SlotNum−1 · OPT ·
t1m,r, f(lm

∗
m,r) > SlotNum−1

SlotNum−2 · tm
∗

m,r − 1
SlotNum−2 · OPT ·

t1m,r. According to Algorithm 2, OPT · t1m,r ≥ f(lm
∗

m,r) +
SlotNum∑

i=1
i�=m∗

(f(lim,r)) > f(lm
∗

m,r) + 2
3 · (SlotNum − 1) ·

tSlotNum−1
m,r > SlotNum−1

SlotNum−2 · tm∗
m,r − 1

SlotNum−2 ·OPT · t1m,r +
2
3 ·(SlotNum−1)·tSlotNum−1

m,r , and we get SlotNum−1
SlotNum−2OPT ·

t1m,r > SlotNum−1
SlotNum−2 · tm∗

m,r + 2
3 · (SlotNum− 1) · tSlotNum−1

m,r ,

OPT ·t1m,r > tm
∗

m,r+ 2(SlotNum−2)
3 ·tSlotNum−1

m,r , OPT ·t1m,r >
2SlotNum−1

3 · tSlotNum−1
m,r . Because SlotNum and OPT are

integers, we get 3 · OPT ≥ 2 · SlotNum, which means
SlotNum

OPT ≤ 3
2 . The lemma is proven.

Lemma 3: Assume SlotNum is the number of idle time
slots which is returned by Algorithm 2 used to transfer the
data in list Dm,r and the k-th idle time slot transfers σ(lkm,r)
number of data items. If there are num idle time slots, 2 ≤
num ≤ SlotNum, each of the num idle time slots transfers
only one data item, and all the data items transferred in the
num idle time slots constitute a set UN . There must be an
optimal solution OPT , such that there are also num idle time
slots, each of which transfers only one data item and the data
set the num slots transfer equals UN .

Proof: Assume that the scheduling results, includ-
ing SlotNum and the data transferring time returned by
Algorithm 2, constitute the solution I and the optimal solution
is I∗. lk

′
m,r is an arbitrary idle time slot of the num idle

time slots and lk
′

m,r is also the j-th idle time slot returned by
Algorithm 2. The only data transferred in lk

′
m,r is data dj,1

m,r.
Assume in I∗, there is an idle time slot lj

∗
m,r which transfers

not only data dj,1
m,r but also a data set E(dj,1

m,r) consisting of

some other data. Note the data in E(dj,1
m,r) is smaller than

dj,1
m,r, and hence the data in E(dj,1

m,r) must be some of the
data which have been transferred in lim,r, (i < j) in I and
data di,1

m,r is not in E(dj,1
m,r). If dq

m,r is the first data that
cannot be transferred in ljm,r according to Algorithm 2, we get
E(dj,1

m,r) ⊂ {dq+1
m,r , dq+2

m,r , . . .}. Assume li
∗

m,r is the time slot
which transfers di,1

m,r in I∗. All the data in E(dj,1
m,r) can also

be transferred in li
∗

m,r. As a result, we can convert solution
I∗ to another optimal solution I ′, in which there is an idle
time slot transfers the only one data dj,1

m,r. In other words,
lj

∗
m,r transfers only one data item, i.e. data dj,1

m,r. The lemma
is proven.

Theorem 1: Assume SlotNum is the number of idle time
slots used to transfer data list Dm,r, which is returned by
Algorithm 2. If there are num idle time slots, each of which
transfers only one data, Algorithm 2 is a 3

2 -approximation
algorithm to the shuffle scheduling problem.

Proof: When num = 1, according to Lemma 2, the
theorem is proven.

When 2 ≤ num ≤ SlotNum, according to Lemma 3,
assume the optimal number of time slots used to transfer the
data is OPT , and the OPT time slots consist of two parts:
one is the num idle time slots each of which transfers only
one data item, and the other is OPT ′ time slots each of which
transfers no less than two data items. All the data transferred
in num idle time slots constitute set UN . The SlotNum idle
time slots returned by Algorithm 2 also consist of two parts:
one is the num time slots which transfer the same set UN
with only one data item in each slot, and the other is num′

time slots with each transferring no less than two data items.
We can get OPT = OPT ′+num, SlotNum = num′+num.
According to Lemma 2, num′

OPT ′ ≤ 3
2 , we get 2 · num′ ≤

3 ·OPT ′, and SlotNum
OPT = 2·(num+num′)

2·(num+OPT ′) ≤ 2·num+3·OPT ′
2·(num+OPT ′) ≤

3·(num+OPT ′)
2·(num+OPT ′) = 3

2 . That is, SlotNum
OPT ≤ 3

2 . The theorem is
proven.

E. Time Complexity

Assume that N is the maximum number of data between
node pairs, V is the number of nodes in the network, and P is
the number of node pairs. In the node pairs and data sorting
stage, the sorting algorithm can be mergesort or quicksort.
It takes O(Plog(P )) time to sort the node pairs. In the case
that multiple node pairs transmit the same amount of data,
the algorithm needs at most another O(Plog(P )) time to sort
the node pairs by the path lengths. It takes Nlog(N) time to
sort the data for each node pair, so it consumes PNlog(N)
time in data sorting for all the node pairs. Therefore, the sort-
ing of node pairs and data in stage 1 can be performed in
O(2Plog(P )+PNlog(N)) time. We use Dijkstra’s algorithm
to find the shortest path between each node pair, and Dijkstra’s
algorithm runs in O(V 2) time. In the worst case during
the conflict reduction stage, all the node pairs conflict with
each other in the transmission paths, and it takes at most
O(P (P+1)

2 V 2) time to do the conflict reduction. In the data
scheduling stage, we need to allocate the data between the P
node pairs to the idle time slots. Each node pair transmits
at most N data, and each node pair takes O(N) time to
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transmit the N data, since Algorithm 2 traverses each data
item only once to decide the transmission time slot for the data
item. Therefore, the data scheduling algorithm in stage 3 takes
O(PN) time. In summary, the time complexity of algorithm
NAS is O(2Plog(P ) + PNlog(N) + P (P+1)

2 V 2 + PN) =
O(Plog(P ) + PNlog(N) + P (P+1)

2 V 2).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm NAS. We also investigate the impact of important
parameters on the performance of the proposed algorithm.

A. Simulation Setup

We evaluate the proposed algorithm NAS in terms of
makespan, MSRP (MakeSpan Reduction Percentage) [24], and
network utilization against the optimal solution OPT [27],
[28], algorithm AAR proposed for the most similar problem
in [24], and the default greedy algorithm, denoted as GSS,
in MapReduce [29]. The optimal solution is obtained by
solving the shuffle scheduling problem in Section III using
CPLEX 12.8.0. MSRP is the reduction percentage of the
makespan comparing NAS with the two benchmark algorithms
AAR and GSS. Algorithm AAR minimizes the shuffle time by
sorting the data flows according to the path lengths between
the node pairs, and choosing a path for each flow to ensure
that the network is not blocked. Algorithm GSS sorts the node
pairs and data in the same way as NAS. However, GSS does
not consider the path conflicts and always finds the time slot
for each data item which can finish the transmission as early as
possible without the knowledge of the future network status.

We conduct the simulations under two scenarios: (1) the
durations of future idle time slots are different, and (2) all
the future idle time slots have the same duration. In the
first scenario, the durations of idle time slots are randomly
generated in the ranges of 0-50ms and 0-500ms, when the
data sizes are within the ranges of 0-10MB and 0-100MB,
respectively. In the second scenario, the duration of idle time
slots is set as 10ms and 100ms, when the ranges of the
data sizes are [0, 10]MB and [0, 100]MB, respectively. The
network bandwidth for all the paths is set as 1GB/s.

The network topology used in the simulation is a fat tree
which is similar to that used in [24] and commonly used in
data centers. With the fat tree, the path length between a node
pair is as follows: if the two nodes are placed in the same rack,
the path length is 2; if the two nodes are placed in different
racks but in the same pod, the path length is 4; if the two nodes
are placed in different pods, the path length is 6. The mapper
and the reducer nodes are randomly chosen from the network.
We conduct the simulations for 30 runs, and the average value
of the running results is taken as the final result.

B. Performance Evaluation of the Proposed Algorithm

1) Impact of Various Number of Data: We evaluate the
performances of different algorithms NAS, AAR, GSS and
OPT by varying the number of data. Assuming there are
12 mapper nodes and 6 reducer nodes. The number of data

transferred between each node pair increases from 5 to 50,
which reflects the normal data volume between the node
pairs [29]. To conduct the performance comparison under
different data sizes, the sizes of data are randomly generated
in 1-10MB and 1-100MB as shown in Figs. 2 and 3, respec-
tively. Figs. 2(a), 2(b), 3(a), and 3(b) show the makespan and
MSRP performances under the first scenario with different idle
time slot sizes, while Figs. 2(c), 2(d), 3(c), and 3(d) depict the
results under the second scenario with the same size of idle
time slots.

Figs. 2(a), 2(c), 3(a), and 3(c) illustrate the makespan
for different algorithms with different number of data. The
makespan of all algorithms increases when the number of
data increases, because the total network transmission in the
network increases with the increasing number of data. As the
number of data increases, NAS is increasingly better than
AAR and GSS. When the durations of idle time slots are
different, Figs. 2(b) and 3(b) demonstrate that algorithm NAS
outperforms both AAR and GSS from about 15% to 20%
with the number of data between each node pair increasing
from 5 to 50. When the durations of idle time slots are
the same and the number of data between each node pair
increases from 5 to 50, Fig. 2(d) shows that the performance
obtained by algorithm NAS is about 17% and 10% better
than algorithms AAR and GSS, respectively, and Fig. 3(d)
illustrates that algorithm NAS outperforms algorithms AAR
and GSS about 18% and 14%, respectively. Algorithm NAS
performs the closest to OPT among the three algorithms of
NAS, AAR, and GSS. Algorithm NAS schedules the shuf-
fle data by jointly considering path conflict, data sizes and
network status, algorithm AAR optimizes the shuffle phase
by choosing the shortest paths without consideration of path
conflicts and data sizes, while algorithm GSS always finds
the earliest transmission path among all the paths without any
consideration of path conflicts and future network status. It can
be observed that algorithm NAS performs considerably better
than the approximation ratio of 3

2 . When the durations of idle
time slots are different and the number of data is 50, algorithm
NAS is worse than OPT by 22% and 26% with the data sizes
in the ranges of 1-10MB and 1-100MB, respectively. When
the durations of idle time slots are the same and the number
of data is 50, algorithm NAS obtains worse results than OPT
by 5% and 9% with the data size ranges of 1-10MB and
1-100MB, respectively.

Figs. 2 and 3 demonstrate that the performance differ-
ences of the four algorithms are similar under different data
sizes of 1-10MB and 1-100MB. Therefore, when evaluating
the network utilization performances of the four algorithms,
the data sizes are only randomly generated in 1-100MB
with 12 mapper nodes and 6 reducer nodes. The number
of data transferred between each node pair also increases
from 5 to 50 as shown in Fig. 4. The network utilization of
the four algorithms relatively keeps stable as the number of
data increases. Fig. 4(a) shows that the network utilization
of OPT, NAS, GSS, and AAR is about 99%, 88%, 82%,
and 78%, respectively, with different idle time slot durations.
Fig. 4(b) demonstrates that the network utilization of OPT,
NAS, GSS, and AAR is approximately 95%, 93%, 87%,
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Fig. 2. The makespan and MSRP under different number of data with the
sizes of data randomly generated in 1-10MB.

and 84%, respectively, with the same duration of idle time
slots. The network utilization of algorithm NAS is the closest
to that of OPT, while AAR results in the lowest network

Fig. 3. The makespan and MSRP under different number of data with the
sizes of data randomly generated in 1-100MB.

utilization among the three algorithms of NAS, AAR, and
GSS. Algorithm NAS schedules the data when network links
are idle, thereby making good use of path idle time to schedule
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Fig. 4. The network utilization under different number of data with the sizes
of data randomly generated in 1-100MB.

the data with the consideration of the predictable network
status. Algorithm GSS schedules the data by finding the
time slot for each data which can transmit the data as early
as possible. Algorithm GSS is a greedy algorithm, and it
cannot fully utilize the global network links. Algorithm AAR
schedules the data by considering path lengths of node pairs
instead of the network status. As a result, algorithm AAR
potentially schedules the data on the busy links so that the
data have to wait to be transmitted, and hence the network
utilization is reduced.

2) Impact of Various Number of Node Pairs: We study the
impact of various number of node pairs on the performance
of different algorithms. The number of node pairs increases
from 6 (3 mapper nodes and 2 reducer nodes) to 256 (16 map-
per nodes and 16 reducer nodes). We run the simulations
when the number of node pairs are 6 (3 mapper nodes and
2 reducer nodes), 32 (8 mapper nodes and 4 reducer nodes),
72 (12 mapper nodes and 6 reducer nodes), 128 (16 mapper
nodes and 8 reducer nodes), 192 (16 mapper nodes and
12 reducer nodes), and 256 (16 mapper nodes and 16 reducer
nodes). Assuming the total number of data to be transferred is
1800 which are uniformly distributed across all the node pairs.
To conduct the performance comparison under different data
sizes, the sizes of data are randomly generated in 1-10MB

Fig. 5. The makespan and MSRP under different number of node pairs with
the sizes of data randomly generated in 1-10MB.

and 1-100MB as shown in Fig. 5 and Fig. 6, respectively.
Figs. 5(a), 5(b), 6(a), and 6(b) show the performance of
makespan and MSRP under the first scenario with different
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Fig. 6. The makespan and MSRP under different number of node pairs with
the sizes of data randomly generated in 1-100MB.

idle time slot durations, while Figs. 5(c), 5(d), 6(c), and 6(d)
depict the results under the second scenario with the same size
of idle time slots.

Fig. 7. The network utilization under different number of node pairs with
the sizes of data randomly generated in 1-100MB.

Figs. 5(a), 5(c), 6(a) and 6(c) demonstrate the makespan
performance by varying the number of node pairs. As the
number of node pairs increases, the makespan of all the
four algorithms decreases without regard to the data sizes.
When the number of data is fixed, the increasing number of
node pairs means the number of data each node pair needs
to transfer decreases. The makespan keeps stable when the
number of node pairs is bigger than 128, which indicates node
pairs cannot reduce makespan when the number of node pairs
increases. Figs. 5(b) and 6(b) show that algorithm NAS out-
performs both algorithms AAR and GSS by about 20% when
the durations of idle time slots are different. Algorithm NAS
outperforms algorithms AAR and GSS by about 19% and
10%, respectively, with the same duration of idle time slots,
as depicted in Figs. 5(d) and 6(d). Algorithm NAS obtains
about 15% worse results than OPT with different idle time
slot sizes, while achieving similar performance to OPT with
the same size of idle time slots.

We evaluate the network utilization performance of the four
algorithms by randomly generating the data with the data size
range of [1, 100]MB. The number of node pairs also increases
from 6 to 256. The total number of data to be transferred
is 1800, and the data are uniformly distributed across all the
node pairs. It can be observed from Fig. 7 that the network
utilization of the four algorithms is relatively stable with the
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Fig. 8. The makespan and MSRP under different path lengths between node
pairs with the sizes of data randomly generated in 1-10MB.

increase of the number of node pairs. Fig. 7(a) depicts that the
network utilization of algorithms OPT, NAS, GSS, and AAR
with the different idle time slot sizes keeps at about 98%, 88%,

Fig. 9. The makespan and MSRP under different path lengths between node
pairs with the sizes of data randomly generated in 1-100MB.

81%, and 77%, respectively. Similarly, Fig. 7(b) illustrates the
network utilization of the four algorithms is approximately
96%, 93%, 86%, and 84% when the durations of idle time slots
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Fig. 10. The network utilization under different path lengths between node
pairs.

are the same. Algorithm NAS performs better than algorithms
ARR and GSS, and algorithm AAR obtains the lowest network
utilization.

3) Impact of Various Path Lengths Between Node Pairs:
We study the impact of various path lengths between node
pairs on the performance of different algorithms. We have
12 mappers and 6 reducers, which means 72 node pairs, with
25 data to be transferred between each node pair. The paths are
generated by controlling the sum of variable lengths between
the node pairs. For example, the 72 node pairs consist of
64 pairs with path length 6, 4 node pairs with path length 4,
and 4 node pairs with path length 2. Therefore, the sum of path
lengths between node pairs is 64 × 6 + 4 × 4 + 4 × 2 = 408.
To conduct the performance comparison under different data
sizes, the sizes of data are randomly generated in 1-10MB
and 1-100MB as shown in Fig. 8 and Fig. 9, respectively.

Figs. 8(a), 8(c), 9(a) and 9(c) show the makespan
performance by varying the path lengths between node pairs.
In general, the data transmission completion time decreases,
as the average path length increases. Algorithm NAS achieves
better performance than algorithms AAR and GSS, since NAS
schedules the shuffle data by jointly considering path conflicts
and future network states. Figs. 8(b) and 9(b) demonstrate
that algorithm NAS outperforms both algorithm AAR and
GSS by about 18% with different idle time slot sizes, while

Figs. 8(d) and 9(d) show that the performance of algorithm
NAS is about 18% and 12% better than that of algorithms
AAR and GSS, respectively, with the same idle time slot size.
Algorithm NAS obtains worse results than OPT by 14% and
18% with different idle time slot sizes, when the data sizes are
randomly generated in 1-10MB and 1-100MB, respectively.
With the the same idle time slot size, algorithm NAS achieves
close performance to OPT.

The network utilization of the four algorithms is evaluated
with the data randomly generated in the size range of 1-
100MB. There are 12 mapper nodes and 6 reducer nodes, and
25 data are to be transferred between each node pair. Fig. 10
shows that the network utilization of the four algorithms
keeps steady with the increasing path lengths between the
node pairs. Algorithm NAS can always make better use of
network resources than algorithms AAR and GSS. When the
durations of idle time slot are different, the network utilization
of OPT, NAS, GSS, and AAR is about 99%, 88%, 81%, and
77%, respectively, as shown in Fig. 10(a). With the same idle
time slot size, OPT, NAS, GSS, and AAR obtain the network
utilization of about 96%, 94%, 86%, and 84%, respectively,
and OPT and NAS achieve the similar performance.

VI. CONCLUSIONS

During the shuffle phase of MapReduce jobs, a significant
amount of communication is required between the nodes
running map and reduce tasks. The shuffle time accounts
for a big part of the total running time of MapReduce jobs.
Therefore, optimizing the makespan of shuffle phase can
greatly improve the performance of MapReduce jobs. A large
fraction of production jobs in data centers are recurring with
predictable characteristics, and the recurring jobs split the
network into periodic busy and idle time slots, which allows
us to better schedule the shuffle data to reduce the makespan
of shuffle phase by leveraging the future predictable peri-
odic network status. In this paper, we formulated the shuffle
scheduling problem with the aim to minimize the makespan of
MapReduce shuffle phase, which is an NP-complete problem.
We proposed a simple and effective network-aware shuffle
scheduling algorithm (NAS) to reduce the number of idle time
slots required to transfer the shuffle data in order to reduce the
shuffle makespan. We also proved that the proposed algorithm
is a 3

2 -approximation algorithm to the shuffle scheduling prob-
lem when all the future idle time slots have the same duration.
We finally conducted experiments through simulations, and
the experimental results demonstrated the proposed algorithm
could effectively reduce the makespan of MapReduce shuffle
phase and increase network utilization.
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