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1 Introduction

The two most widely used approximations for exchange-correlation
potential in density functional theory (DFT), the local density
approximation (LDA) and the generalized gradient approximation
(GGA), fail to capture the electronic structure of materials where
partially filled d and f-electrons are at play." This particular failure
comes from the tendency of LDA/GGA to delocalize electrons
due to the presence of self-interaction. Several methods have
been developed to correct this problem, e.g. the self-interaction
correction (SIC),>™® the inclusion of Hubbard U repulsion into the
DFT Hamiltonian for some selected orbitals,” hybrid-functionals’®
or dynamical mean-field theory (DFT+DMFT).'*"* Among them, the
DFT+U method is the most widely used because of its simple
scheme and its ease of use, it does not cost much more simulation
time than a regular LDA/GGA calculation (contrary to the other
methods). However, this correction also allows the presence of
many metastable occupation states for the orbitals corrected with
the Hubbard U parameter'*™"” (the same problem is also present
for hybrid functionals or Hartree-Fock methods). The presence of
these numerous metastable states makes the usual self-consistent
algorithms to solve the DFT equation, such as the conjugate
gradient algorithm, to fail in finding the orbital occupation that
gives the global energy minimum of the system. If a calculation
starts with an initial occupation which is close to one local
minimum, it could converge towards this metastable state
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code using constrained occupation matrices.

without exploring the other possibilities even though they are
at lower energy. The other way around, in some cases these
metastable states are close enough in energy to let the mini-
mization algorithm to jump from one to the other but without
the guaranty that the final reached state is the ground state.

One solution would be to sample the configuration space of
all the allowed possible occupancies of the system such that the
lowest energy orbital configuration can be found. Quasi-annealing,
dynamical mean-field theory (DMFT) and occupation matrix
control have been used to solve this problem, but each has its
drawbacks. In quasi-annealing, a fictitious fluctuation of the
external potential is applied and gradually suppressed to reach
the correct ground state. This method is analogous to gradually
annealing the thermal kinetic energy in a classical system to
reach a local minimum. This provides to a case stuck in a minimum
to gain enough energy to overcome the barrier between it and
another minimum. The main drawback of this method is that it
struggles with locating the correct ground state in systems with
many minima which are close in the calculated energy and width
around this."®* DMFT consists of mapping the many-body lattice
model, for example, the Hubbard model, to a local quantum
impurity model, in this case, the Anderson impurity model, and
subjects this to a self-consistency condition. Effectively, DMFT
finds the Green’s function for the impurity model which also
reproduces the lattice model's Green’s function through the
interaction with an effective mean field. While this is an alternative
method to using DFT, it is computationally demanding.'>*?

In this paper we propose a new method to sample this
configuration space based on the firefly algorithm (FA).'**°
This method builds upon manipulating the occupation matrix,
effectively exploring the configuration space of the problem,
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however, the approach is not trivial and some caveats must be
addressed.

The first is that the occupation control method necessitates
the generation and testing of several initial occupancies. For a
single unit cell with one atom, this is a fairly trivial task. For
example, with an atom that requires d-electron corrections,
there are at most % = 10 possible configurations. This becomes
much more complex whenever there are multiple atoms, or when
supercells must be constructed to fully capture correlation
effects, such as in antiferromagnets. Instead of trying to deter-
mine all possible configurations by hand, FA selectively explores
differing orbital configurations on the potential energy surface
(PES) of possible orbital configurations. This will be described in
further detail in the methodology section. We will apply this
method to two test cases: the cubic perovskite KCoF;, which
requires 3-d electron corrections, and UO,, which requires
corrections to 5-f electrons.

The structure of the paper is as follows: first, the general
methodology of FA will be described. Next, the computational
details of its implementation are discussed. In the final two
sections, the results of FA applied to KCoF; and UO, will be
presented and discussed.

2 Methodology

The firefly algorithm (FA) is a population-based metaheuristic
which is inspired by the behavior of fireflies in nature.'>?° As a
population-based method, an initial population of candidate
fireflies with randomized properties is first generated. To generate
an initial random population of these candidates, which will be a
collection of different orbital occupation matrices, we apply a
unitary transformation to a fixed occupation matrix. This initial
fixed matrix is determined by the number of electrons that are
being corrected, in the sense of DFT+U, in a given material system;
the trace of this matrix is equal to the total number of electrons.
Since the application of a unitary transformation does not change
the trace, the total number of electrons is not modified in the
considered system. The unitary transformation matrices can be
generated by defining a series of independent parameters,
as presented in the work by Hoffman et al’>' In general, any
N-dimensional unitary transformation can be represented by

1
EN (N —1) independent parameters. In this work, the para-

meters have the following constraints:

—T T
- < 0N71 <7 (2)
i
01\/ = 57 (3)

withk=1,2,3,....N — 2.

In the case of N = 3, these are the ordinary Euler angles,
so these are referred to as generalized Euler angles. In the case
of d-orbitals, the occupation matrix is of 5 x 5 dimension,
which means ten Euler angles must be generated. For f-orbitals,
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the occupation matrix is 7 x 7, so 21 Euler angles are required.
Once this transformation is applied to the initial fixed occupation,
a new point is reached in the orbital configuration space. A set of
Euler angles are generated for every member of this initial
population as they allow for the generation of differing initial
occupations for each candidate. Each candidate is then evaluated
for how optimal of a solution it is to some problem. How “bright”
a candidate determines how optimal it is as a solution. And just as
in nature, multiple spatial distributions of fireflies can have
equivalent brightness, meaning that FA is multi-modal; it can
both explore multiple regions of the PES and have multiple solutions
with the same total energy. This is precisely why it is well-suited to
searching for optimal orbital occupations; degenerate occupations
are not uncommon. Fireflies are attracted to any region of brighter
fireflies, and this attraction is modulated by the distance. This
attraction is the rule for how the solution space is explored: as a
candidate moves towards a more optimal candidate, its properties
are modified to become more like the more optimal candidate. The
following expression governs how each candidate firefly is modified
towards more optimal candidates:

)
xl’.Jrl = x; + E pe i (x]’ - ’C:) + oe 4)
J

This expression governs how the ith candidate in generation
¢t is updated to form candidate i in generation ¢ + 1. The first
term on the right-hand side is the unmodified candidate in
generation ¢. In our case, each candidate corresponds to a
particular orbital occupation. The components of candidate i
are modified from generation ¢ to generation ¢ + 1 by every
candidate configuration which is lower in energy, as tota!
energies are our measure of “brightness”. The term fe™""?
defines the attractiveness of firefly i to firefly j. f defines the
overall strength of attraction, since terms with r;; = 0 evaluate to
p. If p = 0, the searcher becomes a random walk. y acts as a
length scale, and controls the speed of convergence of the
calculation. For the special case y = 0, candidate i finds all
lower-energy candidates equally attractive, and the algorithm
becomes a particle swarm. The last term adds randomness to
the search, where ¢, is a vector with components that come
from a random selection of a Gaussian distribution. o, essen-
tially controls the amount of randomness in the searcher. Once
all candidates are moved, they checked against each other to
ensure that none are equivalent. Ideally, by equivalent we mean
they have the same orbital occupation, but from a numerical
perspective, a tolerance must be introduced to define similarity.
If any candidates are considered equivalent, the redundant
candidates are replaced with random candidates. Similarity is
defined in the same terms as the distance between candidates.
In our case, physical distance is meaningless, as the points on our
PES are differing orbital occupations. Since each point on the PES
can be characterized by a unique set of Euler angles, the average
difference between the angles can be used to define this distance.
The functional form of this measure is displayed in eqn (5)

ry = %; (o~ 0t) 5
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Here, N is the total number of Euler angles, 6% is the kth Euler
angle for candidate i, and OJk is the kth Euler angle for candidate j.
After this process, all of the moved candidates are promoted to
the next generation along with the current lowest-energy
solution. The process continues iteratively until a low-energy
candidate survives for a specified number of generations. From
previous work, ten generations provides an ideal compromise
between accuracy and efficiency.

3 Computational details

The ABINIT code®® was used for all DFT calculations with the
possibility to have both DFT+U and orbital occupation control.
The LDA/GGA functionals of DFT predict that KCoF; is
metallic,>” which calls for a method to go beyond ordinary
DFT. As discussed, we explored the performance of DFT+U as
the method to correct the electron correlation in normal GGA
functionals. As this is an antiferromagnet, it has 4 magnetic
cations in the basic unit cell. This already creates a large set of
possible energy minima states based on the different (U,j) para-
meters used in DFT+U. Since FA requires the calculation of multiple
candidates simultaneously for at least ten generations, DFT+U
appears the best option to efficiently test our FA’s accuracy.

The initial occupancy remains fixed for 20 electronic self-
consistent iterations. After these initial 20 iterations, the occupation
matrix is allowed to relax, which causes it to converge to the nearest
low-energy state. For KCoF;, an energy cutoff of 708 eV and a k-point
mesh of 4 x 4 x 4 was found to allow relaxation of the orbitals to a
residual of the potential to a tolerance of 10~ '°, The same tolerance
was reached for UO, with an energy cutoff of 544 eV and a k-point
grid of 2 x 8 x 8. Additionally, all calculations used the JTH v1.0
pseudopotentials with LDA exchange-correlation functionals.”®*
For Co, 17 valence electrons were considered, and for U 14 were
considered. ABINIT allows for straightforward control of the
occupancy matrices with the use of the dmatpawu variable.*®
For d-electron corrections, these are 5 x 5 matrices for each
atom which requires d-orbital corrections using the DFT+U
method, in particular Liechtenstein’s rotational invariant
method + FLL double-counting corrections.***" For f-electron
corrections, 7 X 7 matrices for each U atom are used. The initial
values for these matrices were determined by considering the
total number of electrons per corrected atom and defining
diagonal matrices such that the trace of these matrices is equal
to the total number of electrons in the f orbitals. FA handles the
generation of new occupation matrices for each random candidate
by selecting random Euler angles and applying the corresponding
unitary transformation to each of these diagonal matrices. The
implementation of FA in the PyChemia software package is used for
performing all searches. A link to the GitHub repository for the
package is contained in the ref. 32.

After a set of occupation matrices have been chosen to be
the lowest energy, we have calculated the magnetic exchange
couplings as a function of the U parameter. For each candidate
KCoF; state, the magnetic exchange interaction parameters are
calculated using the magnetic force theorem (MFT),** which use
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local spin rotation as a perturbation and calculate the response
with Green’s function method. To get the local perturbation,
Maximally localized Wannier functions (MLWF)** for Co 3d and
F 2p orbitals were constructed and the Kohn-Sham Hamiltonian
from Abinit is mapped onto this basis set. Thus we can apply MFT
to the Hamiltonian and get the exchange parameters.*®

4 Results
4.1 KCoF;

The first system chosen to show the application of our FA
implementation for orbital occupations is the cubic perovskite
KCoF; with space group Pm3m, an anti-ferromagnetic Mott
insulator.>*”” The cell parameters are a = b = ¢ = 4.105 A.
The Wyckoff positions for the cell used are listed in Table 1.
A 2 x 2 x 2 supercell built from this unit cell is used for all
calculations. This supercell is shown in Fig. 1. The structures for
both KCoF; and UO, are taken from the Materials Project.*®

The F atoms octahedron crystal field (CF) splits the Co
3d-orbitals into three degenerate t,, (dyy, di, and d,;) and two
e, degenerate orbitals (ds,2_,2, and d,2_y2).** In general, for Co**
in an octahedral crystal field, the CF splitting 4 is small, which
yields the high-spin occupancy t5,e; with a nominal magnetic
moment of 3 ug. If 4 is large, the low-spin configuration is
favored with the occupancy tj,e, and a nominal magnetic
moment of 1 ug. Experimentally, the magnetic moment of Co
in KCoF; is 3.33 ug,*® which corresponds to the high-spin
configuration, and its band gap is 2.1 & 0.2 eV.*® Table 2 lists
the band gaps for the best candidates for each value of U and
J considered. In regards to band gap, both U=4 eV j=0 eV and
U =3 eV J=0 eV are within the range of reported experimental
values. However, from the values for the magnetic moment, the
U=4eV]=0 eV case is the closest to the experimentally
reported value.

To show that FA can find these states, as well as any
metastable states, the searcher must satisfy the following:

1. The lowest-energy candidate improves as the generation
number increases.

2. The diversity of candidates increases as the generation
number increases.

While the use of any metaheuristic can never guarantee that
the lowest-energy solution is the ground state, it should at the
very least approximate it or approach it. Improvement of
the lowest-energy candidate as the searcher explores more of
the PES is a necessary criterion for this. In addition, as the
searcher evolves (meaning that the total number of generations is
increasing), the area of the PES which it explores also increases.

Table 1 Structural information for KCoFs. Coordinates for each atom are
in reduced coordinates

KCoF; Pm3m

Atom Wyckoff position x y z

K1 a 0.00 0.00 0.00
Co2 b 0.50 0.50 0.50
F1 3c 0.00 0.50 0.50
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(b)

Fig. 1 Cells used for each calculation. (a) KCoFs. Octahedra are shown in blue. (b) UO,.

Table 2 Band gaps and magnetic moments for the best candidate for all
values of U and J considered for KCoFs

U (eV) J (eV) Band gap (eV) Magnetic moment (ug)
1 0 0.67 2.60

2 0 0.78 2.67

3 0 2.31 2.69

3 1 1.48

4 0 1.90 2.81

Experiment®**° 2.1 +0.2 3.33

This means that the total diversity of candidates should also
increase. To show the first point, the energy differences
between the low-energy candidate of each generation and the
best candidate can be plotted as a function of the generation
number, as we show in Fig. 2.

—»>— U=2J=0
— U=2J=1
—¥- U=3)=
—— U=3J=1
107t
—— U=5]=0
—— U=5)=1
—— U=6)=0
U=7J=0

1073

1074

01234567’59;0111213141516171819
Generation

Fig. 2 Differences in energy of the best candidate in each generation

relative to the energy of the lowest energy candidate found. As the semilog

of zero diverges, an energy difference of 10~* meV was used when the

search have reached the best candidate during search.

This journal is © the Owner Societies 2019

As this is a semilog plot, the best candidate cannot be
shown, as the semilog of zero is undefined, and approaches
infinity. To rectify this, the points corresponding to the best
candidate are automatically set to 10 '° eV, as this is significantly
lower than any order of magnitude decrease as the searcher
evolves. Discounting this, it can be seen from this figure that the
candidates mostly improve by two-to-three orders of magnitude.
As a secondary point, the best candidate should survive for 10
generations to prove that the stabilization limit is reached. To
further show improvement, the first row of Fig. 3 displays the
total number of unique candidates found up to a given generation.
The total number tends to increase as the generation number
increases, up to a point where the total number stalls. Still stalling
occurs because of two reasons. The first is that the lowest-energy
candidate has remained stable; no new low-energy candidate is
found. The second is that the region local to the lowest-energy
candidate has been adequately explored; no new candidates are
found because there are no more to be found. This second point is
further clarified in the second and third rows of the figure.

The second row of Fig. 3 displays the distance graphically
between pairs of unique candidates found after the search
completes. The diagonal is dark blue, indicating that the distance
between a candidate with itself is zero. The more yellow a square,
the greater the distance between candidates. For the most part, the
majority of the squares are a shade of yellow, showing that
the distances between candidates is small. This indicates that the
searcher is targeted, as it is primarily searching over local regions of
the PES. This is further clarified in the third row, which displays a
network plot for the unique candidates. Connected nodes are those
in which the distance between the two candidates is less than 0.4
radians. This value must be chosen carefully, as selecting a tolerance
which is too small will cause the plot to be totally disconnected, and
selecting too large of a value will connect every node to every other
node. Essentially, it must be selected so that minima which are
close to one another are connected, but minima which are far are
not. The total number of clusters was determined as a function of
the distance cutoff. This is shown in Fig. 4.

Phys. Chem. Chem. Phys., 2019, 21, 21932-21941 | 21935
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Fig. 3 Population diversity and improvement per iteration of the orbital occupation optimization for KCoFs case. Each column represents values for a
particular U and J. The first row shows bars representing the cumulative number of non-equivalent candidates found up to a given number of
generations. The second row shows the distance matrix for all different candidates at the end of the search. Yellow on the cell (i) represents candidates
with very different generalized Euler angles between candidates i and j. Dark blue colors like the diagonal shows candidates with very similar Euler angles.
The third row is a network representation of all different candidates found at the last iteration. Edges connecting two nodes mean that the distance value
is less than 0.4. The size of each node is inversely proportional to the energy of the corresponding orbital configuration. The larger the node, lower is the
energy. The last row shows the differences in energy for all candidates relative to the minimal energy found for that particular U and J.

For all values of U and J, if the tolerance was set to 0.55
radians, only one cluster existed, showing the network was fully
connected. This indicates that 0.55 radians is too large of a
tolerance. If the tolerance was set to lower than 0.2 radians, the
clustering vanishes and a totally disconnected network plot is
generated. From this, 0.4 was chosen, as it strikes a balance
between the two extremes. With this chosen value, a number of
clustered nodes can be seen in each network plot. In addition,
the larger a node is, the more energetically favorable it is. It can

21936 | Phys. Chem. Chem. Phys., 2019, 21, 21932-21941

also be seen that the clustering primarily occurs between the
lower-energy candidates. This clustering around low-energy
candidates is precisely why FA is useful for orbital occupation
optimization, it primarily searches in areas local to low-energy
candidates on the PES. So, the search is both targeted and
exploratory; it devotes candidates searching around the region
which lies close to good minima, but at the same time explore
random regions of the PES for potentially other competitive
minima.
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Fig. 4 Total number of clusters vs. distance tolerance for connectivity for
KCoFs. This distance tolerance determines how nodes are connected. If
the distance between two nodes is less than this tolerance, the nodes are
connected. If the distance is greater than this tolerance, they are not
connected. The total number of clusters is the number of disconnected
regions in the network plot. If the distance tolerance is small, then no
nodes will be connected, so the total number of nodes will be equal to the
total number of clusters. If the distance tolerance is too large, then all
nodes are connected, so there is only one cluster. This clustering is a
measure of how close minima are to one another on the PES.

The lowest energy candidate for non-zero values of U and J
always had the high-spin configuration t3.e;, as expected for
this crystal. Unsurprisingly, for U = 0 eV and J = 0 eV, the
electrons are delocalized. The energy differences between all
candidates in the final generation for different U and J values
are displayed in the bottom panel of Fig. 3. This figure also
shows the large diversity of population elements as the search
evolve. The orbitals for the lowest-energy candidate are dis-
played in Fig. 5. There is a two-fold degeneracy found for the
lowest-energy candidate; there are two candidates with different
occupations with the same energy. While there should be three
degenerate occupancies by symmetry, the failure of FA to locate
all three is not a failure of the algorithm. These two-candidates
appear for U # 0. In both of these candidates, the majority spin
channel has 5 electrons occupying all possible d-orbital; they
differ in the minority spin channel. In one case, one electron
occupies the xy orbital, the other in a linear combination of xz

Fig. 5 Occupied orbitals of the minority spin-channel for the best candidate
for U = 4 eV J =0 eV. The Wannier function for a single Co is identical on each
site.
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Table 3 Magnetic exchange constants for the lowest-energy candidates
of KCoFs. U=3eVJ=0eVand U =4eVJ=0 eV have values within the
range of those previously reported. The reported values are spatial
averages

U (ev) J (V) Jx (meV) Jy (meV) J= (meV)
0 0 —12.02 —11.456 —11.46
1 0 —-12.75 —-9.37 —-11.73
2 0 —10.99 —8.24 —10.16
2 1 —8.20 —8.41 —8.41
3 0 —5.34 —3.82 —1.47
3 1 —6.36 —-10.33 —10.33
4 0 —4.78 —1.31 —3.47
Experiment®’ 1.2

Experiment*' 4.5

and xy. In the other case, one electron occupies xz while the
other is in a linear combination of xy and yz. For the linear
combination of orbitals, every single term has a half contribution.
These are shown in Fig. 5.

Besides, the value of the magnetic exchange constants was
calculated for the lowest energy candidate for all values of U
and J considered. The values along several spatial directions,
Je=a+bhb,J,=—a+b,and J, = c, are listed in Table 3.

Both U=3eVJ=0eVand U=4 eV J=0 eV have magnetic
exchange values within the range of accepted experimental
values, which are 1.2 meV to 4.5 meV.>”**? However, from our
calculated values of the band gap and the magnetic exchange,
U=4¢eVJ=0eV isthe best set of parameters to reproduce most of
the experimental values together.

42 UO,

The second system chosen as a test case for our FA is Fm3m
uranium dioxide (UO,). UO, is the standard fuel used in
pressurized water nuclear reactors. Due to this, it has been
extensively studied both experimentally and theoretically. Both
LDA and GGA predict that UO, is a metallic ferromagnetic, but
it is known experimentally to be an antiferromagnetic Mott
insulator.*> While UO, has been shown from both experiment
and calculation**** to have 3k antiferromagnetic (AFM) order,
we have assumed 1k AFM order, as the uranium atom’s spins
change sign along the z-axis. This changes the point symmetry
group of UO, from Oy, to Dyy. The crystal field then splits the 5f
orbitals of uranium into two two-fold degenerate levels, E,, and
three non-degenerate levels, A,,, By, and B,,. In UO,, only two
electrons are in the 5¢ shell, so the initial diagonal matrix from
which all other candidates are generated will have a trace equal
to two. We start with the primitive cell for UO,, and note that it
only contains one uranium atom. The cell parameters for the
primitive cell are a = b = ¢ = 3.83 A, and its Wyckoff positions are
listed in Table 4. Since there is only one uranium atom in the
primitive cell, a supercell must be constructed from the primitive
cell in order to capture the AFM nature of UO,. Weusea 4 x 1 x 1
supercell and this is used for all calculations. The supercell is
displayed in Fig. 1.

As in the case of KCoF;, we wish to show that the lowest-
energy candidate converges with respect to the generation number,
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Table 4 Structural information for UO,. Coordinates for each atom are in
reduced coordinates

U0, Fm3m

Atom Wyckoff position x y z
U1 4b 0.50 0.50 0.50
o1 8c 0.75 0.75 0.75

and that the PES is adequately explored. Unlike in the case of
KCOF3;, there are several computational studies*®*” which have
been performed to determine the orbital occupations of the
ground state of UO,, so our results can be directly compared to
previous studies. As a word of caution, however, in each of these
studies, the methods used are not exhaustive, and it is emphasized
that there was no guarantee that the full orbital occupation space is
explored.

In the work performed by Dorado et a the occupation
matrix control method was used to find the lowest energy state
in UO, with fluorite-structure with a twelve atom cell. They also
presumed 1k AFM ordering. With the presumption of no
symmetry (therefore allowing the cubic symmetry to be broken),
they found two degenerate low-energy states and ten metastable
states. Using values U = 4.50 eV and J = 0.51 eV, Dorado et al.
relaxed UO, to the ground state when the occupancy matrices
were initially imposed to have integer occupancy for the m = —1,
m = 0 or the m = 0, m = 1 orbitals. These initially defined
occupation matrices are then relaxed. These two cases had
band gaps which were comparable to the experimentally
reported value of 2 eV. However, as previously stated, it is not
guaranteed that this corresponds to the true ground state. This
is emphasized by the energy differences found between the
lowest energy state and the next highest energy state, which
differed only by 0.02 eV.

This makes UO, an ideal complex test case for our FA
implementation to explore the multiple f-orbital occupation
minima. As previously shown for KCoF;, it must be shown
that the lowest-energy candidate improves in each subsequent
generation and a significant area of the PES is explored. Unlike
the previously cited work, we use combinations of U = 2, 3, 4
and 5 eV with J =1 and 2 eV, with U > J.

In Fig. 6 we show the convergence of the lowest-energy
candidate found with respect to the generation for all values of
U and J considered for UO,. Just as with KCoFs;, the lowest-energy
candidate improves by 2-3 orders of magnitude. Additionally,
the total number of unique candidates found up to a given
generation is displayed in Fig. 7. Just as with KCoFj3, the total
number increases until the search has explored all minima local
to the low-energy candidates.

Using the same distance cutoff as with KCoF;, we see that
the unique candidates lie closer to one another from the distance
plot in the second row of Fig. 7. In addition, the network plot in
the third row of this figure is even more connected than
KCoF;. This indicates that the candidates for UO, lie very close
to one another on the PES. Just as before, this is precisely why
FA is useful to the problem of orbital occupation optimization,

l. ’47
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Fig. 6 Semilog plot of the energy of the best candidate in each genera-
tion relative to the energy of the lowest energy candidate found for all
values of U and J considered for UO,. As the semilog of zero diverges, an
energy difference of 1078 meV was used for candidates which have the
same energy as this candidate, as this value of energy is at least two orders
of magnitude lower than the energy difference between any candidate
with this lowest energy candidate.

as it allows for efficient exploration over local regions of
the PES.

For all values of U and J considered, all of the metastable
states previously reported were located by FA. Furthermore,
since the search is performed over several different pairs of
values, the low-energy states can be compared across the
selected values of U and J. For the values of U and J considered,
the low-energy state found by FA has a different occupation
than what is reported previously. This indicates that for UO, the
particular orbitals occupied depends on the choice of U and J.
Unlike KCoF3, UO, shows that the variations in the occupied
orbitals differ across the different values of U considered. The
variation of the occupancy across U for J = 1 eV is shown in
Fig. 8. For the values of U and J which are the most similar to
Dorado et al., which in their case are U = 4.5, ] = 0.51, we find for
U=4eVJ=1eV that the two electrons occupy f,,- and a linear
combination of f;x2_2) and f,,.. The orbitals for this low-energy
configuration are displayed in Fig. 9 In comparison, the ground
state found by Dorado et al. was f;,>_,2) and a linear combination
of fyx2_3y2) and f,s. However, care must be taken here as the values
of U and J are not identical, and we have found that the low-
energy occupation for UO, is sensitive to the choice of U and J
(Fig. 8). In their work, this state was found when non-diagonal
occupation matrices were considered and is 0.02 eV lower
in energy than the ground state found when only integer
occupations were considered. We are also able to find their
reported low-energy state when integer occupations were
enforced, with the two electrons occupying f,,, and f,.., and
similarly, it is one of the metastable states found with FA. For
U=4eV,J=1 eV, this state is 1.98 eV higher in energy than the
low-energy state found with FA, indicating that our low-energy
state is even lower in energy than that previously reported, which
proves that using a metaheuristic search of occupation matrices
could be more powerful than “hand-made” techniques.

This journal is © the Owner Societies 2019
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Fig. 7 Population diversity and improvement per iteration of the orbital occupation optimization for UO, case. Each column represents values for a
particular U and J. The first row shows bars representing the cumulative number of non-equivalent candidates found up to a given number of
generations. The second row shows the distance matrix for all different candidates at the end of the search. Yellow on the cell (i) represents candidates
with very different generalized Euler angles between candidates i and j. Dark blue colors like the diagonal shows candidates with very similar Euler angles.
The third row is a network representation of all different candidates found at the last iteration. Edges connecting two nodes mean that the distance value
is less than 0.4. The size of each node is inversely proportional to the energy of the corresponding orbital configuration. The larger the node, lower is the
energy. The last row shows the differences in energy for all candidates relative to the minimal energy found for that particular U and J.

5 Conclusion

In this paper, we have demonstrated that the firefly algorithm is
a powerful technique to explore multiple regions of orbital
occupation PES in the d-electron and f-electron systems. Since
multiple regions are simultaneously probed, a multitude of
stable orbital configurations can be obtained quickly. The
method does not depend on specific details of the system
other than the particular orbitals which are being corrected,

This journal is © the Owner Societies 2019

which also means that any DFT code that can constrain the
occupation matrix can be used. The efficiency of the method
coupled with its independence with respect to system-
dependent details, makes FA well-suited to the problem of
locating possible stable orbital configurations.

We have tested our implementation on two examples: the
perovskite KCoF; with d-orbitals and UO, with f-electrons
where in both cases the FA was able to identify a multitude of
metastable states with different occupations and to identify the
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Fig. 9 Occupied orbitals for the best candidate for U=4eVJ=1eV. The
Wannier functions are identical on each U site.

lowest energy one among the series. Moreover, the method
itself could be used to sweep over many values of U and J
to locate the values which yield an occupancy which is in
agreement with experiment. This method improves upon the
currently used brute-force methods in which the ground state is
found through changing the initial occupation matrix by hand.
At the same time, it can be used in conjunction to the
optimization of magnetic orientation in non-collinear calculations,
by interfacing this methodology with the one reported in ref. 20.
The method could be also very important for hybrid functionals,
which have the same problem of multiple minima in the orbital
occupations. The addition of spin-orbit coupling could worsen
the problem and such metaheuristic methods could be hand-
ful to identify the lowest energy occupations of non-collinear
magnets.>”

We hope our method to be helpful in many systems with
strongly correlated electrons where multiple minima occupations
make their study difficult for DFT calculations.
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