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Abstract—Internet of drones (IoD), employing drones as
the internet of things (IoT) devices, brings flexibility to IoT
networks and has been used to provision several applications
(e.g., object tracking and traffic surveillance). The explosive
growth of users and IoD applications injects massive traffic
into IoD networks, hence causing congestions and reducing
the quality of service (QoS). In order to improve the QoS,
caching at IoD gateways is a promising solution which stores
popular IoD data and sends them directly to the users instead
of activating drones to transmit the data; this reduces the
traffic in IoD networks. In order to fully utilize the storage-
limited caches, appropriate content placement decisions should
be made to determine which data should be cached. On the other
hand, appropriate drone association strategies, which determine
the serving IoD gateway for each drone, help distribute the
network traffic properly and hence improve the QoS. In our
work, we consider a joint optimization of drone association and
content placement problem aimed at maximizing the average
data transfer rate. This problem is formulated as an integer
linear programming (ILP) problem. We then design the Drone
Association and Content Placement (DACP) algorithm to solve
this problem with low computational complexity. Extensive
simulations demonstrate the performance of DACP.

Index Terms—Drone, Internet of Things (IoT), Internet of
Drones (IoD), caching, drone association, content placement,
quality of service (QoS).

I. INTRODUCTION

The Internet of Things (IoT) connects billions of IoT
devices, e.g., sensors and actuators, over a distributed en-
vironment to enable various applications, e.g., smart grid,
home, city, industry and agriculture [1, 2]. To provision
wide-area IoT networks, cellular infrastructure is usually
utilized, where base stations (BSs) are deployed to act as the
IoT gateways and receive data from IoT devices. Adopting
drones, also known as unmanned aerial vehicles (UAVs),
as the IoT devices is a promising way to improve the
flexibility of IoT networks owing to their high mobility.
Internet of Drones (IoD), which refers to the integration
of drones and IoT networks, has been applied for object
tracking and delivery, traffic surveillance and disaster rescue
[3, 4]. An important application of IoD is the sensing service
where multiple drones are deployed in the air to collect
environmental information (e.g., images and videos) from
several points of interest [5, 6]. The collected data are then
sent via the IoT gateway to users, who request the data, for
further processing (e.g., traffic monitoring).

Although IoD has gained great attention from both the
academic and industry owing to its great benefits, it still
faces several challenges [7]. Owing to the rapid growth of
IoT services and applications, increased amount of traffic
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is injected into the IoT networks; this may cause network
congestion and hence degrade the user quality of service
(QoS) [8, 9]. Another challenge is drones’ limited on-board
battery capacity owing to their size and weight limitations
[10]. Frequent sensing data transfers from drones, because of
the growing requests from users, speed up the drainage of
drones.

Caching at IoD gateways can be considered as a promising
approach to reduce the IoD network traffic and reduce drone
energy consumption [11]. In cache-enabled IoD networks,
each BS is equipped with a storage-limited cache. Popular
sensing data can be cached at the caches so that users can
obtain requested data directly from the caches instead of
activating drones to transmit the data [12]. Therefore, caching
not only helps reduce the network traffic from drones to
BSs, but also decrease the energy consumption of drones by
avoiding frequently data transmission. In order to make the
most use of the storage-limited caches, appropriate content
placement problem strategy should be designed to determine
which data should be cached at different caches. On the other
hand, drone association problem determines the serving BS
for each drone. Intuitively, a drone should be associated with
the nearest BS to reduce the data transmission power and
hence the energy consumption. However, if too many drones
are assigned to one BS, the BS may be congested, hence
reducing the user QoS [13]. Therefore, an appropriate drone
association strategy should be designed.

Considering both drone association and caching in IoD
networks has not been readily found yet. To fill this gap,
in our work, we jointly optimize the drone association and
content placement problem in cache-enabled IoD networks
for the sensing service with the objective to maximize the user
QoS which is characterized as the average IoD data transfer
rate.

The rest of the paper is organized as follows. The related
works are presented in Section II. Section III describes the
system model. The joint optimization of drone association
and content placement problem is formulated in Section IV.
An algorithm is designed in Section V to address the problem.
We evaluate the performance of our designed algorithm in
Section VI. Finally, the paper is concluded in Section VIIL.

II. RELATED WORKS

Drone-aided networks have been investigated in several
studies. Drone base station (DBS) has been adopted in many
works to provide additional wireless coverage and enhance
wireless network conditions. The DBS placement problem is
a critical issue to be addressed. Zhang et al. [14] investigated
the 3-D DBS placement problem in an in-band full-duplex
cellular network to maximize the whole network’s through-
put. Their work only considers one DBS. Chen et al. [15]



utilized drones as relays and studied the optimum placement
of multiple drones to maximize the system reliability which
was measured by power loss and bit error rate.

Gharibi et al. [5] first proposed the ToD architecture and
designed five conceptual layers for IoD including airspace,
node to node, end to end, service and application layer.
Koubaa and Qureshi [16] adopted IoD networks and proposed
DroneTrack, which is a real-time object tracking system, to
follow a moving object. To overcome the energy limitation
of drones, Long et al. [17] proposed an energy neutral loD
(enloD) where recharging stations were introduced to ener-
gize the drones. The enloD can be used for packet delivery.
Chen and Wang [18] designed a light-weight network coding
scheme to enhance the security and privacy of cloud data
in IoD networks. They demonstrated that their scheme can
reduce up to 10% energy consumption as compared with the
traditional hash-based scheme. Wazid et al. [19] discussed
IoD authentication models to give data access to authorized
users. They also surveyed related security protocols and
identified some challenges in IoD networks. Fan and Ansari
[20] proposed a traffic load balancing scheme for the drone-
assisted IoT networks to minimize the wireless network
latency. However, the above works consider neither drone
association problem nor caching in IoD networks.

Caching has been applied to IoT networks to reduce energy
consumption of IoT devices and network traffic. Niyato et
al. [21] proposed to use cache for IoT sensing service. The
cache can be located at the IoT gateway and its data can
be retrieved by users. They introduced a threshold adaptation
algorithm to maximize the hit rate of the sensing service. Sun
and Ansari [22] applied the cache-enabled IoT networks for
smart parking application in smart cities and demonstrated the
benefits of caching popular IoT resources. Duan et al. [23]
investigated a space-reserved cooperative caching scheme
where each cache is divided into two parts. One part is
used for storing prefetched data from IoT devices and the
other is for storing the temporarily buffering data in the
wireless transmission queue. Yao and Ansari [11] explored a
Stackelberg game in cache-enabled energy harvesting aided
IoT networks to improve QoS. However, caching in IoD
networks has not been addressed yet.

To the best of our knowledge, joint optimization of drone
association and content placement problem in cache-enabled
TIoD networks has not been reported in the literature yet. We
hence try to address this joint problem in our work with the
objective to maximize the user QoS.

III. SYSTEM MODEL

In our cached-enabled IoD architecture (as shown in Fig.
1), N drones are deployed in the air to provide the IoD
sensing service where drones collect the environment in-
formation (e.g., images and videos) and then send them to
users requesting the data through the mobile core network
for further processing (e.g., traffic condition monitoring). We
denote ¢, where ¢ € Z = {1,2,...,N}, as an index of a
drone. For wide area communications, the cellular network
is usually utilized as the infrastructure to provision IoD
sensing service [24], where M BSs act as the [oT gateway
to receive data from the associated drones and send the data
to the mobile core network. We denote Boolean variables

x4; to indicate whether drone 4 is associated with BS j
(z;; = 1 if affirmative). For example, in Fig. 1, dronel is
associated with BS1 while drone2 and drone3 are assigned
to BS2. We assume each BS connects to the mobile core
network by high speed wired links with capacity B Mbps.
BS j € J ={1,2,..., M} is equipped with a cache with
storage capacity L;. If the requested data i (i.e., IoD data
of drone %) is cached at BS j, data ¢ can be transmitted to
the user directly from the cache at BS j. Otherwise, data 7
should be obtained from drone ¢ to the user relayed by BS
J if x;; = 1. We denote Boolean variables y;; to indicate
whether data ¢ is cached at BS j (y;; = 1 if affirmative).
Although the localizations of drones and BSs are important
to determine the performances of our IoD architecture [25],
we only consider static BSs and drones (i.e., hovering in the
air) in our work.
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Fig. 1. Sensing service in cache-enabled IoD architecture.

A. Air to Ground Channel

We assume all drones are flying within the flying plane
with the height of H. Practically, H can be chosen as the
minimum height to avoid all constructions [26]. The wireless
channel between a drone and a BS is characterized as the air
to ground channel. Since the signals received by a BS may
be either line of sight (LoS) or non-line of sight (NLoS),
we utilize the widely used probability model [27, 28, 29] to
measure the probabilities of LoS and NLoS:

1
P(LoS) = 1+ aexp(—ﬁ[%@ —al)’ M
P(NLoS) =1 — P(LoS), @)

where « and 3 are constants which relate to the environment,
e.g., rural and urban; 6 is the elevation angle as shown in Fig.
1. The average air to ground path loss can then be calculated
as

PL = P(LoS) x PLyos + P(NLoS) x PLy1os, (3)

where PLy,s and PL 1,5 are path losses of LoS and NLoS
signals, respectively, which are modeled by the free space
propagation loss with additional excessive path loss values

30]:
501 47 f.d

PLLOS =20 1OglO( ) + é-LOS) (4)

A7 fed

PLN1os = 20log;o( ) +&NLos, (5)

where d is the distance between a drone and a BS (as shown
in Fig. 1); c is the speed of light; f. is the carrier frequency;
€ros and x5 are constants that relate to the environment.



Then, the air to ground channel between drone ¢ to BS
j is denoted as G;; = 107 10 . Therefore, the IoD data
transmission rate I?;; from drone 1 to BS j can be calculated
as

R’Lj =W 10g2(

6
where W denotes the system bandwidth; p; denotes the trans-
mission power of drone i; N is the noise power spectrum
density.

B. QoS Model

We characterize the QoS model as the average IoD data
transfer rate [11]. When the IoD data of drone ¢ is requested,
the user can obtain these data by two possible data transfer
methods. If data ¢ is not cached in any of the BSs, i.e.,
ij 1¥i; = 0, the data has to be transmitted from drone i.
Since drone 7 is associated with BS j if 2;; = 1, the transmis-
sion rate of drone ¢ can be calculated as r; = Z;Vil Rijx;;.
Note that the oD data transmission to the user goes through
two hops (i.e., from drone to BS and from BS to the user).
The data transfer rate to the user is min{r;, B} = r; since
we assume the BS backhaul link capacity is larger than that
of the air to ground channel. On the other hand, if data @
is cached in any of the caches, i.e., Z;Lil yi; = 1, the data
is transmitted directly from the cache and hence the data
transfer rate is B. Therefore, the average data transfer rate is
calculated as

N

:Z Bzym Zyu Zlexlj

=1 Jj=1

= Bzym +ZRZ]xU ZyijZRiﬂijL
j=1  j=1

(7

where ); is the probability that data ¢ are requested and
M M

Zj:l Yij Zj=1 Rijxi; = (yin + yi2 + . + yam) (Rinwin +

Risxio + ... + Rimxing) = Roxiyin + Ry + ... +

Rixayive + Riaioyin + Rip%iyio + ... + Ripxiaying +

vo + Ripipyin + Rinvimyiz + oo + RipTipyinr =
M M

ijl > k1 Rijxijyir. Hence, Eq. (7) can be converted to

B N M N M
= Z Z BX\iyi; + Z Z AiRijxij
i=1j=1 i=1j=1 ®)
N M M
- ZZZ)\iRijxijyik-

i=1 j=1k=1

=

IV. PROBLEM FORMULATION

For the ToD sensing service, the IoD data (e.g., images or
videos) collected by drones are sent to the user through the
mobile core network for further processing. We formulate the
joint optimization problem of drone association and content
placement problem for the IoD sensing service in this section.
In order to improve the QoS, we try to maximize the average
IoD data transfer rate [31]. Hence, our problem is formulated
as

PO: n{;ayx ZZ B\yij + Z Z ANiRijxij

i=1 j=1 =1 j=1

N M M (9)
- Z Z Z AiRijijyik
i=1j=1k=1
M
Y ay=1, Viel (10)
j=1
Yij Sy, Vie€L,jeJ, (1D
N
Sl <Ly, Vied, (12)
=1
zi; €{0,1}, VieIjeJ, (13)
yi; €{0,1}, VieIjeJ. (14)

Eq. (9) is the objective function which aims to maximize
the average data transfer rate. Eq. (10) indicates that a drone
can only be associated with one BS. Eq. (11) implies that a
drone’s data can only be cached at its associated BS. Eq. (12)
imposes that all data cached in each BS should not surpass
its storage capacity. Egs. (13) and (14) indicate that x;; and
Yi; are binary variables.

Problem PO is a non-linear integer programming problem
owing to the products of x;;y;; in Eq. (9); this feature makes
it intractable [32]. We hence introduce another Boolean
variable z;j;, € {0,1} to enable z;j; = z;;yir. To make
the objective function linear, the following constraints should
be added to problem PO: 1) z;i < 455 2) 2k < Yiks
3) zijk > %ij + vy — 1 [33]. Hence, problem PO can
be transformed into an integer linear programming (ILP)
problem P1:

N M N M
PL: max > > By +»_ > AiRijwi
Tz =1 j=1 =1 j=1 15
N M M (15)
= )0 ARz
i=1 j=1 k=1
s.t. (10) — (14),
zijk Swij, VieL,je J, ke J, (16)
zijk Sy, Vi€, jeJ, ke T, (17
Zijk > Ty +yae— 1, VieL,je J, ke J, (18)
zijk €{0,1}, VieZ,je T, ke J. (19)

Note that the ILP problem P1 is still difficult to solve
and its optimal solution can be obtained by branch-and-
bound algorithm or exhaustive search at the expense of



high computational complexity. We hence design a heuristic
algorithm to attain the suboptimal solution in the next section
and utilize its optimal solution by CPLEX for comparison in
simulations.

V. PROBLEM SOLUTION

In this section, we present our proposed Drone Association
and Content Placement (DACP) algorithm to solve problem
P0. Note that caching in IoD networks can greatly improve
the data transfer rate because the requested data can be
directly transmitted from the caches and the backhaul data
rate B can be achieved. Therefore, the IoD data should be
cached as many as possible. Based on this intuition, the basic
idea of DACEP is to first solve the content placement problem
and then the drone association problem using the results from
the first one.

A. Content Placement Problem

The content placement problem determines which IoD data
are cached at the caches of BSs. The content placement
problem is then formulated as

N M
P2: : .
max Z)\z(z Yij) (20)
=1 7=1
st (12),(14),
M
>y <1, Viel Q1)
j=1

In the objective function in Eq. (20), A; reflects the
popularity of different IoD data. Hence, Eq. (20) indicates
that popular IoD data should be cached as many as possible.
Note that each drone can only be associated with one BS (as
shown in Eq. (10)), each IoD data, therefore, can only be
stored at one cache; this is reflected in Eq. (21). Problem
P2 falls into the 0-1 multiple knapsack problem [34]. In
the 0-1 multiple knapsack algorithm, N items with different
weights and prices are determined to put in M weight-limited
knapsacks. Its objective is to maximize the total prices of
items in all knapsacks. In problem P2, the IoD data and cache
can be considered as the item and knapsack, respectively. \;
and /; are the price and weight of item ¢ and L is the weight
capacity of knapsack j.

B. Drone Association Problem

The drone association problem determines the associated
BS for each drone. We formulate the drone association
problem as

N M M
P3: max ZZ(I - nyk)AiRijxij (22)
k=1

i=1 j=1

s.t. (10), (13),

iy 2y, VieIjed. (23)

We obtain the results of problem P2, denoted as y;;, by
solving the O-1 multiple knapsack problem. Eq. (22) can

hence be obtained by substituting y;; into Eq. (9). Eq. (23)
is equivalent to Eq. (11). We can deduce from Eq. (22)
that, if ToD data i is cached (ie., 1 — S0 v = 0), x4
does not contribute to the objective function. In that case,
Tij = Y;;, Vj € J because data from drone ¢ can only be
cached at the BS with which it is associated. Therefore, to
solve problem P3, we only need to consider the IoD data
which are not cached at any caches (i.e., 221:1 vy = 0).
For each drone ¢ whose data are uncached, it can only be
associated with one BS. In order to maximize Eq. (22), it is
preferable to associate each uncached drone 7 to the BS with
the maximum R;j, i.e., j = argmax{R;;}.

We summarize DACP in Ajlegj 1. Line 1 calculates the
content placement solution of problem P2. The loop in Lines
3-10 calculates the drone association solution for each drone.
Lines 4-5 determines the drone association solution if the data
are cached. Lines 7-8 associate the drone with the BS which
achieves the largest data rate.

Algorithm 1: DACP
Input :N,M,B,li,Lj,Rij,Ai B
Output: Average data transfer rate V'

1 Calculate y;; by solving 0-1 multiple knapsack
problem P2 ;

2 Initialize z7; = 0 ;
3 for each 1 € 7 do
4 if fozl Y3, = 1 (data i are cached) then
5 =y, ViET
6 else
7 Calculate j* = argmax{R;;} ;
JjeT
8 Associate drone ¢ with BS j*, i.e., atjj* =1;
9 end
10 end
11 Calculate V' according to Eq. (7) with z7; and y;; ;
12 return V ;
V1. PERFORMANCE EVALUATION
Table I. Summary of simulation parameters.
Parameter Value
Area 1000 m x 1000 m
Number of drones N 50
Number of BSs M 5
Drone flying height H 500 m
System bandwidth W 10 MHz
Drone wireless transmission power p 3w
Noise power density Ng -174 dBm/Hz
BS backhaul date rate B 500 Mbps
Data size of drones [ 1.0 Mb 2.0 Mb
Cache storage capacity L 5 Mb

Simulations are set up to evaluate the performances of
our proposed algorithm DACP in this section. The optimal
solution of the ILP problem P1 obtained by CPLEX, denoted
as ‘Optimal’, is utilized as the contrast algorithm. We also
combine the existing works as another contrast algorithm
(denoted as ‘Bench’), which first solves the drone association
problem where each drone is associated with the nearest BS



[35], and then the content placement problem where data
with more popularity are preferentially cached until the cache
storage is full [11].

In our simulation, we consider a 1000 m x 1000 m area,
where there are N = 50 drones and M = 5 BSs. The drones
and BSs are all uniformly distributed in this area. We assume
that all drones fly within a flying plane with the height of 500
m. The environment-related parameters « and § in Eq. (1)
is 9.6 and 0.28, respectively. The speed of light c is 3 x
108 m/s and the carrier frequency f. is 2 GHz. £1,5 and
ENLos are 1 dB and 20 dB, respectively. Note that the above
ground to air channel parameters are consistent with [27].
The system bandwidth W is 10 MHz, the drone wireless
transmission power p; is 3 W, and the noise power density
Ny = —174 dBm/Hz. The backhaul data rate of each BS
B = 500 Mbps. The data length of each drone is randomly
chosen from 1.0 Mb to 2.0 Mb. The caching storage capacity
of each cache is 5 Mb. For the popularity of each IoD data,
we utilize the widely used Zipf distribution [365] in which
the probability of requesting data ¢ is \; = Nlik*&’ where
0 is the popularity skewness parameter whickﬁlimplies the
differences among different ;. A large § implies that a small
portion of data are requested by most users. Contrarily, if § =
0, users request data from all drones with equal probability.

Fig. 2 evaluates the performance of DACP with different
numbers of drones ranging from 20 to 80. We can observe
from Fig. 2 that the average data rates from all three algo-
rithms decrease as the number of drones increases because
more drones imply that fewer drones’ data can be cached
at the limited caching storages and hence the average data
rates are reduced. Our proposed DACP performs very close
to the optimal solution of ILP. Bench first optimizes the drone
association problem and then decides the content placement
decisions according to the drone association solution, and so
the caching storages may not be fully utilized. Therefore, in
Fig. 2, DACP performs better than Bench.
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Fig. 2. Average data rate vs number of drones.

Fig. 3 compares the performances of Optimal, DACP and
Bench with different numbers of BSs ranging from 3 to 9. The
average data rates of all three algorithms go up as the number
of BSs increases, because a larger number of BSs introduces
more caching storages and more data can be cached, hence
increasing the average data rates. DACP always performs
better than Bench for the similar reason as shown in Fig. 2.
DACEP achieves the average data rate very close to Optimal’s.
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500

—©—COptimal
——DACP

= —+*—Bench
450

Average data rate (Mbps)
S
o
o

W
[8)]
o

8 9 10 11 12 13
Caching storage capacity (Mb)

N

Fig. 4. Average data rate vs caching storage capacity.

Fig. 4 depicts the average data rates of different algorithms
with different caching storage capacities. Note that a larger
caching storage capacity allows more IoD data to be cached
and hence increases the average data rate. Therefore, the
trends of all three algorithms in Fig. 4 go up with the caching
storage capacity. Similar to Fig. 2 and Fig. 3, DACP performs
very close to Optimal and better than Bench.
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Fig. 5. Average data rate vs popularity skewness parameter.

We also investigate the impacts of different popularity
skewness parameters on the performance of the three al-
gorithms in Fig. 5. A larger popularity skewness parameter
means that more users request a small part of all data. In an
extreme case, all users request the data from one drone . By
caching the only data ¢ at the storage-limited caches, all users



can be served and the average data rate can be as high as the
backhaul data rate B. Therefore, a larger skewness parameter
leads to a higher average data rate, as shown in Fig. 5. We
can also observe that DACP achieves similar average data
rate to Optimal’s and higher than Bench’s.

VII. CONCLUSION

We have proposed a cache-enabled IoD architecture for
the sensing service, where each BS is equipped with a cache
that stores popular IoD data in order to improve the QoS
(i.e., average data transfer rate). In this architecture, we have
investigated the joint optimization of drone association and
content placement problem to maximize the average data
transfer rate constrained by the caching storage limitation.
An ILP model has been formulated to address this joint
optimization problem. In order to reduce the computational
complexity of ILP, we have proposed DACP which first
optimizes the content placement problem and then the drone
association problem. Simulation results have demonstrated
that DACP achieves similar results to the optimal solutions
of ILP and performs better than the existing algorithms.
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