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Abstract—Internet of Drones (IoD) employs drones as the
internet of things (IoT) devices to provision applications such as
traffic surveillance and object tracking. Data collection service
is a typical application where multiple drones are deployed
to collect information from the ground and send them to
the IoT gateway for further processing. The performance of
IoD networks is constrained by drones’ battery capacities, and
hence we utilize both energy harvesting technologies and power
control to address this limitation. Specifically, we optimize
drones’ wireless transmission power at each time epoch in
energy harvesting aided time-varying IoD networks for the data
collection service with the objective to minimize the average
system energy cost. We then formulate a Markov Decision
Process (MDP) model to characterize the power control process
in dynamic IoD networks, which is then solved by our proposed
model-free deep actor-critic reinforcement learning algorithm.
The performance of our algorithm is demonstrated via extensive
simulations.

Index Terms—Power control, internet of drones (IoD), energy
harvesting, deep reinforcement learning, actor-critic, quality of
service (QoS)

I. INTRODUCTION

Internet of drones (IoD), which employs drones as the
internet of things (IoT) devices, has been explored in ap-
plications including object tracking, traffic surveillance and
disaster rescue [1, 2]. A widely used application of IoD
is the data collection service where multiple drones are
deployed to collect data (e.g., pictures and videos) from the
ground. The collected data are then sent to the IoT gateway
(GW) for further processing [3]. To guarantee the quality
of service (QoS), a minimum wireless transmission rate is
usually defined [4].

The performance of IoD networks is greatly constrained by
drones’ battery capacities. There are usually two approaches
to address this challenge. The first approach is to utilize a
wireless charging station to charge drone batteries in IoD
networks [5, 6, 7]. This approach may incur additional energy
cost and infrastructure expenditures. The other approach is to
adjust each drone’s transmission power to reduce the energy
consumptions of drones’ batteries [8]. Hence, power control
is an important issue in IoD networks.

The conventional power control is usually posed as an one-
shot static optimization problem and optimizes the system
energy consumption in a greedy manner. However, the static
optimization does not consider the correlations among the
power control decisions across time. Owing to the limited
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battery capacity and wireless charging, the energy consump-
tions over different time epochs are related and hence the
power control policies influence one another. In our work,
we hence use reinforcement learning (RL), which is usually
adopted for sequential decision-making problem in time-
varying environment [9, 10], to address the power control
problem in dynamic IoD networks. RL interacts with the
environment by taking actions after observing the current
environment state and then obtains a reward and transits to
a new environment state. A Markov decision process (MDP)
is usually modeled to characterize the interaction.

The IoD environment is usually difficult to model because
the accurate and complete information of the environment is
unknown in dynamic networks. Hence, we utilize a model-
free RL framework [11] to address our problem. In order to
determine which action to take, a state-action value function
is defined to evaluate the actions in a certain state. Since it
is impossible to explicitly represent each value function, we
hence utilize the deep neural networks to estimate the state-
action values [11].

Motivated by the above analysis, we investigate the QoS-
aware power control in time-varying energy harvesting aided
IoD networks for the data collection service by model-free
deep reinforcement learning. Specifically, we aim to optimize
the wireless transmission power for each drone at each time
epoch with the objective to minimize the average system
energy consumption constrained by the QoS requirement.

The rest of the paper is organized as follows. A summary
of related works is presented in Section II. We describe our
IoD system model with wireless charging in Section III. The
power control problem in IoD networks is then formulated
in Section IV. In Section V, we describe the deep actor-
critic algorithm to solve the problem. Simulation results are
analyzed in Section VI. Section VII concludes the paper.

II. RELATED WORKS

IoD was first proposed in [2], in which the IoD system
is divided into five conceptual layers. Yao and Ansari [12]
investigated the drone trajectory optimization in IoD net-
works for the sensing service to minimize the task completion
time constrained by the drone’s battery capacity. Chen and
Wang [13] proposed an IoD cloud surveillance system where
data collected by drones are outsourced to the cloud to be
analyzed. However, none of the above works consider the
power control problem in IoD networks.

MDP models are usually employed to formulate the rein-
forcement learning problem. Chen et al. [14] investigated the
traffic offloading problem in cellular networks to minimize



the system energy consumption and formulated the problem
as an MDP model which was further solved by a Q-learning
algorithm. Actor-critic reinforcement learning was designed
to solve problems with continuous action space. Zhang et
al. [15] designed an online actor-critic reinforcement learn-
ing algorithm to address the traffic offloading and resource
allocation in energy harvesting aided mobile edge computing
systems. Wei et al. [16] investigated the user scheduling and
resource allocation in heterogenous networks with the ob-
jective to maximize the network energy efficiency. However,
actor-critic reinforcement learning has not been deployed in
IoD networks.

Yao and Ansari [17] investigated the power control in
IoD networks for the data collection service to minimize the
drone’s power consumption while satisfying the QoS require-
ment. However, their work was a static optimization problem
because they assumed that the network status remained the
same. Moreover, their work only considered a single drone
in the IoD network. To the best of our knowledge, this is
the first work to consider the power control in time-varying
energy harvesting aided IoD networks with multiple drones
deployed to minimize the average system energy cost by deep
reinforcement learning.

III. SYSTEM MODEL
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Fig. 1. Data collection in IoD.

In our system model (as shown in Fig. 1), we consider one
IoT GW and N drones hovering above the service area. The
set of drone indexes is denoted as N' = {1,2,..., N}. In the
data collection service, drones collect data (e.g., images and
videos) of different locations and send them to the [oT GW
for further processing [18]. We assume the network operates
at discrete time epochs. The network status is considered
static within a time epoch but varies over different epochs. At
each epoch, each drone 7 € A transmits its collected data of
length [; to the IoT GW. In our system model, we characterize
the QoS requirement as the minimum wireless transmission
rate R'Z?h of drone 14, i.e., drone 7’s wireless transmission rate
should be no less than R!". A charging station is used to
charge the drone batteries to help maintain drone operations
including data transmissions [19].

A. Drone Data Transmission Rate

The data transmission rates of drones are the wireless
transmission rates between drones and the IoT GW. We
adopt the widely used probability model where the sig-
nal between drones and IoT GW can be either Line-of-
Sight (LoS) or Non-Line-of-Sight (NLoS) with probabilities
Pr(LoS) and Pr(NLoS), respectively [20]. The probabil-
ities are functions of the height of a drone and distance

between the drone and the IoT GW, which are defined as
Pr(LoS) = 1+aexp(—/3[%"1arctan(%)—a]) and Pr(NLoS) =
1 — Pr(LoS), where a and 3 are environment-related con-
stants (e.g., rural and urban), H is the height of the drone
and d is the distance between the drone and the IoT GW.
We also adopt the free space propagation loss to characterize
the drone’s signal path loss model [21]. For LoS and NLoS
signals, the path losses are respectively defined as PLy,5 =
20 loglo(”f“d) + &ros and PLyp,s = 20 loglo(LZ“d) +
ENLos, where f. is the carrier frequency, c is the speed of
light, and &1,5 and €n1,05 are environment-related constants
[21]. Hence, we utilize the average path loss to characterize
the path loss between the drone and the IoT GW, which
is defined as PL = Pr(LoS) x PLp,s + Pr(NLoS) x
PLnpos. Therefore, the drone i’s data transmission rate can
be calculated by

piG;
P = H/ 1 1 R 1
where G is the wireless channel gain between drone ¢ and

PL

the IoT GW and is calculated as G; = 10~ 10 ; p; is drone
1’s wireless transmission power; W is the system bandwidth
and N is the noise power spectrum density.

ai(t)Gi
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B. Drone’s Energy Consumption

A drone’s energy is consumed for the drone’s wireless
data communications and hovering in the air [22]. A drone’s
energy consumption for hovering is not related to its wireless
transmission power and is usually a fixed number over
different equal-length time epochs [22], and hence does not
affect the results of our power control optimization problem.
Hence, we only include the energy consumption for wireless
data transmissions in our objective function. Drone ¢’s energy
consumption for transmitting collected data can be expressed
as [23]
pils

= = (3)
i Wlog2(1+]’\’;o—Gw;)

il
E; =pT; = P

where T; is the time duration for drone ¢’s data transmission,
l; is the data size of drone i’s collected data, and r; is the
drone 4’s data transmission rate from Eq. (2).

C. Rechargeable Drone Battery

We assume that all drone batteries are rechargeable in our
system. The charged energy can be stored in the battery
and used for future data transmission [24]. The charging
process can be implemented by controllable energy harvest-
ing technologies (e.g., RF energy harvesting) in a charg-
ing station [19] as shown in Fig. 1. We denote b(t) =
[b1(t), b2(t),...,bn (t)] as the states of drone batteries, where
b;(t) € [0, B™*"] is drone ¢’s battery level at the beginning of
time epoch ¢t and B™®” is the battery capacity of each drone.
At each epoch t, if the battery level of drone ¢ is smaller than
the energy consumption of data transmission E;, the battery
should be charged to its fullest B™**. Otherwise, the data
transmission uses the existing energy in the drone’s battery.
We utilize a binary variable z;(t) € {0, 1} to indicate whether



drone i’s battery is charged or not at time epoch t. x;(t) is
then given by

i(t) = {

If drone ¢ is charged at epoch t, its battery energy level
becomes B™%* — F;(t) at the beginning of epoch t + 1.
Otherwise, the battery energy level becomes b;(t) — F;(t).
Hence, drone i’s battery energy level evolves based on

bi(t + 1) = [B™* — Ei(t)]i(t) + [bi(t) — Ei(D)](1 — (1))
= b;(t) — E(t) + [B™ — bi(t)]ai(t). s

If drone ¢ is charged at epoch ¢, it consumes F;(t) battery
energy for data transmission and w energy of the
charging station, where p; is the energy flarvesting efficiency
to measure how much energy consumed in the charging
station can be transformed into the drone’s battery [5]. The
system energy cost consists of the energy cost from all
drones’ batteries and the charging station. Therefore, the
system energy cost F*¥5(t) at time epoch ¢ can be calculated
as

1, if bl‘(t) < Ei(t),
0, otherwise.
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where c; and cy are the coefficients of the drone’s and charg-

ing station’s energy consumption respectively to measure the

importances of these two parts [19]. In practice, ¢; and c

can be considered as the energy cost per joule of drone’s

battery and charging station, respectively.

i
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IV. PROBLEM FORMULATION

We formulate the power control problem in IoD networks
for sensing service in this section. /N drones are deployed
to collect information which is then sent to the IoT GW
for further processing. Our aim is to minimize the average
system energy cost of all drones while satisfying the QoS
requirements. The problem is then formulated as

1 oo
P0: min— E®Y3(t) @)
pi(t) T —1
st. pi(t) < P™ VieN,te€{0,1,2...}, (8)
i(1)Gy(t )
Wlog,y (1 + M) >R Vie N,te{0,1,2..}.
NoW
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Eq. (7) is the objective function to minimize the average
system energy consumption. Eq. (8) defines the maximum
wireless transmission power p". Eq. (9) is the QoS constraint
to impose each drone’s wireless transmission rate to be no
less than the threshold R!".

Note that problem PO is non-convex, and hence it is
challenging to obtain the global optimal solution. Moreover,
problem PO at each epoch requires complete information of
different epochs (i.e., both the historical and future epochs)
to achieve global optimality because they are coupled with
each other through each drone’s battery level status and
energy consumption. However, such complete information
may be not available in practice, especially in a dynamic
network environment (e.g., changing IoT data, locations of
drones and wireless channel conditions); obtaining optimal
strategies in this case becomes intractable. We hence utilize
the reinforcement learning method to make decisions by inter-
acting with the environment. Specifically, the reinforcement
learning maps the environment states to optimal actions by
the learning experiences in order to minimize the generated
cost.

We define a Markov Decision Process (MDP) <
S, A, F,C > to model the power control process of our
work, which consists of the network state space S, associated
action space A, state transition (from one state to another)
probability density function F : & x A x § +— [0,00)
and cost functions C : § x A +— [0,00). In our system,
the network controller (i.e., IoT GW) observes the network
state s(t) in the current epoch ¢ and then determines the
corresponding action a(t) with continuous state space and
action space at the beginning of the epoch, while generating
a cost ¢(s(t), a(t)) at the end of the epoch. We define s(t) as
a set of two parts including all drone’s wireless transmission
rates and battery levels. Thus, the network state at epoch ¢
can be expressed as

s(t) = [ri(t),r2(t), ..., (t), b1 (t), ba(t), ..., b (1))

The action of the system a(t) determines the power control
strategy p;(t) of each drone and can be defined as

alt) = (11)

Note that the constraints in problem PO (i.e., Egs. (8) and
(9)) must be satisfied. We hence define the action space at
epoch t as

(10)

[p1(t+ 1), p2(t +1),....,pn(t +1)].

NoW
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A(t) = {p(t+1) | ( —1) < p;(t+1) < P™, Vi e N'}.

(12)
When the network is in state s(¢) and action a(t) is chosen
as the power control action, the generated cost c¢(s(t),a(t))
at epoch t can be considered as the total system energy cost,

ie.,
c(s(t), a(t))

where E*Y%(t) can be obtained from Eq. (6).

The aim of the MDP model is to find an optimal power
control policy 7(s,a) = Pr{a(t) = a|s(t) = s}, which
indicates the probabilities of actions to take for a certain
state, with the objective to minimize the expected value of
discounted cost J(m) over all time epochs. We define the
expected value of the future discounted cost starting from
s(t) and a(t) (i.e., the state-action value function) as

—E{)_ 1 Oes()

= E5(t), (13)

a(t))}, (14)



where 7 € [0,1] is the discounted factor to measure the im-
portance of future cost. In extreme cases, we only minimize
the energy cost at current epoch ¢ when v = 0 and the energy
costs of all epochs are equally important when v = 1. Then,
the objective of the MDP is to minimize the expected cost
J(m) from the start state, which can be expressed as [25]

J(m) = E{Q(s(0), a(0))}-

In order to solve the MDP model and obtain the optimal
policy m, the transition probabilities F are required to cal-
culate J(w). However, the exact value of F is difficult to
obtain because state space may be huge and requires large
computing resources to list all (s(t), a(t), s(t+1) samples in
reality. Moreover, the predefined state transition model may
deviate from the actual dynamic network conditions. Hence, a
model-based MDP solutions may not be practical to solve the
MDP model and we thus utilize a model-free reinforcement
learning method to solve this problem [11].

Another challenge of MDP is the curse of model dimen-
sion, i.e., the computational complexity greatly increases with
the size of state and action spaces. Hence, it is impossible to
explicitly represent each (s, a). Therefore, we utilize the
deep neural network to estimate the state-action values [11].

15)

V. DEEP ACTOR-CRITIC REINFORCEMENT LEARNING

In this section, we describe the deep actor-critic reinforce-
ment learning method to obtain the power control policy
of our problem with the objective to minimize the average
system energy consumption. The actor-critic reinforcement
learning method is considered as an efficient tool to solve
problems with continuous action spaces and deep neural
networks are used to learn policies [26]. In reinforcement
learning, a controller (i.e., IoT GW) optimizes its policy by
interacting with the environment and generates a cost after
taking the action to minimize the total accumulated cost.

Deep actor-critic reinforcement learning combines two
deep neural networks (i.e., actor and critic). The actor learns
the parameterized policy while the critic approximates the
state-action value function and evaluates the policy obtained
from the actor. Specifically, the actor uses parameterized
function 7y(s) to produce continuous action for specific
state s, where 1) is the parameter of the actor’s deep neural
network. The critic evaluates the actor’s policy by adapting
the parametrized state-action value function Qg(s,a) and
update its parameter € by temporal difference method [27],
where 6 is the parameter of the critic’s deep neural network.
Then, the actor’s policy parameters can then be updated
according to the critic’s state-action value function Qg (s, a)
by policy gradient method [11].

A. Policy Gradient Method (Actor)

The actor utilizes the policy gradient method which pro-
duces continuous actions by parameterized policy and updates
the parameter ¥ by the gradients of the objective function
J(m) defined in Eq. (15). The gradient of the objective
function VyJ(my) can be calculated as follows:

aJ (71' 19) on 9

Vod(my) = ——=

arg 09 E{V.Qo(s, a)Vyms(s)},

(16)

where Qy(s,a) is from the critic. Then, the parameter v}
of the actor’s deep neural network is updated by ¥ = 9 +
waVyJ(my), where w, is the actor learning rate.

Algorithm 1:

Learning
Input : va R'Eha VV7 NOa Gia li7 dﬂ—(s)7 Wa, We, Y, T
Output: policy 7

Deep Actor-Critic Reinforcement

1 Initialize actor neural network 7y (s) and critic
neural network Qg (s, a);

2 Initialize actor and critic target networks 7 (s) and
Q:g/ (Sa a);

Initialize epoch ¢ = 0;

Initialize state s(0);

for each time epoch t do

Calculate action a(t) based on the actor neural
network my(s);

Observe network state s(t + 1);

8 Generate cost ¢(s(t), a(t));

9 Store transition

< s(t),a(t),c(s(t),a(t)),s(t+ 1) > in the

replay buffer;

[ N7 B~

=

10 Sample a mini-batch of transitions from the
reply buffer;

11 Update the critic neural network by temporal
difference method;

12 Update the actor neural network by policy
gradient method;

13 Update the target actor and critic networks by

0 =70+ (1—7)0 and ¥ =79+ (1 —7)9;
14 end

B. Temporal difference Method (Critic)

The critic evaluates the policy my(s) from the actor and
then utilizes the temporal difference method to update the
parameters 6 of the critic’s deep neural network. The temporal
difference error 6(t) is usually used as a measurement to
predict the state-action value function and can be calculated
as [11]

0(t) =c(s(t+1),a(t+1))

+7Qo(s(t + 1), a(t +1)) — Qu(s(t), a(?t)),
where ¢(s(t+1),a(t+1))+vQo(s(t+1), a(t+1)) is defined
as the target value. The parameter 6 is then updated according

to the temporal difference error in a gradient descent manner,
ie.,

(a7

0t +1) = 0(t) + wed(t)VoQo(s(t), alt)),

where w, is the learning rate of the critic.

Since the updated critic’s neural network Qg (s, a) is also
used in calculating the target value in Eq. (17), this may
cause conflict in the calculation and update processes [26].
Hence, we create a copy of the critic network (i.e., target
critic network) Q;), (s,a) to calculate the target value in Eq.
(17). The target network is updated by 6" = 70 + (1 — 7)6’,
where 7 < 1 is to slowly change the target network so that
the stability of learning can be improved [26]. Similarly, we

(18)



create a target actor network 7T:9/ (s) and update its parameter
by 0 =70+ (1—7)9.

C. Replay Buffer

The replay buffer is a finite sized first-in-first-out cache to
store transitions < s(t), a(t), c(s(t), a(t)), s(t + 1) > from
past experiences. When the replay buffer is full, the oldest
transitions are discarded. At each time epoch, the parameters
¢ and 0 of the actor and critic are updated by sampling a
minibatch of the transitions in the replay buffer to train the
actor and critic’s neural networks.

The detailed process of the deep actor-critic reinforcement
learning algorithm is delineated in Alg. 1. Lines 1-2 initialize
the actor and critic neural networks and target actor and critic
neural networks. Lines 5-14 calculate the policy for each time
epoch and update all actor and critic networks. Line 6 gets the
action a(t) according to my(s). Line 9 stores the transition
in the replay buffer. Line 10 samples a mini-batch from the
reply buffer which is used for updating the critic and actor
neural networks in Lines 11-12. The target actor and critic
networks are updated in Line 13.

VI. PERFORMANCE EVALUATION

Table I. Summary of simulation parameters.

Parameter Value

Area 1000 m x 1000 m
Number of drones N 30

Number of BSs M 5

Drone flying height H 500 m

System bandwidth W 10 MHz

Noise power density No -174 dBm/Hz

BS backhaul date rate B 500 Mbps

Data size of drones [ 1.0 Mb ~ 4.0 Mb
Maximum wireless transmission power p | 3 W

Energy harvesting efficiency p 20%

Battery capacity B"%* 100 J

We evaluate the performance of our deep actor-critic
reinforcement learning algorithm (denoted as “Actor-critic’)
in this section. We compare our proposed algorithm with ex-
isting greedy algorithm (denoted as “Greedy”) in [17] where
power control optimization is operated only within each time
epoch and considers neither the past nor the future epochs.
We also utilize the existing work [28] as our comparison
algorithm, where the power control is not considered and
the wireless transmission power is fixed (denoted as “No-
power-control”). In No-power-control, we set each drone’s
transmission power as the minimum power to satisfy the QoS
requirement in Eq. (9).

In our simulations, we consider a 1000 m x 1000 m area,
where the IoT GW is located at the center of the area.
30 drones are randomly distributed in the area to collect
information from the ground. The height of the flying plane
is 500 m, where all drones fly in the plane. The parameters «
and 3 for calculating Pr(LoS) are 9.6 and 0.28, respectively.
The speed of light ¢ is 3 x 10% m/s. The carrier frequency f.
is 2 GHz. The parameters {1,s and £nxr,s for calculating
the path losses PL;,s and PLyr.s are 1 and 20 dB,
respectively. Note that the above drone-related parameters are
inspired by [20]. The system bandwidth W is 10 MHz and
the noise power density Ng = —174 dBm/Hz. The data size
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2 5C71 —— No-power-control
| —— Greedy

0.3
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Fig. 2. Average energy cost after convergence vs number of drones.
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Fig. 3. Average energy cost vs time epochs.

collected by drones are randomly distributed from 1.0 to 4.0
Mb. The drone’s maximum transmission power P, = 3 W.
The QoS requirement of each drone is 100 Mbps. The battery
capacity of each drone B™*® = 100 Joule. The energy
harvesting efficiency is p is 20% [5]. In Actor-critic, both
the actor and critic’s deep neural networks contain 2 hidden
layers and 64 nodes for each layer.

Fig. 2 evaluates the average system energy cost after
convergence with different numbers of drones ranging from
10 to 40. The average energy costs of all the three algorithms
increase with the number of drones because deploying more
drones implies that more energy may be consumed for
wireless data transmissions and battery charging. Actor-critic
generates the least average energy cost as compared with No-
power-control and Greedy. Actor-critic performs better than
No-power-control because it adjusts drones’ wireless trans-
mission power and hence helps reduce the energy consump-
tion. Actor-critic generates lower energy cost than Greedy
because it utilizes the past experiences to train the neural
networks and hence improves its performance. Moreover,
Greedy performs better than No-power-control because it
optimizes the power control policy to minimize the energy
cost for each time epoch.

Fig. 3 compares the average energy costs of Actor-critic,
No-power-control and Greedy within the first 50 time epochs.
All the three algorithms converge after several steps. Among
the three algorithms, Actor-critic generates the least average
energy cost, the next is Greedy, and No-power-control the
most for the similar reasons in Fig. 2.

We then explore impacts of different parameters on the
Actor-critic’s performance in Fig. 4. Fig. 4(a) investigates
the impact of different actor learning rates on average cost.



We compare the three values of actor learning rates including
0.001, 0.01 and 0.1. We can observe in Fig. 4(a) that a smaller
actor learning rate achieves better performance because a
larger actor learning rate may result in local optimum. Fig.
4(b) illustrates the Actor-critic’s average energy costs with
different critic learning rates including 0.001, 0.01 and 0.1.
Similar to Fig. 4(a), a smaller critic learning rate generates
less average energy cost. Fig. 4(c) compares the Actor-critic’s
average energy costs with three different numbers of neurons
including 64, 256 and 1024. Increasing the number of neurons
improves the complexity and hence the accuracy of neural
networks. Hence, Actor-critic with 1024 neurons achieves the
least average energy cost.
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VII. CONCLUSION

In this paper, we have investigated the power control
in time-varying IoD networks with wireless charging for
the data collection service. We have tried to optimize the
wireless transmission power of each drone at each time
epoch to minimize the system energy consumption. An MDP
model has been formulated to characterize the time-varying
IoD network status. Then, a deep actor-critic reinforcement
learning algorithm has been designed to obtain the power
control policy. We have demonstrated by simulations that our
designed algorithm performs better than the existing algo-
rithms, and the performances of our algorithm are affected
by actor and critic learning rates as well as the number of
neurons.
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