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Abstract: We show that background fringe-pattern subtraction is a useful technique for 
removing static noise from off-axis holographic reconstructions and can enhance image 
contrast in volumetric reconstructions by an order of magnitude. We demonstrate the 
fundamental principle of this technique and introduce some practical considerations that must 
be made when implementing this scheme. This work also shows an experimental verification 
of the background fringe subtraction scheme using various biological samples. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Digital off-axis holography is an imaging technique that is capable of capturing both the 
amplitude and phase of light using a single intensity image (hologram) [1]. It suffers from 
various types of noise, however, which include but are not limited to photon (shot and 
speckle) noise, and detector noise (dark noise, read noise, and quantization noise) [2]. 
Removal of the zero-order and twin-image terms is straightforward in off-axis holography 
[3], and much effort has been devoted to reducing residual noise in holographic 
reconstructions due to phase aberrations [4], astigmatism, spherical aberrations, and 
anamorphism [5-7]. However, one problem with off-axis holography is slight temporal 
variations, which make the extended background fringe and speckle pattern difficult to 
remove to deep levels without the use of computationally expensive methods. 

Here we present a computationally inexpensive method of removing the dominant static 
noise terms from off-axis holographic images. This method involves the background 
subtraction of raw holograms prior to numerical reconstruction. By only reconstructing the 
residual localized fringe packets remaining after subtraction of the background fringe pattern, 
noise contributions such as speckle are removed prior to propagation through the 
reconstruction process. A theoretical explanation of the approach is presented, as well as 
practical considerations when implementing this technique. Finally, processing of 
experimental data from cultures of bacterial and protozoa cells near the resolution limit of the 
instrument is shown, highlighting this technique’s utility. 

2. Principle of Operation 

Figure 1A and 1B show the optical schematic and laboratory image of a common path DHM 
instrument described in [8-10], which was used for the experimental data presented in this 
work. A coherent light source is collimated and passed through two identically sized 
microfluidic wells. One contains the object of interest while the other contains a reference 
liquid in order to match optical path lengths with the sample well. The sample and reference 
beams are then  
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order and twin image artifacts from the reconstructed images [3], the spatially filtered 
hologram that becomes reconstructed can be expressed as ܫோி = ܴ∗߳. 

3. Practical Considerations 

Background subtraction of holograms is useful because any stationary artifacts in the image 
become attenuated, leaving only dynamic objects. If the background fringes of the hologram 
are stable, these fringes would be effectively removed from the resulting image, except for 
localized fringe ‘packets’ associated with any particle that has moved through the field of 
view of the hologram. This background subtraction technique vastly increases the signal to 
noise ratio of any dynamic particle in an image sequence, making it much easier for 
automated particle detection algorithm to detect particles of interest in space and time. We 
show here that rapid motion is not necessary for the method to work; movement as small as 
bacterial Brownian motion will suffice. 

Such a background subtraction technique requires a stable interferometer. Many sources 
of noise can introduce shifts in DHM fringes, causing them to drift across the field of view of 
the detector. These noise sources include but are not limited to speckle noise, temporal phase 
noise caused by uncorrelated variations between the two beams of the instrument, as well as 
changes in illumination wavelength from instabilities in the illumination source. These 
sources of noise introduce an upper limit on the timescales where the proposed background 
subtraction scheme is useful. As the background fringes shift, they will by definition become 
dynamic objects in the image, thus no longer being removed by the background subtraction 
scheme. 

The data used here was taken with a common-path off-axis DHM described previously 
[8], with parameters in Table 1. The valid timescales of this background subtraction technique 
were quantified by collecting holographic images as a function of time without a sample in 
the field of view of the instrument. Temporally averaged holograms were calculated at 
various timescales through the hologram sequence. Fringe stability was inferred by 
calculating the average fringe visibility of the temporally averaged hologram. This is possible 
because if the fringes are absolutely stable (static), the temporally averaged hologram would 
equal the fringe pattern of each hologram in the sequence. As the fringe pattern begins to 
shift, they will by definition become dynamic artifacts in the image and thus not appear in the 
temporally averaged hologram. Figure 1C shows a plot of fringe stability as a function of time 
for the DHM instrument used throughout this work. The center line in the plot signifies the 
mean fringe visibility value while the dotted lines signify the 95% confidence interval value 
range. By defining the point of fringe decorrelation as the point in time when the fringe 
visibility decreases by -3 dB, the upper timescale that should be used for this background 
subtraction scheme is roughly 40 seconds. 

4. Experimental Procedure 

The DHM was used to image two strains of bacteria (Bacillus subtilis and Vibrio 
alginolyticus), as well as the protozoan, Euglena gracilis. A 1 mm deep well was filled with a 
dilution of the biological sample in minimal media. A ‘motility’ medium was used for B. 
subtilis which would not harm the organisms but hinder their growth (10 mM phosphate 
buffer pH 7.4, 10 mM NaCl, 0.1 mM EDTA, 0.1 mM glucose). Due to the marine origins of 
V. alginolyticus, a different minimal media recipe was used (50 mM Tris buffer, 300 mM 
NaCl, 5 mM MgCl2, 5 mM glucose). E. gracilis was diluted in spring water. Holographic 
images were recorded at a frame rate of 15 frames per second. Background image subtraction 
was performed with a timescale of 10 seconds (150 holograms). Both the raw holograms and 
background subtracted holograms were then spatially filtered and reconstructed via the 
angular spectrum method using either the commercial software KOALA (Lyncée Tec SA, 
www.lynceetec.com) or a Fiji-based plug-in developed by our group [3, 11, 12]. All bacterial 
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respectively). A pseudo-colored composite intensity reconstruction of a select E. gracilis using 
the raw hologram (E), and background fringe subtraction technique (F). Scale bar in (A) 
represents 50 μm for both (A and B). Scale bar in (E) represents 20 μm for both (E and F). 

Figure 4 shows a raw and background subtracted hologram of multi-wavelength DHM 
data containing E. gracilis (Figure 4A and 4B), and their respective Fourier spectra (Figure 
4B and 4C). Figure 4D and 4E show a pseudo-colored composite intensity reconstructed 
image of a select E. gracilis using the raw and background subtracted hologram, respectively. 
The use of background subtracted holograms for multi-wavelegnth DHM data dramatically 
reduces the need for other post-processing unique to multi-wavelength data such as white 
balancing. Furthermore, the reduction in noise enables sub-cellular features of the E. gracilis 
to be much more visible, namely, the stigma (eyespot) and nucleus.  

6. Conclusion 
A novel method of enhancing image contrast of intensity reconstructions of digital off-

axis holographic images is presented, including a theoretical justification, practical 
considerations in its implementation, and an experimental verification using biological 
samples. With roughly an order of magnitude of increased contrast provided by this method, 
standard image thresholding and clustering techniques become possible and enable high 
throughput and low computational overheard volumetric tracking. Furthermore, by 
conducting background subtraction on the raw holograms as opposed to the volumetric 
reconstruction, computational overhead is reduced proportionally to the number of axial 
planes reconstructed, potentially significantly decreasing computation times. 

It is critical to note that fringe stability is necessary for this approach to work. We 
implemented it using a common-path off-axis DHM designed to be stable against vibrations. 
With a traditional Mach-Zehnder interferometer, the fringes may not be stable on the 
timescales reported in this work. Thus, the fringe stability and resultant number of frames 
used for background fringe subtraction will need to be determined for each instrument and 
light source combination. 
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