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ABSTRACT
In this paper, we consider the problem of tracking noisy

two-dimensional level curves using only the instantaneous mea-
surements of the field, taken by two mobile agents, without the
need of estimating the field gradient. To do this, we propose a
dual-control-module structure consisting of the formation con-
trol and curve tracking modules. The former uses the linear
velocity of the agents to generate the angular velocities, which
are then used to maintain a constant distance between the two
agents. The latter uses the instantaneous field measurements to
generate the linear velocities of the two agents to successfully
track level curves. The modular approach decouples the prob-
lems of formation control and curve tracking, thus allowing the
seamless design of the two modules. We show that the proposed
dual-module control structure allows fast and accurate tracking
of planar level curves.

INTRODUCTION
The past couple of years have seen an increasing use of mo-

bile sensor networks that have been used to collect information
that is utilized for dynamic tracking of physical properties of
the surrounding environment. They are a reliable and highly
cost-effective means to monitor environmental changes for ex-
tended periods of time. Relatively few numbers of mobile sensor
networks may be used very efficiently to explore complex, ex-
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pansive, and remote environments, allowing applications in mo-
tion monitoring, sensor network platforms, and data dissemina-
tion and collection. [1–4] are a few works in this regard.

In recent years, the works in [5–8] have investigated the
problem of exploration of environmental boundaries. More
specifically, the approach in [9] dealt with the problem of
large-scale level curve tracking of noisy environmental scalar
fields by using multiple motile sensor platforms. Further, the
work in [10] builds on the above idea to develop a scheme to
track three-dimensional level curves by using filtering strate-
gies to estimate the field value at the formation center and using
Taubin’s algorithm [11] to estimate curvatures of the field lines.

Research has also been done in the area of gradient-free
tracking of planar level curves [12–21]. We generally have no
information about the field gradient, and estimating it is also dif-
ficult because we need simultaneous knowledge of the field val-
ues at multiple locations. Using a minimum number of mobile
sensors that have access to only the instantaneous values of the
field is therefore an attractive proposition.

In this paper, we propose a gradient-free modular approach
to the tracking of level curves in noisy scalar fields using two
unicycles. In doing so, we show how to achieve fast rates of
convergence to the desired level curve using no gradient in-
formation and minimum computational power. We propose a
dual-control-module structure that decomposes formation con-
trol and curve tracking as two different modules along the lines
of [22]. In the formation control module, the angular veloci-
ties of the two mobile robots are designed so as to maintain a
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fixed distance between them. In the curve tracking module, we
use the instantaneous values of the scalar field to develop a hy-
brid controller that allows us to track noisy level curves with-
out explicitly estimating the field gradient. The benefits of us-
ing such a dual-control-module structure are that the problem
of designing the linear and angular velocities are decoupled.
While the angular velocities deal only with formation control,
the linear speeds deal with the fast gradient-free tracking of noisy
two-dimensional level curves. We demonstrate two principal the-
oretical results.

The rest of the paper is organized as follows. We first talk
about the curve-tracking problem and its formulation. Then, we
perform a detailed analysis of the formation control module and
derive conditions for the closed loop stability and input-to-state
stability of the formation control dynamics. Finally, we intro-
duce the control law which we use in the curve tracking module,
and perform a detailed mathematical analysis of the stability and
convergence of the two-agent system to the desired level value.
We then present our simulation results and concluding remarks.

PROBLEM FORMULATION
We consider z(r) : R2 → R as a scalar field in a

two-dimensional space, where r ∈ R2 is the location. Ev-
ery location of the field corresponds to a scalar value of a
physical quantity such as light intensity, temperature or chemical
concentration. We have the following assumptions on the field:

Assumption 1. 1. The field z(r) is smooth with bounded val-
ues, that is, zmin ≤ z(r)≤ zmax, where zmin,zmax > 0.

2. The gradient
∥∥∇z(r)

∥∥ 6= 0 and is bounded, i.e., ρ1 ≤∥∥∇z(r)
∥∥≤ ρ2, where ρ1,ρ2 > 0.

Suppose γ(·) represents a simple, planar, closed, and regu-
lar curve in the field, parameterized using its arc length s. s = 0
defines the starting point for this curve, which we denote using
the point q0(s). The Frenet-Serret frame [23] in two dimensions,
(y0(s),x0(s)) is such that we have x0(s) as the unit tangent vector
to the curve and y0(s) as the unit normal vector to the curve. Let
κ(s) be the curvature of the curve such that κ(s0) gives the cur-
vature of the curve at s = s0. In such a scenario, the Frenet-Serret
equations give the relationship between the frame (y0(s),x0(s))
and the kinematic properties of the curve as

dx0(s)
ds

=−κ(s)y0(s), (1a)

dy0(s)
ds

= κ(s)x0(s). (1b)

FIGURE 1. Schema for the dual-module curve-tracking approach
proposed in the paper.

γ0 is called a level curve of a function z if z(γ0(·)) is a constant
function of s. Throughout this paper, we assume κ > 0, which
implies that the tangent vector x0 is moving clockwise.

We consider the problem of estimating the boundaries of the
field given by a particular level value by deploying two mobile
robots in the field. The kinematics of the two robots are given as
follows:

ẋi = vi cosθi, (2a)

ẏi = vi sinθi, (2b)

θ̇i = ωi, (2c)

for i = 1,2. (xi,yi) are the coordinates of the rotation center of
the i-th robot in the inertia frame, θi is the orientation angle, and
vi and ωi are the linear and angular velocities respectively of the
i-th mobile robot. We also assume that a ‘no-slip’ condition is
imposed on the wheels of each mobile robot, so that the mobile
robot cannot move sideways. This is a non-holonomic constraint.
We also define r1 and r2 to be the coordinates of the rotation cen-
ter of the two mobile robots. Also, let v1 and v2 denote the veloc-
ities of the two mobile agents. We relate r1,r2 to the coordinates

(xi,yi) defined in equation (2) as follows: r1 =

[
x1
y1

]
,r2 =

[
x2
y2

]
.

The mobile sensing agents are capable of taking measurements
of the field at their current locations. If we define y(ri), i= 1,2 as
the field value measured by the mobile robot i at its own rotation
center, then the measurement process can be written as:

y(ri) = z(ri)+w(ri), (3)
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for i = 1,2. w(ri) is assumed to be zero-mean white Gaussian
noise arising from the noisy measurements or from the drifting
level values of the field itself. We also assume that each mobile
agent has access to the measurements and relative positions of the
other agent. The measurements can be exchanged through wire-
less communication, and the relative locations of other agents
can be obtained through cameras, lasers, sonar, etc. Denote the
formation center of the agents by rc, where rc =

1
2 ∑

2
i=1 ri. The

velocity at the formation center vc is given by vc =
1
2 ∑

2
i=1 vi.

The fundamental problem we are looking to solve in this
paper is as follows:
Problem 1: Consider the motion of the formation center rc and
the following assumptions:

1. There exists a unique level curve γ0(s) passing through rc
along the trajectory of rc.

2. The curvature κ(s) of the level curve γ0(s) is bounded at
every point of the trajectory of rc.

Given a desired level value zd , design the linear and angular ve-
locities of the two mobile robots such that the following two ob-
jectives are met:

1. Formation Control: The separation between the robots is
maintained at a constant distance of d0.

2. Curve Tracking: The moving direction of the formation cen-
ter is aligned with the tangent direction of the desired level
curve and the formation center converges to the level curve
with value zd , moving along the curve γ0(s). In other words,
design v1 and v2, such that z(rc)→ zd as time t→ ∞.

We aim to design the control strategy without estimating the field
gradient to reduce the computational cost and the sensitivity to
noisy measurements. Furthermore, the control strategy should
allow the center of the formation to achieve a fast rate of con-
vergence to the level curve. In other words, the formation center
converges to a small neighborhood of a desired level curve in
finite time, which should be as short as possible.

For any physical wheeled robot, there is a limit to the
maximum moving velocity it can have. Further, we must have
smooth velocity input commands to the physical system to
allow the low-level controller to track the velocity commands
with sufficient accuracy. We therefore have the following
assumptions on the control inputs vi and ωi:

Assumption 2. 1. For i = 1,2, |vi| ≤ vmax and |ωi| ≤ ωmax,
where vmax > 0 and ωmax > 0 are the maximum allowable
values of the linear and angular velocities of the agents re-
spectively.

2. vi and ωi are sufficiently smooth.

Since, in the desired formation, ω1 = ω2 = v1−v2
2 , we also

assume ωmax >
vmax
d0 so that we can design the angular velocities

for any vi > 0 without the problem of saturation.

FIGURE 2. Schematic figure of the two unicycles and associated vari-
ables.

This paper proposes a two-module control strategy for the
efficient tracking of two-dimensional planar level curves. The
purpose of this dual-control-module structure is that it decouples
the problem of formation control and curve tracking into separate
modules, and gives us a streamlined solution of the problem. The
formation control module uses the linear velocities of the two
agents to design the angular velocities that keep the two-agent
system in formation, that is, at a constant known distance from
each other. The curve-tracking module on the other hand, uses
only the instantaneous field values to design the linear velocities
of the agents. This decoupling ensures that the angular velocities
are used exclusively for formation control, and the linear veloc-
ities are used for level curve tracking. The following sections
introduce the two modules in greater depth.

FORMATION-CONTROL MODULE
The formation control module takes in the linear velocities

of the two robots, v1 and v2, as inputs and generates the angu-
lar velocities ω1 and ω2 as outputs. The desired formation as
seen from Fig. 2 has d = d0, ϕ1 = π/2 and ϕ2 = −π/2. This
formation is where the two robots move in parallel with a con-
stant distance of d0 between them, regardless of their individual
velocities.

The dynamics of the variables d, ϕ1, and ϕ2 are given by:

ḋ =−v1 cosϕ1− v2 cosϕ2,

ϕ̇1 =
v1 sinϕ1 + v2 sinϕ2

d
+ω1,

ϕ̇2 =
v1 sinϕ1 + v2 sinϕ2

d
+ω2.

(4)
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where v1 = ‖v1‖, v2 = ‖v2‖. To design a backstepping controller,
define the tracking error variables

Dd = d−d0,

D1 = cosϕ1− kd
2

(
d−d0) ,

D2 = cosϕ2− kd
2

(
d−d0) , (5)

where kd > 0 is a positive gain. Following the same approach
used in [22], we take derivatives of (5), keeping in mind (4), to
obtain:

Ḋd =−kd
( v1+v2

2

)
Dd− v1D1− v2D2,

Ḋ1 =−sinϕ1

(
v1 sinϕ1+v2 sinϕ2

d +ω1

)
+ kd

2 (v1 cosϕ1 + v2 cosϕ2) ,

Ḋ2 =−sinϕ2

(
v1 sinϕ1+v2 sinϕ2

d +ω2

)
+ kd

2 (v1 cosϕ1 + v2 cosϕ2) .

(6)
Choosing

ω1 =
kd

2sinϕ1
(v1 cosϕ1 + v2 cosϕ2)− v1 sinϕ1+v2 sinϕ2

d + kD1D1,

ω2 =
kd

2sinϕ2
(v1 cosϕ1 + v2 cosϕ2)− v1 sinϕ1+v2 sinϕ2

d + kD2D2,

(7)
where kD1 ,kD2 > 0 gives us the closed-loop dynamics

Ḋd
Ḋ1
Ḋ2

=

−kd
v1+v2

2 −v1 −v2
0 −kD1 0
0 0 −kD2


︸ ︷︷ ︸

A

Dd
D1
D2

 . (8)

We then introduce the following proposition, which is the main
result of this section:

Proposition 1. The closed-loop linear dynamics (8) is globally
exponentially stable if (v1+v2)≥ 2ν where ν > 0 is an arbitrar-
ily small positive quantity.

Proof. The matrix A as defined above is upper-triangular. We
use a well-known result from linear algebra which states that the
eigenvalues of a square upper-triangular matrix are the entries on
its principal diagonal. Since kD1 and kD2 are defined to be posi-
tive, if v1+v2

2 ≥ ν , ν > 0, the eigenvalues of A are all negative.
Since the system is linear, the stability property is also global.
This proves our proposition. �

We have shown that the system (8) is globally exponentially
stable within a small neighborhood of the configuration d = d0,
ϕ1 = π/2, and ϕ2 = −π/2, or, formally, when (d,ϕ1,ϕ2) ∈
Bε ′(d0,π/2,−π/2), where Bε ′ denotes an open ball of radius
ε ′ centered at (d0,π/2,−π/2).

To study the input uncertainty rejection capability of the
controller, we define ∆v1 , ∆v2 , ∆ω1 , and ∆ω2 to be the uncer-
tainties on the velocity inputs. Assume that the H∞ norms of
all of the above are bounded from above, where we define the
H∞ norm of ∆v1 (and hence all the other uncertainty terms) as
‖∆v1‖∞ , sup |∆v1 |. Looking at these uncertainties as virtual in-
puts, we can write:

Ḋd
Ḋ1
Ḋ2

= A

Dd
D1
D2

+B


∆v1
∆v2
∆ω1
∆ω2

 , (9)

where

A =

−kd
v1+v2+∆v1+∆v2

2 −v1−∆v1 −v2−∆v2
0 −kD1 0
0 0 −kD2

 , (10a)

and

B =


0 −2sin2 ϕ1+kdd cosϕ1

2d
−2sinϕ1 sinϕ2+kdd cosϕ1

2d

0 −2sinϕ1 sinϕ2+kdd cosϕ2
2d

−2sin2 ϕ2+kdd cosϕ2
2d

0 −sinϕ1 0
0 0 −sinϕ2


T

. (10b)

We will now try to show that the system (9) is input-to-state sta-
ble with respect to the terms ∆v1 , ∆v2 , ∆ω1 , and ∆ω2 . The defini-
tion of input-to-state stability which we use is as follows:

Definition 1. The system ẋ = f (t,x,u) is said to be input-to-state
stable if there exist a class K L function β and a class K
function γ such that for any initial state x(t0) and any bounded
input u(t), the solution x(t) exists for all t ≥ t0 and satisfies
‖x(t)‖ ≤ β (‖x(t0)‖, t − t0) + γ

(
supt0≤τ≤t ‖u(τ)‖

)
. This defini-

tion of input-to-state stability is taken from Definition 4.7 in [24].

To prove input-to-state stability for (9), we use the following
lemma:

Lemma 1 (Lemma 4.6 in [24]). Suppose f (t,x,u) is continu-
ously differentiable and globally Lipschitz in (x,u), uniformly in
t. If the unforced system f (t,x,0) has a globally exponentially
stable equilibrium, then ẋ = f (t,x,u) is input-to-state stable.

We then have the following proposition:

Proposition 2. The system (9) is input-to-state stable with re-
spect to the disturbance uncertainties ∆v1 , ∆v2 , ∆ω1 , and ∆ω2 .

Proof. The system (9) reduces to (8) when we consider no dis-
turbance inputs. We have already shown that the system (8) has
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FIGURE 3. Summary of possible cases that may arise when the
2−agent unicycle formation is trying to track a level curve. Ξ denotes
the angle between N0 and q0. Case 1 of the algorithm applies to the
first figure, and case 4 applies to the second figure. As is clear from the
figures, Ξ is acute in the Case 1 state and obtuse in the Case 4 state.

a globally exponentially stable equilibrium point. In addition, all
the terms in A are continuously differentiable. The partial deriva-
tives of the system (9) with respect to Dd ,D1, D2, ∆v1 , ∆v2 , ∆ω1 ,
and ∆ω2 are globally bounded uniformly with time, as ∆v1 , ∆v2 ,
∆ω1 , and ∆ω2 are H∞ bounded. This proves the globally Lips-
chitz property of (9), and therefore input-to-state stability follows
immediately. �

CURVE-TRACKING MODULE

The purpose of the curve-tracking module, as is clear from
Fig. 1 is to take as input the noisy level values at the positions
of the agents (denoted by y(r1) and y(r2)) and use these two
measurements to design the forward velocities v1 and v2 of the
agents without estimating the field gradient. That the unicycle
dynamics is controllable is a well-known result in the literature.
For the sake of notational simplicity, the noisy measurements of
the field by the sensors will henceforth be denoted by y1 and y2
instead of y(r1) and y(r2). Further, we define yc = (y1 + y2)/2.
Under Assumption 1, yc gives us a satisfactory estimate of the
level value at the formation center without having to install a
third sensor.

Assuming that the two robots are already in formation, with
d = d0, ϕ1 = π/2 and ϕ2 = −π/2, in this section, we design v1
and v2 satisfying v1 + v2 ≥ 2ν such that the moving direction of
the formation center is first aligned with the tangent direction to
the level curve and the formation center converges to and tracks
the level curve having a desired level value zd . We first design our
hybrid (switched) control law to do the same, and then proceed
to prove global asymptotic stability of our switched controller.

Design of the Control Law
We are given that the two mobile robots communicate and

each one has access to the measurements and relative positions of
the other robot. We propose the following simple hybrid control
law:

v1− v2 =
vmax

2
sgn(ẏc)(1+ sgn(ẏc(yc− zd))) , (11)

where ẏc =
dyc
dt and the signum function sgn(·) is defined as fol-

lows:

sgn(x) =

−1, if x < 0,
0, if x = 0,
1, if x > 0.

The switched controller as written in the above concise form may
be difficult to understand. To intuitively understand its working,
we expand our control law on a case-by-case basis. This gives us
the following detailed form of the controller:

1. If ẏc > 0 and yc− zd > ε

{
v1 = vmax,

v2 = 0.
(12a)

2. If ẏc > 0 and yc− zd <−ε

{
v1 = vmax,

v2 = vmax.
(12b)

3. If ẏc < 0 and yc− zd > ε

{
v1 = vmax,

v2 = vmax.
(12c)

4. If ẏc < 0 and yc− zd <−ε

{
v1 = 0,
v2 = vmax,

(12d)

where ε ≥ 0 is an arbitrarily small positive quantity. The above
equations essentially detail a hybrid controller with four switch-
ing modes, and form the basis of the curve-tracking module. The
speeds v1 and v2 are taken from the set {0,vmax}. A simple
substitution of the cases of equation (12) into the equation (11)
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shows that (v1− v2) = vmax for case 1, v1− v2 = 0 for cases 2
and 3, and v1− v2 =−vmax for case 4, as required.
Physically, the working of the controller can be understood if we
approximate the time derivative in the term ẏc using a first-order
Newton-Gregory backward difference formula. We then have
ẏc(t) ≈ yc(t)−yc(t−1)

t−(t−1) = yc(t)− yc(t− 1). The way the controller
works is as follows: We use the difference between the field value
at the formation center at any instant of time and the field value at
the formation center at the previous instant of time, and the max-
imum velocity of the two robots to make them converge to the
level curve and keep them moving along the same when conver-
gence has been achieved. Both the robots are imparted a velocity
of vmax either when heading towards the level curve or tracking
it. If, at any point of time, the formation moves away from the
level curve, only one of the robots is imparted a velocity of vmax
to make the formation turn.

The four cases above can also be split into two modes, based
on the behavior of the controller. Cases 2 and 3 define the ‘seek-
ing’ mode, where the two-agent system first seeks the boundary
of the desired level curve to be tracked. Cases 1 and 4 define the
‘tracking’ mode, where the two-agent system moves along the
level curve, while tracking its perimeter.

The control law above describes behavior typical of hybrid
control systems. The system dynamics is characterized by both
continuous and discrete behavior, the former taking over when
the system is in a particular mode, and the latter taking over when
the system switches modes. To derive the dynamics of the system
in each mode, define the unit vector pointing towards the direc-
tion of the tangent to the curve at the center of the formation as
N0, and the unit normal and tangential vectors (with respect to
the formation) at the formation center to be n0 = n1 = n2 and
q0 = q1 =−q2 respectively. We also assume our state variables
to be the field value at the formation center in the absence of
noise, zc, and the angle between N0 and n0, that is NT

0 n0. In the
absence of noise, the dynamical equation for the field value at
the formation center is given by żc =

∂ zc
∂rc
· ṙc = ∇zc ·vc.

Analysis of Stability and Convergence
In what follows, we will assume the complete absence of

noisy measurements or corrupted field values. In other words,
we assume w(ri) ≡ 0 in equation (3). This allows us to write zc
in place of yc, and z1,z2 in place of y1,y2.

It is obvious that when formation control has been achieved,
the speeds v1 and v2 are in the same direction. This means we
can write the speed at the formation center as vc = (v1 + v2)/2.
We then introduce the following lemmas, required in proving the
global asymptotic stability of our switched controller.

Lemma 2. NT
0 n0 rises to a value greater than b, where b∈ (0,1),

in finite time, and stays in the interval (b,1] thereafter if the
second-order spatial derivatives of the scalar field are suffi-

ciently small compared to ‖∇zc‖2. In other words, the moving
direction of the formation is roughly aligned with the direction
of the tangent to the level curve at the formation center.

Proof. The way N0, n0, n1, n2, q0, q1, and q2 have been defined

above allows us to write N0 =−
Rπ/2∇zc

‖∇zc‖2
, where Rπ/2 is the ma-

trix of 90◦ anticlockwise rotations, that is Rπ/2 =

[
0 −1
1 0

]
. We

also have q0 =
r2− r1

d0 . We derive:

ṄT
0 n0 =−

v1 + v2

2‖∇zc‖2
nT

0 RT
π/2

[
zxx zxy
zxy zyy

]∣∣∣∣∣
rc

n0

+
v1 + v2

2‖∇zc‖3
2

nT
0 RT

π/2

[
z2

xzxx + zxzyzxy z2
xzxy + zxzyzyy

z2
yzxy + zxzyzxx z2

yzyy + zxzyzxy

]∣∣∣∣∣
rc

n0, (13)

and

NT
0 ṅ0 =

(
v1− v2

2

)
NT

0 q0

=

(
v1− v2

2

)
sgn(NT

0 q0)
√

1− (NT
0 n0)2,

=

(
v1− v2

2

)
sgn

(
(∇zc)

TRT
π/2(r1− r2)

d0‖∇zc‖2

)√
1− (NT

0 n0)2,

(14)

where zx =
∂ z
∂x ,zy =

∂ z
∂y ,zxx =

∂ 2z
∂x2 ,zxy =

∂ 2z
∂x∂y , and zyy =

∂ 2z
∂y2 .

Next, consider the time-derivative of NT
0 n0:

d(NT
0 n0)

dt
= ṄT

0 n0 +NT
0 ṅ0. (15)

The term ṄT
0 n0 is sufficiently small since the second-order spa-

tial derivatives of the scalar field are sufficiently small as com-
pared to ‖∇zc‖2, as already assumed. Let us now consider
the term NT

0 ṅ0. There always exists b ∈ (0,1) such that when
NT

0 n0 < b, |NT
0 q0| >

√
1−b2. Under the proposed control law,

we also have v1−v2
2 = vmax

4 sgn(żc)(1+sgn(żc(zc−zd))), and zc 6=
zd . Therefore, we have NT

0 ṅ0 =
vmax

4 ϒ

√
1− (NT

0 n0)2, where

ϒ = sgn(żc)(1+ sgn(żc(zc− zd)))sgn

(
(∇zc)

TRT
π/2(r1− r2)

d0‖∇zc‖2

)
.

(16)
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Finding the value of ϒ for cases 2 and 3 of the control law is
relatively straightforward since for both these cases sgn(żc)(1+
sgn(żc(zc − zd))) = 0 and hence ϒ = 0. The situation is a
bit more involved for cases 1 and 4. We refer to Fig. 3 for
the possible cases that can arise and focus on the numerator
of the argument of the final signum function in equation (16).
((∇zc)

TRT
π/2(r1− r2)) is just a scaling of the angle between the

vectors N0 and q0. The angle between N0 and q0 (labeled Ξ

in Fig. 3) is seen to be acute for case 1 and obtuse for case
4. This means that ϒ = 2 for both cases 1 and 4. Therefore,
d(NT

0 n0)
dt ≥ vmax

2

√
1−b2+ṄT

0 n0. The term ṄT
0 n0 has already been

assumed to be sufficiently small, and hence d(NT
0 n0)
dt > 0. There-

fore, NT
0 n0 rises above b and remains in the interval (b,1] there-

after. �

Next, following the approach used in [25], we define a func-
tion h(zc) satisfying the following assumptions, to be used in
proving convergence of the level value at the formation center
zc to the desired level value zd :

Assumption 3. 1. h(zc) is continuously differentiable on
(zmin,zmax) and f (zc) =

dh
dzc

is Lipschitz continuous.
2. f (zd) = 0 and f (z) 6= 0 if z 6= zd .
3. lim

z→zmin
h(z) = lim

z→zmax
h(z) = +∞. There also exists a z̃ such

that h(z̃) = 0.

We then have the following lemma, which establishes global
asymptotic stability for each of the four switched modes of our
hybrid controller (12):

Lemma 3. Define the closed (metric) annulus with ε > 0 cen-
tered at a point zd in a set M, Aε [zd ] = {zc ∈ M | zd − ε ≤
d(zc,zd) ≤ zd + ε} where the metric space (M,d) is any set M
equipped with the ordinary Euclidean distance function d. Un-
der the conditions of our discontinuous control law (12) and
lemma 2, the moving direction of the formation is first roughly
aligned with the direction of the tangent to the level curve at the
formation center. Once this alignment has been achieved, the
center of the formation converges globally to the level curve with
the level value zd asymptotically from the boundaries of the an-
nulus Aε [zd ].

Proof. Since this is a switched (hybrid) system, we use different
Lyapunov functions for the seeking and the tracking modes. We
handle the former first, since it is easier to prove. Indeed, for
the seeking mode (cases 2 and 3), convergence can be proved by
considering the Lyapunov function VS = 1

2 (zc− zd)
2. VS = 0

when zc = zd and VS > 0 when zc 6= zd . Also, VS is polynomial,
and hence continuously differentiable. The time-derivative of VS

along system trajectories is given by V̇S = (zc − zd)żc. From
cases 2 and 3, we have that when the 2−agent formation is in
the seeking mode, żc and (zc− zd) are of the opposite sign. This

gives V̇S < 0 and asymptotic stability of the equilibrium zc = zd
follows.

For the tracking mode (cases 1 and 4), we consider the Lya-
punov function VT = h(zc), where h(zc) satisfies Assumptions 3.
We then have V̇T = f (zc)żc. [25] gives an example of how to con-
struct such a function f . Following a similar approach, we define

f (zc) = Γ

((
zd
zc

)2
−1
)

, where Γ > 0 is a constant. The cor-

responding function h(zc) can be obtained by integrating f (zc).

This yields h(zc) = Γ
∫ (( zd

zc

)2
−1
)

dzc = −Γ

(
z2
d

zc
+ zc

)
+C,

where C is the constant of integration. Since there exists a
z̃ ∈ [zmin,zmax] such that h(z̃) = 0 according to Assumption 3,

we have −Γ

(
z2
d
z̃ + z̃

)
+C = 0, and, h(zc) = −Γ

(
z2
d

zc
+ zc

)
+

Γ

(
z2
d
z̃ + z̃

)
. In the tracking mode, żc and (zc − zd) are of the

same sign. For case 1, (zc− zd) > 0. This means that f (zc) < 0
and V̇T = f (zc)żc < 0 since żc > 0. For case 4, (zc− zd) < 0.
This means that f (zc) > 0 and V̇T = f (zc)żc < 0 since żc < 0.
Hence, the field value at the formation center converges asymp-
totically to the desired value zd . It is also interesting to note here
that both the Lyapunov functions VS and VT , defined above, are
radially unbounded and therefore the equilibrium zc = zd is glob-
ally asymptotically stable in both cases. �

Now that stability has been established for each of the four
switched modes of the system, we proceed to prove global
asymptotic stability for the composite switched system. To do
that, we need the following lemma, introduced as follows:

Lemma 4 (Theorem 3.1 in [26]). Suppose that we are given a
family fp, p ∈ P, of (at least) locally Lipschitz functions from
Rn to Rn, where P = {1,2, · · · ,m} is some finite index set (typ-
ically a subset of a finite-dimensional linear vector space), and
where fp gives rise to a family of globally asymptotically sta-
ble systems ẋ = fp(x), p ∈ P, evolving on Rn, and a piecewise
constant switching function σ : [0,∞)→P. σ specifies at each
time instant t, the index σ(t) ∈P of the active subsystem. Also,
let Vp, p ∈ P be a family of corresponding radially unbounded
Lyapunov functions. Suppose that there exists a family of pos-
itive definite continuous functions Wp, p ∈ P with the property
that for every pair of switching times (ti, t j), i < j such that
σ(ti) = σ(t j) = p ∈ P and σ(tk) 6= p for ti < tk < t j, we have
Vp(x(t j))−Vp(x(ti)) ≤ −Wp(x(ti)). Then the switched system
ẋ(t) = fσ(t)(x(t)) is globally asymptotically stable.

We are now ready to state and prove our main result:

Theorem 1. The hybrid controller defined in (12) is globally
asymptotically stable.

Proof. We use the idea of lemma 4 in our proof. To prove this
theorem, we essentially need to show that both our Lyapunov

7 Copyright c© 2019 by ASME



functions VS and VT form a decreasing sequence for every pos-
sible pair of switching times, that is, (VS (zc(t j))−VS (zc(ti)))≤
−W1(zc(ti)) and (VT (zc(t j)) − VT (zc(ti))) ≤ −W2(zc(ti)) for
possible every pair of switching times (ti, t j), i < j, for positive
definite continuous functions W1 and W2.

FIGURE 4. One possible motion of the two mobile robots when they
are in the seeking mode. Note that for any possible pair of switching
times (ti, t j), i < j, we have |zc(t j)− zd |< |zc(ti)− zd |. The level curve
is shown in black.

Consider the difference

VS (zc(t j))−VS (zc(ti)) =
1
2
(zc(t j)− zd)

2− 1
2
(zc(ti)− zd)

2,

(17)

=
1
2
(d2

j,zd
−d2

i,zd
).

where d j,zd = |zc(t j)− zd |, di,zd = |zc(ti)− zd |. We introduce
the absolute value of the difference between the level value
at the formation center and the desired level value because
the formation center can seek the level curve from both inside
and outside its boundary. As is clear from Fig. 4, under the
assumptions of our control law, we find that in the seeking
mode (case 2 or case 3), the two-agent system first seeks
the boundary of the level curve that is desired to be tracked.
This means that for any i < j, d j,zd ≤ di,zd , since the for-
mation center continually moves towards the level curve.
So we conclude that VS (zc(t j)) − VS (zc(ti)) ≤ 0, and the
sequence {VS (zc(tn))}∞

n=1 is a decreasing sequence. Also,
for Γ > 0, zc(ti),zc(t j),zd > 0, we have that the difference
VT (zc(t j))−VT (zc(ti)) ≤ 0. The above inequality can be sim-

plified to
z2

dzc(ti)− z2
dzc(t j)+ zc(ti)z2

c(t j)− z2
c(ti)zc(t j)

zc(ti)zc(t j)
≥ 0,

which is equivalent to saying that −z2
d(zc(t j) −

zc(ti)) + zc(ti)zc(t j)(zc(t j) − zc(ti)) ≥ 0, or that (zc(t j) −

FIGURE 5. Motion of the 2−agent unicycle system for tracking noisy
level curves with zd = 200 for the scalar field f1(x,y) = x2 + 8y2. The
asterisks denote the initial starting positions of the two unicycles.

zc(ti))(zc(ti)zc(t j)− z2
d)≥ 0 which is true if

(zc(t j)− zc(ti))(z2
d− zc(ti)zc(t j))≤ 0. (18)

Now, for every pair of switching times (ti, t j), i < j, for case 1 of
the tracking mode, we have żc ≥ 0 from the control law, which
implies that (zc(t j)− zc(ti)) ≥ 0, or zc(t j) ≥ zc(ti). Multiplying
both sides of this inequality by zc(ti) (which is positive, and pre-
serves the sign of the inequality) gives us zc(ti)zc(t j) ≥ z2

c(ti).
Also, from the control law in case 1, we have zc− zd ≥ ε ≥ 0.
So we can write zc(ti)zc(t j)≥ z2

c(ti)≥ z2
d . So z2

d ≤ zc(ti)zc(t j), as
required by (18). Similarly for case 4 of the tracking mode, we
have żc ≤ 0 which implies that (zc(t j)− zc(ti)) ≤ 0, or zc(t j) ≤
zc(ti). Multiplying both sides of this inequality by zc(ti) (which
is positive, and preserves the sign of the inequality) gives us
zc(ti)zc(t j) ≤ z2

c(ti). Also, from the control law in case 4, we
have zc − zd ≤ −ε ≤ 0. Hence, zc(ti)zc(t j) ≤ z2

c(ti) ≤ z2
d . So

z2
d ≥ zc(ti)zc(t j), again, as required by (18). Thus, VT (zc(t j))−

VT (zc(ti)) ≤ 0, and the sequence {VT (zc(tn))}∞
n=1 is a decreas-

ing sequence. This completes the proof, and our switched con-
troller is globally asymptotically stable. �

SIMULATION RESULTS
The performance of our control algorithm is tested first on

an ellipse (which has degree two), and then on an algebraic curve
having degree four.

Figures 5 and 6 show the performance of our algorithm on
noisy level curves of the ellipse z = f1(x,y) = x2 + 8y2. We
track level curves having a desired level value zd = 200. In
Fig. 5, the red rectangles denote the two unicycles, the black
asterisks denote the starting point for the two unicycles in the
plane, and the black dots denote the position of the formation
center as it evolves with each time step. Noise has been incorpo-
rated into the simulation by adding normally distributed random
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Increased curvature and sharp gradient
changes cause slight decrease in
performance

FIGURE 6. Evolution of tracked level value at the formation center
with time for a 2−agent unicycle system tracking noisy level curves
with zd = 200 for the scalar field f1(x,y) = x2 +8y2.

FIGURE 7. Motion of the 2−agent unicycle system for tracking noisy
level curves with zd = 200 for the scalar field f2(x,y) = (x2 + y2)2−
4x2− y2. The asterisks denote the initial starting positions of the two
unicycles.

Increased curvature and sharp gradient
changes cause slight decrease in
performance

FIGURE 8. Evolution of tracked level value at the formation center
with time for a 2−agent unicycle system tracking noisy level curves
with zd = 200 for the scalar field f2(x,y) = (x2 + y2)2−4x2− y2.

numbers drawn from the standard normal distribution N (0,1)
to each field value. We use the following values for the con-
stants: d0 = 2,vmax = 1,kd = kD1 = kD2 = 0.5, and ε = 10−4.
The 2−agent unicycle system converges quickly and smoothly
to the vicinity of the desired level curve, and its formation cen-
ter tracks it with a high degree of accuracy with evolving time.
In Fig. 6, the level value at the formation center is tracked as a
function of time for the same system.

Our control algorithm is also tested on noisy level curves
of the function z = f2(x,y) = (x2 + y2)2 − 4x2 − y2. This is a
rational algebraic curve of degree four, and is known in the lit-
erature as a hippopede [27]. Figures 7 and 8 show the perfor-
mance of our control algorithm when used to track level curves
of the hippopede having a desired level value zd = 200. We use
d0 = 2,vmax = 3,kd = kD1 = kD2 = 0.5, and ε = 10−10. Once
again, we use additive noise in the form of normally distributed
random numbers drawn from N (0,1). The 2−agent unicycle
system takes slightly more time to converge to the vicinity of the
level curve, owing to the more complicated landscape. Once con-
vergence has been achieved, the system tracks the desired level
curve with a high degree of accuracy. Fig. 8 shows the evolu-
tion of the level value at the formation center with time. We also
note that in both the simulations, increased curvature and sharp
changes in the field gradient cause a decrease of performance.
Adaptive control of the algorithm parameters is a potential solu-
tion to this problem.

Our algorithm thus shows a relatively good performance on
a wide class of noisy two-dimensional functions. The uniqueness
of the work lies in the fact that the algorithm can track noisy level
curves of many types of two-dimensional functions using two
unicycles, without having to estimate the gradient of the field in
question and using minimum computational power.

CONCLUSION
In this paper, we propose a gradient-free modular approach

to the tracking of level curves in noisy scalar fields using two uni-
cycles. We propose a dual control-module structure, in essence
decoupling the design of the linear and angular velocities of the
unicycles. While the formation control module deals with de-
signing the angular velocities so that the unicycles maintain a
constant separation at equilibrium, the curve tracking module
deals with using the instantaneous noisy field values to design
the forward linear velocities so that the system can quickly con-
verge to the desired level curve and keep tracking it with time.
Control-theoretic convergence results are then shown for both
the modules. The algorithm demonstrates fast convergence and
highly accurate tracking on many types of level curves. Possi-
ble future research directions include designing an adaptive con-
trol scheme for the constant parameters and generalizing the con-
troller so that N unicycles can track a desired noisy level curve
without explicit gradient estimation.

9 Copyright c© 2019 by ASME



REFERENCES
[1] Sayyed, A., and Becker, L. B., 2015. A Survey on Data

Collection in Mobile Wireless Sensor Networks (MWSNs).
Springer International Publishing, Cham, pp. 257–278.

[2] Amundson, I., and Koutsoukos, X. D., 2009. A Sur-
vey on Localization for Mobile Wireless Sensor Networks.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 235–
254.

[3] Wang, Y., and Hussein, I. I., 2010. “Awareness cover-
age control over large-scale domains with intermittent com-
munications”. IEEE Transactions on Automatic Control,
55(8), Aug, pp. 1850–1859.

[4] Zhu, C., Shu, L., Hara, T., Wang, L., and Nishio, S.,
2010. “Research issues on mobile sensor networks”. In
Proceedings of the 2010 International ICST Conference on
Communications and Networking in China (CHINACOM),
pp. 1–6.

[5] Clark, J., and Fierro, R., 2005. “Cooperative hybrid control
of robotic sensors for perimeter detection and tracking”.
In Proceedings of the 2005 American Control Conference,
IEEE, pp. 3500–3505.

[6] Clark, J., and Fierro, R., 2007. “Mobile robotic sensors for
perimeter detection and tracking”. ISA Transactions, 46(1),
pp. 3 – 13.

[7] Hsieh, C. H., Jin, Z., Marthaler, D., Nguyen, B. Q., Tung,
D. J., Bertozzi, A. L., and Murray, R. M., 2005. “Experi-
mental validation of an algorithm for cooperative boundary
tracking”. In Proceedings of the 2005 American Control
Conference, pp. 1078–1083 vol. 2.

[8] Joshi, A., Ashley, T., Huang, Y. R., and Bertozzi, A. L.,
2009. “Experimental validation of cooperative environmen-
tal boundary tracking with on-board sensors”. In Proceed-
ings of the 2009 American Control Conference, pp. 2630–
2635.

[9] Zhang, F., Fiorelli, E., and Leonard, N., 2007. “Exploring
scalar fields using multiple sensor platforms: Tracking level
curves”. In Proceedings of the 2007 IEEE Conference on
Decision and Control, pp. 3579–3584.

[10] Wu, W., and Zhang, F., 2011. “Cooperative exploration of
level surfaces of three dimensional scalar fields”. Automat-
ica, 47(9), pp. 2044 – 2051.

[11] Taubin, G., 1995. “Estimating the tensor of curvature of a
surface from a polyhedral approximation”. In Proceedings
of the 1995 Internation Conference on Computer Vision,
pp. 902–907.

[12] Barat, C., and Rendas, M. J., 2003. “Benthic boundary
tracking using a profiler sonar”. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vol. 1, pp. 830–835.

[13] Kemp, M., Bertozzi, A. L., and Marthaler, D., 2004.
“Multi-uuv perimeter surveillance”. In Autonomous Un-
derwater Vehicles, 2004 IEEE/OES, pp. 102–107.

[14] Andersson, S. B., 2007. “Curve tracking for rapid imaging
in afm”. IEEE Transactions on NanoBioscience, 6(4), Dec,
pp. 354–361.

[15] Matveev, A. S., Teimoori, H., and Savkin, A. V., 2012.
“Method for tracking of environmental level sets by a
unicycle-like vehicle”. Automatica, 48(9), pp. 2252 – 2261.

[16] Menon, P. P., Edwards, C., Shtessel, Y. B., Ghose, D., and
Haywood, J., 2014. “Boundary tracking using a suboptimal
sliding mode algorithm”. In Proceedings of the 2014 IEEE
Conference on Decision and Control, pp. 5518–5523.

[17] Matveev, A. S., Hoy, M. C., Ovchinnikov, K., Anisimov,
A., and Savkin, A. V., 2015. “Robot navigation for monitor-
ing unsteady environmental boundaries without field gradi-
ent estimation”. Automatica, 62, pp. 227 – 235.

[18] Matveev, A. S., Semakova, A. A., and Savkin, A. V., 2016.
“Environmental boundary tracking approach to close cir-
cumnavigation of a group of unknown moving targets using
range measurements”. In Proceedings of the 2016 Chinese
Control Conference, pp. 5492–5497.

[19] Qin, X., He, S., Quintero, C. P., Singh, A., Dehghan, M.,
and Jagersand, M., 2017. “Real-time salient closed bound-
ary tracking via line segments perceptual grouping”. In Pro-
ceedings of the 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4284–4289.

[20] Mellucci, C., Menon, P. P., Edwards, C., and Challenor, P.,
2017. “Experimental validation of boundary tracking using
the suboptimal sliding mode algorithm”. In Proceedings of
the 2017 American Control Conference, pp. 4878–4883.

[21] Chatterjee, S., and Wu, W., 2017. “Cooperative curve track-
ing in two dimensions without explicit estimation of the
field gradient”. In Proceedings of the 2017 4th Interna-
tional Conference on Control, Decision and Information
Technologies (CoDIT), pp. 0167–0172.

[22] Lu, L., You, J., and Wu, W., 2016. “Constrained fast
source seeking using two nonholonomic mobile robots”.
In Proceedings of the 2016 American Control Conference,
pp. 7295–7301.

[23] Kühnel, W., 2002. Differential Geometry. American Math-
ematical Society.

[24] Khalil, H. K., 2002. Nonlinear Systems, 3rd ed. Prentice-
Hall, Englewood Cliffs, NJ.

[25] Justh, E. W., and Krishnaprasad, P. S., 2005. “Natural
frames and interacting particles in three dimensions”. In
Proceedings of the 2005 IEEE Conference on Decision and
Control, pp. 2841–2846.

[26] Liberzon, D., 2003. “Switching in systems and con-
trol, ser. systems & control: Foundations & applications”.
Birkhauser.

[27] Lawrence, J. D., 2013. A catalog of special plane curves.
Courier Corporation.

10 Copyright c© 2019 by ASME


