
1

Reinforcement Learning for Multi-robot Field Coverage Based on
Local Observation

Matthew Zhu, Dennis Simon, Nachiketa Rajpurohit, Sagar Jayantkumar Kalathia, and Wencen Wu*

Abstract—Field coverage is a representative exploration task
that has many applications ranging from household chores
to navigating harsh and dangerous environments. Autonomous
mobile robots are widely considered and used in such tasks
due to many advantages. In particular, a collaborative multi-
robot group can increase the efficiency of field coverage. In this
paper, we investigate the field coverage problem using a group of
collaborative robots. In practical scenarios, the model of a field
is usually unavailable and the robots only have access to local
information obtained from their on-board sensors. Therefore,
a Q-learning algorithm is developed with the joint state space
being the discretized local observation areas of the robots to
reduce the computational cost. We conduct simulations to verify
the algorithm and compare the performance in different settings.

I. INTRODUCTION

The exploration of an area is an age-old challenge. This

topic has a wide range of applications in military as well

as civilian domains. Autonomous robots are becoming more

prevalent in the modern world with the advancements to

hardware and software capabilities. They provide opportunities

varying from accomplishing simple household chores to nav-

igating harsh and dangerous environments without requiring

humans to intervene. The introduction of autonomous robots

has made the exploration decidedly more efficient and ap-

plicable in more use cases. However, introducing autonomy

increases the complexity of the algorithms necessary to accom-

plish this task. Adding collaboration among multiple robots

further increases the complexity of the system. The multi-robot

collaboration has many potential benefits including increasing

the efficiency of exploration by sharing information among the

robots and being more robust and adaptive to the changing

environment. However, it comes with many challenges in

dealing with the interaction between the robots so that they

can collaborate to accomplish a common goal [1], [2].

Complete area coverage using an individual autonomous

robot or multiple collaborative robots is a typical exploration

[3]. This task comes bundled with obstacle detection, path

planning, and communication in a fault-tolerant manner. To

compound these problems, any solutions must be dynamic

enough to adapt to changing variables such as the number

of robots, position and count of obstacles, and so forth. A

robust algorithm to solve this problem enables us to apply it

in various diverse scenarios. Some of the notable applications

are in the field of mapping the spread of hazard environments

where humans are at increasing risk to enter, unmanned

The research work is supported by NSF grant CMMI-1917300.
M. Zhu, D. Simon, N. Rajpurohit, S. J. Kalathia, and W. Wu are with the

Computer Engineering Department of San Jose State University, San Jose,
CA 95192 USA. {matthew.zhu, dennis.simon, nachiketa.rajpurohit,
sagarjayantkumar.kalathia, wencen.wu}@sjsu.edu.

search and rescue in areas affected by natural disasters, space

exploration, and autonomous driving.

There are many algorithms that have been developed and

implemented to solve the field coverage problem. Some ap-

proaches use a single robot. For example, the approach in

[4] builds the coverage of a set (square subsection) using

the existing Boustrophedon path, allowing coverage of areas

with arbitrary shape. The method of [5] takes on the coverage

problem from the perspective of a vacuuming robot. Their al-

gorithm builds a topology of the map by identifying landmarks

- walls and corners - and building a fully connected graph of

the landmarks. In [6], a spanning tree-based based approach

is developed, which has a computationally complexity of

O(n log n), with complete coverage and no overlapping. A

simultaneous localization and mapping (SLAM) - based ap-

proach is identified in [7], requiring the agent to have multiple

on-board sensors to create an environment of its surroundings.

[8] explores possible coverage methods on a general basis,

including direct coverage and environmental decomposition.

The approaches using a single robot provide a baseline for

the coverage control problem. The multiple robot approaches

focus on increasing efficiency, robustness, and adaptability that

a single robot does not. Mapping and exploration by multiple

robots involves task division and distribution, collaboration,

inter-agent communication, and fault tolerance in the event

of failure or malfunction of any number of participating

agents. In addition to that, the problem becomes even more

pronounced when the area of interest is unknown or only

partially known [8][9]. In [10], a solution is developed via

applying the principle of spreading a wave where each robot

communicates only with its direct neighbors. Whereas, the

algorithm proposed in [11] creates an ad-hoc network among

the robots to address inter-robot communication.

Many traditional approaches to solve the multi-robot cover-

age problem rely on knowing the model of the environment.

Some of the newer research have focused on utilizing rein-

forcement learning (RL) techniques to solve this problem since

an environmental model is usually not available [12], [9], [13].

In RL, a certain goal is set by specifying a well-chosen reward

function. The RL agents then learn to maximize the cumulative

reward received over time in order to reach the goal. In the

case of coverage problem, one goal is to maximize coverage

area with minimum actuator energy of individual robot.

In this paper, we address the field coverage problem by

deploying a centralized autonomous multi-robot system and

utilizing reinforcement learning techniques. The robots must

interact with each other as well as the environment and move

to minimize the amount of overlap with each other in their cov-

erage of the area while still covering the entire mapped field

in a minimum time. A reward function penalizing repeatedly

SoSE 2020 • IEEE 15th International Conference of System of Systems Engineering • June 2-4, 2020 Budapest, Hungary

978-1-7281-8050-2/20/$31.00 ©2020 IEEE 000035

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

2

entering into already covered areas is designed. Q-learning is

utilized to generate the optimal policy. A well-known problem

in Q-learning is the computational complexity with a large

amount of state-action pairs in the Q-table as the number of

state / actions increases. In addition, in practice, it is unlikely

that the real-world robots always have full information about

the area it intends to cover. Instead, the robots sense the

world using on-board sensors with limited sensing ranges.

To tackle the problems, we propose a observation-based state

space design instead of using the intuitive location-based state

space design in the Q-learning. The observation acts as a

robot’s perception of its immediate surroundings, thus, the

state space depends on the observation radius of the robots.

To verify the proposed algorithm, we simulate an environment

with the presence of obstacles and performed the RL using

several robots. The contributions of this paper include (1)

the formulation of a reward function that is suitable for the

multi-robot field coverage problem, and (2) the design of the

observation-based state used in Q-learning.

The rest of the paper is organized as follows. Section II

presents the preliminary knowledge of RL. Section III formu-

lates the multi-robot field coverage problem and introduces the

proposed observation-based Q-learning algorithm. Simulation

results and analysis are discussed in Section IV and Section

V provides some discussions on the results. Finally, Section

VI concludes our paper and presents the future work.

II. PRELIMINARIES

In RL, agents will learn to explore the environment using

the observations/perception of their surroundings and can learn

optimal actions to take. By interacting with the environment

and other agents directly they will receive rewards based on

how optimal their actions are. At a given time step t, each

agent will have a state s ∈ S and pick an action a ∈ A to

perform within the environment based on its policy π. Based

on the effect on the environment the agent will receive a

reward R and jumps to the next state s′. The combination

of short term reward and long term rewards are factored into

the return which is the sum of discounted rewards after time

t. The goal of reinforcement learning is to find the optimal

policy which maximizes the expected return. The action-value

function, also known as the Q-function, explains how good it

is for an agent to perform an action a in given state s at time

t while following policy. The Q-function output is called the

Q-Value and represents the quality of taking an action at a

given state.

Q-learning aims to find the optimal policy such that the

expected return over all successive steps is maximized. Thus it

attempts to find the optimal Q-value for each state-action pair.

The optimal policy from Q-learning is known as the optimal

Q-function which is denoted as Q∗ and gives the maximum

expected return by any policy at each state-action pair. The

state-action pair Q-values are iteratively updated using the

Bellman equation until the Q-function converges to the optimal

Q-function. The Bellman equation is

Q∗(s, a) = E[Rt+1 + γmaxQ∗(s′, a′)] (1)

Q-values for a state-action pair will be updated each time

an action is taken in a specific state. The update law is given

by

Q(s, a)new = (1−α)Q(s, a)old+α(Rt+1+γmaxa′Q(s′, a′))
(2)

where α is the learning rate and the discount factor γ pertains

to the consideration of choosing long term v.s. short term

reward in Q-value computation. A higher γ value will make

the long term reward (max reward at the next state) have a

higher factor in Q-value computation. Q-values are stored in a

table called the Q-table, whose dimensions are dependent on

the set of possible actions A of an agent and the set of states

S. Thus the Q-table dimensions are n×m with n representing

the number of possible agent actions and m representing the

total number of states.

III. REINFORCEMENT LEARNING BASED MULTI-ROBOT

FIELD COVERAGE

Autonomous mobile robots are able to navigate to a desti-

nation based on their on-board sensors. There are a variety of

dangerous situations where autonomous robots can be applied

to avoid potential harm to humans. From wildfires to toxic

fumes, autonomous robots can traverse these environments to

provide valuable data on conditions in various areas. Multi-

robot coverage is a complex topic with many possible solu-

tions. It contains problems such as minimizing robot overlap

in coverage, minimizing time spent to explore an environ-

ment, finding optimal paths of each robot, avoiding obstacles,

adjusting to environmental changes, etc. In this section, we

formulate the problem in the RL setting and introduce the

proposed observation-based Q-learning algorithm.

A. Problem Formulation

Consider a field F(r) of arbitrary shape with the presence

of obstacles, where r denotes the location. In the mission of

mapping the field or surveillance, a group of N collaborating

robots equipped with sensors are sent to the field to provide

field coverage. Let ri denote the position of the ith robot mov-

ing in the field where i = {1, ..., N}. Each robot has a limited

sensing radius denoted by δi and a corresponding observation

area Ωi = {r : di(r) ≤ δi} where di(r) = ||r − ri||. In the

RL setting, the field is discretized into a grid of M ×M cells.

The sensing radius of a robot is then defined as the number of

cells out from the robot, not including the robot itself. So, a

radius of δ would result in a total observation area of (2δ+1)2

cells with the robot in the center.

The multi-robot learning system can be described using <
N, {S}, {A}, R >, where:

• N is the number of robots in the system.

• {S} = S1×S2×· · ·×SN is the joint state space, where

Si is the individual state space of the ith robot. At time

step k, the state of the ith robot is denoted as si,k.

• {A} = A1 × A2 × · · · × AN is the joint action space,

where Ai is the individual action space of the ith robot.

At time step k, the action of the ith robot takes is denoted

as ai,k.

M. Zhu et al. • Reinforcement Learning for Multi-robot Field Coverage Based on Local Observation

000036

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

3

• R : S × A −→ R is the individual reward function that

specifies the immediate reward the ith robot receives by

taking action ai,k at state si,k and reaches state si,k+1.

In the multi-robot field coverage problem, the goal of the

robots is to find the optimal policy that maximizes the ex-

pected return in the long run. The reward should penalize the

overlapping of the observation areas of different robots as well

as frequently revisiting the explored areas, so as to minimize

the number of steps taken to cover the entire field by the

multi-robot system.

B. The Observation-based Q-Learning Algorithm

In this section, we design an observation-based Q-learning

algorithm to solve the problem formulated in Section III-A. We

assume that the robots are identical with the same state space

and action space, i.e., S1 = S2 = · · · = SN and A1 = A2 =
· · · = AN . The components of the algorithm are described as

follows.

1) Environment: The discretized M ×M grid field is the

environment that the multi-robot system is interacting with.

Each grid cell in the environment is designated as one of the

types in the set E ={covered, uncovered, obstacle}, where

“covered” means the cell has been explored by a robot and

“uncovered” means the cell has not been explored. The field

is initialized with surrounding obstacles, designating the edge

of the environment. The initial locations of the robots can be

randomly assigned to uncovered cells.

2) Action space: Since we assume the identical action

space for all the robots, we drop the subscript i in the notations

from now on. The action space of each robot can be designed

as A= {up, down, left, right}, restricting movement across the

grid to one space in each cardinal direction at each step. The

action space can be readily expanded to eight directions.

3) State space: In many existing RL approaches, the grid

cells constitute the state space of a single robot if we only

consider the position of the robot. One challenge is that each

robot updates its Q-table w.r.t. other robots’ state and action,

which means that the state-action pairs in the joint Q-table

can grow exponentially if we increase the grid size and the

number of collaborating robots. We refer to this state space as

“location-based” state. Another challenge is that in practice, it

is more likely that a single robot does not have the global

knowledge of the environment. Therefore, we assume that

each robot only has partial information of the environment.

By limiting the information given to a robot to only its

local surroundings, we can abstract perception of a real-world

autonomous robot.

To deal with the above problems, we propose an

observation-based state space design. Along with its location,

each robot retains an observation that identifies its local

surroundings. This observation, whose radius is adjustable,

contains information about the designation of the cells that are

within the robot’s observation area. In the observation-based

state space design, each cell has two additional types: “robot”

indicating the cell is being occupied by another robot and “out-

of-bounds” indicating the cell is out of the boundary of the

current environment. Thus, each cell has a type from (robot,

obstacle, covered, uncovered, out-of-bounds) that is encoded

as an index. The observation is a 2D matrix centered at the

current position of the robot with each cell indexed as a type.

The individual robot’s state, used for our Q-learning algorithm,

is built by flattening this 2D matrix into a single, comma-

delimited string.

Fig. 1 illustrates a sample 12 × 12 grid field with N = 4
robots represented by blue circles and 15 obstacles represented

by grey cells. Each robot has an observation radius δ = 2
so the light square area surrounding each robot indicates the

observation area. Fig. 2 demonstrates the observation area of

the robot in the center with radius δ = 2, where green cells

are “uncovered”, white cells are “covered”, grey cells are

“obstacle”, and the cell in the rightmost column containing

a robot is “robot”. This 5 × 5 observation matrix is used to

construct the state space of the robot in the center.

Fig. 1: A sample 12× 12 grid field with N = 4 robots represented
by blue circles and 15 obstacles represented by grey cells. Each

robot has an observation radius δ = 2.

Fig. 2: The observation area of the robot in the center with
different cell types. The observation radius δ = 2.

In general, the state space of an individual robot consists of

all the possible permutations of cell types within the robot’s

observation area. Therefore, the number of possible states

of a single robot has an upper bound of 5(2δ+1)2−1, which

is a function of the observation radius δ. In practice, the

observation radius of a robot is usually fixed given certain

types of sensors. Thus, the number of states won’t grow as the

size of the field to be explored increases. In other words, the

design is scalable as the size of the field increases. For multiple

robots, the joint state space consists of all individual robot’s

SoSE 2020 • IEEE 15th International Conference of System of Systems Engineering • June 2-4, 2020 Budapest, Hungary

000037

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

4

state space. In Q-learning, the number of state-action pairs is

|S|×|A|. For the observation in Fig. 2, the maximum number

of state-action pairs would be |A|× 524. Though, realistically,

the Q-table for a finite environment will not approach this

maximum, as not every state permutation will be seen.

4) Reward: The reward function must sufficiently incen-

tivize the robot to accomplish the goal of complete coverage

of the grid in minimum steps. For this purpose, we propose

the following reward function:

rt =

⎧⎨
⎩
+a, if uncovered cell

−b,×{visited count} otherwise,
(3)

where a > 0 and b > 0 are two positive constants chosen by

design. Based on the reward, a robot receives +a for entering

an uncovered cell. However, when visiting an already covered

cell, or running into obstacles or other robots, the robot

receives a reward of −b multiplied by the number of times

the cell has previously been visited. Therefore, the reward

encourages exploring uncovered cells in minimum steps.

5) Exploration vs Exploitation: At any given step, we

explore with probability εe and exploit with probability 1−εe,

where 0 < εe < 1.

π(Ak)←
⎧⎨
⎩

random joint action, with probability 1− εe

optimal joint action, otherwise.

(4)

By exploring, the robot chooses a random joint action a from

the set of all available actions A. By exploiting, the robot

chooses the learned optimal action argmaxaQ(s, a). Initially,

we aim for a high exploration rate, as we want to learn

quickly. As the policy converges over time, we gradually

transition from exploring to exploiting. This can be done

through decaying εe by a decay parameter decaye ∈ (0, 1)

εnewe = εolde ∗ decaye. (5)

Based on the state space, action space, and reward function,

the observation-based Q-learning algorithm for multi-robot

field coverage is summarized in Algorithm 1.

The algorithm initially declares a default dictionary that sets

accessed rows that are not present as a row with zeros of size

(number of columns) equal to the number of actions possible

for the agent. The training is divided into episodes. An episode

is the number of steps required for complete coverage. The

environment is reset at the end of each episode, but the updated

Q-table is retained for the subsequent episodes. During reset,

obstacles and the initial locations of the robots are seeded to

preserve consistency through training. For each episode, the

robots receive their initial observations in the environment.

When a robot takes an action and transitions to the next state,

it takes a new observation, which is again concatenated into a

string and used as the new state.

IV. RESULTS AND ANALYSIS

In this section, we verify the proposed algorithm in simu-

lations. The simulation environment utilizes OpenAI gym and

is based on the implementation of gym-minigrid [14] with

Algorithm 1 Observation-based Multi-robot Q-Learning Al-

gorithm

Require: 0 < γ, α, εe, decay
e < 1

Q ← defaultdict(lambda:zeros(shape=len(actions))

{Initialize Q-table that creates row w/ 0’s when new state

is seen}
for x episodes do

for each robot do
s ← concatenated observations {concatenate initial

observations into state}
end for
while true do

for each robot do
if rand(0, 1) < εe then
a← random action

else
a← maxaQ[s, a] {action with highest reward at

state s}
end if
s′, reward ← take a {next state = observation at

new position}
next max← max(Q[s′, a])
Q′[s, a] ← (1 − α) Q[s, a] + α(reward + γ ∗
next max)
s← s′

end for
if episode← solved then

break
end if

end while
εe ← εe ∗ decaye

end for

heavy changes to match the problem set. The environment is

a 12×12 grid space with 15 obstacles and a wall indicating the

boundary of the space. We choose the reward values a = 10
and b = −1 so a robot receives reward +10 when moving

into uncovered cells and −1 × times visited when moving

into cells that are uncovered, obstacle, and occupied by another

robot. The learning rate α = 0.01, the discount factor γ = 0.6,

and εe = 0.8.

To analyze the performance of the algorithm, we conduct

a comparative analysis of various parameters including the

number of robots N and the observation radius δ.

A. Comparison of the number of robots

We first simulate different number of robots in the environ-

ment for the field coverage. Fig. 3 illustrates the results of the

number of steps to completion over training for the number

of robots N = 1 to 5. Table I shows some significant values

regarding the simulations. The performance as we increase the

number of robots from one to three improves significantly. The

maximum, minimum, and average steps for the simulation with

three agents are about 3 times better than the results with only

a single robot. As we increase the number of robots further,

the minimum steps to completion only marginally improves.

M. Zhu et al. • Reinforcement Learning for Multi-robot Field Coverage Based on Local Observation

000038

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

5

Fig. 3: Total steps to completion by episode for 1 to 5 robots.

Robots Max. steps Min. steps Avg. steps after
ep. 500

1 3180 131 133.1
2 1644 55 72.6
3 1172 37 46.2
4 1364 33 79.6
5 1570 30 55.6

TABLE I: Comparisons of steps to completion for the

number of robots N = 1, · · · , 5.

The maximum and average steps actually increase, likely due

to congestion for the given environment size.

Fig. 4: Optimal solutions of the multi-robot field coverage problem
in the 12× 12 grid space with 2 robots (left) and 4 robots (right).

Different colors indicate the areas covered by different robots.

Fig. 4 illustrates the optimal solutions of the multi-robot

field coverage problem. The left figure shows the result of

using 2 robots and the right figure shows the result of using 4

robots. Different colors represent the areas covered by different

robots. In the right figure, there is a discontinuity of the

blue area. This is because the same cells may be in the final

coverage areas of more than one robots so the same cells are

covered more than once in the optimal solution, yielding the

covered areas of the earlier robots being discontinuous.

B. Comparison of observation radius

To investigate the effect of observation radius to the per-

formance of the proposed algorithm, we conduct simulations

using observation radius δ = 1, 2, 3. Other parameters are

N = 3 and decaye = 0.99. In Fig. 5, the results of steps

to completion v.s. different number of episodes are shown.

The most prominent finding is the divergence of the data

for an observation radius of 1. The reason is that a small

observation radius lacks the necessary number of states to

Fig. 5: Total steps to completion by episode for observation

radius of 1 to 3

Observation
radius

Max. steps Min. steps Avg. steps after
ep. 500

2 1172 37 46.2
3 5134 42 95.23

TABLE II: Steps to completion for observation radius

δ = 2, 3.

encapsulate the environment grid for the robot to learn. For

observation radii of 2 and 3, the steps to completion converge.

The significant values of this data are listed in Table II.

With every metric, an observation radius of 2 performs

better than the observation radius of 3. The performance for

different radii depends on the given environment and hyper-

parameters, maintaining a balance between enough states

to properly learn and not too many states that slows the

propagation of Q-values. In the case of a radius of 1, the

divergence is due to an insufficient number of states. In the

SoSE 2020 • IEEE 15th International Conference of System of Systems Engineering • June 2-4, 2020 Budapest, Hungary

000039

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

6

case of a radius of 3, the final Q-table has significantly more

states than that of radius 2, which slows the learning of the

algorithm. Thus, given this environment, an observation radius

of 2 is the optimal among the three. Fig. 6 illustrates the

optimal solutions using 3 robots with observation radius δ = 2
and δ = 3.

Fig. 6: Optimal solutions of the multi-robot field coverage problem
in the 12× 12 grid space using 3 robots with δ = 2 (left) and
δ = 3 (right). Different colors indicate the areas covered by

different robots.

V. DISCUSSIONS

1) Q-table states: While many existing solutions in Q-

learning employ the location-based states, i.e., each cell of the

overall grid space is considered as a state and the state space

depends on the number of cells in the environment grid, we

propose to use the observation-based state in the Q-learning

algorithm for several reasons. First, the size of the observation-

based state space depends on the observation radius of the

robots, which is usually fixed at certain applications, thus,

the number of state-action pairs won’t grow as the size of

the environment grid increases. Second, observation-based

states lead to more accurate results. In positional-based states,

after a grid cell has been covered, the reward shifts from

positive to negative, which leads to inaccurate Q-values when

the state is occurred again. Observation-based states, on the

other hand, are unique to what the robot sees around it;

thus a particular grid changing from covered to uncovered

will lead to a completely different state, which allows for

consistent reward allocation. The other reason is that location-

based states allow for the Q-table to have a complete view

of the entire environment, which is unrealistic. In a real

world scenario, the size and constraints of the environment are

usually unknown to the robots as they are exploring it. Only

when exploring the environment with perception should the

environment be mapped out. Observation-based states allow

for a real world formulation of the problem because robots

learn and take actions only based on the surrounding elements

they can perceive.

2) Environment variables: The choice of the number of

robots and the observation radius is dependent on the given

environment. A small environment with too many robots may

have congestion so the field coverage results, i.e., the number

of steps to completions, may only be marginally improved

at an increased cost. On the contrary, too few robots in a

large environment may result in slow learning and reduces

convergence speed. A small observation radius may lack the

necessary number of states to encapsulate the environment grid

for the agent to learn. This leads to divergence, which can be

seen in the first figure in Fig. 5 for an observation radius of

1. A large observation radius may create an excess number

of states, causing slow propagation of Q-values across the Q-

table. The performance cost increases exponentially for larger

radii, but may be necessary for large environment grids.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we developed an observation-based Q-learning

algorithm to solve the field coverage problem using a group

of collaborating autonomous mobile robots. The observation-

based Q-learning algorithm can effectively reduce the size of

Q-table when the environment grid space increases, and is

more realistic to practical constraints such as limited obser-

vation range and local information. We conducted simulations

with different number of robots and different observation radii

to verify and analyze the performance of the algorithm. There

are various possible directions for future work including taking

into consideration of more constraints in the algorithm such as

kinematic / dynamic constraints of the robots, and exploring

deep RL technique to further improve the algorithm.

REFERENCES

[1] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on robotics, vol. 21, no. 3,
pp. 376–386, 2005.

[2] S. Thrun et al., “Robotic mapping: A survey,” Exploring artificial
intelligence in the new millennium, vol. 1, no. 1-35, p. 1, 2002.

[3] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution to the
area coverage problem,” in Distributed Autonomous Robotic Systems 5.
Springer, 2002, pp. 299–308.

[4] T. Bretl and S. Hutchinson, “Robust coverage by a mobile robot of a
planar workspace,” in 2013 IEEE International Conference on Robotics
and Automation. IEEE, 2013, pp. 4582–4587.

[5] H. Zhang, W. Wang et al., “A topological area coverage algorithm for
indoor vacuuming robot,” in 2007 IEEE International Conference on
Automation and Logistics. IEEE, 2007, pp. 2645–2649.

[6] G. E. Jan, C. Luo, L.-P. Hung, and S.-T. Shih, “A computationally
efficient complete area coverage algorithm for intelligent mobile robot
navigation,” in 2014 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2014, pp. 961–966.

[7] J. Song and S. Gupta, “Slam based shape adaptive coverage control using
autonomous vehicles,” in 2015 10th System of Systems Engineering
Conference (SoSE). IEEE, 2015, pp. 268–273.

[8] Y. Kang and D. Shi, “A research on area coverage algorithm for
robotics,” in 2018 IEEE International Conference of Intelligent Robotic
and Control Engineering (IRCE). IEEE, 2018, pp. 6–13.

[9] H. X. Pham, H. M. La, D. Feil-Seifer, and A. Nefian, “Cooperative and
distributed reinforcement learning of drones for field coverage,” arXiv
preprint arXiv:1803.07250, 2018.

[10] Z. Laouici, M. Mami, and M. F. Khelfi, “Cooperative approach for an
optimal area coverage and connectivity in multi-robot systems,” in 2015
International Conference on Advanced Robotics (ICAR). IEEE, 2015,
pp. 176–181.

[11] J. Tan, O. M. Lozano, N. Xi, and W. Sheng, “Multiple vehicle systems
for sensor network area coverage,” in Fifth World Congress on Intelligent
Control and Automation (IEEE Cat. No. 04EX788), vol. 5. IEEE, 2004,
pp. 4666–4670.

[12] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016.

[13] A. A. Adepegba, S. Miah, and D. Spinello, “Multi-agent area coverage
control using reinforcement learning,” in The Twenty-Ninth International
Flairs Conference, 2016.

[14] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic grid-
world environment for openai gym,” https://github.com/maximecb/
gym-minigrid, 2018.

M. Zhu et al. • Reinforcement Learning for Multi-robot Field Coverage Based on Local Observation

000040

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

