SoSE 2020 ¢ IEEE 15th International Conference of System of Systems Engineering « June 2-4, 2020 Budapest, Hungary

Reinforcement Learning for Multi-robot Field Coverage Based on
Local Observation

Matthew Zhu, Dennis Simon, Nachiketa Rajpurohit, Sagar Jayantkumar Kalathia, and Wencen Wu*

Abstract—Field coverage is a representative exploration task
that has many applications ranging from household chores
to navigating harsh and dangerous environments. Autonomous
mobile robots are widely considered and used in such tasks
due to many advantages. In particular, a collaborative multi-
robot group can increase the efficiency of field coverage. In this
paper, we investigate the field coverage problem using a group of
collaborative robots. In practical scenarios, the model of a field
is usually unavailable and the robots only have access to local
information obtained from their on-board sensors. Therefore,
a Q-learning algorithm is developed with the joint state space
being the discretized local observation areas of the robots to
reduce the computational cost. We conduct simulations to verify
the algorithm and compare the performance in different settings.

I. INTRODUCTION

The exploration of an area is an age-old challenge. This
topic has a wide range of applications in military as well
as civilian domains. Autonomous robots are becoming more
prevalent in the modern world with the advancements to
hardware and software capabilities. They provide opportunities
varying from accomplishing simple household chores to nav-
igating harsh and dangerous environments without requiring
humans to intervene. The introduction of autonomous robots
has made the exploration decidedly more efficient and ap-
plicable in more use cases. However, introducing autonomy
increases the complexity of the algorithms necessary to accom-
plish this task. Adding collaboration among multiple robots
further increases the complexity of the system. The multi-robot
collaboration has many potential benefits including increasing
the efficiency of exploration by sharing information among the
robots and being more robust and adaptive to the changing
environment. However, it comes with many challenges in
dealing with the interaction between the robots so that they
can collaborate to accomplish a common goal [1], [2].

Complete area coverage using an individual autonomous
robot or multiple collaborative robots is a typical exploration
[3]. This task comes bundled with obstacle detection, path
planning, and communication in a fault-tolerant manner. To
compound these problems, any solutions must be dynamic
enough to adapt to changing variables such as the number
of robots, position and count of obstacles, and so forth. A
robust algorithm to solve this problem enables us to apply it
in various diverse scenarios. Some of the notable applications
are in the field of mapping the spread of hazard environments
where humans are at increasing risk to enter, unmanned

The research work is supported by NSF grant CMMI-1917300.

M. Zhu, D. Simon, N. Rajpurohit, S. J. Kalathia, and W. Wu are with the
Computer Engineering Department of San Jose State University, San Jose,
CA 95192 USA. {matthew.zhu, dennis.simon, nachiketa.rajpurohit,
sagarjayantkumar.kalathia, wencen.wu} @sjsu.edu.

978-1-7281-8050-2/20/$31.00 ©2020 IEEE

search and rescue in areas affected by natural disasters, space
exploration, and autonomous driving.

There are many algorithms that have been developed and
implemented to solve the field coverage problem. Some ap-
proaches use a single robot. For example, the approach in
[4] builds the coverage of a set (square subsection) using
the existing Boustrophedon path, allowing coverage of areas
with arbitrary shape. The method of [5] takes on the coverage
problem from the perspective of a vacuuming robot. Their al-
gorithm builds a topology of the map by identifying landmarks
- walls and corners - and building a fully connected graph of
the landmarks. In [6], a spanning tree-based based approach
is developed, which has a computationally complexity of
O(nlogn), with complete coverage and no overlapping. A
simultaneous localization and mapping (SLAM) - based ap-
proach is identified in [7], requiring the agent to have multiple
on-board sensors to create an environment of its surroundings.
[8] explores possible coverage methods on a general basis,
including direct coverage and environmental decomposition.

The approaches using a single robot provide a baseline for
the coverage control problem. The multiple robot approaches
focus on increasing efficiency, robustness, and adaptability that
a single robot does not. Mapping and exploration by multiple
robots involves task division and distribution, collaboration,
inter-agent communication, and fault tolerance in the event
of failure or malfunction of any number of participating
agents. In addition to that, the problem becomes even more
pronounced when the area of interest is unknown or only
partially known [8][9]. In [10], a solution is developed via
applying the principle of spreading a wave where each robot
communicates only with its direct neighbors. Whereas, the
algorithm proposed in [11] creates an ad-hoc network among
the robots to address inter-robot communication.

Many traditional approaches to solve the multi-robot cover-
age problem rely on knowing the model of the environment.
Some of the newer research have focused on utilizing rein-
forcement learning (RL) techniques to solve this problem since
an environmental model is usually not available [12], [9], [13].
In RL, a certain goal is set by specifying a well-chosen reward
function. The RL agents then learn to maximize the cumulative
reward received over time in order to reach the goal. In the
case of coverage problem, one goal is to maximize coverage
area with minimum actuator energy of individual robot.

In this paper, we address the field coverage problem by
deploying a centralized autonomous multi-robot system and
utilizing reinforcement learning techniques. The robots must
interact with each other as well as the environment and move
to minimize the amount of overlap with each other in their cov-
erage of the area while still covering the entire mapped field
in a minimum time. A reward function penalizing repeatedly

000035

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

M. Zhu et al. « Reinforcement Learning for Multi-robot Field Coverage Based on Local Observation

entering into already covered areas is designed. Q-learning is
utilized to generate the optimal policy. A well-known problem
in Q-learning is the computational complexity with a large
amount of state-action pairs in the Q-table as the number of
state / actions increases. In addition, in practice, it is unlikely
that the real-world robots always have full information about
the area it intends to cover. Instead, the robots sense the
world using on-board sensors with limited sensing ranges.
To tackle the problems, we propose a observation-based state
space design instead of using the intuitive location-based state
space design in the Q-learning. The observation acts as a
robot’s perception of its immediate surroundings, thus, the
state space depends on the observation radius of the robots.
To verify the proposed algorithm, we simulate an environment
with the presence of obstacles and performed the RL using
several robots. The contributions of this paper include (1)
the formulation of a reward function that is suitable for the
multi-robot field coverage problem, and (2) the design of the
observation-based state used in Q-learning.

The rest of the paper is organized as follows. Section II
presents the preliminary knowledge of RL. Section III formu-
lates the multi-robot field coverage problem and introduces the
proposed observation-based Q-learning algorithm. Simulation
results and analysis are discussed in Section IV and Section
V provides some discussions on the results. Finally, Section
VI concludes our paper and presents the future work.

II. PRELIMINARIES

In RL, agents will learn to explore the environment using
the observations/perception of their surroundings and can learn
optimal actions to take. By interacting with the environment
and other agents directly they will receive rewards based on
how optimal their actions are. At a given time step ¢, each
agent will have a state s € S and pick an action a € A to
perform within the environment based on its policy 7. Based
on the effect on the environment the agent will receive a
reward R and jumps to the next state s’. The combination
of short term reward and long term rewards are factored into
the return which is the sum of discounted rewards after time
t. The goal of reinforcement learning is to find the optimal
policy which maximizes the expected return. The action-value
function, also known as the Q-function, explains how good it
is for an agent to perform an action a in given state s at time
t while following policy. The Q-function output is called the
Q-Value and represents the quality of taking an action at a
given state.

Q-learning aims to find the optimal policy such that the
expected return over all successive steps is maximized. Thus it
attempts to find the optimal Q-value for each state-action pair.
The optimal policy from Q-learning is known as the optimal
Q-function which is denoted as). and gives the maximum
expected return by any policy at each state-action pair. The
state-action pair Q-values are iteratively updated using the
Bellman equation until the Q-function converges to the optimal
Q-function. The Bellman equation is

Q+(s,a) = E[Ri11 + ymazQ.(s',a’)] (1

Q-values for a state-action pair will be updated each time
an action is taken in a specific state. The update law is given
by

Q(s,a)"™" = (1—a)Q(s, a)”" 4 a(Ryp1 +ymaz, Q(s',a"))

2
where « is the learning rate and the discount factor ~y pertains
to the consideration of choosing long term v.s. short term
reward in Q-value computation. A higher ~ value will make
the long term reward (max reward at the next state) have a
higher factor in Q-value computation. Q-values are stored in a
table called the Q-table, whose dimensions are dependent on
the set of possible actions A of an agent and the set of states
S. Thus the Q-table dimensions are n x m with n representing
the number of possible agent actions and m representing the
total number of states.

III. REINFORCEMENT LEARNING BASED MULTI-ROBOT
FIELD COVERAGE

Autonomous mobile robots are able to navigate to a desti-
nation based on their on-board sensors. There are a variety of
dangerous situations where autonomous robots can be applied
to avoid potential harm to humans. From wildfires to toxic
fumes, autonomous robots can traverse these environments to
provide valuable data on conditions in various areas. Multi-
robot coverage is a complex topic with many possible solu-
tions. It contains problems such as minimizing robot overlap
in coverage, minimizing time spent to explore an environ-
ment, finding optimal paths of each robot, avoiding obstacles,
adjusting to environmental changes, etc. In this section, we
formulate the problem in the RL setting and introduce the
proposed observation-based Q-learning algorithm.

A. Problem Formulation

Consider a field F(r) of arbitrary shape with the presence
of obstacles, where r denotes the location. In the mission of
mapping the field or surveillance, a group of IV collaborating
robots equipped with sensors are sent to the field to provide
field coverage. Let r; denote the position of the ith robot mov-
ing in the field where ¢ = {1, ..., N'}. Each robot has a limited
sensing radius denoted by d; and a corresponding observation
area Q; = {r : d;(r) < §;} where d;(r) = ||r — r;]|. In the
RL setting, the field is discretized into a grid of M x M cells.
The sensing radius of a robot is then defined as the number of
cells out from the robot, not including the robot itself. So, a
radius of § would result in a total observation area of (25+1)?
cells with the robot in the center.
The multi-robot learning system can be described using <
N, {S},{A}, R >, where:
e N is the number of robots in the system.
e {S} =51 %83 x---x Sy is the joint state space, where
S; is the individual state space of the ith robot. At time
step k, the state of the ith robot is denoted as s; j.

o {A} = Ay X Ay x -+ X Ay is the joint action space,
where A; is the individual action space of the ith robot.
At time step k, the action of the ith robot takes is denoted
as a; .

000036

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

SoSE 2020 ¢ IEEE 15th International Conference of System of Systems Engineering « June 2-4, 2020 Budapest, Hungary

e R:S x A — R is the individual reward function that
specifies the immediate reward the ith robot receives by
taking action a; j, at state s; , and reaches state s; p11.

In the multi-robot field coverage problem, the goal of the
robots is to find the optimal policy that maximizes the ex-
pected return in the long run. The reward should penalize the
overlapping of the observation areas of different robots as well
as frequently revisiting the explored areas, so as to minimize
the number of steps taken to cover the entire field by the
multi-robot system.

B. The Observation-based Q-Learning Algorithm

In this section, we design an observation-based Q-learning
algorithm to solve the problem formulated in Section ITII-A. We
assume that the robots are identical with the same state space
and action space, i.e., 51 = So = --- = Sy and A} = Ay =
-+ = Apn. The components of the algorithm are described as
follows.

1) Environment: The discretized M x M grid field is the
environment that the multi-robot system is interacting with.
Each grid cell in the environment is designated as one of the
types in the set £ ={covered, uncovered, obstacle}, where
“covered” means the cell has been explored by a robot and
“uncovered” means the cell has not been explored. The field
is initialized with surrounding obstacles, designating the edge
of the environment. The initial locations of the robots can be
randomly assigned to uncovered cells.

2) Action space: Since we assume the identical action
space for all the robots, we drop the subscript ¢ in the notations
from now on. The action space of each robot can be designed
as A= {up, down, left, right}, restricting movement across the
grid to one space in each cardinal direction at each step. The
action space can be readily expanded to eight directions.

3) State space: In many existing RL approaches, the grid
cells constitute the state space of a single robot if we only
consider the position of the robot. One challenge is that each
robot updates its Q-table w.r.t. other robots’ state and action,
which means that the state-action pairs in the joint Q-table
can grow exponentially if we increase the grid size and the
number of collaborating robots. We refer to this state space as
“location-based” state. Another challenge is that in practice, it
is more likely that a single robot does not have the global
knowledge of the environment. Therefore, we assume that
each robot only has partial information of the environment.
By limiting the information given to a robot to only its
local surroundings, we can abstract perception of a real-world
autonomous robot.

To deal with the above problems, we propose an
observation-based state space design. Along with its location,
each robot retains an observation that identifies its local
surroundings. This observation, whose radius is adjustable,
contains information about the designation of the cells that are
within the robot’s observation area. In the observation-based
state space design, each cell has two additional types: “robot”
indicating the cell is being occupied by another robot and “out-
of-bounds” indicating the cell is out of the boundary of the
current environment. Thus, each cell has a type from (robot,

obstacle, covered, uncovered, out-of-bounds) that is encoded
as an index. The observation is a 2D matrix centered at the
current position of the robot with each cell indexed as a type.
The individual robot’s state, used for our Q-learning algorithm,
is built by flattening this 2D matrix into a single, comma-
delimited string.

Fig. 1 illustrates a sample 12 x 12 grid field with N = 4
robots represented by blue circles and 15 obstacles represented
by grey cells. Each robot has an observation radius § = 2
so the light square area surrounding each robot indicates the
observation area. Fig. 2 demonstrates the observation area of
the robot in the center with radius 6 = 2, where green cells
are “uncovered”, white cells are “covered”, grey cells are
“obstacle”, and the cell in the rightmost column containing
a robot is “robot”. This 5 X 5 observation matrix is used to
construct the state space of the robot in the center.

Fig. 1: A sample 12 x 12 grid field with N = 4 robots represented
by blue circles and 15 obstacles represented by grey cells. Each
robot has an observation radius § = 2.

Fig. 2: The observation area of the robot in the center with
different cell types. The observation radius § = 2.

In general, the state space of an individual robot consists of
all the possible permutations of cell types within the robot’s
observation area. Therefore, the number of possible states
of a single robot has an upper bound of 5041’1 which
is a function of the observation radius §. In practice, the
observation radius of a robot is usually fixed given certain
types of sensors. Thus, the number of states won’t grow as the
size of the field to be explored increases. In other words, the
design is scalable as the size of the field increases. For multiple
robots, the joint state space consists of all individual robot’s

000037

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

M. Zhu et al. « Reinforcement Learning for Multi-robot Field Coverage Based on Local Observation

state space. In Q-learning, the number of state-action pairs is
|S| x| A|. For the observation in Fig. 2, the maximum number
of state-action pairs would be |A| x 524, Though, realistically,
the Q-table for a finite environment will not approach this
maximum, as not every state permutation will be seen.

4) Reward: The reward function must sufficiently incen-
tivize the robot to accomplish the goal of complete coverage
of the grid in minimum steps. For this purpose, we propose
the following reward function:

+a, if uncovered cell

re = 3
! —b, x{visited_count} otherwise, &

where a > 0 and b > 0 are two positive constants chosen by
design. Based on the reward, a robot receives +a for entering
an uncovered cell. However, when visiting an already covered
cell, or running into obstacles or other robots, the robot
receives a reward of —b multiplied by the number of times
the cell has previously been visited. Therefore, the reward
encourages exploring uncovered cells in minimum steps.

5) Exploration vs Exploitation: At any given step, we
explore with probability €. and exploit with probability 1 —e.,
where 0 < €, < 1.

random joint action, with probability 1 — €,

W(Ak) <

optimal joint action, otherwise.

“)
By exploring, the robot chooses a random joint action a from
the set of all available actions A. By exploiting, the robot
chooses the learned optimal action argmax,Q(s, a). Initially,
we aim for a high exploration rate, as we want to learn
quickly. As the policy converges over time, we gradually
transition from exploring to exploiting. This can be done
through decaying €. by a decay parameter decay® € (0,1)

new — ¢old g decay®. 5)

66 €

Based on the state space, action space, and reward function,
the observation-based Q-learning algorithm for multi-robot
field coverage is summarized in Algorithm 1.

The algorithm initially declares a default dictionary that sets
accessed rows that are not present as a row with zeros of size
(number of columns) equal to the number of actions possible
for the agent. The training is divided into episodes. An episode
is the number of steps required for complete coverage. The
environment is reset at the end of each episode, but the updated
Q-table is retained for the subsequent episodes. During reset,
obstacles and the initial locations of the robots are seeded to
preserve consistency through training. For each episode, the
robots receive their initial observations in the environment.
When a robot takes an action and transitions to the next state,
it takes a new observation, which is again concatenated into a
string and used as the new state.

IV. RESULTS AND ANALYSIS

In this section, we verify the proposed algorithm in simu-
lations. The simulation environment utilizes OpenAl gym and
is based on the implementation of gym-minigrid [14] with

Algorithm 1 Observation-based Multi-robot Q-Learning Al-
gorithm

Require: 0 < v, q, €., decay® < 1
Q — de faultdict(lambda:zeros(shape=len(actions))
{Initialize Q-table that creates row w/ 0’s when new state
is seen}
for x episodes do
for each robot do
s < concatenated observations {concatenate initial
observations into state}
end for
while true do
for each robot do
if rand(0,1) < €. then
a < random action
else
a + max,Q[s,a] {action with highest reward at
state s}
end if
s, reward < take a {next state = observation at
new position}
next_max < max(Q[s', a])
Q'[s,a] « (1 — @) Qs,a] + a(reward + v *
next_mazx)
54§
end for
if episode < solved then
break
end if
end while
€e € * decay®
end for

heavy changes to match the problem set. The environment is
a 12x 12 grid space with 15 obstacles and a wall indicating the
boundary of the space. We choose the reward values a = 10
and b = —1 so a robot receives reward +10 when moving
into uncovered cells and —1 x times_visited when moving
into cells that are uncovered, obstacle, and occupied by another
robot. The learning rate o = 0.01, the discount factor v = 0.6,
and ¢, = 0.8.

To analyze the performance of the algorithm, we conduct
a comparative analysis of various parameters including the
number of robots N and the observation radius d.

A. Comparison of the number of robots

We first simulate different number of robots in the environ-
ment for the field coverage. Fig. 3 illustrates the results of the
number of steps to completion over training for the number
of robots N =1 to 5. Table I shows some significant values
regarding the simulations. The performance as we increase the
number of robots from one to three improves significantly. The
maximum, minimum, and average steps for the simulation with
three agents are about 3 times better than the results with only
a single robot. As we increase the number of robots further,
the minimum steps to completion only marginally improves.

000038

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

SoSE 2020 ¢ IEEE 15th International Conference of System of Systems Engineering « June 2-4, 2020 Budapest, Hungary

1600 Agents
1
1400 4 —_—2
— 13
1200 4
g —_
% 1000 {
-
E
S oo
-]
i
i 6004
A
400
200 4
01 -
o 200 400 600 BOO 1000
Episode

Fig. 3: Total steps to completion by episode for 1 to 5 robots.

Robots Max. steps Min. steps Avg. steps after
ep. 500

1 3180 131 133.1

2 1644 55 72.6

3 1172 37 46.2

4 1364 33 79.6

5 1570 30 55.6

TABLE I: Comparisons of steps to completion for the
number of robots N =1,--- 5.

The maximum and average steps actually increase, likely due
to congestion for the given environment size.

&
HEE =W
i

Fig. 4: Optimal solutions of the multi-robot field coverage problem
in the 12 x 12 grid space with 2 robots (left) and 4 robots (right).
Different colors indicate the areas covered by different robots.

Fig. 4 illustrates the optimal solutions of the multi-robot
field coverage problem. The left figure shows the result of
using 2 robots and the right figure shows the result of using 4
robots. Different colors represent the areas covered by different
robots. In the right figure, there is a discontinuity of the
blue area. This is because the same cells may be in the final
coverage areas of more than one robots so the same cells are
covered more than once in the optimal solution, yielding the
covered areas of the earlier robots being discontinuous.

B. Comparison of observation radius

To investigate the effect of observation radius to the per-
formance of the proposed algorithm, we conduct simulations
using observation radius § = 1,2,3. Other parameters are
N = 3 and decay® = 0.99. In Fig. 5, the results of steps
to completion v.s. different number of episodes are shown.

The most prominent finding is the divergence of the data
for an observation radius of 1. The reason is that a small
observation radius lacks the necessary number of states to

MiniGridEnv: 12 x 12 f Agents: 3

— wid sze oz
agents 3
obs_raciuns 1
P i, -
2000 epsion 08
e T
g @mme # 08
é 1500 *® sle
8 e % o
a - ,,,ea:a
L
& 1000{ « b ue os ®
& . ., - o,%° Pl
® ““‘,"&“n Se¥a Jf #g0® ©
[LE] []
wol e 3 £ 3T S
]
‘@ma«_ seﬁ‘ay?ﬂ ™ o F "
“gﬁ" A .
04
100 150 200 250 00
Episode
MiniGridEnv: 12 x 12 f Agents: 3
e 5
1000
g 800
2
E
g so00
2
-1
& 00
200
01
MiniGridEnv: 12 x 12 f Agents: 3
5000 -
4000 4
g
2 1000
E
8
2
8 2000 4
o
in
1000
o4

Episode

Fig. 5: Total steps to completion by episode for observation

radius of 1 to 3

Observation Max. steps Min. steps Avg. steps after
radius ep. 500
2 1172 37 46.2
3 5134 42 95.23
TABLE II: Steps to completion for observation radius

§=2,3.

encapsulate the environment grid for the robot to learn. For
observation radii of 2 and 3, the steps to completion converge.
The significant values of this data are listed in Table II.
With every metric, an observation radius of 2 performs
better than the observation radius of 3. The performance for
different radii depends on the given environment and hyper-
parameters, maintaining a balance between enough states
to properly learn and not too many states that slows the
propagation of Q-values. In the case of a radius of 1, the
divergence is due to an insufficient number of states. In the

000039

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

M. Zhu et al. « Reinforcement Learning for Multi-robot Field Coverage Based on Local Observation

case of a radius of 3, the final Q-table has significantly more
states than that of radius 2, which slows the learning of the
algorithm. Thus, given this environment, an observation radius
of 2 is the optimal among the three. Fig. 6 illustrates the
optimal solutions using 3 robots with observation radius § = 2
and 0 = 3.

Fig. 6: Optimal solutions of the multi-robot field coverage problem
in the 12 x 12 grid space using 3 robots with § = 2 (left) and
6 = 3 (right). Different colors indicate the areas covered by
different robots.

V. DISCUSSIONS

1) Q-table states: While many existing solutions in Q-
learning employ the location-based states, i.e., each cell of the
overall grid space is considered as a state and the state space
depends on the number of cells in the environment grid, we
propose to use the observation-based state in the Q-learning
algorithm for several reasons. First, the size of the observation-
based state space depends on the observation radius of the
robots, which is usually fixed at certain applications, thus,
the number of state-action pairs won’t grow as the size of
the environment grid increases. Second, observation-based
states lead to more accurate results. In positional-based states,
after a grid cell has been covered, the reward shifts from
positive to negative, which leads to inaccurate Q-values when
the state is occurred again. Observation-based states, on the
other hand, are unique to what the robot sees around it;
thus a particular grid changing from covered to uncovered
will lead to a completely different state, which allows for
consistent reward allocation. The other reason is that location-
based states allow for the Q-table to have a complete view
of the entire environment, which is unrealistic. In a real
world scenario, the size and constraints of the environment are
usually unknown to the robots as they are exploring it. Only
when exploring the environment with perception should the
environment be mapped out. Observation-based states allow
for a real world formulation of the problem because robots
learn and take actions only based on the surrounding elements
they can perceive.

2) Environment variables: The choice of the number of
robots and the observation radius is dependent on the given
environment. A small environment with too many robots may
have congestion so the field coverage results, i.e., the number
of steps to completions, may only be marginally improved
at an increased cost. On the contrary, too few robots in a
large environment may result in slow learning and reduces
convergence speed. A small observation radius may lack the
necessary number of states to encapsulate the environment grid

for the agent to learn. This leads to divergence, which can be
seen in the first figure in Fig. 5 for an observation radius of
1. A large observation radius may create an excess number
of states, causing slow propagation of Q-values across the Q-
table. The performance cost increases exponentially for larger
radii, but may be necessary for large environment grids.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we developed an observation-based Q-learning
algorithm to solve the field coverage problem using a group
of collaborating autonomous mobile robots. The observation-
based Q-learning algorithm can effectively reduce the size of
Q-table when the environment grid space increases, and is
more realistic to practical constraints such as limited obser-
vation range and local information. We conducted simulations
with different number of robots and different observation radii
to verify and analyze the performance of the algorithm. There
are various possible directions for future work including taking
into consideration of more constraints in the algorithm such as
kinematic / dynamic constraints of the robots, and exploring
deep RL technique to further improve the algorithm.

REFERENCES

[1] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated
multi-robot exploration,” IEEE Transactions on robotics, vol. 21, no. 3,
pp. 376-386, 2005.

[2] S. Thrun et al., “Robotic mapping: A survey,” Exploring artificial
intelligence in the new millennium, vol. 1, no. 1-35, p. 1, 2002.

[3] A. Howard, M. J. Matari¢, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution to the
area coverage problem,” in Distributed Autonomous Robotic Systems 5.
Springer, 2002, pp. 299-308.

[4] T. Bretl and S. Hutchinson, “Robust coverage by a mobile robot of a
planar workspace,” in 2013 IEEE International Conference on Robotics
and Automation. 1EEE, 2013, pp. 4582-4587.

[S] H. Zhang, W. Wang et al., “A topological area coverage algorithm for
indoor vacuuming robot,” in 2007 IEEE International Conference on
Automation and Logistics. 1EEE, 2007, pp. 2645-2649.

[6] G. E. Jan, C. Luo, L.-P. Hung, and S.-T. Shih, “A computationally
efficient complete area coverage algorithm for intelligent mobile robot
navigation,” in 2014 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2014, pp. 961-966.

[7] J. Song and S. Gupta, “Slam based shape adaptive coverage control using
autonomous vehicles,” in 2015 10th System of Systems Engineering
Conference (SoSE). 1EEE, 2015, pp. 268-273.

[8] Y. Kang and D. Shi, “A research on area coverage algorithm for
robotics,” in 2018 IEEE International Conference of Intelligent Robotic
and Control Engineering (IRCE). 1EEE, 2018, pp. 6—13.

[9] H. X. Pham, H. M. La, D. Feil-Seifer, and A. Nefian, “Cooperative and
distributed reinforcement learning of drones for field coverage,” arXiv
preprint arXiv:1803.07250, 2018.

[10] Z. Laouici, M. Mami, and M. F. Khelfi, “Cooperative approach for an
optimal area coverage and connectivity in multi-robot systems,” in 2015
International Conference on Advanced Robotics (ICAR). 1EEE, 2015,
pp. 176-181.

[11] J. Tan, O. M. Lozano, N. Xi, and W. Sheng, “Multiple vehicle systems

for sensor network area coverage,” in Fifth World Congress on Intelligent

Control and Automation (IEEE Cat. No. 04EX788), vol. 5. TEEE, 2004,

pp. 4666-4670.

S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-

agent, reinforcement learning for autonomous driving,” arXiv preprint

arXiv:1610.03295, 2016.

A. A. Adepegba, S. Miah, and D. Spinello, “Multi-agent area coverage

control using reinforcement learning,” in The Twenty-Ninth International

Flairs Conference, 2016.

M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic grid-

world environment for openai gym,” https://github.com/maximecb/

gym-minigrid, 2018.

[12]

[13]

[14]

000040

Authorized licensed use limited to: San Jose State University. Downloaded on July 04,2020 at 06:32:29 UTC from IEEE Xplore. Restrictions apply.

