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Abstract
One of the goals of Materials Informatics (generally) and Image Driven Ma-

chine Learning (specifically) is extraction of quantitative data from micrographs
towards an efficient characterization of microstructural features. Towards this
goal, we report on a new paradigm for systematic segmentation of morpholog-
ical features relevant to a given microstructure using an industrially relevant
titanium alloy as an example. A two stage pipeline consisting of a classification
step and a segmentation step is used to process titanium microstructures con-
taining multiple morphological features and output quantitative measurements
relevant to the particular class of microstructure identified. For the classifica-
tion step, a Convolutional Neural Network is trained using the Keras API, with
the architecture consisting of three convolutional layers and one fully connected
layer. The microstructures are classified into three labels: “lamellar”, “duplex”,
and “acicular”. A material microstructure dataset of 1225 images is established,
comprised of Ti-6Al-4V alloy micrographs acquired from seven different ther-
mal processing conditions. The CNN was trained on a dataset of 1000 images
and subsequently tested on a dataset of 225 images. It reported an accuracy of
93.00 ± 1.17 % , averaged over 5 trials incorporating a random division of the
total dataset into training and test sets. For the second stage of the pipeline,
image processing techniques were selected specific to the classification label of
the micrograph. The area fraction of equiaxed grains is extracted from bi-modal
microstructures using a marker-based watershed technique, and the area frac-
tion of the dominant α-variant is extracted from basket-weave structures using
a Histogram of Oriented Gradients (HOG) method. Computational tools simi-
lar to the proof of concept pipeline demonstrated in this work can be used by
engineers to better identify microstructural features that arise due to process or
material variations.
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processing of microstructures, convolutional neural network

1. Introduction

The Materials Genome Initiative[1] aims for accelerated materials discovery
and design by using computational models and data science methods. The
development of powerful deep learning models in the last decade, together with
the availability of labeled datasets and access to open-source libraries specific to
machine learning, has led to an increased application of such models to domains
which were largely dependent on analytical and numerical modeling.

The pre-cursor to neural networks, the perceptron[2], could fit only linear
functions, which limited its application. The introduction of the multi-layered
perceptron by Rumelhart et al[3], along with the backpropogation method to
train the weights for such a network, resulted in the ability to fit complex non-
linear models. LeCun et al[4] used the backpropogation method to identify
handwritten digits in checks, and later[5] introduced the Stochastic Gradient
Descent method as part of LeNet-5, one of the pioneering convolutional neural
nets, for the purpose of document recognition. However, it took till 2010s for
the widespread application of CNNs, driven by improved computational power
and the availability of large, labeled, datasets.

A history of evolution of CNNs in the last decade can be gleaned from the
annual ImageNet Large Scale Visual Recognition Challenge(ILSVRC)[6], which
has been conducted by the ImageNet project since 2010. The first CNN to win
the ILSVRC, AlexNet[7], reduced the object classification error rate from 26%
to 15.3%. It was also instrumental in demonstrating the importance of a CNN’s
depth towards its performance. Two major milestones in the development of
deep-CNNs were the reduction in the object classification error rate on the
ImageNet dataset to 6.67% and 3.57% by the winners of ILSVRC in 2014 and
2015, GoogLeNet[8] and ResNet[9] respectively.

Within the domain of material science, the last decade has seen a rise in the
use of machine learning methods, and a comprehensive review of the recent such
efforts can be found in [10] and [11]. Examples of applications include drawing
data-based correlations in the processing-structure-property space of materials,
prediction of new materials that satisfy crystal structure or property require-
ments, classification and characterization of microstructures, dimensionality re-
duction of material descriptor space, etc. Studies that apply statistical learning
for material design look at the mapping between structure and properties[12]
or the dependency between processing and structure[13]. Azimi et al[14] has
shown that a deep-CNN can aid towards learning patterns in data at multiple
scales. Xu et al[15], implement a supervised learning method to identify the key
microstructural descriptors to reduce the dimensionality of the descriptor space,
resulting in faster alloy designing. Chowdhary et al.[16], employed various clas-
sification techniques such as SVM, Random Forest, Nearest Neighbor, etc., to
classify between dendritic microstructures and non-dendritic microstructures as
well as dendrite orientation within the microstructure. Augmentation of do-
main expertise with techniques such as Bayesian optimization can significantly
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reduce the turnaround time for material design. A few examples of application
of deep learning methods to material design and characterization problems can
be found in [14, 17, 18, 19, 20].

Titanium alloys are a commercially important group of alloys that find
widespread use in aerospace, biomedical, and coating applications[21, 22]. At
room temperature the stable crystal structure of pure Ti is HCP(α phase),
and it undergoes an allotropic transformation to BCC(β phase) at tempera-
tures greater than 8820C. Alloys in the Ti-Al-V system can be classified ac-
cording to their equilibrium phases at room temperature as α-alloys, β-alloys,
or dual-phase alloys. The alloy of interest in this study belongs to the latter
class of alloys, and exhibits a wide range of microstructures using a few mor-
phological features. Depending upon the specific thermo-mechanical processing
conditions, these microstructures can exhibit α lamellae, acicular morphology,
or a bimodal morphology consisting of equiaxed grains and α-lamellae (duplex
microstructures)[23]. Thus, they are a suitable case study for image classifica-
tion and feature extraction problems. An efficient technique to generate quan-
titative fingerprints for material microstructures will aid towards an improved
mapping between processing conditions and microstructures, and thus a better
understanding of process-structure-property relationships.

Previous studies have reported varying degrees of success towards classifying
and segmenting material microstructures. Campbell et al.[24] implemented the
watershed algorithm to segment equiaxed grains from lamellar regions in duplex
titanium alloy microstructures. A Histogram of Oriented Gradients (HOG)
was implemented to separate lamellar regions, exploiting the fact that they
exhibit strong spatial gradients. A pixel-wise semantic segmentation of ultra-
high carbon steel microstructures using a deep-convolutional neural network
was reported in [20]. In [25], DeCost et al. reports a classification accuracy of
greater than 80% for a support vector machine (SVM) trained on a dataset of
stainless steel microstructures.

We introduce a task pipeline to demonstrate that it is possible to classify and
then quantitatively extract morphological features on micrographs that exhibit
a wide variety of features. The motivation of the work is to establish a paradigm
for efficient quantification of morphological features in material microstructures
with the help of the deep learning tool of convolutional neural network. The
pipeline, which classifies the micrographs into target labels and then implements
label-specific segmentation routines, ensures that only quantitative features rel-
evant to a particular microstructure class are extracted from the post-processing
routine. For example, this methodology ensures that a watershed algorithm to
segment grains will not be applied to a micrograph containing a lamellar mor-
phology. Through this work, we establish a material-microstructure dataset of
1225 images, that can be utilized for benchmarking machine learning models for
multi-class classification in the domain of material science.

Section 2 of this paper describes the collection and curation of the dataset
used in this work. Section 3 describes the methodology for the classification and
segmentation stages of the pipeline in detail. The results from both stages of the
pipeline are reported in section 4, followed by discussion in section 5. Section 6
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Table 1: List of thermal processing conditions, to which the Ti-6-4 alloy samples were sub-
jected. The training and test datasets were assimilated from micrographs obtained from these
samples.

Process ID Holding temperature (0C) Cooling method
1 1050 Water-quench
2 1050 Air-cooled
3 1050 Furnace Cooled to 9500C, then water-quench
4 1050 Furnace Cooled to 9000C, then water-quench
5 1050 Furnace Cooled to 8000C, then air-cooled
6 1050 Furnace Cooled
7 As received As received

brings to light some limitations of the work and some challenges facing image-
driven machine learning in general.

2. Dataset collection and preprocessing

2.1. Image collection methods

This work was implemented on a dataset of micrographs collected from a Ti-
6%Al-4%V (Ti-6-4) alloy. Since the classifier was intended to be trained on three
microstructure classes, the images were acquired from alloy samples that were
subjected to a variety of thermal processing conditions in air. The authors rec-
ognize the importance of atmosphere control in the industrial processing of Ti-
6-4. As this work is intended to develop representative microstructures (rather
than explore heat treatments) we have made no special attempts to control the
atmosphere during processing. The processing conditions are summarized in
Table 1. The as-received samples were the main source of duplex microstruc-
tures. Processes 4 and 3 in the table generated the acicular microstructures,
while processes 2 and 3 generated the basket-weave structures. The α-colony
structures were obtained from processes 2 and 4. All specimens were imaged us-
ing scanning electron microscopy. Secondary Electron signals from the samples
was utilized for generating the images. Each image in the dataset was gener-
ated from a unique field of view to ensure that the performance of the trained
network generalizes well across different fields of view in the sample.

2.2. Dataset

Grayscale images, of size approximately 3000 pixels × 2000 pixels were gen-
erated by SEM. The image dataset was populated by sectioning the images from
source into images of size 600 pixels × 600 pixels to ensure that the images are
unambiguously annotated and the classifier is able to train on features particular
to the annotated label. It was ensured that there was no spatial overlap between
any two sectioned images. These sectioned images were then manually labeled
as one of the three target labels. An example instance of data augmentation
described here is shown in Figure 1.
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(a) Micrograph sourced from SEM (b) Sectioned image used for training and
testing purposes.

Figure 1: Visualization of the data collection method used in this work. (a)A micrograph ob-
tained from SEM. (b) Sectioned image used in the dataset. Each black box in (a) corresponds
to a sectioned image.

In this project, a dataset of 1225 images was assembled. For reference,
Figure 2 provides an example image from each target label. 1000 images were
randomly selected for the training process, out of which 200 were set aside as
the validation set. The weights trained using this set were applied to the test
dataset comprising the remaining 225 images.

(a) (b) (c)

Figure 2: A representative micrograph from each target class studied in this work. (a) mi-
crostructure with a lamellar morphology, (b) a bi-modal microstructure with a mixture of
equiaxed and lamellar morphology and (c) an acicular microstructure.

2.3. Data pre-processing

Pre-processing is important in a dataset of micrographs where it is likely
that imaging conditions and dimensions could vary among images. For the clas-
sification step, each input image was resized into 200px×200px considering the
architecture of the CNN and the computational constraints involved. Follow-
ing the resizing, a Gaussian Blur with a 5×5 kernel was applied on the image.
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This filter helped in reducing the inherent noise in the image and smoothing the
intra-grain regions. For the segmentation step, a sequence of median smoothing,
with a 5×5 kernel, followed by a contrast limited adaptive histogram equaliza-
tion(CLAHE), with a 5×5 kernel, were applied to the images on the dataset. It
was observed that a median smoothing retained feature edges more clearly than
a mean smoothing. CLAHE was chosen over a simple histogram equalization
because the former is useful in images which are non-uniformly illuminated.
Figure 3 demonstrates an example of application of these filters to an original
image from the dataset.

3. Methodology

3.1. Labeling

The image dataset is classified into three target labels - “lamellar”, “duplex”,
and “acicular”. The images were labeled manually, and in the cases where
a micrograph has multiple morphological features, the feature occupying the
largest area fraction is chosen based on visual inspection.

3.2. Pipeline overview

Two main tasks are performed in this pipeline: classification and segmenta-
tion. Following the initial pre-processing step, images are passed to the trained
classifier from which they emerge with one of the three target labels. The clas-
sifier used in this project is a convolutional neural network, which is explained
in detail in the next subsection. The images along with the classification labels
are passed to the post-processing stage in which label-specific segmentation is
performed to extract quantitative data from the image. These label-specific
tasks are explained in detail in subsection 3.4.

3.3. Neural network used for classification

A convolutional neural network was constructed for the purpose of classifying
each image in our dataset. Classification was performed on three target labels
- lamellar, duplex, and acicular microstructures. Duplex microstructures are
characterized by a mixture of equiaxed regions and lamellar regions, whereas
lamellae are composed of α plates. Both types of microstructures are common
in Ti-alloy metallurgy.

A convolutional neural network(CNN) consists of a sequence of convolution
layers, during which the network learns about the features present in the image,
followed by one or many fully connected layers. When the objective of the
CNN is classification, the final layer outputs the probabilities for each target
label, and the label with the highest probability is selected as the predicted
output. During the training phase, weights of the network are trained towards
minimizing a loss function, according to a specified learning algorithm.

A convolution layer uses a filter to convolve over the input, resulting in a
feature map that is dimensionally smaller than the input. Convolving a filter F
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Pre-processing before classification

(a) (b)

Pre-processing before segmentation

(c) (d)

Figure 3: Application of pre-processing filters on the original image, (top) Resizing to
200px×200px followed by a Gaussian Blur with a 5×5 kernel for the classification step (bot-
tom) Median smoothing and CLAHE, both with a 5×5 kernel, for the segmentation step.

Table 2: A dimensional representation of input and output data at every layer of the CNN.
Each convolutional layer is allowed a pre-determined number of filters, which enables the
network to learn the patterns inherent in the image dataset.

Layer Input Output Filters Kernel Stride
Conv2d-1 (200,200) (196,196) 2 5× 5 (1,1)

MaxPooling-1 (196,196) (98,98) N/A 2× 2 (2,2)
Conv2d-2 (98,98) (94,94) 4 5× 5 (1,1)

MaxPooling-2 (94,94) (47,47) N/A 2× 2 (2,2)
Conv2d-3 (47,47) (45,45) 12 3× 3 (1,1)
Reshape (45,45) (24300) N/A N/A N/A

Fully-Connected (24300) 1 N/A N/A N/A
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Figure 4: Visualization of architecture of the Convolutional Neural Network used in this work.
The network consisted of three convolution layers, denoted by C1, C2, and C3, and one fully
connected layer. A max pooling layer was used in between the convolution layers. The output
to the third convolutional layer was reshaped into a one-dimensional feature vector before
being passed to the fully connected layer, denoted by FC. The CNN generates a probability
for each target label, and the label with the highest probability is selected as the predicted
label.

of size (k×k) over the image I results in a feature map C that can be described
as:

C(row, col) = I ∗ F = g
( k∑
i=1

k∑
j=1

I(row + i− 1, col + j − 1)F (i, j)) (1)

Here, g() refers to an activation function. The parameters F(i,j) are referred
to as the weights of the layer. The number of filters, their kernel size, and an
activation function are specified for each layer. The optimum kernel size for
the filters depends on the spatial scale of the features that needs to be learned
by the network. While a small kernel can aid the network towards learning
local features in the image, it also necessitates more number of convolution
layers and hence makes the training computationally expensive. An activation
function is important for introducing non-linearity in the network. In this work,
a piecewise linear activation function, Rectified Linear Units (ReLU), is chosen.
ReLU returns the value of the node if it is greater than zero or returns the value
zero otherwise:

ReLU(x) =

{
x if x > 0

0 otherwise
(2)

The weights of the filters in the convolution layers are initialized with the
Xavier method[26]. This initialization draws values for the weights from a nor-
mal distribution having a mean of zero and a variance that is inversely propor-
tional to the number of input nodes. Successive convolutional layers take the
feature maps from the previous layer as input. A series of such layers enable the
network to learn patterns in the image over multiple length scales. In Table 2,
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Figure 5: The CNN was provided with twelve filters to learn features present in the image.
Two of the twelve features, applied over three images belonging to the lamellar class (red) and
three images belonging to the bi-modal class(blue) have been shown here. While the feature
at the top accentuates the oriented nature of a typical lamellar microstructure, the feature at
the bottom brings out the globular pattern of equiaxed grains.

these layers are denoted by the prefix Conv2d. In this work, each convolution
layer is accompanied by a max-pooling layer. Pooling layers downsample the
feature maps and help in reducing the number of weights to be trained in the
network. The output of a max-pooling operation P with a (k×k) kernel on an
input matrix A can be described as:

P (row, col) = max1≤i,j≤k I
(
(row − 1)× k + i, (col − 1)× k + j

)
(3)

They are also instrumental in making the feature maps less sensitive to the
location of features in the input image. In Figure 2, the pooling layers are
denoted by MaxPooling and use a kernel size of 2×2 for downsampling.

The output from the final convolutional layer is reshaped into a one-dimensional
feature vector before being passed as input into a fully connected layer. Fully
connected layers act as perceptrons, capable of fitting the input features to a
linear function. The advantage of fitting the learned features to non-linear func-
tions, that one can gain from having multiple fully connected layers, should be
weighed against the risk of overfitting noisy patterns in the image.

The network in the current study is comprised of three convolution layers,
two max-pooling layers, and one fully connected layer. The parameters defining
the architecture of the CNN - number of layers, kernel size for each layer, and the
number of filters for each layer - were optimized manually. The size of the train-
ing dataset, possibility of over-fitting, and the computational constraints were
the important factors taken into consideration. The training hyper-parameters
of the model were the learning rate, batch size, and the L1 regularization pa-
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rameter, which were optimized by a grid search routine provided by the Keras
library.

The kernel size and number of filters in each layer are specified in Figure 4.
As an input image passes through each of these layers, the output is progressively
downsampled in dimension. Twelve filters are made available to the network,
over the three convolution layers, enabling it to learn twelve different features
inherent in the dataset. High level features, such as edges and gradients, are
learned in the first layer. Successive layers use the features from the previous
layer to learn more complex shapes and abstractions present in the image.

As an example, Figure 5 shows two of the twelve features at the end of the
third convolution layer, applied over three images belonging to the lamellar class
(red) and three images belonging to the bi-modal class(blue). While the feature
at the top accentuates the oriented nature of a typical lamellar microstructure,
the feature at the bottom brings out the globular pattern of equiaxed grains.

An objective loss function is a quantitative measure of the error between the
output predicted by the network and the actual output. During the training
period, the weights of the network are iteratively updated towards minimizing
the total loss over the entire test dataset. For the multi-label classification per-
formed in this work, a softmax cross-entropy function is chosen as the objective
loss function. The loss, L, is analytically described below:

L = −
∑
i

yi log(pi) (4)

pi =
eai∑
k e

ak
(5)

where yi is the actual label of the input i and pi is the softmax function of the
output. The softmax function converts the output from the fully connected layer
to a probability distribution of the target labels. With the goal of minimizing
the loss function, the weights at each layer of the CNN are updated at each
iteration via a specified algorithm. In this work, AdamOptimizer[27], which
improves upon the Stochastic Gradient Descent algorithm by maintaining a
per-parameter learning rate, is the algorithm used, and the network was trained
for 1500 iterations. The hyper-parameters of the model are summarized in
Table 3. The relatively smaller dataset makes the neural network susceptible
to overfitting. Hence, some regularization measures are required. In this work,
we incorporate regularization during the training process through two ways.
The first is through incorporation of the penalty term, λ

∑
i |wi|, to the loss

function. Referred to as the L1 regularization, this penalty term helps in feature
selection by eliminating the weights connecting inconsequential features, thereby
minimizing the overfitting of the model by stray features. In addition to the
penalty term, an implicit early stopping rule [28] is incorporated into the training
process. This rule terminates the training when the score on the validation
set stops improving as compared to the previous timestep, and is a reasonable
identification of the point in the training process when any further improvement
in accuracy on the training data will likely not generalize well to the test data.
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Table 3: Hyperparameters used during the training process.

Hyper-parameter Description Value
Learning Rate Used for AdamOptimizer 0.001

Batch Size Number of images used for
optimization during every iteration

200

Max Iterations Maximum number of iterations 1500
λ L1 Regularization Parameter 0.001

Early Stopping criteria Criteria for stopping the training
before max iter

(V altacc −
V alt−1

acc ) ≤ 0

The project was implemented in Python 3, with the help of the following
libraries: Numpy[29], Matplotlib[30], OpenCV[31], and Keras[32].

3.4. Algorithms used for segmentation

For the second stage of the pipeline, relevant quantitative features were ex-
tracted from images classified as either duplex or lamellar. For the feature ex-
traction task of the pipeline, two different segmentation techniques were tested.
In the first, equiaxed regions were segmented from the lamellae regions in du-
plex microstructures and in the second, the dominant variant was segmented
from a micrograph representing a lamellar microstructure.

A marker-based topographical watershed algorithm[33] is implemented for
segmenting the equiaxed regions from the lamellar regions. Spatial markers are
identified corresponding to the local minimas in the gradient function. The
watershed algorithm treats the image as a topological surface, with peaks and
troughs corresponding to high and low pixel intensity values respectively. Re-
gions are segmented around the markers, and boundaries between two regions
are drawn with the help of intervening peaks. A more detailed description of
how a topographic watershed algorithm works can be gleaned from OpenCV’s
official documentation of the watershed function[31]. Subsequently, a marker-
based watershed function was implemented to segment the equiaxed regions
from lamellar regions.

For the second kind of segmentation, a Sobel operator from openCV was im-
plemented to extract gradients in x (Gx) and y (Gy) directions. The magnitude
and angle of gradient at every pixel location were calculated as follows:

Mag = (

√
Gx

2 +Gy
2) (6)

Angle = (tan−1 (Gy)

(Gx)
) (7)

A histogram of oriented gradients (HOG) was extracted. Figure 6 shows a
typical HOG for lamellar microstructures.
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Figure 6: A characteristic Histogram of Oriented Gradients for a lamellar microstructure.
The distinct peaks on the histogram represents the pixels corresponding to the dominant α
variant present in the microstructure.

Due to the presence of preferentially oriented gradients, the HOG for a
lamellar microstructure is likely to contain sharp peaks that represent systematic
contrast variations perpendicular to the lamellar growth direction. This fact was
exploited to isolate pixels corresponding to the two highest peaks on the image’s
HOG. It should be noted that the use of HOG for segmenting lamellar regions in
titanium alloy microstructures was reported in [24]. This concept is expanded in
the current work to predict morphological features such as macroscopic variant
selection. Finally, a kernel-based mean smoothing operation, similar to the
procedure described in Section 2.4, was implemented on the marker for the
purpose of visualization of the segmented regions.

4. Results

The performance of the trained network was quantified by the fraction of
images in the test set that were classified accurately:

Model score =

M∑
i=1

δi/M (8)

where δi equals 1 if the i-th image in the test dataset was classified correctly,
or zero otherwise. M here refers to the size of the test dataset. The network
scored consistently above 90% on test datasets of 225 images. Over five cycles
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of sequentially dividing the total dataset into training and testing sets, training
the network, and evaluating the trained network on the test set, an average
score of 93.00 ± 1.17 % was obtained with the best score of 94.67%.confusion
matrix, which can be seen in Figure 9, was generated to better visualize the
network’s performance. Each row in the matrix represents the distribution of
images belonging to a target label in the actual test dataset. Each column in the
matrix represents the distribution of images that were classified as a particular
label by the trained network. The diagonal entries denote the instances that
were correctly predicted by the network, whereas entries in (Row, Column)
denote the number of images belonging to the label specified by “Row” that
were incorrectly classified as the label specified by “Column”. the The errors
were divided uniformly across the three target labels, i.e. no single label was
significantly misclassified.

Figures 7 and 8 show the results of segmentation algorithms implemented
on a lamellar microstructure and a duplex microstructure respectively. The
segmentation algorithm based on HOG isolates the pixels corresponding to the
two highest peaks on the image’s HOG. A binary mask is created for the image,
on which these isolated pixels are activated and the remaining pixels are defined
to have a value of zero. The dominant α-variant in the micrograph can be
visualized by superimposing this mask over the original image, as seen in Figure
7. The area fraction of the dominant α-variant is obtained by calculating the
number of pixels in the mask having a value of one. Similarly for the bi-modal
microstructures, a binary mask is created to isolate the pixels lying within the
equiaxed grains. The fraction of the activated pixels on the mask is used as
the metric for quantification of area fraction of equiaxed grains. The contours
of the isolated grains are imposed on the original image for visualization of the
segmentation. The complete workflow is summarized in Figure 9.

5. Discussion

The data augmentation method and the architecture of the network were tai-
lored appropriate to the material dataset in hand. The spatial resolution in the
original images was the primary factor taken into consideration before adopting
the sectioning size. Among the pre-processing steps applied at various stages of
the pipeline, the classification results were sensitive to the kernel size of Gaus-
sian Blur and the magnitude of resizing. A larger cropped image resulted in
increased time for training per image and fewer images in the dataset, whereas
resizing to a smaller cropped image resulted in poorer classification performance.
In contrast to this dataset, one containing images of lower magnification could
be subjected to a finer sectioning size whereas a coarser sectioning size could
be more appropriate for a dataset containing images of a higher magnification.
Median smoothing was observed to be preferable to mean smoothing, because it
accentuated the edges more clearly than mean smoothing. CLAHE was included
as a precautionary measure and the segmentation algorithm for the images in
the current material dataset were not particularly sensitive to this filter. As an
input image is passed through multiple convolution layers, the features learned
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(a) (b)

(c) (d)

Figure 7: Segregation of the most dominant α-variant in a lamellar microstructure. Superim-
posing a mask of segregated pixels over the original image (a and c) results in the visualization
of the dominant α-variant (denoted by the darker pixels on subfigures b and d). Such a seg-
mentation technique can help towards a quantification of texture inherent in the micrograph.

at each layer becomes increasingly local and complex. While a manual opti-
mization method was employed for identifying the appropriate architecture for
this dataset, readers are referred to upcoming neural-network synthesis methods
such as [34] and [35] for generating neural networks for complex morphologies.
The number of convolution layers and the number of filters that each layer was
allowed to learn were the two main parameters of the network that influenced its
training performance. Too few filters resulted in the network not being able to
learn the important features, whereas too many filters and an increased number
of convolution layers resulted in a higher probability of overfitting.

The segmentation algorithms demonstrated here could enable a quantifica-
tion of lamellae-induced texture inherent in the micrograph. Larger the area
fraction occupied by the dominant α-variant, the more likely that there is a
lamellae-induced texture in the micrograph. Similarly, the area fraction of
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(a) (b)

(c) (d)

Figure 8: Segmentation of equiaxed regions in duplex microstructures. (a and c) Original
original images. (b and d) Segregated images.

equiaxed grains in bi-modal microstructures, Figure 8, could enable the map-
ping of thermo-mechanical processing conditions to the extent of globulariza-
tion undergone by the material. By integrating this workflow with experimen-
tal techniques for phase analysis such as Electron Beam Scattering Diffraction
(EBSD) or Energy Dispersive Spectroscopy (EDS), a better understanding of
the process-structure-property relationships in the material could be explored.

This study facilitates automatic selection of the image processing method
that is relevant and most useful to the given microstructure. Since the class
of alloys studied here exhibits a wide variety of morphologies, multiple image
processing algorithms are required to develop a quantitative fingerprint of the
microstructure, and any particular algorithm might not be suitable for every
microstructure. For example, if a micrograph contains a grain exhibiting lamel-
lar morphology, information from a post-processing routine built for segmenting
equiaxed grains will not provide a meaningful quantitative result for this partic-
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ular morphology. An efficient method to relate microstructures to quantitative
data, as shown in Figure 9, can contribute towards a robust mapping of pro-
cessing conditions to properties and thereby towards better alloy design.

6. Challenges in IDML and Limitations of the Present Work

Quantitative image analysis in metallography has not yet fully realized the
benefit of image driven machine learning. This is in part due to the way in which
microstructure data is collected and used. It is common practice in microscopy
to collect overview and detail images that identify characteristic features present
throughout the structure. If statistical measurements are required, one strategy
to ensure accurate sampling might be to estimate variances and compute a con-
fidence interval from a small set of images. Recommendations provided as part
of ASTM standards can also be found, however they are general in nature and
leave all decision making to the analyst[36, 37]. Although no specific guidance is
provided the metallographer might be instructed to collect a “suitable” number
of images. The multi-step classification strategy here provides a way to manage
a large collection of images that could assist the analyst in identifying and pro-
cessing images more quickly than by visual examination. In this work we choose
to limit the image types to SEM images where the illumination conditions and
resolution are more well controlled.

It is noted that the architecture used for the neural network is designed for
this material dataset, and is likely required to be fine-tuned for a dataset that
contains a different number and type of features and classification targets. The
relatively smaller training datasets make the domain currently not optimum
for deep learning methods. However, techniques such as convolutional neural
networks help towards a better interpretation of the machine learning results,
despite not giving a significant improvement over conventional classifiers such as
SVM or Random Forest Trees. Future innovations in the field of deep learning,
such as transfer learning and neural-network synthesis, will aid towards making
the application of deep learning to material science datasets ubiquitous.

7. Conclusions and Future Scope

We have demonstrated a paradigm for efficient quantitative characterization
of a microstructure dataset containing different morphological features by lever-
aging the power of deep learning tools and image segmentation algorithms. A
database of 1225 Ti-6Al-4V micrographs is utilized for this purpose.

Based on our work and observations, we put forth the following conclusions:

• A material microstructure dataset relevant to Ti alloys has been estab-
lished that can be used as a benchmark for multi-class classification testing
within the domain of material science.

• The CNN, built up of three convolution layers and one fully connected
layer, is trained on a dataset of 1000 images. The trained network produces
an accuracy of 93.00 ± 1.17 % on a testing set of 225 images.

16



F
ig

u
re

9
:

O
v
er

v
ie

w
o
f

th
e

p
ip

el
in

e
im

p
le

m
en

te
d

in
th

is
w

o
rk

.T
h

e
fi

rs
t

st
a
g
e

o
f

th
e

p
ip

el
in

e
is

a
co

n
v
o
lu

ti
o
n

a
l

n
eu

ra
l

n
et

w
o
rk

,
w

h
ic

h
cl

a
ss

ifi
es

im
a
g
es

in
to

d
u

p
le

x
(fi

rs
t

cl
u

st
er

),
la

m
el

la
r(

se
co

n
d

cl
u

st
er

),
a
n

d
a
ci

cu
la

r(
th

ir
d

cl
u

st
er

).
T

h
e

se
co

n
d

st
a
g
e

o
f

th
e

p
ip

el
in

e
im

p
le

m
en

ts
la

b
el

-s
p

ec
ifi

c
im

a
g
e

se
g
m

en
ta

ti
o
n

ta
sk

s
to

ex
tr

a
ct

q
u

a
n
ti

ta
ti

v
e

d
a
ta

th
a
t

is
re

le
v
a
n
t

to
th

e
m

ic
ro

st
ru

ct
u

re
th

a
t

is
p

re
se

n
t

in
th

e
im

a
g
e.

17



• The segmentation algorithm for lamellar morphologies extracts the area
fraction of the most dominant α variant by segmenting the pixels oc-
cupying the most dominant orientations in the micrograph’s HOG. The
segmentation algorithm for duplex morphologies extracts the area fraction
of equiaxed grains by implementing a marker-based watershed algorithm
on the micrograph.

• This approach ensures that only features relevant to the microstructure
are quantified during post-processing. This results in a reduction of the
time required to develop a quantitative metric for a given micrograph. It
should be noted that this work is a case-study in “smart segmentation”
of micrographs, and morphology-specific segmentation algorithms were
selected. Based on knowledge about the specific material class and their
possible morphologies, other suitable segmentation algorithms could be
selected in other material systems.
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