Original Paper

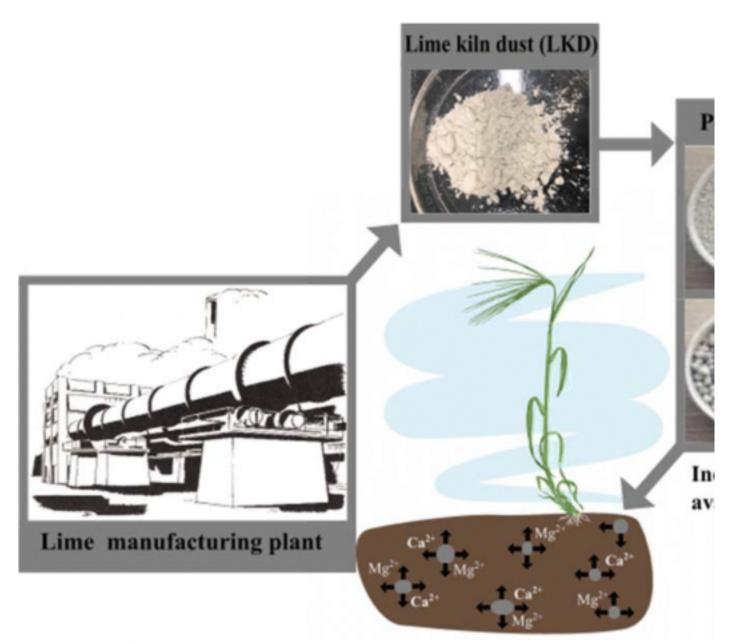
Published: 02 June 2020

Physicochemical Characterization of Pelletized Lime Kiln Dust as Potential Liming Material for Acidic Soils

<u>Donata Drapanauskaite</u>, <u>Kristina Buneviciene</u>, <u>Regina Repsiene</u>, <u>Romas Mazeika</u>, <u>Juan Navea</u> & Jonas Baltrusaitis

Waste and Biomass Valorization (2020)Cite this article

120 Accesses


3 Altmetric

Metrics details

Abstract

Lime kiln dust (LKD) is a fine particulate material by-product produced during the lime burning processes. Current reuse options are chiefly focused on reuse in the cement industry which are limited by the inherent porosity of this by-product. Due to the presence of calcium (Ca), magnesium (Mg) and other elements which can serve as micronutrients to the plants, LKD has the potential to be used as a replacement for conventional liming materials for both soil pHKCl increase and plant supplement with secondary major- (Ca and Mg) and micronutrients (Mn, Cu, Zn and Ni). The work described here outlines the investigation of physicochemical properties of pelletized LKD materials and their effect on soil pHKCl, available Ca and Mg content in the soil as well as straw and grain yields of spring barley. LKD were analyzed using X-ray diffraction, scanning electron microscopy with energy dispersive analysis, while detailed chemical analysis of both pelletized LKD and soil was performed using Atomic Absorption Spectroscopy. Pellet size and major element composition were used as chief indicators for the liming capacity of LKD. It was shown that low acidic soil (pHKCl 5.4) can be conditioned using fine (0.1-2 mm) pelletized LKD due to the high release rates while coarse pellets (5-8 mm) did not significantly increase available Ca and Mg content in soil and did not reach optimum pHKCl range even after 48 weeks. The highest application rate of LKD at 4 t/ha increased spring barley grain yield compared to control but the increase was not statistically significant. Thus, pelletized lime kiln dust could be a potential alternative to natural limestone or dolomite minerals as liming material for acid soils with the pellet size determining the liming kinetics.

Graphic Abstract

This is a preview of subscription content, $\underline{\text{log in}}$ to check access. References

```
https://doi.org/10.1016/j.chemosphere.2018.11.088 Article Google Scholar 6. Miller, M.M.,
Callaghan, R.M.: Lime Kiln Dust as a Potential Raw Material in Portland Cement Manufacturing.
U.S. Geological Survey, Reston (2004) Google Scholar 7. Chesner, W.H., Collina, R.J.,
MacKay, M.H.: User Guidelines for Waste and By-Product Materials in Pavement Construction,
Washington DC (1998) 8. Lime-Treated Soil Construction Manual: Lime Stabilization & Lime
Modification (2004) 9. Mackie, A.L., Walsh, M.E.: Bench-scale study of active mine water
treatment using cement kiln dust (CKD) as a neutralization agent. Water Res. 46(2), 327-334
(2011). https://doi.org/10.1016/j.watres.2011.10.030 Article Google Scholar 10. Mackie, A.,
Boilard, S., Walsh, M.E., Lake, C.B.: Physicochemical characterization of cement kiln dust for
potential reuse in acidic wastewater treatment. J. Hazard. Mater. 173, 283-291 (2010).
Sadek, D.M., Salah, A.M.: Recycling of high volumes of cement kiln dust in bricks industry. J.
Clean. Prod. 143, 506–515 (2017). <a href="https://doi.org/10.1016/j.jclepro.2016.12.082">https://doi.org/10.1016/j.jclepro.2016.12.082</a>
Article Google Scholar 12. Ali, M.A.M., Yang, H.: Utilization of cement kiln dust in industry
cement bricks. Geosyst. Eng. (2014). https://doi.org/10.1080/12269328.2011.10541327
Article Google Scholar 13. Abdel-Ghani, N.T., El-Sayed, H.A., El-Habak, A.A.: Utilization
of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some
"green" cement products. HBRC J. 14(3), 408-414 (2018).
https://doi.org/10.1016/j.hbrcj.2017.11.001 Article Google Scholar 14. Siddique, R.:
Utilization of cement kiln dust (CKD) in cement mortar and concrete-an overview. Resour.
Conserv. Recycl. 48(4), 315–338 (2006). https://doi.org/10.1016/j.resconrec.2006.03.010
Article Google Scholar 15. Maslehuddin, M., Al-Amoudi, O.S.B., Shameem, M., Rehman,
M.K., Ibrahim, M.: Usage of cement kiln dust in cement products—research review and
preliminary investigations. Constr. Build. Mater. 22, 2369–2375 (2008).
https://doi.org/10.1016/j.conbuildmat.2007.09.005 Article Google Scholar 16. Collins, R.J.,
Emery, J.J.: Kiln Dust-Fly Ash Systems for Highway Bases and Subbases, Washington, DC
(1983) 17. Latif, M.A., Naganathan, S., Razak, H.A., Mustapha, K.N.: Performance of lime kiln
dust as cementitious material. Procedia Eng. 125, 780-787 (2015).
https://doi.org/10.1016/j.proeng.2015.11.135 Article Google Scholar 18. Rahman, M.K.,
Rehman, S., Al-Amoudi, O.S.B.: Literature review on cement kiln dust usage in soil and waste
stabilization and experimental investigation. Int. J. Res. Rev. Appl. Sci. 7(1), 77–87
(2011) Google Scholar 19. Rimal, S., Poudel, R.K., Gautam, D.: Experimental study on
properties of natural soils treated with cement kiln dust. Case Stud. Constr. Mater. 10, e00223
(2019). https://doi.org/10.1016/j.cscm.2019.e00223 Article Google Scholar 20. Mosa,
A.M., Taher, A.H., Al-Jaberi, L.A.: Improvement of poor subgrade soils using cement kiln dust.
Case Stud. Constr. Mater. 7, 138-143 (2017). https://doi.org/10.1016/j.cscm.2017.06.005
Article Google Scholar 21. Kakrasul, J.I., Parsons, R.L., Han, J.: Performance of Lime Kiln
Dust-treated subgrade soils. In: IFCEE 2018: Recent Developments in Geotechnical Engineering
Practise, 473-484 (2018) 22. Kakrasul, J., Parsons, R.L., Han, J.: Lime kiln dust for treated
subgrades (2017) 23. Noller, C.H., White, J.L., Wheeler, W.E.: Characterization of cement kiln
dusts and animal response 1. J. Dairy Sci. 63(11), 1947–1952 (1980).
Scholar 24. Sreekrishnavilasam, A., King, S., Santagata, M.: Characterization of fresh and
landfilled cement kiln dust for reuse in construction applications. Eng. Geol. 85(1-2), 165-173
(2006). https://doi.org/10.1016/j.enggeo.2005.09.036 Article Google Scholar 25. Haynes,
R.J., Naidu, R.: Influence of lime, fertilizer and manure applications on soil organic matter content
and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51(1), 123-137
(1998) Article Google Scholar 26. Eidukeviciene, M., Vasiliauskiene, V., Misevicius, J.:
Lietuvos dirvozemiai, pp. 210-213. Monografija; Lietuvos mokslo redakcija, Kaunas
(2001) Google Scholar 27. Gerasimova, M., Reinsch, T., Anjos, L., Batkhishing, O.,
Bockheim, J., Brinkman, R., Broll, G., Charzynski, P., Coulho, M.R., Nachtergeale, F.O., et al.:
Status of the World's Soil Resources (SWSR). FAO, Rome (2015) Google
Scholar 28. Szymański, W., Skiba, M., Błachowski, A.: Influence of redox processes on clay
```

```
mineral transformation in Retisols in the Carpathian Foothills in Poland. Is a ferrolysis process
present? J. Soils Sediments 17(2), 453-470 (2017). https://doi.org/10.1007/s11368-016-1531-1
Article Google Scholar 29. Kozowski, M., Komisarek, J.: Textural diversity in selected
retisols in the catena of the opalenica plain (western Poland). Soil Sci. Annu. 68(1), 11–18 (2017).
https://doi.org/10.1515/ssa-2017-0002 Article Google Scholar 30. Yang, Z.B., Rao, I.M.,
Horst, W.J.: Interaction of aluminium and drought stress on root growth and crop yield on acid
soils. Plant Soil 372(1-2), 3-25 (2013). https://doi.org/10.1007/s11104-012-1580-1
Article Google Scholar 31. HruŠka, J., Oulehle, F., Šamonil, P., Šebesta, J., Tahovská, K.,
Hleb, R., HouŠka, J., Šikl, J.: Long-term forest soil acidification, nutrient leaching and vegetation
development: linking modelling and surveys of a primeval spruce forest in the Ukrainian
Transcarpathian Mts. Ecol. Model. 244, 28–37 (2012).
https://doi.org/10.1016/j.ecolmodel.2012.06.025 Article Google Scholar 32. Holland, J.E.,
Bennett, A.E., Newton, A.C., White, P.J., McKenzie, B.M., George, T.S., Pakeman, R.J., Bailey,
J.S., Fornara, D.A., Hayes, R.C.: Liming impacts on soils, crops and biodiversity in the UK: a
review. Sci. Total Environ. 610-611, 316-332 (2018).
https://doi.org/10.1016/j.scitotenv.2017.08.020 Article Google Scholar 33. Castro, G.S.A.,
Crusciol, C.A.C., da Costa, C.H.M., Ferrari Neto, J., Mancuso, M.A.C.: Surface application of
limestone and calcium-magnesium silicate in a tropical no-tillage system. J. Soil Sci. Plant Nutr.
16(2), 362–379 (2016). https://doi.org/10.4067/S0718-95162016005000034 Article Google
Scholar 34. Basak, B.B., Biswas, D.R.: Potentiality of Indian rock phosphate as liming material
in acid soil. Geoderma 263, 104-109 (2016). https://doi.org/10.1016/j.geoderma.2015.09.016
Article Google Scholar 35. Tang, P., Brouwers, H.J.H.: Integral recycling of municipal solid
waste incineration (MSWI) bottom ash fines (0-2 mm) and industrial powder wastes by cold-
bonding pelletization. Waste Manag. 62, 125-138 (2017).
https://doi.org/10.1016/j.wasman.2017.02.028 Article Google Scholar 36. Gesoĝlu, M.,
Güneyisi, E., Mahmood, S.F., Öz, H.Ö., Mermerdaş, K.: Recycling ground granulated blast
furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete. J.
Hazard. Mater. 235–236, 352–358 (2012). https://doi.org/10.1016/j.jhazmat.2012.08.013
Article Google Scholar 37. Li, J., Xiao, F., Zhang, L., Amirkhanian, S.N.: Life cycle
assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: a
review. J. Clean. Prod. 233, 1182-1206 (2019). https://doi.org/10.1016/j.jclepro.2019.06.061
Article Google Scholar 38. Sell, N.J., Flschbach, F.A.: Pelletizing waste cement kiln dust
for more efficient recycling. Ind. Eng. Chem. Process Des. Dev. 17(4), 468-473 (1978).
https://doi.org/10.1021/i260068a013 Article Google Scholar 39. Judd, G.G.: Production of
Pellets and Pellet-Containing Fertilizer Composition. U.S. patent 4,410,350. October 18
(1983) 40. Kachinski, J.L.: Method of Processing Waste Cement Kiln Dust to Make a Soil
Treatment Composition. U.S. patent 4,402,891. September 6 (1983) 41. Bolan, N.S., Adriano,
D.C., Curtin, D.: Soil acidification and liming interactions with nutrient and heavy metal
transformation and bioavailability. Adv. Agron. 78, 215–272 (2003).
https://doi.org/10.1016/S0065-2113(02)78006-1 Article Google Scholar 42. Verlinden, G.,
Pycke, B., Mertens, J., Debersaques, F., Verheyen, K., Baert, G., Bries, J., Haesaert, G.:
Application of humic substances results in consistent increases in crop yield and nutrient uptake.
J. Plant Nutr. 32(9), 1407–1426 (2009). https://doi.org/10.1080/01904160903092630
Article Google Scholar 43. WRB luss Working Group: World Reference Base for Soil
Resources 2014. WRB luss Working Group, Rome (2014) Google Scholar 44. Egnér, H.,
Riehm, H., Domingo, W.R.: Untersuchungen uber die chemische Bodenanalyse als Grundlage fur
die Beurteilung des Nährstoffzustandes der Böden, vol. 26. Kungliga Lantbrukshögskolans
Annaler (1960) 45. Institute; SAS: The SAS System for Windows Version 9.4. SAS Institute:
Cary, NC, USA (2016) 46. Morrissey, J., Guerinot, M.L.: Iron uptake and transport in plants: the
good, the bad, and the ionome. Chem. Rev. 109(10), 4553-4567 (2009).
https://doi.org/10.1021/cr900112r Article Google Scholar 47. Nikolic, M., Kastori, R.: Effect
of bicarbonate and Fe supply on Fe nutrition of grapevine. J. Plant Nutr. 23(11-12), 1619-1627
(2000). https://doi.org/10.1080/01904160009382128 Article Google Scholar 48. Foy, C.D.,
```

```
Chaney, R.L., White, M.C.: The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol.
29, 511–566 (1978) Article Google Scholar 49. Regulation (EU): 2019/1009 of the
European Parliament and of the Council of 5 June 2019, laying down rules on the making
available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009
and (EC) No 1107/2009 and repealing Regul2019/1009 of the. Off. J. Eur. Union 2019(2003), 1-
114 (2019) Google Scholar 50. United States Environmental Protection Agency: Background
Report on Fertilizer Use, Contaminants and Regulations, EPA 747-R-98-003; Washington, DC
(1999) 51. Khanam, R., Kumar, A., Nayak, A.K., Shahid, M., Tripathi, R., Vijayakumar, S.,
Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., et al.: Metal(loid)s (As, Hg, Se, Pb and
Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 699,
134330 (2020). https://doi.org/10.1016/j.scitotenv.2019.134330 Article Google
Scholar 52. Shaw, W.M.: Rate of reaction of limestone wih soils (1960) 53. Hosten, Ç.,
Gülsün, M.: Reactivity of limestones from different sources in Turkey. Miner. Eng. 17(1), 97–99
(2004). https://doi.org/10.1016/j.mineng.2003.10.009 Article Google Scholar 54. Huang, J.,
Fisher, P.R., Argo, W.R.: Protocol to quantify the reactivity of carbonate limestone for horticultural
substrates. Commun. Soil Sci. Plant Anal. 38(5-6), 719-737 (2007).
https://doi.org/10.1080/00103620701220643 Article Google Scholar 55. Markgraf, S.A.,
Reeder, R.J.: High-temperature structure refinements of calcite and magnesite. Am. Mineral.
70(5-6), 590-600 (1985) Google Scholar 56. Steinfink, H., Sans, F.J.: Refinement of the
crystal structure of dolomite. Am. Mineral. 44(5-6), 679-682 (1959) Google
Scholar 57. Desgranges, L., Grebille, D., Calvarin, G., Chevrier, G., Floquet, N., Niepce, J.-C.:
Hydrogen thermal motion in calcium hydroxide: Ca(OH)2. Acta Crystallogr. Sect. B 49(5), 812-
Scholar 58. Levien, L., Prewitt, C.T., Weidner, D.J., Prewir, C.T., Weidner, D.J.: Structure and
elastic properties of quartz at pressure. Am. Mineral. 65(9-10), 920-930 (1980) Google
Scholar 59. Thirumalini, S., Ravi, R., Rajesh, M.: Experimental investigation on physical and
mechanical properties of lime mortar: effect of organic addition. J. Cult. Herit. 31, 97-104 (2017).
https://doi.org/10.1016/j.culher.2017.10.009 Article Google Scholar 60. Ravi, R., Rajesh,
M., Thirumalini, S.: Mechanical and physical properties of natural additive dispersed lime. J.
Build. Eng. 15, 70-77 (2018). https://doi.org/10.1016/j.jobe.2017.10.009 Article Google
Scholar 61. Puissant, J., Jones, B., Goodall, T., Mang, D., Blaud, A., Gweon, H.S., Malik, A.,
Jones, D.L., Clark, I.M., Hirsch, P.R., et al.: The pH optimum of soil exoenzymes adapt to long
term changes in soil pH. Soil Biol. Biochem. 138, 107601 (2019).
M., Sheng, Y., Baltrusaitis, J.: Experimental insights into the genesis and growth of struvite
particles on low-solubility dolomite mineral surfaces. J. Phys. Chem. C 123, 25135–25145 (2019).
https://doi.org/10.1021/acs.jpcc.9b05292 Article Google Scholar 63. Letterman, R.D.:
Calcium Carbonate Dissolution Rate in Limestone Contactors, vol. EPA/600/SR, Cincinnati
(1995) 64. de Vargas, J.P.R., dos Santos, D.R., Bastos, M.C., Schaefer, G., Parisi, P.B.:
Application forms and types of soil acidity corrective: changes in depth chemical attributes in long
term period experiment. Soil Tillage Res. 185, 47-60 (2019).
https://doi.org/10.1016/j.still.2018.08.014 Article Google Scholar 65. Islam, A.K.M.S.,
Edwards, D.G., Asher, C.J.: pH optima for crop growth—results of a flowing solution culture
experiment with six species. Plant Soil 54(3), 339-357 (1980).
https://doi.org/10.1007/BF02181830 Article Google Scholar 66. Álvarez, E., Viadé, A.,
Fernández-Marcos, M.L.: Effect of liming with different sized limestone on the forms of aluminium
in a Galician soil (NW Spain). Geoderma 152(1-2), 1-8 (2009).
https://doi.org/10.1016/j.geoderma.2009.04.011 Article Google Scholar 67. Higgins, S.,
Morrison, S., Watson, C.J.: Effect of annual applications of pelletized dolomitic lime on soil
chemical properties and grass productivity. Soil Use Manag. 28(1), 62-69 (2012).
https://doi.org/10.1111/j.1475-2743.2011.00380.x Article Google Scholar 68. Rodd, A.V.,
MacLeod, J.A., Warman, R.R., McRae, K.B.; Surface application of cement kiln dust and lime to
forages: effect on soil pH. Can. J. Soil Sci. 84(3), 317-322 (2004). https://doi.org/10.4141/S03-
```

087 Article Google Scholar 69. Tate, M.: Lime kiln dust: an overlooked resource. In: Thomson, M., Brisch, J. (eds.) Lime: Building on the 100-Year Legacy of The ASTM Committee C07 on June 28, 2012, in San Diego, CA, pp. 135–144. ASTM International, West Conshohocken (2012) Google Scholar 70. Zhang, X., Glasser, F.P., Scrivener, K.L.: Reaction kinetics of dolomite and portlandite. Cem. Concr. Res. 66, 11-18 (2014). https://doi.org/10.1016/j.cemconres.2014.07.017 Article Google Scholar 71. Lalande, R., Gagnon, B., Royer, I.: Impact of natural or industrial liming materials on soil properties and microbial activity. Can. J. Soil Sci. 89, 209-222 (2009) Article Google Scholar 72. Gunes, A., Alpaslan, M., Inal, A.: Critical nutrient concentrations and antagonistic and synergistic relationships among the nutrients of NFT-grown young tomato plants. J. Plant Nutr. 21(10), 2035-2047 (1998). https://doi.org/10.1080/01904169809365542 Article Google Scholar 73. Laudelout, H.: Chemical and microbiological effects of soil liming in a broad-leaved forest ecosystem. For. Ecol. Manag. 61(3-4), 247-261 (1993). https://doi.org/10.1016/0378-1127(93)90205-2 Article Google Scholar 74. Repsiene, R., Karcauskiene, D.: Changes in the chemical properties of acid soil and aggregate stability in the whole profile under long-term management history. Acta Agric. Scand. Sect. B Soil Plant Sci 66(8), 671-676 (2016). https://doi.org/10.1080/09064710.2016.1200130 Article Google Scholar 75. Ngane, E.B., Tening, A.S., Ehabe, E.E., Tchuenteu, F.: Potentials of some cement by-products for liming of an acid soil in the humid zone of South-Western Cameroon. Agric. Biol. J. N. Am. 3(8), 326-331 (2012). https://doi.org/10.5251/abjna.2012.3.8.326.331 Article Google Scholar 76. Dolling, P.J., Porter, W.M., Robsor, A.D.: Effect of soil acidity on barley production in the south-west of Western Australia 1. The interaction between lime and nutrient application. Aust. J. Exp. Agric. 31(6), 803-810 (1991). https://doi.org/10.1071/EA9910803 Article Google Scholar 77. Liu, D.L., Helyar, K.R., Conyers, M.K., Fisher, R., Poile, G.J.: Response of wheat, triticale and barley to lime application in semi-arid soils. Field Crop. Res. 90(2-3), 287-301 (2004). https://doi.org/10.1016/j.fcr.2004.03.008 Article Google Scholar 78. Madić, M., Knežević, D., Đurović, D., Paunović, A., Stevović, V., Tomić, D., Đekić, V.: Assessment of the correlation between grain yield and its components in spring barley on an acidic soil. Acta Agric. Serbica Scholar 79. Kirchev, H., Delibaltova, V., Yanchev, I., Zheliazkov, I.: Comparative investigation of rye type triticale varieties, grown in the agroecological conditions of Thrace valley. Bulg. J. Agric. Sci. **18**(5), 696–700 (2012) **Google Scholar**

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation under grant no. CHE 1710120 and DBI 1828508, and by the long-term research program 'Productivity and sustainability of agricultural and forest soils' implemented by the Lithuanian Research Centre for Agriculture and Forestry. This work is also supported by Engineering for Agricultural Production Systems program grant no. 2020-67022-31144 from the USDA National Institute of Food and Agriculture.

Affiliations

Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA, 18015, USA Donata Drapanauskaite, Kristina Buneviciene & Jonas Baltrusaitis

Lithuanian Research Centre for Agriculture and Forestry, Kedainiai Dist., Instituto av. 1, 58344, Akademija, Lithuania Donata Drapanauskaite, Kristina Buneviciene, Regina Repsiene & Romas Mazeika

Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA Juan Navea

Corresponding author

Correspondence to Jonas Baltrusaitis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material. Supplementary file1 (DOCX 1365 kb)