

Multimodal Information Integration for Indoor Navigation Using a Smartphone

Yaohua Chang1, Jin Chen1, Tyler Franklin1, Lei Zhang2, Arber Ruci3, Hao Tang2, Zhigang Zhu1,4

1
City College;

2
BMCC;

3
NYCRIN;

4
Graduate Center - The City University of New York

ychang003@citymail.cuny.edu, jchen025@citymail.cuny.edu, tfranklin@ccny.cuny.edu,

lei.zhang@stu.bmcc.cuny.edu, arber.ruci@cuny.edu, htang@bmcc.cuny.edu, zzhu@ccny.cuny.edu

Abstract

We propose an accessible indoor navigation

application. The solution integrates information of floor
plans, Bluetooth beacons, Wi-Fi/cellular data
connectivity, 2D/3D visual models, and user preferences.
Hybrid models of interiors are created in a modeling
stage with Wi-Fi/ cellular data connectivity, beacon
signal strength, and a 3D spatial model. This data is
collected, as the modeler walks through the building, and
is mapped to the floor plan. Client-server architecture
allows scaling to large areas by lazy-loading models
according to beacon signals and/or adjacent region
proximity. During the navigation stage, a user with the
designed mobile app is localized within the floor plan,
using visual, connectivity, and user preference data,
along an optimal route to their destination. User
interfaces for both modeling and navigation use visual,
audio, and haptic feedback for targeted users. While the
current pandemic event precludes our user study, we
describe its design and preliminary results.

1. Introduction

According to data from the World Health
Organization (WHO), there are at least 2.2 billion people,
more than a quarter of the world population, suffering
from various degrees of visual impairment or blindness
[1]. Among those people, an earlier report shows that
there were 285 million people with low vision worldwide
and 39 million people were suffering from blindness [2].
For these people, hereafter referred as Blind or Visually
Impaired (BVI) people, as vision deteriorates, they often
rely on a cane or a guide dog to find their way. Although
these aids are helpful, they still face major challenges in
wayfinding, especially in unfamiliar indoor environments.
The demand for a reliable indoor navigation application
using only mobile devices has increased in recent years.

As we will see in the Related Work section, many
existing mobile applications rely on Wi-Fi for localization,
which often has inconsistent results due to instability of
Wi-Fi signals. Some applications also use beacons and
unique marks around the facility, requiring expensive pre-

installation and maintenance. In addition to the cost, these
applications often introduce large cumulative error for
navigation over longer distances. Importantly, most of the
indoor navigation applications target sighted users
exclusively. That is, BVI users lack access to the
necessary application functionalities for traveling safely
inside the building.

In this paper, we propose iASSIST, an iOS assistive
application built around ARKit [3] that provides turn-by-
turn navigation assistance using accurate real-time
localization over large spaces without the installation of
expensive infrastructure. The key contributions include
the following: (1) an iOS-based application that provides
turn-by-turn indoor navigation for BVI users with voice
interaction; (2) a client-server architecture that allows
scaling to large areas by lazy-loading models using
beacon signals and/or adjacent region proximity; (3) A
highly accurate and low-cost indoor positioning solution
with a novel method for the model transition problem; (4)
Automatic landmark determination for hybrid modeling
which incorporates the Wi-Fi/cellular download speed,
storing all information on a remote service; and (5) a
configurable route planning algorithm weighted by user
preference and hazard potential, with consideration of the
Wi-Fi/cellular download speed along the path. The
approach can be easily extended to Android devices, for
example, by using Google’s ARCore.

After the introduction, the remainder of this paper is
organized as follows. First, we provide a discussion of the
current methods used for indoor navigation in Section 2.
Next, in Section 3, we introduce a brief overview of the
iASSIST architecture and its three components (modeling,
web server, and navigation). We will detail the system
design and implementation for the modeling and
navigation components in Sections 4 and 5, respectively.
In Section 6, we present a performance evaluation and
proposed functionality experiments. Finally, Section 7
concludes the paper and discusses future work.

2. Related Work
Researchers have investigated various methods to

assist the blind and visually impaired in complex and
unfamiliar indoor environments. Compared to outdoor

59

2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI)

978-1-7281-1054-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IRI49571.2020.00017

environments, where there tends to be more open space
and the global positioning system (GPS) is available,
indoor positioning may often present a greater challenge
[4]: GPS localization has inaccuracy in the outdoor
environment and become more unstable when applied to
the indoor environment. Beside GPS, other localization
strategies often require additional infrastructure [5]. One
of the most widespread navigation assistance tools is
Bluetooth low-energy beacons. Although active methods
using Bluetooth [5, 6] can improve accuracy, pre-installed
infrastructure is required, which is expensive. Wireless
networks such as cellular [7] and Wi-Fi [8] have also been
used for indoor localization. However, the Wi-Fi signal
does not cover every place consistently, so additional
routers had to be installed to ensure localization accuracy.

Many indoor localization techniques described above
also often need to consider multiple factors in the indoor
environment to determine location, such as the effect of
the indoor obstacle location or size and the device signal
strength and stability. This leads to difficulty in
developing a unimodal approach for accurately detecting
the person’s location over time. On top of this, using a
standalone model under mobile edge computing
environment could be a burden for phones’ processing
power and memory. To solve these problems, many
studies have integrated multimodal solutions for
localization, incorporating cloud servers for storage of
data and/or computation, making mobile indoor
localization more feasible and accurate [9,10,11]. Most
commonly, localization is being performed using multiple
modalities, such as Wi-Fi, beacons, audio, images, points
of interest, and the like [9,12]. In addition, such a
framework, i.e., combining various models for each
environmental condition, has been proposed for
localization according to the signal strength of Wi-Fi
access points [11]. As each model handles only one
condition, it provides higher accuracy and requires lower
computation power in unstable environments. Several
solutions also have been offered, working toward the
combinatorial optimization problems of the framework.

Vision-based positioning methods [13] have also
been proposed because they offer highly accurate
localization without expensive infrastructure installation.
Visual-Inertial Odometry (VIO) [14] is one of the well-
known visual positioning methods to track a user’s
current position using previous positions, step length and
motion direction in cooperation with visual sensors. Since
smart devices nowadays are equipped with various kinds
of powerful on-board sensors, including accelerometers,
gyroscopes, compasses, proximity sensors, depth sensors,
cameras, etc., this method can be implemented for these
platforms with no further peripheral requirements. The
major disadvantage of these methods, however, is the
cumulative drift error. For long-distance and long-term
tracking, additional global mapping and/or other physical
constraints are necessary to eliminate the cumulative error.

ARKit [3], Apple's augmented reality (AR) platform
for iOS devices, uses the VIO technique described above
to track the world around the iPad or iPhone. Across 2D
video frames captured by an iOS device’s camera, it
follows the movement of detected visual feature points
and uses the aforementioned onboard motion detection to
estimate their position in 3D space. However, one of the
major disadvantages of ARKit is the size limitation of its
working model. For a large region, it is difficult to store
all the information into only one model. If the model is
too large, it can significantly impact localization
performance. In addition, the cumulative drift error will
be increased with long-term tracking in a large region.
Dividing a large region into multiple small regions and
modeling these regions separately is a good way to solve
both problems, which was proposed in [15], but it causes
a delay in localization while switching models from the
previous region to the next. In [16], ARKit is used to
demonstrate an example of how real-time data acquisition
can be employed in educational settings, while reporting
some of the limitations of ARKit.

Another major disadvantage is, before tracking the
real space, ARKit asks the user to hold a smartphone and
point it to a set of specified featured signs in the real
space and those signs, such as wall-mounted room
number plate, must be pre-recorded in the corresponding
model in order to synchronize the real world and the
model. This process can be a difficult task for the blind
and visually impaired. In ASSIST [17], we used a 3D
sensor Google Tango on an Android phone to build
accurate 3D models of an indoor environment, bypassing
the need to detect visual signs for localization aside from
landmark recognition and semantic understanding of the
scene. However, the discontinuation of the support of
Tango by Google urges us to think how to guide blind
users to scan a landmark for localization using only a 2D
camera, like an iPhone camera, which many of our BVI
user already own. The next extension will be an app on an
Android phone using ARCore, the successor of Tango.

3. System Architecture Overview

60

Our iASSIST is an iOS application that provides
indoor navigation for both sighted users and BVI users
with voice interaction. The iASSIST has three major
components: hybrid modeling, a web server, and real-time
navigation (Figure 1). During the hybrid modeling stage, a
modeler will walk around the building and mark the
destination points using the app’s modeling interface
along with the information about the destination, such as
the location type, accessibility for visually impaired
people, etc. While the modeler is moving around the
building, the app automatically collects the location
information, the Wi-Fi signal strength and the geolocation
features. All the collected information will be sent to the
hybrid modeling module to model the regions of the floor
and return proposed locations to install beacons near the
important landmarks. The modeling process is completed
on each floor with multiple local region models generated
each time. These enhance modeling efficiency and
localization accuracy for navigation. Each region only
needs one beacon installed. After the modeler finishes
scanning a floor, all the region models and their
connections with the global map will be saved to our web
service. The modeler can repeat the process for each floor
until finished with the building.

The web service is the core component of the app
connecting the two major components, modeling and
navigation. It enables indoor navigation in numerous
locations and for multiple users. It directly saves all
models’ information received from the modeling
component to the database. The database consists of all
the region models and a global map that contains all the
building’s information and connections among various
building’s regions. For navigation, the global map will be
used to determine the path, while the region models are
used to locate the user’s current position in the building.
To efficiently manage the building information, there is
an online management system that allows the modeler to
easily modify the location and region model information,
which does not require any programming skills.

In the real-time navigation stage, the iASSIST app on
the user’s iPhone provides the indoor navigation for
sighted users and BVI users, and two different user
interfaces are designed to increase the app accessibility
and user-friendliness. When the user opens the app in any
of the modeled buildings, the user’s current region will be
determined using beacon signals. Using speech or text
input, the user indicates their desired destination along
with their path selection preferences. The app will then
plan a suitable route for the user through the global map.

The model download scheduler will then determine
the downloading tasks for the regional models with
consideration for the route and the Wi-Fi strength of each
region. Downloading models ad hoc keeps the app
lightweight, as it only stores in memory the region models
required for navigation, and also allows for scaling to an
arbitrary number of mapped interiors.

To streamline the navigation user experience, our app
provides voice navigation for step-by-step moving
directions and guided visual pointers, incorporating
vibration to remind the user to make the turn. The
iASSIST app also auto-corrects the path when users begin
walking in the wrong direction. With high-accuracy
position detection, adjustable paths, and easy-to-follow
guidance, iASSIST allows people with BVI travel
independently and safely indoors.

4. Hybrid Modeling

The ARKit platform provides a powerful feature
called ARWorldMap that stores all the raw feature points
that represent the mapping of the physical world. The
local area map stored in the ARWorldMap can be
retrieved and used for determining the user’s local
position. While ARKit alone cannot achieve indoor
positioning, in a large scale, since it is not designed for
this purpose, this location determination feature is used as
the basis for our hybrid modeling, integrating the
automatic data collection algorithm, route planning
algorithm, and region segmentation process.

4.1. Region segmentation and alignment
Generally, it is difficult to store the entirety of the

data for a large area into only one model. As the size of
the model becomes too large, ARKit seems to remove the
older data to avoid slowing the localization process. Due
to this limitation of ARKit, we have to divide a large area
into multiple small regions. For example, we divided the
corridor outside our lab into six regions (Figure 2(a)), and
one beacon was installed for each region. We align the
coordinate system of each ARWorldMap model with the
floor plan of the area in a 2D global coordinate system. In
addition, an overlapping space (the gray area in Figure
2(a)) has been added between region boundaries to avoid
repeated switching models by accident when users walk
across around region boundary.

61

To align the ARKit model in the model coordinate
system (XYZ, where Y is the gravity direction not shown
in Figure 3) and the 2D floor plan (xoz, where x goes
vertical and z goes horizontal) in the real-world
coordinate system, respectively, the app uses an affine
transformation in the 2D floor plan, to account for the
accumulating nature of the local ARKit model. Figure 3
shows how to align the model coordinate system to the
real-world coordinate system using affine transformation
with 14 pairs coordinates (red dots: ground truth points in
xoz; blue dots: their corresponding coordinates in XYZ).
As shown in the left of Figure 3, the model coordinate
system skews at the real-world coordinate system before
the alignment. After alignment using affine
transformation, the blue dots in model coordinate system
almost coincide with the red dots in the real-world
coordinate system. For this example, the alignment has a
mean square error of only 0.136 m in region of 196 m2.

4.2. Hybrid mapping with multimodal data
A planned route may involve several regions.

Different regions correspond to their respective ARKit
models and all these models have been stored in the web
service. While navigating, the app needs to download a
corresponding model of the region where the user is in
from the web service via Wi-Fi or cellular data
connections. It would be preferable if the app can
download models of the regions with a poor network
connection in advance when the user is in regions with
excellent network connection so that the user does not
have to wait for downloading when entering such regions.
Hence, we create a download speed heat map (Figure 2(b))
in the modeling stage.

In the newest version of iOS, it’s hard to obtain the
download speed directly. Therefore the download speed is
measured by computing received data from Internet
within 5 seconds and repeating the process until modeling
ends. The number over each region is the download speed
(the unit is megabyte per second in Figure 2(b)) for the
corresponding region. iOS will automatically switch Wi-
Fi/cellular connections based on the strength of the
signals. There are three network access sources available
in the corridor show in Figure 2(b): cellular data (green),
Wi-Fi 1(blue), Wi-Fi 2(orange). Each area records the
download speed using network access source with the

strongest signal strength. This heat map will be used for
determining download task scheduling (Section 5.3).

Modelers also need to input information (including
name, type, and accessibility data) for a destination when
they are in front of the destination. The information is
used for route planning that will be discussed in Section
5.2. Some salient “landmark” locations are also important
for navigation and need to be recorded even though they
maybe not refer to any accessible destinations. For
example, stairs may often be recorded as a landmark.
While elevators have same functionality as stairs and are
more accessible, the location of stairs relative to elevators
needs to be recorded to offer an accessible detour for BVI
users. Selecting destinations and salient landmarks is the
only interactive part during the hybrid modeling. For a
large 8-floor building with each floor having about 1,200
m2 modeled areas, the total data amount is about 800MB,
including ARKit models, 2D floor plans, connectivity
maps, information of beacons, destinations and landmarks.

4.3. Graph construction

An automatic “essential” landmarks extraction
algorithm is applied to make the modeling process
simpler for the modelers. While the modeler continues to
walk around the area, the app will automatically collect
the information about intermediate landmarks (e.g.,
position, download speed, etc.) until the recording of the
next destination. The essential landmarks extraction
algorithm will find several essential landmarks (e.g.,
turning point) between the two destinations. If the
distance between two essential landmarks is long, the
algorithm will select several unessential landmarks
between these two landmarks and record them as
landmarks. For example, if the distance is 10 m, it will
select 3 unessential landmarks.

The above process will be repeated from one
destination to another until modeling is finished for a
whole area. In some cases, as the modeler might travel a
path more than once to label any missing destinations,
there will exist duplicate landmarks. Thus, after the
modeler finishes labeling all the destinations of the area,
all the selected landmarks are checked to remove
redundancies. Finally, all destinations and selected
intermediate landmarks are defined as nodes of a
multimodal graph with visual, connectivity and beacon
information for the route planning algorithm in Section 5.

A local graph is constructed for each region model,
with the nodes of the graph representing destinations and
essential landmarks, which are connected by edges as
traversable paths. Then the local graphs are connected
into a global graph representing a floor or even a building.
The graphs are aligned with the floor plan and ARKit 3D
models, in a world coordinate system. Figure 4 depicts the
process of graph construction for a small area. In (1), five
blue dots refer to five destinations including bedroom,
living room, bathroom, entry and kitchen. In (2), gray

62

dots refer to the intermediate landmarks that were
collected automatically per second. In (3), orange dots
were selected as essential landmarks. In (4), after
removing unselected intermediate landmarks, the nodes
representing destinations and essential landmarks are
connected by edges as traversable paths to form a local
graph for the area.

5. Real-time Navigation

Accurate localization and optimal path planning are
essential for indoor navigation, especially for BVIs.
Multiple transformation and alignment procedures are
introduced to deal with the three different coordination
systems involved in the determination of the user’s
localization, as well as transitions between regions. We
propose a modified Dijkstra's shortest path algorithm to
provide the most suitable route for each user. The
download task scheduling algorithms are also provided in
order to increase the scale of the available navigation
locations and reduce the app’s memory usage.

5.1. Localization and region transition

When a user opens the iASSIST app for the first time,
the app gets to know which region the user is in, by
simply detected the beacon with the strongest signal
strength. Then the app can download a corresponding
model from the web service. With the downloaded ARKit
region model, the camera inside the phone begins
capturing images. Once a new image is captured, it is
processed to find and match pre-defined landmarks in the
ARKit model. Then the app uses this information to align
the coordinate systems of the camera, the ARKit model
and then the real-world floor plan so that it can convert
the coordinates of the user’s location from the camera to
the world (as modeled in Section 4.1). Then, the app will
ask the user for the destination of navigation in a
synthesized voice.

The region segmentation modeling method brings a
new challenge, however. When a user walks from one
region to another, the app needs to switch from the model
of the previous region to that of the new region. Since the
new model has not been matched yet in the new region,

the correspondence between the coordinate system in the
new model and the coordinate system in the global real
world cannot be established. However, in this case, the
world tracking functionality of ARKit still works. The
iASSIST app uses the relationship between the previous
model and the real world temporarily before the first
successful matching in the new region. The app needs to
record the last position (tx, tz) and yaw angle (i.e., the
heading θ) of the user in the previous model coordinate
system while entering the new region, the current
coordinates (x, z)t of the user in the new region can be
represented in the coordinate system of the previous
model as (x’, z’)t :

which can be aligned with the world coordinate system.
Therefore, the app can keep navigating using these
temporary coordinates rather than get stuck before the
first successful matching in the new region.

Moreover, there may be about 1 to 2 seconds delay
while loading the new model. During this period, the
world tracking functionality will not work. That will lead
to some offset when estimating the relationship between
the temporary coordinate system of the new region and
the coordinate system of the previous region. To solve
this problem, we calculate the average of the moving
distance of last 10 frames and extrapolate the user’s
motion linearly to estimate the user’s current location.

5.2. Route planning algorithm

Dijkstra’s algorithm [18] can be used for finding the
shortest path from a single source node to all other nodes
in a weighted graph (can either be directed or undirected).
Classical Dijkstra’s algorithm implementations use
distances as weights. In our modified algorithm, we not
only consider the distance between two linked nodes but
also other attributes (e.g., model download time T, BVI
accessibility difficulty A) of each node:

 (2)
(3)

where Weights[i] stores the least cumulative weight from
the initial node to node i (i = u or v). Assume that the
weight of node u (i.e., Weights[u]) is known and node v is
next to node u, we want to compute the weight of node v
(i.e., Weights[v]). This value is equal to the weight of
node u plus the distance between node u and node v
multiple by the cost of node v. At the moment, the cost of
node v is affected by the three attributes in the
corresponding location, the Distance itself, the download
time (T) around the node, and BVI accessibility cost (A)
including accessibility difficulty (such as stairs for BVI),
obstacles and crowdedness around the location. Different
users have unique demands for route planning. According
to the preferences a user selects, the algorithm will
consider all or some of these attributes and vary the two
additional factors (a, b in Eq. (3)) in the cost function to

63

compute the weight. In this way, it may offer a different
route. For example, when a=b=0, route will simply be
distance-based. When they are non-zeros, their values
control the contributions of the two extra costs for
considering download speed and accessibility.

5.3. Task scheduling algorithms

In order to better serve users, we designed two
algorithms, a simple one and a more sophisticated one.

Planned route-based algorithm. After initializing
the app and knowing the first region where the user is by
detecting the closest beacon, the app asks the user to
select a destination and then start to navigate, then the app
will determine a route from the current position to the
destination. This route planning may involve multiple
regions and the app needs to download the corresponding
models of these regions from our web service before
navigation. In order to avoid waiting too long for
downloading all relevant models once, the app will
download these models separately. As long as completing
the download of the first adjacent model, the app will start
to navigate. At the same time, the rest of the download
will be completed in the background while navigating.

Download task scheduling algorithm. The
download task scheduling algorithm integrates the
download speed heat map with the planned route-based
algorithm. After the user selected a specific destination,
the app will use the planned route-based algorithm as the
primary algorithm. Since the app can obtain the network
connection of each region according to the download
speed heat map, the app can do the download of models
adaptively. For example, if the network speed is sufficient
in the current region, the app will download all the
models of other regions involved in the planned route for
the user and those regions with poor network connection
have priorities. However, if the network is slow to
download the current region model to local storage and
the model has not been pre-downloaded, the app will ask
the user to stop and wait until the download is completed
in order to avoid reducing the accuracy of localization.

Before the user enters a new region, the app will
check if the new region model is in local storage, if not, it
will not switch the model until the download is completed.
Nevertheless, the app can still continue to provide
positioning information in the vicinity of the new region
by using the information from the previous model and the
current model’s world tracking functionality to predict
user’s motion (as discussed in Section 4.1). When user is
entering a new region, the app will use the tracking results
provided by ARKit to check if new region matches with
the current path from the planned route. If these two
results don’t match, then the user might have seriously
deviated from the planned route. In this case, the app will
first obtain the new region through the beacon system,
then download and align the corresponding model, before
rerouting to the destination.

5.4. User interfaces

This section describes the traditional graphical UI
(GUI) presented to users with normal or low vision and
the audio-tactile interface (ATI) presented to BVI users.

User interface for traditional or low-vision users.
The application has three core views corresponding to the
phases of a given user’s navigation workflow: landmark-
based localization; destination selection; and navigation
process. Upon initiating a new session in the app, either
when first opening or after the application is unloaded
from working memory, the first phase of the user
workflow is localization using landmark scanning. In this
view, we use the familiar ARKit coaching overlay for
landmark tracking with some modifications.

The user is guided by the overlay to move their
camera until a landmark is established using a graphical
illustration and on-screen text prompts seen in Figure 5.
These visual indicators update according to the
orientation of the device and whether a landmark has been
detected. Once the proper angle with respect to the x-axis
has been established, the user is instructed to hold their
current position and move the phone around slowly. If no
landmark has been detected, the user is prompted to turn
left with a new graphical illustration and text. The text
will update telling the user to continue turning slowly, as
it scans for landmarks. If no landmarks are found after a
full rotation, the user is directed to move to a different
location to scan again.

Once localized, the user is prompted to choose a
destination and the app transitions to the free move and
destination selection view. Here there are two status
indicators in the header, a dynamic map overlay in the
body area, and a drop-down menu button and debug info
bar in the footer (Figure 6). The header area contains
location context and tracking status. The body area of the
layout contains a toggleable map. On load, the map fills
the body area of the layout (left). When tapped, it
minimizes to a small bubble-style map in the corner,
revealing dynamic animated arrows on a live view for
guiding the user visually (right). The footer contains a
drop-down menu destination selection. Selecting a
destination transitions the app to the route planning view.

64

The GUI layout for route planning is similar to the
free move and destination selection view, however certain
components are changed. The status widgets in the header
are replaced by a dynamic navigation step ticker, which
shows one or two moves ahead. In the footer area, the
destination drop-down menu button is removed. In its
place is a red exit button to allow the user to cancel their
current navigation context. The route planning view can
be exited manually in this way, or automatically by
arriving at the chosen destination.

Audio-tactile interface for the blind. Similar to the
GUI presented to traditional users, while the touch-based
interaction requirements of BVI users with the ATI is
limited, a key challenge in designing our interface was to
present equivalent information to the blind as to users
with full or partial vision. The three core views we
described before are less distinct to a blind user due, in
part, to a design decision we made to avoid translating the
components in favor of communicating data directly in
the most intuitive way possible.

When a blind user enters a new place, the app will
audibly ask the user to scan the surroundings slowly for
localization guide the user to find a landmark pre-defined
in the model. First, the procedure will ask the user to tilt
the phone up or down a certain degree to ensure the phone
remains upright, then will ask the user to keep this
position and move the phone around slowly to detect
landmarks. We obtain the tilt information through the
native iOS APIs. If landmark detection was successful,
the method will obtain the current position of the user by
an algorithm based on this landmark. If unsuccessful after
two periods (one period is seven seconds, and the value
can be set), the app will ask the user to turn left and the
process will restart. If the user turns a circle (i.e., after
three left turns or six periods) and a landmark has not yet
been detected, the method will ask the user to move to
another place to start the above process again.

Voice guidance is very useful for blind users when
they are walking in an unfamiliar place. To make sure
these users get navigation information, the app will repeat
navigation instruction every 2 meters. Turn left or turn
right is key information for navigation instruction. The
app will notify users to prepare to turn and walk slowly at

1 meter before the turn. The voice and vibration remind
the user when it is time to turn and to stop the turn. When
the user is close to the destination, the app will tell the
user the specific distance to the destination until the user
is in directly in front of it.

6. Experiments

To evaluate the accuracy of localization of the
application, 32 ground truth points in the experimental
place were selected as testing locations as shown in
Figure 7(a). A sighted participant stood on each point and
used the app to estimate a position respectively. In Figure
7(b), the red dot refers to the position of ground truth
points and 32 blue x refer to 32 the estimated positions of
test points. The variance between each pair of the
positions estimated by the method and the ground truth
values in the experimental place are range from 0.02 m to
0.35 m, and the RMS error is less than 0.15 m, which
means the app can offer very accurate indoor localization
for the whole corridor (about 600 m2). We want to note
here that without the region transition treatment presented
in Section 4.1, the average error would be 1.50 m, mainly
due to large localization errors across regions boundaries.

(a) (b)

A system demo of our iASSIST app can be viewed at
https://youtu.be/iH1LZ-HAjWs. Due to the COVID-19,
we are unable to conduct all the experiments. We planned
to conduct functionality experiments with 5 sighted
participants and usability test with 20 participants with
visual impairments. All the planned experiments will take
place on campus and an IRB approval has been in place.

The goals of our functionality tests were: 1) to
evaluate the accuracy of transmission between different
regions under different walking speeds, through
comparison of the positions determined by our application
and actual positions on the ground while the participate
walking in various speed, and 2) to determine whether the

65

app can provide the optimal route for participants through
comparison of all the possible routes between two
destination points with the route designed by the app, to
determine the efficiency of the route planning algorithm.

The usability experiments we planned to conduct
included interface trials and a user experience survey. To
investigate the usability of our indoor localization system
and to identify users’ needs, the trials would ask
participants with visual impairments to freely select non-
duplicated destinations from various choices. Each
session contains five experiments in parallel and has an
experimenter accompanied each participant to ensure their
safety as well as take records of the procedure.

7. Conclusion and Discussion

In this paper, we introduce iASSIST, a navigation
application accessible to BVI people for navigating
unfamiliar indoor environments using an iOS device. Our
key contribution is a multi-model framework for
localization in a large indoor environment with high
accuracy and low cost. We also propose a solution to
smooth the transition between models, and a simple
process for modeling that pairs automatic and manual data
collection processes with a straightforward online data
management system. Also, with region segmentation, our
application can work in numerous buildings without
increasing the size of the app. Additionally, we provide
simultaneous interfaces optimized for sighted and BVI
users.

Our current models for the single floor outside our
lab do show fairly accurate localization, but due to our
ongoing efforts to control the spread of COVID-19 in our
city, we are unable to perform all the experiments we
planned. Our next step, for example, was to model rest of
the building and validate the accuracy of our multi-model
framework on a larger scale. In the future, we would like
to further expand the assistive features of our application,
by experimenting with novel modeling techniques to
provide accessible navigation at a larger scale, introduce
object recognition and scene understanding via the ARKit
model features, and enhance environment interpretation
through audio-tactile feedback.

Acknowledgements

This work is supported by NSF via an S&CC grant
#CNS-1737533 and a PF grant #IIP-1827505, Bentley
Systems, Inc through a CUNY-Bentley CRA, and the
Intelligence Community Center for Academic Excellence
(IC-CAE) at Rutgers University.

References
[1] “World report on vision,” Geneva: World Health

Organization, 2019, p. 22 [Online]
https://extranet.who.int/iris/restricted/handle/10665/328717.

[2] “Global data on visual impairment 2010,” Geneva: World
Health Organization, 2012, [Online]
https://www.who.int/blindness/publications/globaldata/en/.

[3] “ARKit documentation,” California: Apple Inc, [Online]
https://developer.apple.com/documentation/arkit.

[4] M. Modsching, R. Kramer, and K. ten Hagen, “Field trial
on GPS accuracy in a medium size city: The influence of
built-up,” Workshop on Positioning, Navigation and
Communication, 209–218, 2006.

[5] D. Ahmetovic, C. Gleason, C. Ruan, K. Kitani, H. Takagi,
and C. Asakawa, “NavCog: a navigational cognitive
assistant for the blind,” in Proceedings of the 18th Int. Conf.
Human-Computer Interaction with Mobile Devices and
Services. 90-99, 2016.

[6] O. Cruz, E. Ramos, and M. Ramírez, “3D indoor location
and navigation system based on Bluetooth,” in
CONIELECOMP2011, 271–277. IEEE, 2011.

[7] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of
wireless indoor positioning techniques and systems,” IEEE
Trans. SMC, Part C, 37(6):1067–1080, 2007.

[8] T. Gallagher, E. Wise, B. Li, A. G. Dempster, C. Rizos,
and E. Ramsey-Stewart, “Indoor positioning system based
on sensor fusion for the blind and visually impaired,” in Int.
Conf. Indoor Positioning and Indoor Navigation (IPIN), 1-
9. IEEE, 2012.

[9] B. Molina, E. Olivares, C. E. Palau, and M. Esteve, “A
multimodal fingerprint-based indoor positioning system for
airports,” IEEE Access, 6:10092–10106, 2018.

[10] F. Gu, J. Niu, and L. Duan, “Waipo: a fusion-based
collaborative indoor localization system on smartphones,”
IEEE/ACM Trans. Networking, 25(4):2267–2280, 2017.

[11] W. Li, Z. Chen, X. Gao, W. Liu, and J. Wang, “Multimodel
framework for indoor localization under mobile edge
computing environment,” IEEE Internet of Things Journal,
6(3):4844–4853, 2018.

[12] P. Levchev, M. N. Krishnan, C. Yu, J. Menke, and A.
Zakhor, “Simultaneous fingerprinting and mapping for
multimodal image and WiFi indoor positioning,” in Int.
Conf. Indoor Positioning and Indoor Navigation (IPIN),
442–450. IEEE, 2014.

[13] Y. Bai, W. Jia, H. Zhang, Z.-H. Mao, and M. Sun,
“Landmark-based indoor positioning for visually impaired
individuals,” in 12th Int. Conf. Signal Processing (ICSP),
668–671. IEEE, 2014.

[14] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Direct
visual-inertial odometry with stereo cameras,” in ICRA,
1885–1892. IEEE, 2016.

[15] L. Chen, Y. Zou, Y. Chang, J. Liu, B. Lin, and Z. Zhu,
“Multi-level scene modeling and matching for smartphone-
based indoor localization,” in IEEE Int. Symp. Mixed and
Augmented Reality, 311–316, 2019.

[16] U. Dilek and M. Erol, “Detecting position using ARKit II:
generating position-time graphs in real-time and further
information on limitations of ARKit,” Physics Education,
53(3):035020,2018.

[17] V. Nair, M. Budhai, G. Olmschenk, W. H. Seiple, and Z.
Zhu, “ASSIST: personalized indoor navigation via
multimodal sensors and high-level semantic information,”
in European Conf. Computer Vision (ECCV), 2018.

[18] E. W. Dijkstra et al, “A note on two problems in connexion
with graphs,” Numerische mathematik, 1(1):269–271, 1959.

66

