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ABSTRACT: The aqueous zinc ion battery has emerged as a promising alternative technology for large-scale energy
storage due to its low cost, natural abundance, and high safety features. However, the sluggish kinetics stemming
from the strong electrostatic interaction of divalent zinc ions in the host crystal structure is one of challenges for
highly efficient energy storage. Oxygen vacancies (V,**), in the present work, lead to a larger tunnel structure along
the b axis, which improves the reactive kinetics and enhances Zn-ion storage capability in VO, (B) cathode. DFT
calculations further support that V,** in VO, (B) result in a narrower bandgap and lower Zn ion diffusion energy
barrier compared to those of pristine VO, (B). V,**-rich VO, (B) achieves a specific capacity of 375 mAh g™' at a
current density of 100 mA g~' and long-term cyclic stability with retained specific capacity of 175 mAh g 'at S A g™'
over 2000 cycles (85% capacity retention), higher than that of VO, (B) nanobelts (280 mAh g™" at 100 mA g~ and
120 mAh g™ at 5 A g7, 65% capacity retention).

KEYWORDS: VO,, oxygen vacancies, defects, cathode materials, aqueous zinc ion batteries

ithium ion batteries efficiently power portable elec- organic compounds.”*>” As one of the important members of

I tronics and electric vehicles in modern society owing to the vanadium oxide family, VO, (B) has been investigated as
their high energy density. However, concerns about an electrode material for Zn ion storage owing to its open

their cost and safety limit their large-scale applications such as tunnel-like frameworks (0.34, 0.82, and 0.52 nm” along the 4,

in stationary grids."” Rechargeable batteries relied on multi- )28 132

) 33 h e aieig b, and ¢ axis, respectively For example, Ding et a
Valirllt cations suclh as 1Al ;> Mg™, Zl.l | ’ | Wlt}.l nonélﬁ@- studied VO, (B) nanofibers as cathode for ZIBs and achieved a
mable aqueous electrolytes are potential alternatives. eir high reversible capacity of 357 maAl g_1 at 025 A g_1 and

benefits include the inherent safety, affordable cost, and . o _ =
feasible fabrication.””"" Zn** has sin?illar ionic radii (O.,74 A) outstanding rate capability of 171 mAh g™ at 51.2 A g™ Chen

with Li* (0.76 A), low redox potential (=0.76 V vs standard et al.”” developed VO, nanorods as cathodes for aqueous ZIBs,

hydrogen electrode), and high gravimetric and volumetric

capacities (820 mAh g™ and 5855 mAh cm™?), leading to Received: December 18, 2019
increasing attention and research work on aqueous zinc ion Accepted:  May 11, 2020
batteries (ZIBs).'” So far, a number of cathode materials for Published: May 11, 2020

ZIBs have been studied, including manganese-based ox-
. 13,14 . . 15—19 .

ides, vanadium-based composites, ? Prussian blue and
. 20-23 . . 12425

its analogues, transition-metal dichalcogenides, and
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Figure 1. (a) Schematic illustration of the synthesis process. SEM images of NBs—VO, (b) and V4**~VO, (c). (d) XRD patterns of NBs—
VO, and V4**-VO,.
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Figure 2. (a) EPR spectra of NBs—VO, and V,**—VO,. The weaker the peak intensity, the higher the concentration of V,**. (b—d) XPS
spectra of NBs—VO, and V,°*—VO,. (b) V2p;,, spectra. The significantly line shape changes indicate much more V2p suboxide formed in
Vo**—VO, than NBs—VO,. (c) Full valence-band and (d) zoomed in view of the low binding energy region. For the V,**—VO,, the
enhanced peak appeared at binding energy 0.74 eV associates with the formation of V**. (e, f) Selected XRD patterns of the (200) and
(—601) diffraction peaks that compare NBs—VO, and V,**—VO,. The lower angle shift of peak positions suggests the expanded lattice
spacings.

which displayed a discharge capacity of 325.6 mAh g~ at 0.05 host materials because of the strong electrostatic interaction
A ¢! and cyclic stability of 86% capacity retention after 5000 between divalent Zn ions and the host crystal structures.”
cycles at 3.0 A g~'. However, an obstacle in boosting zinc-ion One of the strategies is to introduce structural water and
storage performance is the slow mobility of the Zn* in the interlayer metal cations between the adjacent layers, which
5582 https://dx.doi.org/10.1021/acsnano.9b09963
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Figure 3. (a, b) Cyclic voltammogram (CV) curves (sweep rate: 0.1 mV s™') of NBs—VO, (a) and V,**~VO, (b). (c—e) galvanostatic
charge/discharge profiles and Coulombic efficiency profiles at 100 mA g™* for NBs—VO, (c, d) and V**—VO, (c, e) in the first 10 cycles. (f)
Long-term cycling performance at 5 A g~! for NBs—VO, and V,**—VO,.

have been studied in vanadium-based cathodes.””™** The
structural water acts as an electrostatic shield for Zn?*",
broadens the diffusion tunnels, and alters the working
potential.””*® Inserted metal cations can open the crystal
interlayer spacing, ensuring fast and reversible Zn>" insertion/
extraction.”*° Another strategy is to introduce defects such as
cationic or anionic vacancies in the crystal lattices because
defects are beneficial to suppress the needless phase transition
and provide more activated sites for enhanced zinc ion storage
capacity.””~** It has been demonstrated that oxygen vacancies
(Vo**) can increase the interlayer spacings of metal oxides and
improve their ion diffusion kinetics, favoring the fast ion
insertion and extraction.****

In this paper, Vy**-rich VO, (B) (Vo**—VO,) were
synthesized through a repeated phase transition processing,
and the impacts of V5** on crystal structure, electrochemistry,
and zinc ion storage properties of VO, (B) were systematically
studied. The V5** concentrations in VO, (B) were found to
greatly affect the crystal structure and band structure and led to
various electrochemical properties. Density functional theory
(DFT) calculations give insight regarding crystal structure,
band structure, and zinc ion diffusion properties for V,**-rich
VO, (B). Experimental results combined with DFT calcu-
lations reveal that V5** in VO, (B) could lead to improved
electrical conductivity and expanded ion diffusion tunnels,
enabling fast and reversible Zn>* storage.

RESULTS AND DISCUSSION

Figure la illustrates how VO, nanobelts (NBs—VO,) were
synthesized by reducing commercial V,05 with a solvothermal
method. SEM images (Figure 1b) showed that the sample
consists of nanobelts with a thickness of ~15 nm. A repeated
phase transition method building on the reduction and
oxidation reaction between V,05 and VO, was used to form
Vo**—VO, (Figures la and S1—S6. The detailed synthesis
process is described in the Supporting Information).*>*¥#%*”
Figure 1c shows the SEM images of V5**—VO,; after the twice
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repeated phase transition operation, the morphology trans-
forms from nanobelts (NBs—VO,) to nanosheets with a
thickness of ~5 nm. XRD patterns confirmed both NBs—VO,
and V**—VO, retained the same crystal structure (Figure 1d)
and all diffraction peaks are indexed well with the standard
monoclinic VO, (B) (JCPDS card no. 81—-2392).
Tetravalent V ion is paramagnetic while trivalent V ion is
electron paramagnetic resonance (EPR) silent because of the
combination of the integer spin number and large zero-field
splitting;***” thus, the EPR intensity changes of tetra V cation
demonstrate the variety of defect state concentration in both
VO, samples. Signals with a g value of 1.96 were detected in
both VO, samples (Figure 2a), corresponding to tetravalent V
ion.””! V4**~VO, showed a lower signal intensity than that
of NBs—VO,, demonstrating the V*' has a different
concentration in the two samples. That is, the decreased
signals in VO, samples represent the decrease concentration of
V* while increase concentration of V** since trivalent V is
EPR silent and has no EPR signal.***’ In fact, V,0; phase was
not detected in the XRD patterns (Figure 1d), the appearance
of V** implies the formation of nonstoichiometric VO,, which
is associated with the V*®.”> The increased proportion of V**
demonstrates more Vo** in Vo**—V0,.°>>* The different
quantity of V valence state directly affects surface chemical
state of VO, samples which can be confirmed by XPS. As
shown in Figure 2b, V 2p;, XPS spectra identified the
increased proportion of V** in Vo**-VO,>>*® According to the
intensity ratio of V** (Figure 2b), V4**~VO, and NBs—VO,
samples are confirmed to be VO, 44 and VO, g,, respectively.
After introducing V*°, a new state in the valence band spectra
region (Figures 2c,d) formed with a peak at binding energy of
0.74 eV. The peak intensity in V**—VO, is higher than NBs—
VO,, demonstrating a high concentration of V5**. Meanwhile,
a 042 eV shift toward lower binding energy is observed.
Similar with the lattice disorder and doping,””*" a large
amount of V5°** in semiconductors could lead to midgap states
which induce a consecutive extension to the conduction band
edge, resulting in a reduced binding energy of valence
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Figure 4. (a, b) Enlargement of calculated XRD patterns of the (200) and (—601) peaks to show the shift trend of VO, ;5 compared with
VO,. (¢, d) Projected density of states (PDOS) of VO, (c) and VO, 5 (d). (e) Zinc ions diffusion pathways along the b tunnel in VO, and
VO, ;5. (f) Calculated Zn ion diffusion energy barriers in VO, and VO, ;5.

electrons.”” ™ One advantage of these V5°®* is that they offer

jumping sites for charsge transport, accelerating the electro-
chemical properties.*”®° With increasing Vo®°, another
significant structural effect is changing the lattice constant of
metal oxide, leading to the shrink or expansion of crystal planes
or tunnels."**> The expansion of crystal planes of tunnels will
facilitate the diffusion of ions, eg, Li*,*0! Na*,*62 zn2+ 703
Parts e and f of Figure 2 show that (200) and (—601)
diffractions shifted to lower angles from NBs—VO, to V**—
VO,, revealing the broadening of the corresponding crystal
planes. The XRD diffractions shift in V5**—VO, means the
changes of lattice parameters as revealed by the DFT
calculations (Table S1). Introducing V** lead to the increase
of lattice constant a and c, corresponding to the expansion of b
tunnels, which is the largest and main diffusion tunnels for ions
in VO2 (B).32’33’64

Parts a and b of Figure 3 are curves of NBs—VO, and V,**—
VO,. An additional peak at ~0.9 V (ending at ~0.76 V) for
Vo**=VO, appears during the intercalation process in
comparison with NBs—VO,. The extra peak is probably
ascribed to the V5** because the main distinction for NBs—
VO, and V5°**—VO, is the different V°*® contents as certified
by EPR and XPS analysis. A similar case has been reported by
Kim et al. in reduced MoO; (R-MoO;_,).** The presence of
Vo*® causes an additional deintercalation peak at ~3.0 V
compared with the full oxidized MoO; (F-MoO;). In this
work, the different concentrations of V5*® in NBs—VO, and
Vo**—VO, cause the different kinds of CV curves of Zn**
intercalation and deintercalation in both samples. With the
increase of V5*°, the deintercalation peak intensity at ~1.0 V
was enhanced, and an additional intercalation peak at ~0.9 V
appeared in V5**=VO,. The phenomenon together with the
above XRD results show that the concentration of V5** in VO,
might have a threshold value to influence the crystal structure
and electrochemical properties. To confirm this extra peaks
pair is associated with V*®, we conducted the CV tests of VO,
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nanosheets (NSs—VO,) sample whose V** content is
between the NBs—VO, and V,**—VO, (Figure S7a). As
shown in Figure S7b, NSs—VO, shows a pair of peaks at high
voltage similar to V**—VO,, but the peak intensity ratio of
high voltage to low voltage is lower than that of V**—VO,.
XRD characterization (Figure S8a) of the V**—VO, electrode
before discharging confirmed that no phase transition occurred
in the fabrication process, including the grinding, mixing,
coating, and drying process, while the XRD pattern recovered
back to VO, (B) after being recharged to 1.5 V, verifying the
final V cation in the cathode is tetravalent rather than V°,
which agrees well with previous reports in VO, cathodes.””*°
Zn 2p XPS spectra at different discharge states confirmed the
discharge process of the V5**—VO, electrode is zinc ions
insertion (Figure S8b). Until now, no work has been reported
to discuss and compare this distinct electrochemical character-
istic of VO,. VO, nanofibers with poor crystallinity reported by
Ding et al.”> showed the same CV curve with our V4**—VO,,
while VO, nanorods with large particle size and good
crystallinity by Chen et al.®® still have characteristics similar
to those of NBs—VO,. However, the precise formation
mechanism of this additional pair of peaks using V** rich—
VO, as the cathode for ZIBs is unclear and demands further
detailed investigation.

Figure 3c shows the galvanostatic charge—discharge curves.
In line with the CV curves, V5**—VO, exhibits an extra
discharge and longer charge plateau compared with NBs—VO,
at the voltage region >0.76 V (Figure 3c). Comparing the 10th
discharge capacity of both samples, the extra discharge region
enables V,**—VO, with a 108 mAh g~ capacity enhancement,
which is close to the total enhanced capacity (126 mAh g™*)
compared with NBs—VO,. NBs—VO, delivers an initial
specific discharge capacity of 240 mAh g™' at 100 mA g™
but reduces in the subsequent two cycles (Figure 3d), showing
a “dead Zn** sites” phenomenon which has been found in
Nag3;V,05,%° LiV;0,% and V,0,” as cathodes for ZIBs.

https://dx.doi.org/10.1021/acsnano.9b09963
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After that, the discharge capacity of NBs—VO, rises gradually,
even recovering to 100 mA g~' after rate cycling (Figure S9),
giving rise to a maximum discharge capacity of 249 mAh ¢! in
the first 10 cycles and 280 mAh g™ after rate cycling. The
gradually increasing discharge capacity and high Coulombic
efficiency (>100%) demonstrate that the NBs—VO, has a
gradual Eenetration of Zn** and activation process, like
V,0,,°%%” H,V,0,,”° suggesting the slow Zn** diffusion and
intercalation kinetic and some irreversible processes in the
NBs—VO,. This phenomenon does not occur in V5**—VO,,
which can quickly reach the maximum discharge capacity of
375 mAh g~ and remain steady in the following cycles (Figure
3e). It is higher than that of the reported VO, nanofibers (357
mAh g7!), > VO, nanorods (325 mAh g™),” RGO/VO,
composite (276 mAh g'),*° MgV,04nH,0 (353 mAh
g_l),“ and Na,V,0,,3H,0 (361 mAh g_l).7l Compared
with the NBs—VO,, the enhanced galvanostatic charge—
discharge performance of V4**—VO, indicates that V,**
facilitates zinc ion diffusion and intercalation, which might
be ascribed to the expanded ion diffusion tunnels and
increased active sites. EIS measurements show that V5**—
VO, has a lower charge transfer resistance than NBs—VO,,
demonstrating an improved charge transfer and ion diffusion in
Vo**—VO, (Figure S10). The rate and cycling performance
were also tested as shown in Figure S9a. The discharge
capacity of 220 mAh g™ is retained at S A g~! for V,**—VO,,
which is higher than that of NBs—VO, (186 mAh g™') (Figure
S9b). Even at 8 A g, the discharge capacity of V**—VO, is
still maintained at 180 mAh g~". Figure 3f shows the long-term
cyclic performance of NBs—VO, and V**—VO,. After 2000
cycles, the V,**—VO, exhibits a capacity of 175 mAh g~ with
a retention of 85% (with respect to the first cycle), higher than
that of NBs—VO, (120 mAh g™, 65% retention), revealing
that V** is capable of improving the cycling stability of VO,.

First-principles calculations were conducted. Apart from the
VO, model, two modes with different contents of V*°
VO, g7, and VO, ;5 were built to discover a suitable model that
agrees with the experimental XRD observations in Figures 2e,f.
By analyzing the calculated XRD results and cell parameters
(Figure S11, Table S1), VO, ;5 exhibited the same peak shift as
observed in XRD characterization, (200) and (—601) peaks
shift to lower angles (Figures 4a,b), while (110) peaks shift to
larger angles (Figure S11) in contrast to VO,. Therefore, VO,
and VO, ;5 models were chosen to study the impacts of V5°**
on their electronic structures and zinc ion storage behavior.
The similar trend of crystal structural changes of the VO, 5
model with that of V;**—VO, revealed that the as-obtained
V**—VO, sample was in a high V*® concentration. The real
oxygen vacancy content should be higher than that calculated
by surface XPS (VO, g), as previously reported by Kim et al.**
Combining calculated XRD patterns with the cell parameters
(Figure S11, Table S1), it is confirmed that the V5*® increase
lattice parameters a and ¢ from 11.947(9) and 6.435(8) A in
VO, to 12.344(4) and 6.503(6) A in VO, It leads to
expansion of the b tunnel in VO, and favors the ion diffusion.

Figures 4c,d and S12 show the density of state and band
structure of the VO, ;5 and VO, models. Fermi levels residing
in the conduction band reveal the metallic character of VO,
and VO, .5, which is in good agreement with the previous
theoretical ﬁndings.72’73 After introduction of V**, VO,
exhibits a narrower bandgap than that of VO,, which agrees
well with the valence band XPS results in Figures 2¢,d. Zn ion
diffusion energy barriers in VO, and VO ;5 were calculated by
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simulating the Zn jons diffusion along the b tunnel (Figure 4e).
VO, ;5 presents a lower diffusion energy barrier (0.24—0.71
eV) than that of VO, (0.78 eV) when the zinc ions pass
through the oxygen vacancy site (Figure 4f). Just like the
trapping states, Zn ion passes through the V**, it will be
trapped in this site and keep in a metastable state.*> The lower
migration energy barrier would enable the fast zinc ion
diffusion along the b tunnel in the host lattice. The positive
impact of V5®® on the ion diffusion has also been verified by
DFT method in ZnMn,0,* KisMngO,s " MoO3,*™ and
TiO,.%° Combining the theoretical calculation with the
experimental observations, it is concluded that the creation
of V** could effectively boost the Zn storage performance of
VO, (B).

CONCLUSIONS

Rich V*® resulted in an enlarged b tunnel and narrowed
bandgap in VO, to enable fast charge transfer and ion
diffusion, leading to improved electrochemical properties. The
discharge capacity of 375 mAh g™' at 100 mA g~ was achieved
in V5**—VO,, demonstrating a 34% capacity enhancement in
comparison with NBs—VO, (280 mAh g~' at 100 mA g™').
DFT calculations confirms the expanded ion diffusion tunnel
(along the b axis) and the reduced migration energy of zinc
ions in V**-rich VO, compared with that of pristine VO,.
This work shows an efficient strategy to design Vy**-rich
vanadium oxides as high-performance cathodes for aqueous
zinc ion batteries.

EXPERIMENTAL SECTION

Material Preparation. VO, nanobelts (NBs—VO,) were
synthesized via solvothermal alcohol reduction reaction of V,O;. In
a typical procedure, V,0O5 (Sigma-Aldrich, 4 mmol) was dispersed in
50 mL of water/ethylene glycol (volume ratio: 3:2) mixture under
vigorous stirring, transferred to a 100 mL autoclave, and kept in an
oven at 200 °C for 6 h. After the reaction, the as-synthesized product
was thoroughly washed with distilled water and ethanol several times
and dried at 80 °C for 24 h.

As for the VO, nanosheets (NSs—VO,) and V,**—VO, samples,
the commercial V,05 would be substituted by V,0; nanobelts (NBs—
V,0;) (by annealing NBs—VO,) and V,0; nanosheets (NSs—V,05)
(by annealing NSs—VO,), respectively.

NBs—V,0; and NSs—V,0O5 were obtained by annealing NBs—VO,
and NSs—VO, in the air at 330 °C for 10 min with a heating rate of 2
°C min’, respectively.

Material Characterization. The powder XRD patterns were
measured using a Rigaku SmartLab X-ray diffractometer 9 kW
equipped with a D/teX Ultra 250 detector operating at 45 kV and 200
mA using Cu Ko radiation (4 = 1.540593) within a scanning angle,
20, range of 10—70° in steps of 0.01° using the Bragg—Brentano
geometry. The morphologies of the samples were examined by a field-
emission scanning electron microscope (FE-SEM, Helios Nanolab
600i, FEI). X-ray photoelectron spectroscopy (XPS) (ESCALAB 250,
Thermo-VG Scientific) measurements were performed in macro
mode (3 mm X 3 mm) to obtain information about the binding
energy of the vanadium and valence band. The electron paramagnetic
resonance (EPR) spectra were measured at 294 K with a Bruker EMX
plus 10/12 (equipped with Oxford ESR910 Liquid Helium cryostat).

Electrochemical Measurements. Electrochemical experiments
were performed using 2032-type coin cells within the voltage window
of 0.3—1.5 V using a metallic Zn foil as the counter electrode. The
working electrode was composed of 70 wt % active materials, 20 wt %
Super P conductive additive, and 10 wt % polyvinylidene difluoride
binder and was coated on a stainless-steel mesh and dried in air at 80
°C for 12 h. The mass loading of active materials is 2—3 mg/ cm? The
working and counter electrodes were separated by a piece of cellulose
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separator. The electrolyte used was 3 M Zn(CF;SO;), aqueous
solution because much better electrochemical performance has been
certified using 3 M Zn(CF;S8O;), than other concentrations of
Zn(CF;S0;), and other Zn salts such as ZnSO,, Zn(NOs;),. The cells
were kept for 12 h before the electrochemical measurements. The
discharge/charge measurements were performed using a Neware
Battery Testing System (BTS 3000, Shenzhen Neware, China). Cyclic
voltammograms (CV) were tested on an electrochemical workstation
(CHI600E). The electrochemical impedance spectra (EIS) were
measured at frequencies from 100 kHz to 100 mHz, amplitude voltage
of 10 mV with a Solartron 1260 Multistat impedance analyzer.
Obtained spectra were analyzed by equivalent circuits using ZView2
electrochemical impedance software (Scribner Associates Inc.). All of
the tests were measured at room temperature.

First-Principles Calculations. The primitive VO, is a monoclinic
structure with space group C12/m1, which possesses 8 V atoms and
16 O atoms with lattice parameters a = 11.9479 A b=37189A, c=
6.4358 A. The configurations with V,** were obtained by deleting the
appropriate amount of oxygen atoms. XRD and projected density of
states calculations were performed using the Cambridge Serial Total
Energy Package (CASTEP) program.””’® The generalized gradient
approximation (GGA) in the scheme of Perdew—Burke—Ernzerhof
(PBE) function was applied to calculate the electron exchange-
correlation interactions.”” Ultrasoft pseudopotentials for V and O
were used. Cutoff energy of 340 eV according to the fine quality set by
software self-recommendation. A Monkhorst—Pack k-point scheme
was set as 1 X 4 X 2 to geometry optimization. The convergence
tolerances for geometry optimization calculations with spin fully able
to relax for all steps were set to a maximum displacement of 1.0 X
107 A, a maximum force of 0.03 ¢V/A, a maximum energy change of
1.0 X 107 eV/atom, and maximum stress of 0.05 GPa. In addition,
Koelling—Harmon relativistic effect was considered in the calculation
process.

Then Nudged elastic band (NEB) calculations were performed by
the Vienna Ab initio Simulation Package (VASP) to determine the
activation barrier of Zn?* ion diffusion in the optimized
structure.”*™*° The VO, and VO, 5 configurations were chosen as
the research targets, a supercell consists of 32 formula units of VO,,
and one Zn ion was added along the b tunnel to simulate the
diffusion. Five intermediate states between its initial and final
positions were carried out. All the structures were allowed to relax
within the fixed lattice parameters, which is similar to the method
reported by Park et al.**
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