ABIDES: Towards High-Fidelity Multi-Agent Market Simulation

David Byrd
db@gatech.edu
School of Interactive Computing
Georgia Institute of Technology
Atlanta, Georgia

Maria Hybinette
maria@cs.uga.edu
Department of Computer Science
University of Georgia
Athens, Georgia

Tucker Hybinette Balch*
tucker.balch@jpmchase.com
J.P. Morgan Al Research
New York, New York

ABSTRACT

We introduce ABIDES, an open source Agent-Based Interactive Dis-
crete Event Simulation environment. ABIDES is designed from the
ground up to support agent-based research in market applications.
While proprietary simulations are available within trading firms,
there are no broadly available high-fidelity market simulation en-
vironments. ABIDES enables the simulation of tens of thousands
of trading agents interacting with an exchange agent to facilitate
transactions. It supports configurable pairwise noisy network la-
tency between each individual agent as well as the exchange. Our
simulator’s message-based design is modeled after NASDAQ’s pub-
lished equity trading protocols ITCH and OUCH. We introduce
the design of the simulator and illustrate its use and configuration
with sample code, validating the environment with example trading
scenarios. The utility of ABIDES for financial research is illustrated
through experiments to develop a market impact model. The core
of ABIDES is a general-purpose discrete event simulation, and we
demonstrate its breadth of application with a non-finance work-
in-progress simulating secure multiparty federated learning. We
close with discussion of additional experimental problems it can be,
or is being, used to explore, such as the development of machine
learning trading algorithms. We hope that the availability of such a
platform will facilitate research in this important area.

CCS CONCEPTS

« Computing methodologies — Discrete-event simulation;
Agent / discrete models; » Applied computing — Economics.

*Also with School of Interactive Computing
Georgia Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSIM-PADS °20, June 15-17, 2020, Miami, FL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7592-4/20/06....$15.00
https://doi.org/10.1145/3384441.3395986

KEYWORDS

simulation, finance, market, discrete, multiagent

ACM Reference Format:

David Byrd, Maria Hybinette, and Tucker Hybinette Balch. 2020. ABIDES:
Towards High-Fidelity Multi-Agent Market Simulation. In Proceedings of
the SIGSIM Principles of Advanced Discrete Simulation (SIGSIM-PADS ’20),
FJune 15-17, 2020, Miami, FL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3384441.3395986

1 INTRODUCTION

We present ABIDES (Agent-Based Interactive Discrete Event Simu-
lation), to facilitate the creation, deployment, and study of strategic
agents in a highly configurable market environment. We were
inspired by Daniel Freidman'’s view that simulation of markets pro-
vides a powerful tool to analyze individual participant behavior
as well as overall market outcomes that emerge from the interac-
tion of the individual agents [7]. In Freidman’s review of empirical
approaches to the analysis of continuous double auction (CDA)
markets such as NASDAQ and the New York Stock Exchange, he
outlines the strengths and weaknesses of three major approaches:

(1) Field studies of actual operating markets,
(2) Laboratory studies of small controlled markets,
(3) Computer simulation of markets.

Freidman concludes that field studies are clearly relevant, but do not
provide experimental access to all relevant information; laboratory
studies improve control and observation, but are of necessity small
and expensive; while computer simulations feature perfect control
and observation. However, he notes a significant shortcoming, that
a “trader’s strategies are not endogenously chosen, but rather must
be specified exogenously” [7].

Accordingly, simulation provides an attractive platform for re-
search in equity trading questions. This has led to the development
of a number of simulation platforms such as those on which X. Wang
and Wellman and J. Wang et al. have reported their results [27, 28].
ABIDES is a fresh implementation incorporating lessons learned
from prior platforms.

With ABIDES, we aim to address Freidman’s primary concern
regarding computerized market simulations — that strategies must
be exogenously specified — by enabling powerful learning agents

https://doi.org/10.1145/3384441.3395986
https://doi.org/10.1145/3384441.3395986

Exchange

Client ID: 8642

J. Random Retail

“MyBroker.com, buy me 10@ Ac;t #:
" Client:

shares of IBM.
Order :

MyBroker. com

10043296
J. Random Retail
MKT BUY 10@ IBM

Client: MyBroker.com
Token: REF91013
Order: MKT BUY 100 IBM

ECN / Third Market

Participant ID: 1243

Participant: MyBroker.com
Order ID: 85104
Order: MKT BUY 1@@ IBM

Figure 1: Simulation allows agent-identifiable data which is lost in the flow of real-world orders.

to participate in a realistically structured market via a common
framework. We believe this is necessary to properly investigate the
behavior and impact of intelligent agents interacting in a complex
market environment.

ABIDES is a curated, collaborative open-source project that pro-
vides researchers with tools that support the rapid prototyping and
evaluation of complex market agents. With it, we hope to further
empower researchers of financial markets to undertake studies
which would be difficult or impossible in the field, due to the ab-
sence of fine-grained data identifiable to individual traders (see
Figure 1), a lack of knowledge concerning participant motivation,
and an inability to run controlled “what if” studies against particular
historical dates.

X. Wang and Wellman have examined the behavior of markets
populated by multiple agents as well. In a recent study they used
their simulation platform to study spoofing agents in a market en-
vironment populated by zero intelligence (ZI) and heuristic belief
learning (HBL) traders [28]. Their approach analyzes the results
from an empirical game-theoretic view [29]. ABIDES makes a com-
plementary contribution by enabling experimental focus on the
“market physics” of the real world including:

o Support for continuous double-auction trading at the same
nanosecond time resolution as real markets such as NAS-
DAQ;

o Ability to simulate specific dates in market history with
gated access to historical data;

e Variable electronic network latency, a realistic cubic network
jitter model, and agent computation delays;

e Requirement that all agents intercommunicate solely by
means of standardized message protocols;

o Easy implementation of complex agents through a full-featured
hierarchy of base agent classes.

These features enable an expanded range of experimental studies.
We believe ABIDES is also the first full-featured, modern market

simulator to be shared with the community as an open source
project.

2 IMPORTANT QUESTIONS ABOUT
MARKETS THAT SIMULATION CAN HELP
US ADDRESS

ABIDES can support a number of different kinds of investigations
into market behavior that are not easily conducted using historical
data or live experiments.

e The benefits of co-location: In the past 20 years hedge
funds and other market participants have invested in the
deployment of computing resources at major exchanges [30].
This so-called “co-location” enables quicker access to market
information than if the trading server were located further
away. It is not feasible to investigate the value of the ad-
vantage co-location provides with available historical data,
because it does not include information about the geographic
location, network latency, or network reliability of each actor.
With a platform that does not require formal arms-length
messaging using a realistic network model, we cannot sim-
ulate the effects of these factors even if they are known.
ABIDES provides a network model and mandatory messag-
ing protocol that enables detailed experiments in this area:
Creating a population of agents with a realistic and known
distribution of network latency, jitter, and reliability; con-
ducting trials in which one agent, pursuing a low-latency
order book imbalance strategy, is incrementally shifted from
a co-location facility out to a great distance; and evaluat-
ing the impact of this shift on all agents’ profitability while
otherwise pursuing the same strategies.

e The impact of large orders on price: The very act of plac-
ing orders in a market may affect the price. For instance, if
there is significant selling pressure evidenced by a large vol-
ume of sell orders, it is generally expected that the price will
go down. The extent to which the price moves because of an

order is referred to as market impact. Market participants of
course want to minimize such impact, because the market
usually moves contrary to their profit incentives. In a market
field study, it is not feasible to perform controlled A/B tests.
One cannot place a market buy at the NYSE for one million
shares of IBM at 10 AM on Oct 22, 2018, and then also not
place that order, and compare the difference. Without the
“control”, any observed result from the large order could be
attributable to some other factor. A key feature of ABIDES
is the ability to re-simulate the same historical market day
with known, limited changes while holding all other factors
constant, thus enabling the desired experimental control
population.

o Cost-benefit analysis of Al: In a simulation without a
model for computational time delays that directly impact
time-to-market for the resulting orders, we cannot readily
study the trade-off between simpler, faster predictors and
slower, more powerful predictors. ABIDES introduces a flexi-
ble, integrated model for computation delay that permits the
“speed” of each agent’s thought process to be represented,
and to have that representation affect the timing of all of
outbound messages as well as the next time at which the
agent can be roused for participation. These computation
delays can be specified, or can be measured and applied in
real time during simulation, such that an agent is delayed
according to the actual runtime of each computation. Thus
heavier thinkers will take longer to deliver a resulting order
to the exchange and will be unable to act as frequently.

o Explanation of behavior: When analyzing historical mar-
ket data, we cannot know the motivation behind individual
trader actions, but intent is a key component of many market
regulations. For example, “spoofing” (placing limit orders one
does not intend to fulfill) is not permitted in U.S. markets. It
is also extremely difficult to detect or study, because an iden-
tical pattern of placing and canceling orders may be lawful
or unlawful depending on the trader’s intentions. Similarly,
with the shift away from knowledge-based Al toward “black
box” ML models, explaining the actions of intelligent agents
has become more challenging. ABIDES provides a platform
that features high-resolution time-synced event logging and
visualization for: trading agent state, portfolio, strategy, and
orders; exchange agent order books, order handling, and
order execution; and any extrinsic price-time series used to
guide value-conscious strategies. Combining the precision
logs with a quality simulation architecture which requires
all inquiries and impulses to pass as messages through a
central Kernel for scheduling and tracking, such that each
agent’s decisions, intentions, communications, and results
for every action are fully visible, we produce the full scope
of information needed for explanatory reconstructions. We
hope to use this ability to dive deeply into the why of trading
policies learned by agents or observed in real markets.

3 ABIDES OVERVIEW

Financial markets operate over continuous time, such that trans-
actions may be concluded at an exchange anytime the market is

open. Simulations of these systems rely on representations of enti-
ties within the simulated environment to estimate the state of the
system at times after initialization. Two conventional approaches
include continuous systems and discrete event systems. Continu-
ous simulation typically relies on differential equation models to
estimate the state of a system at any arbitrary time ¢. Because ¢ is
continuous, the potential values for ¢ are unaccountably infinite.
As an example from Finance, the Black Scholes model of options
pricing uses a continuous differential equation approach [5, 19].
Their model assumes price follows a geometric Brownian motion.

In contrast to continuous simulation, discrete event simulation
(DES) methods can be used to estimate the state of a system at spe-
cific discrete points in time. The system changes state only at the
edges of those discrete time slices. Discrete event simulations often
use random variables as models. For example, a Poisson distribu-
tion might be used to determine the periods between arrival times
(inter-arrival time) of phone calls at a call center. A discrete event
simulation system is fast and efficient because the time between
state changes can be ignored and skipped over.

Discrete-event models are better suited than continuous-time
models when underlying parameters change. Further, DES are
amenable to computational parallelization that further speeds up
execution. Approaches in parallel discrete event simulation (PDES)
can follow Optimistic or Conservative protocols [6, 13].

A parallel simulation can be viewed as an extension to a sequen-
tial discrete event simulation where each sequential simulation is
modeled by a logical process (LP). A change in state is defined by
processing an event at some scheduled time t at a logical process.
While ABIDES is currently not parallelized nor distributed at the
LP level, its software design follows principles of distributed sim-
ulation. For example “agents” in ABIDES are mapped to logical
processes and ABIDES progresses in time by scheduling events at
these agents or logical process.

Several emerging simulation applications, like the modeling of
the stock market, call for an agent-based view. An agent-based
model (ABM) is a model that is formed by a set of autonomous
agents that interact with their environment (including other agents)
through a set of internal rules to achieve their objectives. Agent-
based modeling and simulation (ABMS) is useful, usable, and already
used in a variety of application domains [17]. ABMS helps research
and investigation in social sciences [2], computational econom-
ics [25], and marketing [23]. Many agent-based simulators have
been developed (e.g., Swarm [20] and Mason [16]). ABIDES enti-
ties, mapped to logical processes, are indeed agents. Consequently,
ABIDES provides both performance and efficiency leveraging from
the design of PDES, and flexibility and familiarity of an of an agent
based interface leveraging the growing literature in ABM.

Agent-based financial market simulation has been shown to be
an effective approach when agents can learn and adapt to different
investment strategies [14]. In the financial literature there are sim-
ulators that use learning behaviors with differing perspectives of
past data [11]. Financial market approaches are either synchronous
or asynchronous. Levy et al [15] propose a synchronous approach,
but we believe that asynchronous approaches are more flexible and
scalable. This view is shared by Jacobs et al [11, 12], who proposed
a framework called JLMSim. JLMSim is a discrete event simulator

Kernel Message

Controls simulation; Base class for all

Agent

Base class for all

Oracle

Provides agents with

Experimental parameters;
initializes kernel, oracle,
agent population.

Base class for all order
types permitted by the
simulation exchanges.

Adds specialized
capabilities dealing
with currency.

enforces rules; message [~ messages passed [= agents. Defines <t-- information from
clearinghouse; archives between agents via methods for participation outside the
logs. the Kernel. in simulation lifecycle. simulation.
f i 7 7 ™~
H
Config Order EinancialAgent MeanReversionOracle DataOracle

Provides noisy
observations of a
“random walk” price-

Provides noisy
observations of real
historical trade and

time series. quote data.
ABIDES LimitOrder ExchangeAgent TradingAgent ImpactAgent
Maintains one Base class for strategic Trades exactly once
Locite; and loads al Atype of Order that OrderBook per stock trading agents. Handles <t— witha conﬂg._);raue
reques’ ef exp?rlmen a additionally supports symbol. Clears orders. order messaging, volume, time, and
configuration. a limit price. Enforces market hours. tracking, and logging. direction.
H N T V\
v -
Simulation Invocation OrderBook program ﬂﬂ"W BackgroundAgent MomentumAgent
. ----+ message flow !
Maintains two Simple traders that .
LimitOrder collections —> superclass perform arbitrage Imﬁf::ffﬁuso:, il:]aSIC
sorted best-first: bids -—-> encapsulated by between a value belief strategy. 9

and asks.

and the current market.

Figure 2: Class relations within the ABIDES simulation framework.

that incorporates trading rules (albeit simple strategies) and repro-
duces the changes in the market by executing buy and sell orders
from the order book. In ABIDES we represent individual investors
as agents, which is similar to the approaches of Levy et al [15] and
Jacobs et al [11]. JLMSim is implemented in C++ and runs at a few
thousands events per second on a 2.4 GHz PC. ABIDES is imple-
mented in Python (which offers MATLAB-like functionality) and
can run over 10K events per second on a similar 2.4GHz processor.
Unlike ABIDES, JLMSim does not provide interfaces to implement
complex trading strategies or learning agents, and is currently not
available as open source software.

4 ABIDES ARCHITECTURE

The ABIDES framework includes a customizable configuration sys-
tem, a simulation kernel, and a rich hierarchy of agent functionality,
partially illustrated in Figure 2.

4.1 Functions and Features of the ABIDES
Kernel

ABIDES is built around a discrete event-based kernel [4] which is
required in all simulations. All agent messages must pass through
the kernel’s event queue. The kernel supports simulation of ge-
ography, computation time, and network latency. It also acts as
enforcer of simulation physics, maintaining the current simulation
time, tracking a separate “current time” for each agent, and ensur-
ing there is no inappropriate time travel. Some key features of the
ABIDES kernel include:

o Historical date simulation All simulation occurs on a
configurable historical date. This permits “real” historical
information to be seamlessly injected into the simulation
at appropriate times when required for a particular experi-
ment. ABIDES can currently be configured to run a market

replay with a liquidity injection agent placing orders from
historical data, a historical agent-based simulation in which
background agents can receive noisy observations of historic
transactions, or an ahistoric agent-based simulation in which
fundamental stock values follow a mean-reverting or other
mathematical process.

Nanosecond resolution: Because we seek to emulate real
markets, we simulate time at the same resolution as an ex-
ample exchange: the NASDAQ. All simulation times are rep-
resented as timestamp objects with nanosecond resolution.
This allows a mixture of agents to participate in the simu-
lation on very different time scales with minimal developer
overhead. In the unlikely case that multiple events occur in
the same nanosecond, they are handled in order of event
object creation.

Global Virtual Time (GVT): GVT is the latest simulated
time for which all messages are guaranteed to have been pro-
cessed. The kernel tracks GVT as the simulation progresses.
Since the simulation is single-threaded (although agents act
in simulated parallel), it is not possible for any agent to af-
fect the past. GVT may thus simply advance to the delivery
timestamp of each dequeued message in chronological order
and remain monotonically non-decreasing. It is usually the
case that GVT advances much more quickly than wall clock
time, but for very complex scenarios, it may not. The GVT
value is not available to the agents.

Current time per agent: The kernel tracks a “current time”
per individual participating agent which is incremented upon
return from any activation of that agent. In situations where
the current time for the agent is “in the future” (i.e., larger
than GVT), the kernel will delay delivery of messages or
wakeup calls to this agent until GVT catches up.

e Computation delay: The kernel stores a computation de-
lay per agent which is added to the agent’s “current time”
after each activity. The delay is also added to the sent time
and delivery time of any outbound message from an agent
to account for the agent’s computation effort. Agents may
alter this computation delay to account for different sorts
of computation events, or the simulation can be configured
to measure and use the real computation time of each agent
action.

Configurable network latency: The kernel maintains a

pairwise agent latency matrix and a realistic cubic network

jitter model which are applied to all messages between agents.

This permits simulation of network conditions and agent

location, including co-location.

e Deterministic but random execution: The kernel accepts
a single, global pseudo-random number generator (PRNG)
seed at initialization. This PRNG is then used to generate
seeds for an individual PRNG object per agent, which must
rely solely on that object for stochastic methods. Since our
system is currently single-threaded, this allows the entire
simulation to be guaranteed identical when the same seed is
initialized within the same experimental configuration. This
would not ordinarily permit the desired A/B testing, because
the “agent of change” might consume an additional pseudo-
random number from the sequence and thus change the
stochastic source for all subsequent agents. Because of our
careful use of the primary PRNG only to generate subsidiary
PRNGs per agent, the “agent of change” in an ABIDES A/B
experiment will not alter the set of pseudo-random numbers
given to any other agent throughout the simulation, even
if it uses more or fewer such inputs for its changed activity.
In this way, changes in the behavior of other agents will
be caused by a changed simulation environment (e.g. stock
prices) and not simple stochastic perturbation.

During a simulation, the kernel follows a typical series of life
cycle phases: kernel initialization, kernel start, event queue pro-
cessing, kernel stop, and kernel termination. All except the event
queue processing phase consist entirely of sending a corresponding
event notification to all agents.

While processing the event queue, the kernel extracts the next
scheduled event in chronological order and advances the global vir-
tual time (GVT) to match it. Recall that each agent has an individual
“current” time representing the conclusion of its most recent activity.
If the target agent is still in the future with respect to GVT, the
event is rescheduled for the target agent’s current time, placed back
into the priority queue, and the kernel moves to the next chronolog-
ical event. Otherwise, the target agent’s current time is advanced
to the GVT and the event is dispatched to the agent. When the
agent’s event handling method returns, the agent’s current time is
advanced by its computation delay.

Agents may request several critical functions from the kernel:
To send a message to another agent; To schedule a wakeup call for
some future time; And to learn the simulation identifier of another
agent of a specific type (for example, a stock exchange). Messages
will be sent as of the sender’s current time, plus its computation
delay, plus an optional additional delay upon request. Message

receipt will be scheduled based on the send time plus network
latency and jitter. Agents may learn the numeric identifier of other
agents, but may never receive a reference to another agent (as this
could allow bypassing the kernel in the future).

4.2 The Agent Class

All participants in a simulation must inherit from a base agent
class, which implements a number of required methods that allow
participation in the full life cycle of the simulation.

The simulation lifecycle methods for kernel initialization, kernel
start, kernel stop, and kernel termination must be supported by all
simulation agents and will be called exactly one time per agent by
the kernel. The order in which agents are activated in each life cycle
phase is arbitrary. The basic agent class provides sensible default
behavior for each phase.

Two simulation activation methods, for receipt of messages and
wakeup calls, must also be supported by all simulation agents. These
are called repeatedly by the kernel in order of increasing delivery
timestamp of queued messages and wakeup calls. The basic agent
class handles these methods by simply updating its internal current
time and displaying an informative message.

While not required by the simulation kernel, the basic agent
class also provides functionality for fine resolution timestamped
activity logging and serialization to disk.

4.3 The Exchange Agent Class

The provided exchange agent inherits from the basic agent class and
represents a stock exchange such as NASDAQ. The message pro-
tocols supported by this agent are based on NASDAQ’s published
ITCH and OUCH protocols. [21, 22] The exchange is initialized with
market opening and closing times, which it will enforce. These are
not required to match the simulation start and stop times. The ex-
change agent is not privileged in any way; it must participate in
the simulation just as any other agent.

The exchange agent understands how to respond to these types
of messages that are specific to the operation of a financial market:

e Market Open Time: Returns the timestamp at which the
exchange will begin processing order-related messages.
Market Close Time: Returns the timestamp at which the
exchange will stop processing order-related messages.

e Query Last Trade: Returns the last trade price for a re-
quested symbol. Until the first trade of the day, the exchange
reports the oracle open price (historical or generated data) as
the “last trade price”. The exchange does not yet implement
the opening cross auction.

e Query Spread / Depth: Returns a list of the N best bid and

best ask prices for a requested symbol and the aggregate

volume available at each price point. With a requested depth
of one, this is equivalent to querying “the spread”.

Limit Order: Forwards the attached limit order to the re-

quested symbol’s order book for matching or acceptance.

Agents currently simulate market orders using a limit order

with an arbitrarily high or low limit price.

Cancel Order: Forwards the attached order to the requested

symbol’s order book to attempt cancellation.

139.4 e —

139.2

139.0

138.6

138.4

138.2

138.0
10:00 11:00 12:00

Time

13:00 14:00 15:00

Figure 3: Example simulation of IBM stock for 2019-06-28.

Outside of market hours, the exchange will only honor messages
relating to market hour inquiries and final trade prices (after the
close). The exchange sends a “market closed” message to any agent
which contacts it with disallowed messages outside of market hours.

The exchange agent demonstrates one use of the inbuilt Kernel
logging facility, recording either the full order stream or snapshots
of its order books at a requested frequency, enabling extremely de-
tailed visualization and analysis of the order book at any time during
simulation. For example, Figure 3 shows a “market replay” style
simulation of IBM stock on June 28, 2019, in which autonomous
trading agents can also participate and affect the market.

4.4 The Order Book

Within an Exchange Agent, an order book tracks all open orders,
plus the last trade price, for a single stock symbol. All order book
activity is logged through the exchange agent. The order book
implements the following functionality:

e Order Matching Attempts to match the incoming order
against the appropriate side of the order book. The best price
match is selected. In the case of multiple orders at the same
price, the oldest order is selected.

e Partial Execution Either the incoming order or the matched
limit order may be partially executed. When the matched
limit order is partially executed, the order is left in the book
with its quantity reduced. When the incoming order is par-
tially executed, its quantity is reduced and a new round of
matching begins. Participants receive one “order executed”
message, sent via the exchange, per partial execution noting
the fill price of each. When the incoming order is executed
in multiple parts, the average price per share is recorded as
the last trade price for the symbol.

e Order Acceptance When the incoming limit order has re-
maining quantity after all possible matches have been exe-
cuted, it will be added to the order book for later fulfillment,

and an “order accepted” message will be sent via the ex-
change.

e Order Cancellation The order book locates the requested
order by unique order id, removes any remaining unfilled
quantity from the order book, and sends an “order cancelled®
message via the exchange.

One might reasonably expect the order book in a market simula-
tion to include a model for slippage. We assert that our platform
produces realistic slippage naturally, without the need for such a
model. Orders directed to the exchange suffer dynamic computa-
tion and network delays, during which time other orders are being
executed.

4.5 The Trading Agent Class

The provided trading agent inherits from the basic agent class and
represents the base class for a financial trading agent. It implements
a number of additional features upon which subclassed strategy
agents may rely:

o Portfolio The base trading agent maintains an equity port-
folio including a cash position. It automatically updates this
portfolio in response to “order executed” messages.

Open Orders The trading agent keeps a list of unfilled or-

ders that is automatically updated upon receipt of “order

executed” and “order cancelled” messages, and when new
orders are originated.

¢ Last Known Symbol Info The trading agent tracks known
information about all symbols in its awareness, including the
most recent trade prices, daily close prices (after the close),
and order book spread or depth. These are automatically
updated when receiving related messages.

e Market Status Upon initially waking at simulation start,
the trading agent automatically locates an exchange agent,
requests market open and close times, and schedules a second
wakeup call for the time of market open. It also maintains

and provides a simple “market closed” flag for the benefit of
subclassing agents.

e Mark to Market The trading agent understands how to
mark its portfolio to market at any time, using its most
current knowledge of equity pricing. It automatically marks
to market at the end of the day.

e Messages The trading agent knows how to originate all
of the messages the exchange understands, and to usefully
interpret and store all of the possible responses from the
exchange.

o Logging The trading agent logs all significant activity: when
it places orders; receives notification of order acceptance,
execution, or cancellation; when its holdings change for any
reason; or when it marks to market at the end of the day.

5 ABIDES IMPLEMENTATION

The ABIDES simulator is implemented using Python, currently 3.7,
and the data analytical libraries NumPy [24], and Pandas [18]. It
makes use of a virtual environment to provide platform indepen-
dence and provides a straightforward deployment. It is seamlessly
built to facilitate quick reconfiguration of varying agent popula-
tions, market conditions, exchange rules, and agent hyperparame-
ters.

Basic execution of the simulation can be as simple as: python
abides.py -c config, where config is the name of an exper-
imental configuration file. Additional command line parameters
are forwarded to the configuration code for processing, so each
experimental configuration can add its own required parameters to
a standard interface. Complex experimental configuration can be
performed directly within the config file since it is simply Python
code, however the inclusion of command line arguments is benefi-
cial for coarse grain parallelization of multiple experiments of the
same type, but with varied simulation parameters.

A typical configuration file will specify a historical date to simu-
late and a simulation start and stop time as nanosecond-precision
timestamps. It will then initialize a population of agents for the ex-
periment, configuring each as desired. For example, an experiment
could involve 1,000 background agents (perhaps Zero Intelligence
agents or Heuristic Belief Learning agents), 100 high-frequency
trading agents, and one agent designed to create a market price
impact by placing a very large order, with various initialization
parameters to control their behavior. Each agent will at least be
given a unique identifier and name. The configuration file will
also construct a latency matrix (pairwise between all agents at
nanosecond precision) and cubic network jitter model which will
be applied to all inter-agent communications. If a “data oracle”, a
utility with access to a data source outside the simulation, is re-
quired for the experiment, the configuration file will initialize one.
Finally a simulation kernel will be initialized and run, passing it
the agent population, oracle, and other simulation parameters.

In its current form, ABIDES completes simulation of 1,000 typi-
cal “ping pong” agents that each send a single message to all other
agents, and then respond to all incoming messages (for a total of
approximately two million messages) in 3 minutes 18 seconds in-
cluding all setup, overhead, and teardown, at a kernel processing

rate of 10,230 events per second. Because the simulation is single-
threaded, as many trials can be run simultaneously as available
memory and processing cores permit with relatively little perfor-
mance degradation. For example, running two of the above ping
pong experiments simultaneously on the same computer increases
the total runtime by only four seconds. Similarly, a simulation of
1,000 Zero Intelligence (ZI) agents participating in a full day of trad-
ing at a NASDAQ-like exchange, with a mean market inter-arrival
time of approximately one second, is completed in an average of 36
seconds total runtime. All simulation runtime data was collected
on a notebook computer with a 2.4 GHz Intel Core i5 processor and
16 GB RAM.

Note that there is nothing finance-specific about the bootstrapper,
configuration template, simulation kernel, or the basic agent class.
All are appropriate for use in any discrete event simulation.

5.1 Example: A Momentum Trading Agent

To highlight the simplicity of creating a functional trading agent
in our simulated environment, we present the code for a basic
momentum trader. It wakes each minute during the day, queries the
last trade price, projects a future price using linear regression over a
configurable last N data points, and places a market order based on
this projection. Following is the complete source, excluding import
statements:

class MomentumAgent (TradingAgent):
def __init__(self, id, name, symbol, startingCash,
lookback):
super().__init__(id, name, startingCash)
self.symbol = symbol
self.lookback = lookback
self.state = "AWAITING_WAKEUP"
self.trades = []
def wakeup (self, currentTime):
can_trade = super().wakeup(currentTime)

if not can_trade: return

self.getLastTrade(self.symbol)
self.state = "AWAITING_LAST_TRADE"

def receiveMessage (self, currentTime, msg)
super ().receiveMessage(currentTime, msg)

if self.state == "AWAITING_LAST_TRADE" and \
msg.type == "QUERY_LAST_TRADE":

last = self.last_trade[self.symbol]
if len(self.trades) >= self.lookback:
m, b = np.polyfit(range(len(self.trades)),
self.trades, 1)

pred = self.lookback * m + b

holdings = self.getHoldings(self.symbol)

if pred > last:

self.trades = (self.trades + [last])[:self.lookback]

Background Traders (b=0.01)

116
g11s
a
c
S
S 114
v
9]
X
w
113
—— Historical
112 Simulated
o N <) 3) 6
A% A% 300 0 0% 0% oY
o o [\ o o o o

Execution Time

(a) IBM: September 30, 2008

Background Traders (b=0.01)

—— Historical
51.5 Simulated

Execution Price
w
o
w

o
e S5

2/ 2! 2k » 2> ¥
o© o© o© o

1y °
A ot ¥ i
N o N

Execution Time

(b) MSFT: June 24, 2016

Figure 4: Simulated trades versus historical trades on two days.

[l self.placeLimitOrder (self.symbol, 100-holdings,
[l True, self.MKT_BUY)

[l else:

[l self.placeLimitOrder (self.symbol, 100+holdings,
[l False, self.MKT_SELL)
|

I

I

self.setWakeup(currentTime + pd.Timedelta("1m"))
self.state = "AWAITING_WAKEUP"

6 CASE STUDY: BACKGROUND AGENTS

One long-term goal is to produce realistic but possibly noisy re-
simulations of particular days in history to play out various “what
if” scenarios. The idea is to populate the simulation with a large
number of trading agents that provide a realistic environment into
which experimental agents can be injected.

Our initial effort towards this goal involves the introduction of a
data oracle with access to fine-resolution historical trade informa-
tion, and the creation of a set of “background” agents which are able
to request a noisy observation of the most recent historical trade
as of the agent’s current simulated time. The approach is meant to
reproduce the behavior of a trader whose beliefs regarding the fun-
damental value of a stock are informed by interpretations of news
and other incoming information. It was inspired by the concept
of a stock’s “fundamental value” as used in the work of Wang and
Wellman. [28] Our approach is similar, but it uses historical data as
a baseline rather than a mean-reverting stochastic process.

As background agents, we have implemented two common base-
line agents from the continuous double auction literature. The Zero
Intelligence (ZI) trader [10] submits random bids and offers to the
market, usually drawn from some stochastic distribution around a
central value belief for the underlying instrument. The Heuristic
Belief Learning (HBL) agent [8] maintains a Bayesian belief distribu-
tion for likelihood of successful order transaction by offered price,
and uses this to place orders which maximize expected surplus.
HBL is based on the earlier GD agent [9], named for its authors
Gjerstad and Dickhaut. We implement HBL as described by Wang

and Wellman. [28] Each background agent trades only a single
symbol on a single exchange.

Figure 4 compares the behavior of 100 background agents inter-
acting in ABIDES with the actual intra-day price on two separate
days in history. Ideally, we will see a price history that closely
resembles the day in history, with similar statistical properties.

7 CASE STUDY: MARKET IMPACT

One area in which we believe simulation can add significant value to
the current state of knowledge in finance is more accurate models
of the market impact of large trades. Each order placed at the
exchange potentially “moves the market” due to the nature of the
market microstructure within the order book: arriving orders can
add liquidity at a better price, altering the spread; or can match
existing orders and remove liquidity from the market. See Figure 5
for an example of mechanical market impact.

Models that rely on historical data encounter limitations stem-
ming from the inability to repeat history while introducing an
experimental change and allowing subsequent events to be altered
by that change. Models can attempt to compare “similar” days in
history, but no two market days are ever the same.

If one could instead create a multi-agent simulation of a partic-
ular date in history such that a near approximation of historical
trades emerged in the absence of any significant change, but the
trading agents would realistically react to any such changes, a more
accurate understanding of large trade impact could be attained.
Here we present a preliminary investigation of this idea.

We begin each simulation with a population of background
agents and at least one exchange agent. For this experiment, we add
a single experimental impact agent, which simply places a single
large market order at a predetermined time of day. The experimen-
tal parameter for the agent is its “greed”; that is, the proportion of
available order book liquidity near the spread it consumes at the
time of trade. For example, a long impact agent with greed = 0.1
will place a market buy order for 10% of the shares on offer.

IBM Order Book Price of IBM ?
BID PRICE ASK
120.05 4000 Bid-Ask Midpoint
120.03 2000
120.02 1500 —{> Bid-Ask Spread
120.01 500
1000 119.99 Last Trade
500 119.98
2500 119.96
5000 119.95

Order Arrives

120.00 MARKET BUY IBM 2500
0.02 —P> Execution
120.01 500 @ $120.01

1500 @ $120.02
500 @ $120.03

v

Price of IBM ?

Bid-Ask Midpoint
Bid-Ask Spread

Last Trade (avg)

IBM Order Book

120.01 BID PRICE ASK

120.05 4000

.04 < 120.03 1500
120.02 1000 119.99

500 119.98
2500 119.96
5000 119.95

Figure 5: Example of mechanical market impact.

Our experiment includes 100 background agents and one ex-
change agent handling an order book for a set of symbols including
IBM. In Figure 6, the blue line represents each trade made by our
population of background agents in the absence of an impact trader.
The orange line shows each trade made by the simulated trading
agents given the introduction of a single impact agent with varying
“greed”, acting one time with one trade at 10:00 AM on Septem-
ber 30, 2008. Both series are smoothed to improve visibility of the
differences.

The impact trader has a clear effect on the market, despite the
background agents’ central tendency to arbitrage the price toward
historical levels, and the impact grows larger proportionally with
its market bid size. The change is particularly noticeable in the
cyclical peaks of the auction. Due to the price elevation it caused,
the impact trader’s total profit increased with the size of its bid from
an average of $2,633 with greed = 0.3 to $12,502 with greed = 1.9.
However its profit per share declined from $2.14 to $1.60. We found
a correlation between profit per share and trade size of r = —0.31
across sixty experimental trials.

It is useful to consider these market impacts in aggregate across
multiple experimental examples. ABIDES makes it easy to produce
study plots from logged simulation data. Figure 7 shows a time-
aligned event study of many impact trades at different times, on
different days, to illustrate the range of likely price effects after the
time of impact.

8 OTHER ONGOING WORK

The ABIDES simulation platform is already supporting promising
research efforts both inside and outside the financial domain. On-
going research using ABIDES has been presented at the ICML and
NeurIPS Al in Finance Workshops, including: Investigating whether
exchange-traded funds (ETFs) worsen the spread of volatility events

in a market; Whether market replay or interactive multiagent sys-
tems are better to evaluate trading strategies [3]; And what stylized
facts about markets are most appropriate to judge the realism of a
simulated market [26].

ABIDES is also supporting research in non-financial application
fields, including as the development platform of a new protocol for
secure multiparty artificial intelligence. This complex technique
combines secure multiparty communication (SMC), differential
privacy, and federated learning to permit a population of clients
to collaboratively leverage their private data to learn a superior
shared model without revealing training data or requiring any trust
among the parties.

As an example, Figure 8 shows the empirical effect the client
population size and differential privacy factor (epsilon) have on the
ability to learn an accurate shared solution to the census income
data set [1]. ABIDES has been used to rapidly iterate and validate
the proposed protocol, and to evaluate its computation and commu-
nication overhead. Obtaining such results in simulation on a single
local processor, for a distributed protocol representing a thousand
remote clients (e.g. cell phones), represents a significant time and
cost savings.

9 CONCLUSION

We presented the design and implementation of ABIDES, a high-
fidelity equity market simulator. ABIDES provides an environment
within which complex research questions regarding trading agents
and market behavior can be investigated. We discussed additional
ongoing research being supported by the ABIDES platform both
within and outside the financial domain.

The simulation is demonstrated in two case studies. The first
case study shows how previous intra-day transaction histories
are closely reproduced by a population of interacting background

Impact Trader (g=0.3)

115.0

114.5

Execution Price
- = -
I~ = =
w w »
o w o

112.5
—— No Impact

112.0 — Impact

© ————————

o e MINUN\ S SIS\ SR SO\ N N
o Q- A WS I KEANC <l
A% 0™ 0 0 0BT 0™ 0™ Y
Execution Time

(a) MARKET BUY 1232 IBM

Impact Trader (g=1.3)

115.0

1145

=
[
&
o

1135

Execution Price

=
-
w
o

1125
—— No Impact

- |mpact

112.0

20

Q QO Q M Q Q
P (® (B g P 5 R

Q- Q 2 WS
A0 0™ 40 40> 40M 0¥ 0¥ e
Execution Time

(c) MARKET BUY 5338 IBM

Impact Trader (g=0.7)

115.0

1145

Execution Price
= - =
= = =
w w »
o w o

1125
—— No Impact

112.0 —— Impact

SN S IC S\ B N S M
B R e R Y R A
N7 207 0T 0T ART 0T 0T 0

Execution Time

(b) MARKET BUY 2874 IBM

Impact Trader (g=1.9)

115.0

114.5

—
=
»
=)

113.5

Execution Price

-
=
w
=)

112.5
—— No Impact

-~ |mpact

112.0

°© p—————————

20

N N Q N N Q
e o k) o P 5P o

Q- Q B A 8
A 0™ 40 40 40M 0¥ 0Y e
Execution Time

(d) MARKET BUY 7801 IBM

Figure 6: Market impact of trades on the same date at 10:00 AM.

trading agents communicating with an exchange agent. These back-
ground agents are designed to provide a realistic market environ-
ment into which experimental agents can be injected. The second
case study illustrates how large market orders impact simulated
prices not just immediately, but for a significant period after the
order arrives at the exchange. It is also intended to demonstrate the
experimental potential of the ABIDES platform.

We now have a robust simulation environment in which to de-
velop and experiment with more complex trading agents, including
those based on approaches in machine learning and artificial intel-
ligence.

10 OPEN SOURCE ACCESS AND LICENSE

ABIDES is available under the BSD 3-clause license at GitHub:
https://github.com/abides-sim/abides.

ACKNOWLEDGMENTS

This material is based upon research supported by the National
Science Foundation under Grant No. 1741026 and by a JP Morgan
PhD Fellowship.

We gratefully thank Danial Dervovic, Joshua Lockhart, Mah-
moud Mahfouz, and Svitlana Vyetrenko for their technical contribu-
tions to ABIDES and for the improved limit order book visualization
code.

This paper was prepared for information purposes in part by
the Artificial Intelligence Research group of JPMorgan Chase & Co
and its affiliates (JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase
or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of par-
ticipating in any transaction, and shall not constitute a solicitation

Impact Event Study: IBM

Impact Event Study: IBM

Baseline-Relative Price
°

Baseline-Relative Price

<
< Py P o

Relative Time

(a) Impact agent with greed 0.5

P
A <0 <

20

o «® <

Relative Time

(b) Impact agent with greed 0.1

Figure 7: Market impact event studies.

Out of Sample Mean Squared Error by Client Population Size

— Epsilon 2.5e-11
— Epsilon 5e-11
—— Epsilon 7.5¢-11
— Epsilon 1e-10

—— Epsilon 7.5¢-10
— Epsilon 1e:09
Epsilon 5e-09
— Epsilon 1e-08
— Epsilon 5e.08

ax10

3x107

Test Error

2x107

1000
clients

(a) Out of Sample error of shared model.

Matthews Correlation Coefficient

Out of Sample Matthews Correlation Coefficient by Client Population Size

— epsilon 25e-11
—— Epsilon 5e-11
— epsion 7.5e-11
— Epsion 1e-10
— Epsilon 2.5e-10
— Epsilonse-10
—— Epsilon 7.5e-10

—— Epsilon 1e.08
— Epsilon se-08

200 00 600 800 1000
Clients.

(b) Out of sample accuracy of shared model.

Figure 8: Evaluating a new secure multiparty federated learning protocol in simulation.

under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

REFERENCES

(1]

[2

=

(4]

A. Asuncion and D.J. Newman. 2007. UCI Machine Learning Repository. http:
/Iwww.ics.uci.edu/\simmlearn/{MLR}epository.html

Robert Axelrod. 1997. Advancing the art of simulation in the social sciences. In
Simulating social phenomena. Springer, 21-40.

Tucker Hybinette Balch, Mahmoud Mahfouz, Joshua Lockhart, Maria Hybinette,
and David Byrd. 2019. How to Evaluate Trading Strategies: Single Agent Market
Replay or Multiple Agent Interactive Simulation? arXiv preprint arXiv:1906.12010
(2019).

Jerry Banks. 1998. Handbook of simulation: principles, methodology, advances,
applications, and practice. John Wiley & Sons.

Fischer Black and Myron Scholes. 1973. The pricing of options and corporate
liabilities. Journal of political economy 81, 3 (1973), 637-654.

K. M. Chandy and J. Misra. 1981. Asynchronous Distributed Simulation via a
Sequence of Parallel Computations. Commun. ACM 24, 4 (April 1981), 198-205.
D Freidman. 1993. The Double Auction Market Institution: A Survey. The Double
Auction Market Institutions, Theories and Evidence, Addison Wesley (1993).

(8]

[o

[10

(1]

(12]

[13

[14]

Steven Gjerstad. 2007. The competitive market paradox. Journal of Economic
Dynamics and Control 31, 5 (2007), 1753-1780.

Steven Gjerstad and John Dickhaut. 1998. Price formation in double auctions.
Games and economic behavior 22, 1 (1998), 1-29.

Dhananjay K Gode and Shyam Sunder. 1993. Allocative efficiency of markets with
zero-intelligence traders: Market as a partial substitute for individual rationality.
Journal of political economy 101, 1 (1993), 119-137.

Bruce I. Jacobs, Kenneth N. Levy, and Harry M. Markowitz. 2004. Fi-
nancial Market Simulation. The Journal of Portfolio Management 30, 5
(2004), 142-152. https://doi.org/10.3905/jpm.2004.442640 arXiv:https://jpm.pm-
research.com/content/30/5/142.full.pdf

Bruce L Jacobs, Kenneth N. Levy, and Harry M. Markowitz. 2010. Sim-
ulating Security Markets in Dynamic and Equilibrium Modes. Financial
Analysts Journal 66, 5 (2010), 42-53. https://doi.org/10.2469/faj.v66.n5.7
arXiv:https://doi.org/10.2469/faj.v66.n5.7

David R. Jefferson and Henry Sowizral. 1985. Fast concurrent simulation using
the time warp mechanism. In Distributed Simulation 1985. Simulation Council
Proceedings, Vol. 15. Society for Computer Simulation (SCS), 63-69.

B. LeBaron. 2001. A builder’s guide to agent-based financial markets. Quanti-
tative Finance 1, 2 (2001), 254-261. https://doi.org/10.1088/1469-7688/1/2/307
arXiv:https://doi.org/10.1088/1469-7688/1/2/307

http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html
http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html
https://doi.org/10.3905/jpm.2004.442640
http://arxiv.org/abs/https://jpm.pm-research.com/content/30/5/142.full.pdf
http://arxiv.org/abs/https://jpm.pm-research.com/content/30/5/142.full.pdf
https://doi.org/10.2469/faj.v66.n5.7
http://arxiv.org/abs/https://doi.org/10.2469/faj.v66.n5.7
https://doi.org/10.1088/1469-7688/1/2/307
http://arxiv.org/abs/https://doi.org/10.1088/1469-7688/1/2/307

Moshe Levy, Haim Levy, and Sorin Solomon. 1994. A microscopic model of the
stock market: Cycles, booms, and crashes. Economics Letters 45, 1 (1994), 103-111.
https://EconPapers.repec.org/RePEc:eee:ecolet:v:45:y:1994:1:1:p:103- 111

Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan.
2005. "MASON": A Multiagent Simulation Environment. SIMULATION 81 (2005),
517-527.

C. M. Macal and M. J. North. 2009. Agent-based modeling and simulation. In
Proceedings of the 2009 Winter Simulation Conference (WSC). 86—98. https://doi.
org/10.1109/WSC.2009.5429318

Wes McKinney et al. 2010. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51-56.
Robert C Merton. 1973. Theory of rational option pricing. The Bell Journal of
economics and management science (1973), 141-183.

N. Minar, R. Burkhart, C. Langton, and M. Askenazi. 1996. The Swarm Simulation
System, A Toolkit for Building Multi-Agent Simulations. citeseer.ist.psu.edu/
minar96swarm.html

NASDAQ OMX Group. [n.d.]. NASDAQ TotalView - ITCH 5.0.
http://www.nasdagtrader.com/content/technicalsupport/specifications/
dataproducts/NQTVITCHSpecification.pdf. Accessed: 2018-10-25.

NASDAQ OMX Group. [n.d.]. O*U*C*H Version 4.2. http://www.nasdaqtrader.
com/content/technicalsupport/specifications/TradingProducts/OUCH4.2.pdf .
Accessed: 2018-10-25.

Ashkan Negahban and Levent Yilmaz. 2014. Agent-based simulation applications
in marketing research: an integrated review. Journal of Simulation 8, 2 (2014),
129-142.

Travis E Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
Leigh Tesfatsion. 2002. Agent-based computational economics: Growing
economies from the bottom up. Artificial life 8, 1 (2002), 55-82.

Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Der-
vovic, Manuela Veloso, and Tucker Hybinette Balch. 2019. Get Real: Real-
ism Metrics for Robust Limit Order Book Market Simulations. arXiv preprint
arXiv:1912.04941 (2019).

[27] Jianling Wang, Vivek George, Tucker Balch, and Maria Hybinette. 2017. Stockyard:

A discrete event-based stock market exchange simulator. In Simulation Conference
(WSC), 2017 Winter. IEEE, 1193-1203.

Xintong Wang and Michael P Wellman. 2017. Spoofing the limit order book: An
agent-based model. In Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 651-659.

Michael P Wellman. 2006. Methods for empirical game-theoretic analysis. In
AAALI 1552-1556.

Matthew Zook and Michael H Grote. 2017. The microgeographies of global
finance: High-frequency trading and the construction of information inequality.
Environment and Planning A: Economy and Space 49, 1 (2017), 121-140. https:
//doi.org/10.1177/0308518X16667298

https://EconPapers.repec.org/RePEc:eee:ecolet:v:45:y:1994:i:1:p:103-111
https://doi.org/10.1109/WSC.2009.5429318
https://doi.org/10.1109/WSC.2009.5429318
citeseer.ist.psu.edu/minar96swarm.html
citeseer.ist.psu.edu/minar96swarm.html
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHSpecification.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/TradingProducts/OUCH4.2.pdf
http://www.nasdaqtrader.com/content/technicalsupport/specifications/TradingProducts/OUCH4.2.pdf
https://doi.org/10.1177/0308518X16667298
https://doi.org/10.1177/0308518X16667298

	Abstract
	1 Introduction
	2 Important Questions About Markets That Simulation Can Help Us Address
	3 ABIDES Overview
	4 ABIDES Architecture
	4.1 Functions and Features of the ABIDES Kernel
	4.2 The Agent Class
	4.3 The Exchange Agent Class
	4.4 The Order Book
	4.5 The Trading Agent Class

	5 ABIDES Implementation
	5.1 Example: A Momentum Trading Agent

	6 Case Study: Background Agents
	7 Case Study: Market Impact
	8 Other Ongoing Work
	9 Conclusion
	10 Open Source Access and License
	Acknowledgments
	References

