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Abstract—We consider ride-sharing networks served by
human-driven vehicles (HVs) and autonomous vehicles (AVs). We
propose a model for ride-sharing in this mixed autonomy setting
for a multi-location equidistant network in which a ride-sharing
platform sets prices for riders, compensations for drivers of HVs,
and operates AVs for a fixed price with the goal of maximizing
profits. When there are more vehicles than riders at a location,
we consider three vehicle-to-rider assignment possibilities: rides
are assigned to HVs first; rides are assigned to AVs first; rides
are assigned in proportion to the number of available HVs and
AVs. Next, for each of these priority possibilities, we establish
a nonconvex optimization problem characterizing the optimal
profits for a network operating at a steady-state equilibrium. We
then provide a convex problem which we show to have the same
optimal profits, allowing for efficient computation of equilibria,
and we show that all three priority possibilities result in the same
maximum profits for the platform. Next, we show that, in some
cases, there is a regime for which the platform will choose to
mix HVs and AVs in order to maximize its profit, while in other
cases, the platform will use only HVs or only AVs, depending
on the relative cost of AVs. For a specific class of networks, we
fully characterize these thresholds analytically and demonstrate
our results on an example.

I. INTRODUCTION

Ride-sharing platforms, also known as transportation net-
work companies, have become commonplace due factors such
as high costs of car ownership, lack of parking, and persistent
traffic congestion [1]-[5]. Traditionally, rides are provided by
drivers who use their personal vehicle to provide service.
However, ride-sharing platforms are likely to incorporate au-
tonomous vehicles (AVs) into their fleets in the near future
[6].

Nonetheless, significant technological and regulatory hur-
dles remain before ride-sharing platforms could transition to
100% autonomous fleets [7], [8]. Therefore, it is likely that
ride-sharing platforms will initially adopt a mixed framework
in which AVs operate alongside conventional, human-driven
vehicles (HVs) [9]-[11].

Existing research in ride-sharing has largely focused on two
ends of the autonomy spectrum. On one end are futuristic
mobility-on-demand systems consisting of only AVs [12]-[16].
On the other end, models of rider and driver behavior in
conventional ride-sharing markets with only HVs and no AVs
have been considered in [17]-[20].

In this paper, we study the transition from traditional ride-
sharing networks to totally automated mobility-on-demand
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systems. In particular, we extend the model proposed in [17],
which did not consider AVs, to the mixed autonomy setting
under several assumptions on the vehicle-to-rider assignment
possibilities, and we analyze the resulting models. We consider
a network consisting of multiple locations, and potential riders
arrive at these locations with desired destinations. The ride-
sharing platform sets prices for riders and compensation to
drivers of HVs. In addition, the platform has the option to
deploy AVs for a fixed cost. Introducing AVs leads to an
important assignment choice that must be made: if both an
AV and an HV are available to serve a rider, which receives
preference? We consider three possible assignment rules: AVs
always receive priority (AV priority); HVs always receive
priority (HV priority); and priority is determined in proportion
to the number of available AVs and HVs at each location
(weighted priority).

We focus on the equilibrium conditions that arise in the
resulting mixed autonomy deployment when the platform
seeks to maximize profits. We summarize our main findings
as follows: 1) In all three priority assignments, the equilib-
rium conditions lead to a non-convex optimization problem.
Nonetheless, we develop an alternative convex problem from
which an optimal solution to the original non-convex problem
can be recovered. 2) We find that, surprisingly, all three
priority schemes result in the same maximum profits for the
platform. This is because, at an optimal equilibrium, we show
that all vehicles are assigned a ride and thus the priority
assignment choice is immaterial at the optimal equilibrium.
3) Lastly, we consider the ratio of AVs to HVs that will be
deployed by the platform in order to maximize profits for
various operating costs of AVs. We show that, in some cases,
there is a regime for which the platform will choose to mix
HVs and AVs vehicles in order to maximize profits, while
in other cases, the platform will use only HVs or only AVs,
depending on the relative cost of AVs. For a specific family of
networks, we fully characterize these thresholds analytically.

The main contributions of this paper are therefore two-fold.
First, we develop a new model for studying the emergence
of AVs in ride-sharing networks. This model contributes
substantial modifications to the foundational model developed
in [17] in order to allow for the presence of AVs. Second,
we conduct a detailed theoretical study of the resulting model
focusing on the optimal profits obtainable by a ride-sharing
platform that deploys AVs. This paper extends our preliminary
work [21], which only considered AV priority assignment and
a specific class of networks.

The remainder of this paper is organized as follows. Section
I provides the model definitions, and Section III poses the
problems of profit maximization as non-convex optimiza-
tion problems. Section IV proposes an alternative convex
optimization problem that provides the same optimal profits



and from which a solution to the original problem can be
recovered. In Section V, we study the relation between the
AV and HV priority assignments and show that they achieve
the same optimal profits. Due to its asymmetry to the AV
and HV priority assignments, weighted priority assignment is
introduced and studied separately in Section VI. Section VII
studies a particular class of networks and fully quantifies the
profit maximizing equilibrium conditions. Concluding remarks
are provided in Section VIII'.

II. PROBLEM FORMULATION

We consider an infinite horizon discrete time model of a
ride-sharing network that extends the model recently proposed
in [17] to accommodate a mixed autonomy setting with
autonomous vehicles (AVs) and human-driven vehicles (HVs).
The network operator or platform determines prices for rides
and compensations to drivers within the network. The price
of a ride may differ among locations, but does not depend on
the desired destination of each rider.

In this paper, we focus on equilibrium conditions that arise
when the demand pattern of riders is stationary. For example,
for several hours in the early evening on weekends, there might
be steady and predictable demand for rides from residential
areas to entertainment districts. An alternative direction of
research is to consider, for example, the transient effects of
changing demand over time. While the model developed below
could be utilized in such a context, we focus only on stationary
demand and the resulting equilibrium conditions here.

With these considerations in mind, we study the potential
benefits of adding AVs to the network to maximize the profit
potential for the platform.

A. Model Definition

We now formalize the mixed autonomous ride-sharing net-
work described above.

Riders. Among a network of n equidistant locations, a mass
of 0; potential riders arrives at location i € {1,2,...,n} in
each period of time. Throughout, when indices are omitted
from a summation expression, it is assumed the summation is
over all locations 1 to n. A fraction a;; € [0,1] of riders at
location ¢ are traveling to location j so that 3 a;; = 1 for
all 7. We assume «;; = 0 for all ¢ and construct the n-by-n
adjacency matrix A as [A];; = «;; where [A];; denotes the
ij-th entry of A.

Human-driven vehicles (HVs). After each time period, a
driver exits the platform with probability (1 — 3) and serves
another ride with probability 3 where 8 € (0,1). Thus, a
driver’s expected lifetime in the network is (1 — 3)~!. Each
driver has an outside option of earning w over the same
lifetime.

Autonomous vehicles (AVs). The platform can choose to
operate an AV in the network for a fixed cost of s each time-
step. Thus, & = s(1 — 3)~!/w is the ratio of the cost of
operating an AV for the equivalent time of a driver’s expected

'Complete proofs are contained in the extended version arXiv:1908.11711,
available at http://arxiv.org/abs/1908.11711.

lifetime to the outside option earnings. Unlike HVs, it is
assumed that AVs are in continual use and do not leave the
platform.

Platform. The platform sets a price p; for a ride from
location ¢ and correspondingly compensates a driver with ¢;
for providing a ride at location . The continuous cumulative
distribution of the riders’ willingness to pay is denoted by F'(-)
with support [0, p]. That is, when confronted with a price p for
aride, a fraction 1 — F'(p) of riders will accept this price, and
the remaining F'(p) fraction will balk and leave the network
without requesting a ride. Note that 6;(1 — F(p;)) is then the
effective demand for rides at location 1.

The description of the riders, HVs, and the platform is the
same as that presented in [17]. In this work, we also introduce
AVs as described above. As developed below, this addition
substantially alters how the model behaves and is analyzed
as compared to [17]. In addition, we make the following
assumption throughout.

Assumption 1. The network’s demand pattern is stationary,
i.e., A and 0; are fixed for all i. Moreover, the directed graph
defined by adjacency matrix A is strongly connected and 0; >
0forallic{l,...,n}, n>2

In summary, the system consists of a platform that sets
prices, riders that request rides among locations, HVs that
seek to maximize their compensation, and AVs managed by
the platform alongside the drivers.

B. HV and AV Priority Assignments

The number of riders willing to pay the platform’s price may
be less than, equal to, or greater than the total number of HVs
and AVs available at that location. When it is greater than the
total number of vehicles, some riders will not be served and
will leave the network. When it is less than the total number
of vehicles, the platform must decide how to assign riders to
vehicles. Resolving this priority assignment problem is one of
the main challenges presented by the model defined above as
compared to the model with no AVs as proposed in [17]. When
no AVs are present, it is assumed that riders are arbitrarily
assigned to drivers and any remaining HVs choose to reroute
to the location of highest expected earnings. In contrast, in
this paper, we consider several priority assignments.

The first priority assignment, called HV priority, assigns rid-
ers to HVs before AVs and is appropriate if, e.g., the platform
views HVs as customers that should be accommodated and
given preference over AVs. We also consider an AV priority
assignment in which AVs are assigned rides before HVs. This
priority assignment is appropriate if, e.g., the platform views
HVs only as a supplement when insufficient AVs are available.
In Section VI, we consider a third, intermediate weighted
priority assignment that assigns rides in proportion to the
availability of vehicles, but we defer its definition and analysis
until later.

We sometimes refer to the above defined model under any
of the three priority assignments as a mixed autonomy deploy-
ment. For comparison, the HV-only deployment is obtained
by assuming no AVs at any location. An HV-only deployment



may arise by the choice of a profit-maximizing platform if the
platform decides not to use any AVs; alternatively, we may
consider an HV-only deployment by enforcing the constraint
of no AVs at any locations, in which case it is referred to as a
forced HV-only deployment. Similarly, the AV-only deployment
is obtained from the mixed autonomy deployment when there
are no HVs at any locations, and a forced AV-only deployment
arises when this condition is enforced as a constraint on the
system.

C. Equilibrium Definition for HV Priority Assignment

We now turn to the equilibrium conditions of the above
model that are induced by the stationary demand as character-
ized in Assumption 1 and by fixed prices and compensations
set by the platform. An equilibrium for the system is a time-
invariant distribution of the mass of riders, HVs, and AVs
at each location satisfying certain equilibrium constraints, as
formalized next; all variables are understood to refer to an
equilibrium and therefore no time index is included.

We consider first HV priority assignment. Let x; denote the
mass of HVs at location i. Recall ;(1 — F(p;)) the mass of
riders willing to pay for a ride at location ¢. If there are fewer
riders than HVs at a location, drivers can relocate to another
location to provide service in the next time period. For each
i,j € {1,...,n}, let y;; denote such drivers at location ¢ who
relocate to location j without providing a ride. It follows that

n
Zyij = max {z; — 0;(1 — F(p:)),0}. ey
j=1

Further, let §; denote the mass of new drivers who choose
to enter the platform and provide service at location ¢ at each
time step. At equilibrium, it must hold that

(ﬂl:ﬁ Zaﬂmm{xj,ej(l—F(pj))}—i—Zyﬂ +5l
j=1 j=1

2
In (2), observe that min {z;,6;(1 — F(p;))} is the total de-
mand the platform serves with HVs at location 7, and therefore
> ajimin{z;, 0;(1 — F(p;))} is the mass of HVs that find
themselves located at ¢ after completing a ride.

When the demand 6;(1 — F(p;)) at location 4 exceeds the
mass of available HVs z;, the platform can choose to use AVs
to meet this extra demand. Let z; denote the mass of AVs at
location 4, and for each 4,5 € {1,...,n}, let r;; denote the
AVs which do not get a ride at ¢ and are relocated to location
7. Then

2 = Zaji min {z;, max {6,(1 — F(p;)) — z;, 0}}+Z Tji-
J=1

j=1

3)
In (3), observe that min {z;, max {6;(1 — F'(p;)) — x;,0}} is
the total demand that the platform serves with AVs at location
j. Moreover, > ;i is the mass of AVs which do not get a
ride to any other location and are relocated to location 7. It
follows that

n

Zrij = max {z; —max {6;(1 — F(p;)) — x;,0},0}. (4)

j=1

Note that, under HV priority assignment, ; Tij depends on
ZTi.

For each location ¢, define the expected earnings V; to be
the average total compensation earned by a driver arriving at
location 7. Recall that, for each ride served at location ¢, drivers
are compensated c; and travel to a new location according to
the demand pattern A. If a driver does not serve a ride due to
insufficient demand, the driver earns no compensation but is
free to reroute to the location with highest expected earnings. It
thus follows that the expected earnings satisfy the relationship

v, :mm{"i(l‘xw,l} <ci+ijaikﬂvk>
L k=1
+<1min{9i(1_w,1}>ﬂmaxvj ()
j

%

for all locations ¢ where we observe 0;(1 — F'(p;))/x; is the
fraction of drivers at location 7 that serve rides, provided 6;(1—
F(pi)) < xi.

Since drivers have an outside earnings option of w, they will
enter the network at location ¢ if and only if V; > w. Moreover,
the platform is able to independently adjust each compensation
¢;, s0 a profit maximizing platform seeking to minimize V; is
able to achieve V; = w for all i, so called HVs’ incentive-
compatibility constraints, leading to the following definition.

Definition 1. For some prices and compensations {p;, ¢; }1'_,
the collection {0;, z;, yij, i, Tij}?,j:l is an equilibrium under
{pi,c;}_, for HV priority assignment if (1)—(4) is satisfied
and V; as defined in (5) satisfies V; =w foralli=1,...,n
such that 6; + Z?:l yji > 0.

D. Equilibrium Definition for AV Priority Assignment

In this subsection, we parallel the development of the
previous subsection for AV priority assignment. The analogous
equilibrium conditions are

z;=pf Zaﬁ min {z;, max {6;(1 — F(p;)) — 2;,0}}

+Y Y| + 0 (6)
J

S gy = max {z; — max {0,(1 — F(pi)) — 2,04,0} (D

j=1

zi = ZOéji min {z;,6;(1 — F(p;))} + eri (8)
Jj=1 i

Z Ti; = max {O7 Zi — 01(1 - F(pl))} . (9)

Jj=1

In comparing (6)—(9) to (1)—(4), notice that AV priority assign-
ment leads to > ; Yij dependent on z; in (7) whereas Z;”Zl Tij
does not depend on z; in (9).



The expected earning V; for a driver at location ¢ now has
the form

M4 n
V; =minq —,1 i ik BV
mm{xi }(C +Zak’8 k)

k=1

+<1min{]3\c/[ })ﬂmaxvj, (10)

Again, the platform chooses compensation such that V; = w.

Definition 2. For some prices and compensations {p;, c; }7_;,
the collection {6;, x;,yij, zi,rij }; j—1 is an equilibrium under
{pi, i}, for AV priority a551gnment if (6)—(9) is sansﬁed
and V; as defined in (10)-(11) satisfies V; = w for all i =
L,...,n such that 6; + 377, yji > 0.

We discuss restrictions of the present model which posits
several simplifying assumptions such as equidistant locations.
These simplifying assumptions allow for fundamental insights
such as in Theorem 3 and in Section VII below that are not
obscured or confounded by additional degrees of freedom.
Moreover, such assumptions might be reasonable in certain
settings. For example, about 75% of taxi rides in New York
City are less than three miles?, suggesting that distance may
not be a major distinguishing attribute of most rides in that
market, and, as a result, the equidistance assumption would
be sufficient in many situations. Equidistance is required here
because we adopt a discrete time model and all parameters
are on a per-ride basis. Similar to [17], normalized distance
between nodes can be introduced as a new coefficient to extend
the model when the equidistance assumption is relaxed. This
coefficient scales ride price and driver compensation, which
are then interpreted on a per-distance-unit basis.

III. PROFIT-MAXIMIZATION FOR HV AND AV PRIORITY
ASSIGNMENT

We now consider the problem of maximizing profits at
equilibrium. We focus on the equilibrium under prices and
compensations {p;,c;}_ ;. This analysis is reasonable when
there are large populations of HVs, AVs and riders during
periods of stationary rider demand. In this case, the equi-
librium captures the flow constraints in (1)-(4) or (6)—(9)
and the drivers’ earnings constraints in (5) or (10)—(11). We
first consider profit maximization with HV priority assignment
and then with AV priority assignment. Under HV priority
assignment, maximizing the aggregate profit across the n
locations subject to the system’s equilibrium constraints yields
the following optimization problem:

n

max

[min {z; + 2, 0;(1 —
{pi,ei}i,

i=1
— min {z,,

F(pz))} " Di

0:(1 = F(pi))} - ci — zi - 8]
s.t. {0, i, Yij, Zis Tij}?j:l is an equilibrium under

{pi, c;}i_, for HV priority assignment. (12)

2As determined from almost 7 million yellow taxi trips in June 2019
available at https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

These equilibrium conditions capture the flow constraints
of all vehicles while following HVs’ incentive-compatibility
constraints. However, the optimization problem (12) is dif-
ficult to analyze directly. Instead, we propose an equivalent
optimization problem, followed by a lemma establishing the
equivalence. To this end, consider as an alternative

Epzz pz —u}§(5—$§21
{pu&uluyzpzu"”

st d; —9 ( F(pi))

xZ; :ﬂ Zajimin{xj,dj}—&-z:yji +(52

=1 =1

Z yij = max {l‘z — di7 0}
j=1

n
zi = E aj; max {d;

=1

n
E ri; =2; — max {d;
J=1

— 2,01+ ) 7y
j=1
—.I'i70}

Dis0is Zis Ty Yig, Tij = 0 Vi, j. (13)

In a certain sense formalized in the next lemma, (13) is
equivalent to (12).

Lemma 1. Assume HV priority assignment and consider the
optimization problems (12) and (13). Under Assumption 1, an
optimal solution to (13) provides an optimal solution to (12).
In particular, the following hold:

D If (1—P)w < pors < p, then any optimal solution
{p;?‘, 07 T}, vy 21 r;’fj}zjzlfor (13) is such that d} > 0
for all i, i.e., some riders are served at all locations.
In this case, there exist compensations {c}};_, such
that {8}, x}, Yiis 2 U} | constitutes an equilibrium
under {p}, c }l L for HVprlorlty assignment. Moreover,
{pf, i}, is optimal for (12).

2) Conversely, if (1—)w > p and s > p, then any optimal
solution for (13) and any optimal equilibrium from (12)
is such that ) = d} =z} = 27 =0 for all i, ie., no
riders are served.

The proof of Lemma 1 closely follows that of [17, Lemma
1], where we adjust the claim and the proof so that it applies to
the mixed autonomy setting here. In particular, we first show
that the optimal value of (13) upper bounds the optimal value
of (12). We then show that any feasible solution of (13) can
be supported as an equilibrium in (12) for appropriate choice
of compensations.

Turning now to the case of AV priority assignment, the
analogous profit-maximization problem is given by (14) below
and as in the case of HV priority assignment, we introduce
(15) for AV priority assignment.

n

max [min {x; + 2;,0;(1 — F(p:))} - p:
tpoeitio, 7
—min{z;, max{0;(1 — F(p;)) — 2;,0}} - ¢; — 2; - 8]

s.t{d:, T, Yij, 2i, Tij }i j—1 is an equilibrium under
;



{pi, i}, for AV priority assignment. (14)

sz (1=
(pz))

{plaélaxhyb_] ;Z’L;TLJ}

st d; —9(

F(p;)) —wZ(& - sZzi
i=1 i=1

2,01+ Y yji| +6

J

xX; :B Z iji max {dj —
J
n
Z Yij =T; —IMax {dz — Zj, 0}
j=1
n n

Zi = Z Qg min {dj, Zj} + Z Tji

=1 =1

Z ri; =max {z; —

pi75i7 Ziy Lis Yij, Tig > 0

d;,0}
Vi, j.

Mirroring Lemma 1, optimization problems (14) and (15) are
equivalent in a certain sense.

5)

Lemma 2. Assume AV priority assignment and consider the
optimization problems (14) and (15). Under Assumption 1, an
optimal solution to (15) provides an optimal solution to (14).
In particular, the following hold:

D If (1 -B)w < pors < p, then any optimal solution
{pf, 07 Ty, Y5 21 Ti*j}zj:lfor (15) is such that di > 0
for all i, i.e., some riders are served at all locations.
In this case, there exist compensations {c}}!_, such
that {(5Z 75 Yijo % ,r”} | constitutes an equilibrium
under {p},c;}!_, for AV pnorzty assignment. Moreover,
{pf, i}, is optimal for (14).

2) Conversely, if (1—8)w > p and s > P, then any optimal
solution for (15) and any optimal equilibrium from (14)
is such that 6} = d} =z} = 0 for all 4, i.e., no
riders are served.

¥
=z

The proof is similar to that of Lemma 1.

From Lemma 1 (resp., Lemma 2), we conclude that it is
without loss of generality for us to focus on the optimization
problem (13) (resp., (15)) for the rest of the paper when
considering HV (resp., AV) priority assignment.

Moreover, while the objective function of (13) (resp., (15))
is not concave in general, it is concave for distributions for
which the term p - (1 — F(p)) is concave in the fractional
demand d = 1 — F(p), which can be set by the platform
by adjusting the price p (note that p-d = d - F~(1 — d)).
For example, the uniform distribution, exponential distribution
and Pareto distribution all satisfy this concavity requirement.
Throughout the rest of the paper, we focus on the case where
the rider’s willingness to pay is such that the revenue of the
platform is concave in d.

Assumption 2. The cumulative distribution F(-) of the riders’
willingness to pay is such that d- F~*(1—d) is concave in d.

Under HV (resp., AV) priority assignment, we have con-
verted (12) (resp., (14)) to the alternative optimization problem

(13) (resp., (15)). Next, we will further convert (13) (resp.,
(15), henceforth written as (13)/(15)) to an alternative opti-
mization problem that is also convex, allowing for efficient—
and in some cases, closed form—solution computation.

IV. CONVEXIFICATION OF PROFIT MAXIMIZATION

Even when (13)/(15) possesses a concave objective func-
tion, the constraints are non-convex and cannot be simply
convexified so that solving (13)/(15) remains computationally
difficult, i.e., nonconvex. This section introduces alternative
optimization problems of the mixed autonomy deployment for
which the optimal profits will be the same as that of (13)/(15).

While the optimal profits are the same, the optimal solutions
of the alternative optimization problems are not exactly the
same as those calculated in the original problems (13)/(15).
As a result, a main difference between the original problems
and their alternatives is that, while the original problems and
their optimal solutions can always be interpreted physically,
the alternatives are purely mathematical problems. However,
given the optimal solution of the alternative problems, we
show that it is possible to compute an optimal solution for
the original problems (13)/(15) with identical profit and vice
versa. Moreover, by eliminating p; using d; = 0;(1 — F(p;))
in substitution, the alternative optimization problems are seen
to be convex optimization problems under Assumption 2.
But, for clarity, we leave p; in the alternative optimization
problems to allow for comparison to the original problems.
Furthermore, the alternative optimization problems become
quadratic optimization problems with linear constraints when
F(-) is a uniform distribution.

First, assume HV priority assignment, and consider the
optimization problem given by

{pl,aﬁiﬁt,m}zpz i(1—F(pi) *w25 ,5;
st dy = 0;(1 - F(py))

z; =pf Z it + 0;

i=1
n n

zi= ) ajldy —a;) + Y i
i=1 i=1

ij = Z; — (dz — 1’1)
j=1

pla(slvxlvz??’r?] ZO Vl,j (16)

In the following, we regard (13) as the original optimization
problem and (16) as the alternative optimization problem for
HV priority assignment.

Theorem 1 below states that (13) and (16) have the same
optimal profits for any (3, s, w and adjacency matrix A.
Moreover, given one optimal solution for (13) or (16), it is
possible to compute an optimal solution for the other.

Theorem 1. Assume HV priority assignment, and consider the
original optimization problem (13) and alternative optimiza-
tion problem (16). Let

om* _ {pom* 507“7.* om* xori* orik
)

% » Jig

NV S V)



be an optimal solution for (13) and
; x;_zlt*7 Tfjlt* }Z i
be an optimal solution for (16). Then the following hold under
Assumptions 1 and 2:
o The original optimization problem and the alternative
problem obtain the same optimal profits for all possible
choices of B, s, w and adjacency matrix A.

alt*

{palt* 5alt* alt* (18)

o The optimal solutions satisfy x°7" = x®t* zoris = yaltx
oTik __ palt* and 5ori* — 5alt*.
o If 0,(1 — F(ps™™)) < a¢""* for all i in the original
optimization problem, then 207 = 0 for all i and setting
altx _

Teo = yl”* for all i,j constitutes an optimal solution
for the alternatzve problem.

o If 0;(1 — F(p2**)) < 2% for all i in the alternative
optimization problem, then z8'** = 0 for all i and setting
yfj”* = 7“““*, rf]”* = 0 constitutes an optimal solution
for the orlgmal optimization problem.

Proof Sketch. Let ¢°** and ¢®** be the optimal profits of
the two problems (13) and (16), respectively, and let do”* =
0;(1 — F(p?r™*)) and d?** = 0;(1 — F(p$'**)). To prove that
the optimal profits of the two problems are equal, we first
show that ¢ori* < ¢alt* and then QZSOM* > d)alt*'

To prove the claim in the direction ¢°”* < (b““*, we
consider three cases: d"* > x¢"* for all i, d™* < x0*
for all 4, and the heterogeneous case when there exists some
location ¢ such that 29" > d¢"** and some location j such
that z¢™** < d$"**. Similarly, in the opposite direction estab-
lishing ¢ > ¢®** we consider three cases: d!** > zglt*
for all 1, df”* < at;?”* for all ¢, and the heterogeneous case
when z¢!* > dJ!*™* for some location i and z4"* < d4'** for
some location j.

For each direction, if the optimal solution of (13)/(16) falls
in the first two cases, we prove the claim by showing the
existence of a feasible solution for (16)/(13) with the same
profit.

We next show that the heterogeneous case in the first
direction, for which there exists some location 7 such that
22" > d9"* and some location j such that xj”* d;’”*,
is not possible. We consider an aggregated network by parti-
tioning all locations into two or three combined nodes. Then
we illustrate that this heterogeneous situation contradicts the
Assumption 1 which requires the network to be strongly
connected. In the other direction, we make use of the KKT
conditions, which narrows the range of possible relations
between s and w, in order to establish again the existence of a
feasible solution for (16)/(13) with the same profit, completing
the proof. O

Turning our attention to AV priority assignment case, con-
sider the optimization problem

zpl X
7”}

:91(

F(p:)) —wZé —sZzl
(pv))

> ajild;
i

{p1 05 77'1 73/1) yZi,

S.L. d,

Z)+Zyji + di
J

n
> " yij =i — (di —
J=1
n
Zy = E Q25
J=1

pi75’i72’iaxiayij Z 0 vzv] (19)
Similar to above, we regard (15) as the original optimization
problem and (19) as the alternative optimization problem for

AV priority assignment. The next theorem mirrors Theorem 1.

Theorem 2. Consider the original optimization problem (15)
and alternative optimization problem (19). Let

oYL Q0

orz* _ orik

?yl]

{porz* 50'”* o’rz* orz*

be an optimal solution for (15) and

altx __ altx galtx _altx altx _ altx
u - {pz 751' 727; axi 7sz }1] 1
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be an optimal solution for (19). Then the following holds under
Assumptions 1 and 2:

o The original optimization problem and the alternative
problem obtain the same optimal profits for all possible
choices of B, s, w and adjacency matrix A.

o The optimal solutions satisfy x°"" = x®t*, 2
pori* _ palt* and 507‘1’* _ 6alt*.

o If 0;(1 — F(p?™™)) < 20" for all i in the original
optimization problem, then x¢"** = 0 for all i and setting
yfj”* = rfj”* for all i,j constitutes an optimal solution
for the alternative problem.

o If 0;(1 — F(p3'**)) < 28* for all i in the alternative
optimization problem, then x“lt* = 0 for all i and setting

T“”* yfj“*, (7 ™ = 0 constitutes an optimal solution

for the original optimization problem.

orix _ Zalt*

s

Corollary 1 follows from Theorems 1 and 2.

Corollary 1. Under Assumptions 1 and 2, the optimal profit
for the mixed autonomy deployment under HV (resp., AV)
priority assignment is no less than the optimal profit computed
Sfrom (13)/(15) with the additional forced HV-only deployment
constraint, i.e., the constraint z; = 0 for all 1.

Corollary 1 emphasizes that in our model, the AVs will be
introduced into the platform only if they increase the optimal
profit for the platform.

V. THE RELATION BETWEEN HV PRIORITY AND AV
PRIORITY ASSIGNMENTS

Now that we have introduced the alternative optimization
problems for maximizing the profits in both HV and AV
priority assignments, we next compare the optimal profits for
the two priority assignments. The main result of this section
is Theorem 3 which shows that the two priority assignments
actually lead to the same optimal profits.

Before presenting the main theorem, we first introduce some
preliminary lemmas that are interesting in their own right. In
the remainder of the paper, we denote an optimal solution with
superscript *, e.g., ;.



The next lemma establishes that under HV priority assign-
ment, if some location has departing AVs without passengers,
then that location also does not have incoming AVs without
passengers.

Lemma 3. Consider the alternative optimization problem
(16) for HV priority assignment under Assumptions 1 and 2.
Suppose there exist some location i such that both x; > 0 and
zF > 0. Then d} > x} for all i. Moreover, for any i, if there
exists some location j such that r; ; > 0, then r3; =0 for
all j.

Next, we show that if it is optimal for the platform to use
both HVs and AVs at some location, then every vehicle in the
network will be assigned to a ride.

Lemma 4. For optimization problem (16) under Assumption
1 and 2, if there exists a location iy such that x;?‘o > 0 and
zj >0, then r; = 0 for all i, j.

Similar properties exist under AV priority assignment, as
summarized in the following lemmas.

Lemma 5. Consider the alternative optimization problem
(19) for AV priority assignment under Assumptions 1 and 2.
Suppose there exist some location i such that both x} > 0 and
zi > 0. Then di > z} for all i. Moreover, for any 1o, if there
exist some location j such that y;,; > 0, then y;;, = 0 for all

g

Lemma 6. For optimization problem (19) under Assumptions
1 and 2, if there exists a location ig such that x;?‘o > 0 and
z; > 0, then y;; = 0 for all i, j.

The main result of this section below uses the above lemmas
to establish that a profit-maximizing platform is able to realize
the same optimal profits under either the HV priority or AV
priority assignments.

Theorem 3. Under Assumptions 1 and 2, for any choice
of w,s,B and A, u* = {p;k,62‘,zi*,m;‘,yfj,rfj}zj:1 is an
optimal solution of the optimization problem for HV priority
assignment (13) if and only if it is an optimal solution of
the optimization problem for AV priority assignment (15), and
therefore the optimal profits of the two optimization problems
are the same.

Proof Sketch. With Lemmas 4 and 6, we obtain that, when
the optimal solution for HV priority assignment (13) and
that for AV priority assignment (15) are under the same
deployment, i.e., both are HV-only deployment, mixed auton-
omy deployment or AV-only deployment, they must have the
same optimal solutions. Theorem 3 follows by considering the
optimal profits under these same deployment conditions. [

We can then derive a threshold on the cost of AVs above
which the platform does not find it optimal to deploy any AVs.

Proposition 1. Under Assumptions 1 and 2, if k > 1, then,
under any priority assignment, it is optimal for the platform
to use an HV-only deployment, i.e., there is no benefit to
introducing AVs into the ride-sharing network.

VI. WEIGHTED PRIORITY ASSIGNMENT

Besides assigning the rides to one type of vehicle—HVs
or AVs—first, and then using the other type to satisfy any
remaining demand, it is also reasonable to consider that
any vehicle in the platform can be chosen randomly with
equal probability. Therefore, in this section, we introduce the
weighted priority assignment in which the platform assigns the
rides at each location to HVs and AVs at that location with
the same probability, i.e., in proportion to the relative fraction
of HVs and AVs to the total number of vehicles.

A. Equilibrium Definition for Weighted Priority Assignment

As described above, in weighted priority
assignment, HVs and AVs are assigned to riders
with equal possibility: Prob {rider assigned to HV} =
Prob {rider assigned to AV} = min{fh(;—if;m))’ 1} for all 4.
The resulting equilibrium constraints for the model are:

T _/B[Zajimin{l,w} cx;

Tj+ 25

+ Z y],} +0; (22)
J
Zyij:max{l—ei(lm__jz(_pi)),()}-xi (23)
j (3 1
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J J (24)
3" i = max {0, 1- 701'%;1:;"’1)) } 2. (25)
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The expected lifetime earnings V; for a driver at location
takes the form

0;(1 — F(ps)) -
W, 1} (Ci + kz::l()éikﬁvk)

+ (1—min{9i(1_F<pi)),1}>ﬁmaij. (26)

Vi = min{

As before, the platform chooses compensation such that
Vi = w.

Definition 3. For some prices and compensations {p;, c; }7_;,
the collection {0;,;,Yij, Zi,Tij }ijl is an equilibrium under
{pi,c;}_, for weighted priority assignment if (22)—(25) is
satisfied and V; as defined in (26) satisfies V; = w for all
i=1,...,n such that &; + 377, yji > 0.

To further study weighted priority assignment, we now
introduce the following assumption which ensures that the
platform can make some profit by offering rides at an ap-
propriate price.

Assumption 3. The parameters B,w and s are such that (1 —
Blw <P or s < p.



B. Profit-Maximization Optimization Problem for Weighted
Priority Assignment

We now establish the following profit-maximization prob-
lem for weighted priority assignment:

n

[min {z; + 2;,0;(1 — F(p:))} - pi
i=1

— min {xi,ei(l — F(pz))xfiz } cCi— %t S]

s.t. {8, x4, Yij» 2i, Tij}?;jzl is an equilibrium under

max
{pirci}i,

{pi, c;};—, for weighted priority assignment. (27)

As in Section III, we establish an equivalent optimization
problem
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followed by a lemma showing the equivalence.

Lemma 7. Assume weighted priority assignment and consider
the optimization problems (27) and (28). Under Assumptions
1, 2 and 3, an optimal solution to (28) provides an op-
timal solution to (27). In particular, any optimal solution
{pz,él, T Y5 7 ,Ti*j} Sfor (28) is such that d} > 0 for all 1,
i.e., some riders are served at all locations, and there exist
compensations {c}};_, such that {5Z,xz,y”,z“r”}” .
constitutes an equilibrium under {pz,cz}l:1 for weighted
priority assignment. Moreover, {p;, c;}"_, is optimal for (27).

The following theorem establishes that weighted priority
assignment obtains the same optimal profits as the HV and
AV priority assignments, which were already shown to obtain
the same optimal profits in Theorem 3.

Theorem 4. Under Assumptions 1, 2 and 3, for any choice of
w, s, B and A, a feasible solution u for (13) or (15) is optimal
for (13) or (15) if and only if u is an optimal solution for (28).

Proof Sketch. By recombining the constraints in (28), we can
obtain another optimization problem given by
max

Epm F(p;) —wié—sgzz
{pvf) s L y777217’m

s.t. d; 70( F(p;))
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By construction, any optimal solution for (28) will be feasible
for (29) and thus the optimal profit of (29) will be no less than
that of (28).

By Assumptions 2 and 3, (29) is a convex optimization
problem with affine constraints, and thus the KKT conditions
are not only necessary, but also sufficient for optimality.
By studying the KKT conditions, we conclude any optimal
solution for AV priority assignment is also optimal (and
feasible) for (29). since the optimal profits for (29) are higher
than or equal to that of (28), and since any optimal solution
for AV priority assignment is feasible for (28), then we can
conclude that any optimal solution for AV priority assignment
is also optimal (and feasible) for (28). ]

Theorems 3 and 4 show that, even though the three priority
assignments prescribe different models for incorporating AVs
into a ride-sharing platform, the resulting profits at an optimal
equilibrium are the same in all three cases under Assumptions
1, 2 and 3. This is because no location will have both AVs and
HVs present at an optimal equilibrium. Intuitively, on the one
hand, the platform is able set compensation for drivers and to
deploy AVs as desired, so that there is considerable freedom
in dictating system operation. On the other hand, locations
are coupled through the rider demand pattern and cannot
be managed independently by the platform, highlighting the
surprising nature of this result.

VII. CLOSED-FORM CHARACTERIZATION FOR
STAR-TO-COMPLETE NETWORKS

In this section, we consider the family of star-to-complete
networks introduced in [17]. For this large class of networks,
we derive closed form expressions for the thresholds of relative
cost between HVs and AVs for which the platform finds it
optimal to use an HV-only deployment, AV-only deployment,
or a mixed autonomy deployment.

Definition 4. The class of demand patterns (A$,1) with n >
3, £€[0,1], and

0 5 &= =
c1 0 co ... Co
A&Z C1 Co 0 Co , (30)
C1 C2 C2 0
€ £
1 n_1+( &), C2=—"7 (€29)

is the family of star-to-complete networks. It is a star network
when & = 0 for which we write A = A° and a complete



network when & = 1 for which we write A€ = A, Therefore

the general adjacency matrix of a star-to-complete network
can be written as A = EAC + (1 — £)A”,

In addition, we make the following assumption throughout
this section.

Assumption 4. All locations have the same mass of potential
riders, which we normalize to one, i.e., 0 = 1. Also, the riders’
willingness to pay is uniformly distributed in [0,1] so that
F(p) =p for p € [0,1].

Consider fixed outside option earnings w, and recall the
parameter k determining the cost of operating AVs for the
same lifetime of an HV relative to w. In this section, we
confirm the intuition that, for large k, i.e. high relative cost
of AVs, the profit maximizing strategy for the platform is an
HV-only deployment, and for small k, i.e. low relative cost
of AVs, the profit maximizing strategy for the platform is an
AV-only deployment. We also show that in some cases, but not
all, for some values of k, the platform finds it optimal to use
both HVs and AVs at equilibrium, i.e., a true mixed autonomy
deployment.

Recall that Proposition 1 provides a sufficient condition
for when a platform will not find it optimal to use AVs.
In the next Theorem, we sharpen this result for the class of
star-to-complete networks and fully characterize the regions
in which the profit-maximizing platform will deploy an HV-
only deployment, an AV-only deployment, and a truly mixed
autonomous network.

Theorem 5. Consider a star-to-complete network under As-
sumption 4. Define

ky = 1+ Bey
L cp+17
1 i€ € (2t ]
_ ) ci(14B)+(n—1)82c3+1 .
k2 =\ Ternnpary &€ [Bum, Tg))
EE if € € (0. Biim).
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=B — D+ e
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4 (Cl + 1)(/8(77, — 1)6% + 1) )
where
n—1
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\/5%—1 )+45 —4 0
o)

Suppose k3 > ki, equivalently, Bci1(n—1)(1—c1+Be1) > 1.
When k € [0,ki], it is always optimal for the platform
to deploy an AV-only deployment, i.e., optimal profits are
obtained with x; = 0 for all i. If k1 < ks, then: when
k € (k1, k2), it is optimal for the platform to deploy a mixed
autonomous network, i.e., optimal profits are obtained with
x; > 0 and z; > 0 for some i,j; when k > ks, it is optimal
for the platform to deploy an HV-only deployment, i.e., optimal
profits are obtained with z; = 0 for all i. If k1 > ko, then:

when k > ki, it is optimal for the platform to deploy an HV-
only deployment.

Now suppose ks < ki, equivalently, fci(n — 1)(1 — ¢y +
Bc1) > 1. When k € [0, ky), it is optimal for the platform to
deploy an AV-only deployment; when k € (ky, ko), it is optimal
to deploy a mixed autonomy deployment; when k > ko, it is
optimal to deploy an HV-only deployment.

To demonstrate Theorem 5 and provide intuition for the
fundamental theoretical results of this paper, we study a star-
to-complete network with n = 3, & = 0.2. We consider
two cases: § = 0.8 and § = 0.95, and we compute
optimal equilibria and profits using the optimization problems
formulated above. In both cases, applying Theorem 5, we can
verify that ks > kj. For the first case with 5 = 0.8, we
obtain k; = 0.9053 and ko = 0.9181 so that k; < ks. Figure
1(Top) confirms that for k < k1, it is optimal for the platform
to deploy only AVs, for ky < k < ke, it is optimal for the
platform to use both AVs and HVs, and for k > ko, it is
optimal for the platform to use only HVs. In constrast, when
B = 0.95 so that the expected lifetime of HVs in the network
is longer, then k1 = 0.9763 and k; > k. Figure 1 (Bottom)
confirms that for k£ < kj, the platform finds it optimal to
deploy only AVs, and for k > k;, the platform finds it optimal
to use only HVs; there is no regime in which the platform
finds it optimal to use both AVs and HVs. The plots in Figure
1 are generated by solving the optimization problem (16) in
MATLAB using CVX, a package for specifying and solving
convex programs [22], [23]. Theorem 5 guarantees that the
basic qualitative results demonstrated here apply to arbitrarily
large star-to-complete networks.

It is interesting to note from the above thresholds that even
if AVs are cheaper than HVs, when the price difference is
small, the platform may still choose to deploy only HVs or
to deploy a mix of AVs and HVs. An explanation for this
observation is as follows. Recall that with probability 1 — /3, a
driver leaves the network and does not seek to be matched to
a new rider after finishing a ride and thus essentially provides
one-way service. In contrast, AVs are assumed to remain in the
network and must be recirculated to a new location. When the
demand is uneven so that some destinations are more popular
than others, the platform can exploit this one-way service to
obtain a higher profit with HVs, even if AVs are less expensive
on a per ride basis.

VIII. CONCLUSION

We proposed three models for ride-sharing systems with
mixed autonomy under different ride-assigning schemes and
showed that under equilibrium conditions, the optimal profits
can be computed efficiently by converting the original prob-
lems into alternative convex programs. In addition, we proved
that the optimal profits of the three models are the same.

We found that the optimal profits for the ride-sharing
platform with AVs in the fleet will be the same as that of
the human-only network when £ is large, i.e., the cost for op-
erating an AV is relatively high compared to the outside option
earnings for drivers’ lifetime. In particular, in Proposition 1,
we showed that if the cost of operating an AV exceeds the



Optimal profits, 3 = 0.8

0.4665
Mixed autonomy
Forced HV-only
0.466 | smmmm Forc?d AV-only | |
- | ] Profit at k;
qg A Profit at ky
g
= 0.4655 + J
E
g
jon
o )
0.465 + % 4
.
“ h — -
.
“
0.4645 . - . .
0.9 0.905 0.91 0.915 0.92 0.925
k
Optimal profits, 5 = 0.95
0.666 |- Mixed autonomy
Forced HV-only
0.665 smmns Forced AV-only |
- A Profit at ky
‘g 0.664 + J
—
o
= 0.663 | 4
E
2. 0.662 1
o —
0.661 | o, ]
*
-
*e
0.66 .
. . . A
0.92 0.94 0.96 0.98
k

Fig. 1. Optimal profits for a star-to-complete network with n = 3, £ = 0.2
under a mixed autonomy deployment, a forced HV-only deployment, and
a forced AV-only deployment. (Top) When 8 = 0.8, it is optimal for the
platform to use only AVs when k, the ratio of the cost of AVs to HVs,
satisfies £ < k1 = 0.9053, only HVs when & > ko = 0.9181, and a mix of
AVs and HVs when k1 < k < k2. (Bottom) When 8 = 0.95, it is optimal
for the platform to use only AVs when £ < k1 = 0.9763 and only HVs
when k > ki, and it is never optimal for the platform to use a mix of HVs
and AVs.

expected compensation to a driver in the system, the platform
will find it optimal to not use AVs, an intuitive result.

The case study illustrates that the platform may not nec-
essarily find it optimal to use AVs even when the cost of
operating an AV is less than the expected compensation to a
driver in the system. Moreover, there are some situations when
it is optimal to have both drivers and AVs in the platform.
For star-to-complete networks, we quantify the conditions for
which the mixed autonomy deployment allows for higher
profits than a forced AV-only or forced HV-only deployment.

The model proposed and studied here includes a several
simplifying assumptions that can be relaxed in future work.
For example, destinations are often not equidistant and ride
costs might then depend on destination. Nonetheless, these
simplifying assumptions are important for illuminating funda-
mental properties of ride-sharing in a mixed autonomy setting.
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