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ABSTRACT: A homogeneous rhodium—indium catalyst hydrodefluorinates substrates bearing strong aryl C—F bonds, including
difluoro- and fluorobenzene, using 1 atm of H,, alkoxide bases, and moderate temperatures (70—90 °C). Characterization of
catalytic intermediates establishes a formal Rh™'/Rh' redox cycle. The Rh — In interaction is proposed to enable catalysis by
stabilizing the reactive Rh™ species, which is responsible for cleaving the Ar—F bond and is ultimately regenerated using H, and

base.

O rganofluorines are an important class of industrial
chemicals, accounting for 30% of agrochemicals and
10% of pharmaceuticals.’" However, their environmental
persistence and toxicity to human health motivate efforts to
develop processes that efficiently degrade organofluorines.””>
Catalytic hydrodefluorination using H, is a promising
remediation strategy from the standpoints of sustainability
and atom economy. An inherent challenge in hydrodefluori-
nation is overcoming the chemical inertness of the C—F o
bond (~500 kJ/mol).” While only a few transition metal
catalysts can activate alkyl C—F bonds,” '’ metal-mediated
aromatic C—F bond cleavage is better established. However,
most of these catalysts react only with highly fluorinated
'~'® where the C—F bonds are considerably weaker
than those present in arenes bearing fewer F atoms, e.g. C;HF
and C¢H,F,.""™* From the metal viewpoint, one issue is that
relatively strong M—F bonds are formed.””*” Hence, most
catalysts require strongly fluorophilic reductants to drive
13IBI8 Bor example, the Nb catalyst
shown in Figure 1 hydrodefluorinates fluorobenzene, but
requires H;SiR to abstract fluoride from Nb.** Lastly, the lack
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fluoride elimination.
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Figure 1. Selected catalysts for the hydrodefluorination of
fluorobenzene.”*>*°
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of selectivity in activating C—F bonds over C—H bonds in
partially fluorinated arenes can be problematic.”*’

For the hydrogenolysis of aryl C—F bonds, the state-of-the-
art catalyst is a heterogeneous Rh/AL,O; system, which
converts fluorobenzene to cyclohexane quantitatively at
ambient temperature and 1 atm of H,.*”*" Among molecular
catalysts, the bimetallic Ru/Pd complex is the most active
(Figure 1).” The Ru/Pd catalyst hydrodefluorinates fluoro-
benzene to benzene quantitatively using NaO#-Bu in i-PrOH at
80 °C. The Pd site is proposed to activate the C—F bond™
while the Ru center mediates the transfer-hydrogenation
reaction.”” In both of these systems, mechanistic under-
standing is lacking with only scant experimental data for any
metal-based intermediates.

Here, we describe the hydrodefluorination of aryl C—F
bonds using a bimetallic Rh—In catalyst with 1 atm of H, and
NaOt-Bu as the stoichiometric base. A catalytic cycle is
proposed where an anionic Rh—In active species performs
oxidative cleavage of the aryl C—F bond, releasing F~. The
resulting Rh—In aryl intermediate then reacts with H,, forming
the hydrodefluorinated arene and a Rh—In hydride. The latter
regenerates the anionic active species after sequential H,
binding, deprotonation, and H, release. Several of the
proposed intermediates have been isolated and structurally
characterized, and their stoichiometric reactivity profiles
support the proposed mechanism.

The synthesis of the Rh—In catalyst began with the
installation of Rh(I) into the metalloligand, In[N(o-
(NCH,Pi-Pr,)C¢H,);]** (abbrev. InL), using 0.5 equiv of
{Rh(u-Cl)(C,H,),},, affording CI-RhInL (1). Metathesis of
the CI ligand with NaHBEt; at —78 °C provided the hydride,
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H—RhInL (2). Both 1 and 2 are Rh(I) — In(III) complexes
(Figures S2—S6), where the In ion acts as a 6-acceptor Z-type
ligand.*> ™ These synthetic preparations are analogous to
those reported for the isostructural Rh—Al and Rh—Ga
complexes,” and are reminiscent of other Rh—group 13
systems.**™** The deprotonation of 2 using n-BuLi at —78 °C
under N, afforded the rhodate complex, Li(THF),[(N,)-
RhInL], 3-N, (Figures S13—S14). The N, ligand is labile
(Un—n = 2095 cm™, KBr pellet, Figure S17), and exposure of
3-N, to vacuum or Ar formed the “naked” Li(THF),[RhInL]
(3) with a color change from yellow to dark green. Under 1
atm of H,, 3-N, converted to the H, adduct, Li(THF), [ (n*
H,)RhInL] (3-H,), which displayed a characteristic 'H{*'P}
NMR doublet at —5.10 ppm (Jp,_y = 18.2 Hz, 2H).

The solid-state structures of 2 and 3-N, are shown in Figure
2. Complex 2 features a S-coordinate Rh center that is

Figure 2. Solid-state structures of H—RhInL, (2), Li(DME);[(N,)-
RhInL], (3—N,), and Ph—RhInL, (4) shown at 50% probability level.
See Supporting Information for the structure of 1 and additional
details.

approximately square pyramidal. The phosphines are coplanar
with the hydride, which was located in the Fourier difference
map. In 3-N,, the Rh center is trigonal bipyramidal, where the
axial N, ligand is positioned trans to In. During an attempted
crystallization of 3-N, from a THF/PhF solvent mixture, dark-
red crystals were formed, whose identity was established by X-
ray diffraction to be Ph—RhInL (4). Complex 4 (Figure 2) has
a S-coordinate Rh center that is distorted between square
pyramidal and trigonal bipyramidal geometries. Across the
three structures, the Rh—In bond length is almost invariant

(2.54 to 2.56 A, Tables S1—S3), and is substantially smaller
than the sum of the metals’ covalent radii (2.84 A),” lending
support for a strong Rh — In interaction.

The serendipitous formation of 4 from the reaction of 3-N,
and PhF inspired us to investigate 3-N, as a hydro-
defluorination catalyst. Previously, (C;Mes)Rh(PMe;)H, was
reported to react with highly fluorinated arenes in a benzene/
pyridine solvent mixture at 85 °C to afford (CsMes)Rh(aryl")-
H.'® The authors proposed that the anion, [(CsMes)Rh-
(PMe,)H] ", was the active species that cleaves the aryl C—F
bond.”>*” Attempts to catalyze the hydrodefluorination of
CeFs using H,, however, were not promising. Other Rh
complexes were later demonstrated to perform catalytic
hydrogenolysis of aryl C—F bonds with stoichiometric
bases.'*"**** However, these catalysts were only able to
activate highly fluorinated arenes or 1-fluoronaphthalene, and
were unreactive with PhF.

To optimize the catalytic conditions, o-difluorobenzene (o-
DFB) was selected as the test substrate (Table 1). At 15 mol %
catalyst loading, 2.5 equiv of LiOt-Bu, 1 atm of H,, and 70 °C
in THF, both Rh—Cl 1 and Rh—H 2 were equally effective at
yielding PhF quantitatively within 24 h (entries 1-2). By
prolonging the reaction time to 48 h, both 1 and 2 gave further
defluorination of PhF to benzene, albeit in low yields of 24%
and 11%, respectively. Raising the H, pressure to 2 and 4 atm
for 1 decreased the yield of PhF to 96% and 30%, respectively
(entries 3—4). Entries S and 6 illustrate that, for 1 with LiOt-
Bu, both lower (50 °C) and higher (90 °C) temperatures
resulted in lower PhF yields of 87% and 63%, respectively.
Next, decreasing the catalyst loading to S mol % 1 (entry 7)
increased PhF turnovers to ~17 while maintaining a good yield
of 87% at 48 h. When LiOt-Bu was increased to 10 equiv at §
mol % 1 (entry 8), the yield fell slightly to 78% at 48 h.
Changing the base to NaOt-Bu (2.5 equiv), which should be a
stronger base due to weaker ion pairing,50 and using 3 mol % 1
gave the highest turnovers of PhF (~30) while maintaining a
high total yield of 93%. As a control, no baseline reactivity was
found in the absence of catalyst (entry 10).

The Rh—Al and Rh—Ga chloride complexes also showed
limited activity but performed worse than 1 (entries 11—12).
The poor activity of the lighter group 13 congeners likely
stems from the Rh electronics, which depends on the group 13
identity. Specifically, the Rh(—1/0) redox potentials for the

Table 1. Catalytic Hydrodefluorination of o-DFB Under Various Conditions”

Catalyst loading H, Pressure Temp

entry  precatalyst (mol %) (atm) (°C)
1 1 15 1 70
2 2 15 1 70
3 1 15 2 70
4 1 15 4 70
S 1 15 1 N
6 1 15 1 90
7 1 S 1 70
8! 1 1 70
9° 1 1 70
10 none n/a 1 70
11 CI-RhAIL 15 1 70
12 Cl-RhGaL 15 1 70

PhF equiv, PhF turnovers,” PhH equiv, % total yield,
t=24h t=48h t=48h t=48 h
6.67(1) 6.67(1) 1.6(1) quantitative
6.67(1) 6.67(1) 0.76(7) quantitative
5.62(4) 6.37(6) trace 96
1.3(7) 1.99(5) 0 30
4.0(2) 5.8(4) 0 87
2.80(9) 42(7) 0 63
12.3(2) 17.3(3) 0.14(7) 87
11.3(1) 15.6(9) trace 78
14(3) 31(2) 3(2) 93
0 0 0 0
0.09(4) 0.3(1) 0 4
1.4(3) 2.7(5) trace 40

“Initial catalytic conditions unless otherwise noted: precatalyst (15 mol %), 1 atm of H,, 2.5 equiv of LiOt-Bu in THF at 70 °C. Triplicate runs.
YPhF turnovers also count any PhF further converted to PhH. “Combined yield of PhF, PhH. Maximum yield based on 0-DFB. #10 equiv of LiOt-

Bu. “2.5 equiv of NaOt-Bu.
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[RhML]~ series increase as M is varied down group 13 (V, vs
FeCp,"’°, Figures $20—521): —1.61 (M = Al) < —1.51 (Ga) <
—1.35 (In). The more reducing rhodate species, [RhAIL]™ and
[RhGaL]™ (X-ray, Figure S19), are likely more difficult to form
during catalysis than the corresponding Rh—In counterpart,
making turnover sluggish.

Next, the substrate scope of catalyst 1 was probed with
various fluoroarenes, using standard conditions from the o-
DFB optimization shown in Figure 3. The substrate p-F-

X H
Hy (1 atm) 4 (3-4 mol%) @ . HOt-Bu
+ —_—
R 25NaOtBu  THF-dg R NaX
70 °C

X=F Cl I % NMR yield ®

F 099(1)PhCF3 F 75012) I d91¢1) pnF  Cl ©€97(1) PhF

0-FCgH3sMe 9(1) CeHg 3(1) CgHg
Me
CF; F F

F  765(5) PhF
9(5) CsHe

F

F dfz16) CeHs F  “*98(1) CoHg
29(6) PhF

F

Figure 3. Substrate scope for catalyst 1 using standard conditions
unless otherwise specified (Table S4, Figures $22—S35). The reactive
halogen atoms are highlighted in yellow. “Standard catalytic
conditions unless otherwise specified. *Avg of triplicate trials. ‘1.25
equiv of NaO#-Bu. %6—8 mol % cat. 1.8 mol % cat. 90 °C.

(CF;)C¢H, was converted cleanly to PhCF; (99% vyield),
demonstrating that alkyl C—F bonds are unreactive. The
substrate 2,5-F,-toluene was monodefluorinated to o-F-toluene
in moderate yield, suggesting that sterics can dictate selectivity.
Next, reactions with the p-dihaloarenes p-F-XC¢H,, where X is
Cl or I, showed the preference for cleaving the weaker C—X
bond over the C—F one. We note that this reactivity profile
contrasts with traditional SyAr and is more in line with the
periodic trends observed in oxidative addition.’’™>® Small
amounts of the PhF product (3 to 9%) further reacted to form
CeHs.

Unlike o-DFB, both p- and m-DFB did not convert
significantly under standard conditions.”> Hence, these
reactions were heated to 90 °C for ~3 days. The hydro-
genolysis of p-DFB produced mostly PhF (65% yield) and
some C¢Hy (9%). The hydrogenolysis of m-DFB gave more
C¢H, than PhF (3:2 ratio), though this difference may be
attributed to the higher catalyst loading (7.5 mol %) used for
m-DFB. Excitingly, 1 (7.5 mol %) hydrodefluorinated PhF to
CgH¢ with nearly full conversion (98% yield) after heating at
90 °C for ~5 days (Figures S28—529, S36).

The complementary strategies between fluorination and
deuteration to enhance the metabolic lifetime of pharmaceut-
icals prompted us to investigate the efficacy of 1 for catalytic
deuterodefluorination.’”** Under 1 atm of D, and otherwise
standard conditions, 1 transformed both o-DFB and p-F-
(CF;)CgH, into the expected monodeuterated arene as the

major product (>70% vyield, Figures 4, S37—S44). For the
reaction with o-DFB, the 'H NMR integrations appeared

F F
E D J11H
1 (3 mol%)
(a) + Dy —m
2.5 NaOtBu ~
THF, 70 °C joy ToH
CF; CF;
20H
1 (3 mol%) d
(b) M sr——
2.5 NaOtBu
THF, 70 °C \16/—/
F D
0.3H
0\ THF, rt 0\
(c) B—H + 4 B—Ph + 2
o o

Figure 4. (a, b) Deuterodefluorination of o-DFB and p-fluorobenzo-
trifluoride under standard catalytic conditions. Only major product/
isomer is shown. Proton NMR integrations reflect the overall mixture.
(c) Stochiometric reaction of 4 with excess HBpin.

consistent with the incorporation of 1 equiv of D at the ortho
position (Figure 4a). However, in the '"F NMR spectrum
(Figure S40), three unique resonances were resolved,
corresponding to PhF-d; (76%), PhF (14%), and PhF-d,
(10%). The formation of PhF-d, supports the co-occurrence
of aryl C—H bond activation, which should result in the
production of HD from C—H/C-D scrambling. Hydro-
defluorination with the generated HD could lead to PhF,
although the larger yield of PhF versus PhF-d, points to other
unknown protio-sources. The substrate p-F-(CF;)C¢H, was
also defluorinated to form trifluorotoluene-d;, with ~70%
deuterium incorporation at the para position (Figure 4b).
Approximately ~20% of the deuterium was incorporated into
the meta position, which suggests that aryl C—H bond
activation occurs ortho to C—F bonds.”**® This regioselectivity
shows that C—H activation is dictated by pK,, which is lowered
dramatically with an ortho fluorine.'””” Collectively, these
results show that reversible C—H activation, while competitive,
does not impede C—F activation.

Scheme 1 illustrates the proposed catalytic cycle for the
hydrodefluorination of PhF to benzene. Starting from 1,
addition of H, and tert-butoxide initiates the catalytic cycle by
forming the hydride 2 (Figures S45—S46). Reversible binding
of H, provides the Rh(I) hydride/H,-adduct, 2-H,. Deproto-
nation of the bound H, by tert-butoxide forms a transient
Rh(I) dihydride, which relaxes to the Rh(—I) H,-adduct, 3-
H,.”® Reversible loss of H, generates the unsaturated Rh(—I)
active species 3, which oxidatively cleaves the C—F bond,
producing NaF and the Rh(I) phenyl complex, 4. In the last
step, 4 reacts with H, to produce benzene and 2, which
reenters the catalytic cycle.

Consistent with this mechanism, the Rh(I) hydride 2 under
H, formed a new species, as suggested by the appearance of a
broad 'H NMR peak at —4.83 ppm (Figures S7—S12). This
peak decoalesced at —80 °C into two peaks at —5.10 and
—9.85 ppm, consistent with the H, and H ligands, respectively,
of 2-H,. Additionally, the T, values of 30.9 and 35.8 ms
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Scheme 1. Proposed Cycle for Hydrogenolysis of
Fluorobenzene by the Rh—In Catalyst

1
H,, NaOt-Bu
H - HOt-Bu, NaCl
o
P;Rh —P
H " + Y\HZ
i In R "
P 2 P
o S
In , Catalytic n, In
Hydrodefluorination 2
Cycle NaOt-Bu
NaF
F
HOt-Bu
\© o “INa* Na*[" HTH
P—Rh ©)
~ wP
P P—Rh™
‘ * ~p
In -H
3~ 2 In 34
+H,

(400 MHz) are characteristic of intact H, ligands in complexes
2-H, and 3-H,, respectively (Figures $50—S51).>" 7> From a
reactivity standpoint, 2 cannot be deprotonated with tert-
butoxide on its own; but when H, is present, 2-H, can be
converted to 3-H,.”® The conversion of 3 in PhF/CH, to 4,
described above, supports the proposed C—F bond activation
by the unsaturated rhodate(—I) center in 3. Additionally, "’F
NMR analysis of the nonvolatiles from a catalytic run revealed
the presence of NaF (Figure $49).° A sample of isolated 4
reacted rapidly with H, (1 atm) in THF to yield benzene and 2
(Figures S47—S48). During catalysis, the catalyst resting state
depended on the identity of the base: 3—H, was observed for
NaOt#-Bu, and 2—H,, for LiOt-Bu (Figures S45—546). These
rate-limiting steps, deprotonation of 2—H, and its subsequent
H, loss, both precede formation of the unsaturated Rh(-I)
active species. As an aside, 4 also reacted with HBpin to afford
2 and PhBpin, completing a synthetic cycle for the borylation
of PhF using HBpin (Figures 4c and S$52—554).°'7%¢
Unfortunately, no turnover was observed for HBpin and o-
DEFB.

In closing, we report a new catalyst for hydrodefluorination
of unactivated aryl C—F bonds using H, as the reductant,
rather than silanes or boranes. Notably, each step in the
catalytic cycle was studied through either isolation or in situ
characterization of intermediates. Collectively, these results
show that leveraging direct Lewis acid—transition metal
interactions is a viable strategy for the activation of strong
C—F bonds under mild conditions.”” Future efforts seek to
expand the substrate scope and to render the C—F borylation
of aryl fluorides catalytic.
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