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WAVE ENHANCEMENT THROUGH OPTIMIZATION OF
BOUNDARY CONDITIONS∗
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Abstract. In this paper, we present a new and efficient approach for optimizing the transmission
signal between two points in a cavity at a given frequency, by changing boundary conditions. The
proposed approach makes use of recent results on the monotonicity of the eigenvalues of the mixed
boundary value problem and on the sensitivity of Green’s function to small changes in the boundary
conditions. The switching of the boundary condition from Dirichlet to Neumann can be performed
through the use of the recently modeled concept of metasurfaces which are comprised of coupled pairs
of Helmholtz resonators. A variety of numerical experiments are presented to show the applicability
and the accuracy of the proposed new methodology.
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1. Introduction. This paper develops a new and efficient approach for max-
imizing the transmission signal between two points at a chosen frequency through
changes to specific eigenmodes of the cavity. These changes are achieved by changing
the boundary conditions. The eigenmodes and the associated eigenfrequencies of a
cavity are sensitively dependant on the geometric properties of the domains, as well as
the location of Dirichlet and Neumann boundary conditions. Many recent works have
been devoted to the understanding of the effect of changing the boundary condition
on the eigenmodes and the eigenfrequencies [1, 2, 3, 6, 12, 15, 16, 18].

Through the use of a tunable reflecting metasurface, the boundary condition can
be switched from Dirichlet to Neumann at some specific resonant frequencies [4]. In
[4], the physical mechanism underlying the concept of tunable metasurfaces is mod-
eled both mathematically and numerically. It is shown that an array of coupled pairs
of Helmholtz resonators behaves as an equivalent surface with Neumann boundary
condition at some specific subwavelength resonant frequencies, where the size of one
pair of Helmholtz resonators is much smaller than the wavelengths at the resonant fre-
quencies. Green’s function of a cavity with mixed (Dirichlet and Neumann) boundary
conditions (called also the Zaremba function) is also characterized. In [5], a one-shot
optimization algorithm is proposed and used to obtain a good initial guess for the
positions around which the boundary conditions should be switched from Dirichlet to
Neumann.
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The existing approach for maximizing the transmission between two points inside
the cavity is the following [13]. One divides the boundary into small parts and starts
with a uniform Dirichlet condition. Then, one iteratively switches on each part of the
boundary the boundary condition from Dirichlet to Neumann and computes each time
the transmission signal between the chosen points inside the cavity. If the transmission
is higher, the Neumann boundary condition is kept; otherwise, it is switched back
to Dirichlet. Finally, this algorithm is iterated n times and is therefore very time-
consuming.

In this paper, we present a new and very efficient methodology for maximizing
the Zaremba function between two points at a chosen frequency through specific
eigemodes of the cavity. The paper is organized as follows. In section 2, we first
recall some useful results on the eigenvalues of the mixed boundary value problem
(called the Zaremba eigenvalue problem). Of particular interest is the monotonicity
property with respect to the size of the Neumann part proven in [16]. Then we
reformulate the eigenvalue problem using boundary integral operators. Based on
this nonlinear formulation and the use of the generalized argument principle for the
characterization of the characteristic values of finitely meromorphic operator-valued
functions of Fredholm type, we derive an accurate asymptotic formula of the changes
of eigenfrequencies of a cavity with mixed boundary conditions in terms of the size
of the part of the cavity boundary where the boundary condition is switched from
Dirichlet to Neumann. Finally, we recall the asymptotic expansion of the Zaremba
function in terms of the size of the Neumann part. The problem of changing a portion
of a Dirichlet boundary to Neumann is more delicate than the converse. If a portion
of the boundary is changed from having Neumann conditions to Dirichlet, the reverse
consideration of that in this paper, then an asymptotic expansion of the eigenvalues
is easier to derive [6, 18]. The perturbation theory for the introduction of Neumann
boundaries requires a careful consideration of the asymptotic behavior of the Zaremba
near the perturbation [5]. In section 3, we derive a spectral decomposition of the
Zaremba function. In section 4, we consider the problem where we have a source
in a bounded domain operating at a given frequency, and we want to determine, by
exploiting the monotonicity property of the eigenvalues of the mixed boundary value
problem, which part of the boundary to choose to be reflecting such that an eigenvalue
of the mixed boundary value problem gets close enough to the operating frequency. In
order to significantly enhance the signal at a given receiving point, both the emitter
and the receiver should not belong to the nodal set corresponding to the eigenmode
associated with the eigenvalue of the mixed boundary value problem.

There are two distinct issues: where to place the Neumann boundary condition,
and how long it should be, to achieve the twin objectives of maximizing gain between
a fixed source-receiver pair and at a frequency close to a desired one.

Our main idea is to first nucleate the Neumann boundary conditions in order to
maximize gain of the Zaremba function by making use of an asymptotic expansion
of the Zaremba function in terms of the size of the Neumann part. Then the size of
the Neumann part is changed in such a way that an eigenvalue of the mixed bound-
ary value problem gets close to the operating frequency by using the monotonicity
property of the eigenvalues of the mixed eigenvalue problem. The optimization needs
the high-accuracy evaluation of certain boundary integral operators, and this is done
using techniques from [1, 2]. In view of the spectral decomposition of the Zaremba
function in Theorem 3.1, the transmission between the given points at the chosen
frequency gets very much enhanced.

We present in section 5 some numerical experiments to show the applicability and
the accuracy of the proposed methodology.
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2. Preliminaries.

2.1. Laplace eigenvalue with mixed boundary conditions. Let Ω ⊂ R2 be
an open, bounded domain with a smooth boundary. We define Ω as the topological
closure of Ω. We decompose the boundary ∂Ω := Ω\Ω into two parts, ∂Ω = ΓD ∪· ΓN,
where ΓD and ΓN are finite unions of open boundary sets and ∪· denotes the disjoint
union (see Figure 2.1). We define (ΓD,ΓN) to be a partition of ∂Ω. Let xS ∈ Ω and
k ∈ (0,∞). The Zaremba function ZkxS

(xs, ·) : Ω \ {xS} → R is Green’s function to
the Zaremba problem, also known as the fundamental Helmholtz equation with mixed
boundary conditions,

(
4+ k2

)
ZkxS

(xS, y) = δ0(xS − y) for y ∈ Ω ,

ZkxS
(xS, y) = 0 for y ∈ ΓD ,

∂νyZkxS
(xS, y) = 0 for y ∈ ΓN.

(2.1)

Fig. 2.1. ΓN is marked in blue and ΓD in red.

Here νy denotes the outer normal at y ∈ ∂Ω and ∂νy the normal derivative at
y ∈ ∂Ω. It is clear that we can write

Zk(xs, ·) = Γk(xs, ·) + Rk(xs, ·) ,

where Γk(x, y) := i
4H

1
0 (k |x−y|) is the fundamental solution of the Helmholtz problem

with wavenumber k and Rk(xs, ·) is a smooth function satisfying the boundary value
problem 

(
4+ k2

)
Rk(xs, y) = 0 in Ω ,

Rk(xs, y) = −Γk(xs, y) on ΓD ,

∂νyRk(xs, y) = −∂νyΓk(xs, y) on ΓN .

(2.2)

In section 3, we will see that ZkxS
exists for all but countably many values of k,

which are related to the unique solvability of the problem for Rk(xS, ·). These excep-
tional values of k are the eigenvalues to the associated Laplace eigenvalue problem
with mixed boundary conditions

−4u = k2 u in Ω ,

u = 0 on ΓD ,

∂νyu = 0 on ΓN .

(2.3)
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Equation (2.3) has a nontrivial solution u ∈ H1(Ω) for a countable set of real values of
k2 [17, Theorem 4.10], which we refer to as {λΓD

j }∞j=1, so that λΓD
1 ≤ λΓD

2 ≤ λΓD
3 ≤ · · · .

We know that λΓD
1 ≥ 0 and that limj→∞ λΓD

j = +∞ for all partitions (ΓD,ΓN) of ∂Ω.

We denote by {λ∂Ω
j }j∈N the pure Dirichlet eigenvalues for Ω, corresponding to

the case ΓD = ∂Ω. We let {λ∅j }j∈N denote the Neumann eigenvalues associated to
the case ΓN = ∂Ω. Then we have

0 < λ∂Ω
1 , λ∂Ω

1 < λ∂Ω
2 , λ∂Ω

2 ≤ λ∂Ω
j ∀j ≥ 3,

0 = λ∅1 , λ∅1 < λ∅2 , λ∅2 ≤ λ
∅
j ∀j ≥ 3.

In [10], it is shown that λ∅j+1 < λ∂Ω
j for all j ∈ N, for a very general class of domains Ω.

Remark 2.1. Let Ω be the unit circle; we have that {λ∂Ω
j }∞j=1 is (up to sorting)

equal to

{α2 ∈ (0,∞)|∃n ∈ N0 : α is positive root of Jn(x)} ,

where Jn is a Bessel function of the first kind and order n. The eigenvalues corre-
sponding to the roots of J0 appear as simple Dirichlet eigenvalues; all others have
multiplicity two, and {λ∅j }∞j=2 is (up to sorting) equal to

{α2 ∈ (0,∞)|∃n ∈ N0 : α is positive root of J ′n(x)} .

Again, the eigenvalues corresponding to the roots of J ′0 appear as simple Neumann
eigenvalues; all others have multiplicity two. We refer to [11].

Recently, Lotoreichik and Rohleder [16, Proposition 2.3] showed the following
monotonicity statement (see Figure 2.2).

Proposition 2.1. Let (ΓD,ΓN), (ΓD
′,ΓN

′) be two partitions of ∂Ω such that
ΓD ⊂ ΓD

′. If ΓD
′ \ ΓD has a nonempty interior, then

λΓD
j < λ

ΓD′
j ∀j ∈ N.

Fig. 2.2. An illustrative example of the two partitions mentionned in Proposition 2.1. On the
left-hand side we have the parition (Γ∆,ΓN) and on the right-hand side (Γ∆

′,ΓN
′). They satisfy

the condition Γ∆ ⊂ Γ∆
′ and that Γ∆

′ \ Γ∆ has a nonempty interior.

With Proposition 2.1, we can readily infer that if ∅ 6= ΓD, and ΓD 6= ∂Ω, then

λ∅j < λΓD
j < λ∂Ω

j ∀j ∈ N.
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2.2. Boundary integral formulation of the eigenvalue problem. The
solution u of the eigenvalue (2.3) can be represented by a single layer potential

u(x) =

∫
∂Ω

Γk(x, y)ψ(y)dσy(2.4)

with surface density ψ ∈ L2(∂Ω).
We define then the operators

SkΓD
: H−1/2(ΓD)→ H1/2(ΓD), SkΓN

: H−1/2(ΓN)→ H−1/2(ΓD),

(KkΓN
)∗ : H−1/2(ΓN)→ H−1/2(ΓN), and ∂SkΓD

: H−1/2(ΓD)→ H−1/2(ΓN) by

SkΓD
[ψ](x) :=

∫
ΓD

Γk(x, y)ψ(y)dσy , SkΓN
[ψ](x) :=

∫
ΓN

Γk(x, y)ψ(y)dσy ,

∂SkΓD
[ψ](x) :=

∫
ΓD

∂νxΓk(x, y)ψ(y)dσy , (KkΓN
)∗[ψ](x) := p. v.

∫
ΓN

∂νxΓk(x, y)ψ(y)dσy ,

where the “p.v.” stands for the principle value integral. This actually is the standard
(Lebesgue) integral for a smooth curved ΓN, since ∂νΓk is a bounded and sufficiently
smooth integral operator kernel. From [19, Chapter 11] we have that SkΓD

is a Fred-

holm operator with index 0. We also readily infer that (KkΓN
)∗, ∂SkΓD

, and SkΓN
are

compact operators.
We then define A(k) : H−1/2(ΓD) × H−1/2(ΓN) → H1/2(ΓD) × H−1/2(ΓN) in

terms of these integral operators through

A(k)

[
ψ|ΓD

ψ|ΓN

]
:=

[
SkΓD

SkΓN

∂SkΓD
− 1

2 IL2
ω(ΓN) + (KkΓN

)∗

] [
ψ|ΓD

ψ|ΓN

]
.(2.5)

We readily see that A(k) is an analytic Fredholm operator of index 0 in C \ iR−.
To locate the Zaremba eigenvalues, we have the following statement:

The real positive characteristics values of the operator-valued function

k 7→ A(k) are the square roots of the Zaremba eigenvalues.(2.6)

In [2, section 3] and [1], it is shown that every square root of a Zaremba eigenvalue is
a real positive characteristic value of k 7→ A(k) and every real positive characteristic
value of k 7→ A(k) is the square root of a Zaremba eigenvalue.

We see that A(k) is invertible for k ∈ (0,∞) not a square root of a Zaremba
eigenvalue.

We remark that the nonreal characteristic values of k 7→ A(k) cannot correspond
to eigenvalues to the Laplace equation. This yields the undesirable, but avoidable,
difficulty in choosing a neighborhood V to apply Proposition 2.4 in our algorithm; see
also section 4, comment on line 13.

The statement (2.6) allows for a discretization and thus a numerical approxima-
tion of the value k. We will use this further on. For these facts, we refer to [2, sections
3 and 5].

Let us also consider the regularity of the solution u and the density ψ near a
Dirichlet–Neumann junction. The following result (see Figure 2.3) can be found in
[1, Theorems 4.2 and 4.3].
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Fig. 2.3. An illustration of the setup used in Proposition 2.2. z is defined as the complexification
of a R2-vector with the origin at y?.

Proposition 2.2. Let ΓD,ΓN be nonempty. Let k > 0 and ψ satisfy the state-
ment (2.6). Let y? ∈ ΓD ∩ ΓN. Then there exists a neighborhood U ⊂ R2 around y?
such that for all y ∈ U and for all n ∈ N,

u(y) = Pny?

(
z1/2, z1/2

)
+ o(zn) ,

ψ|ΓD(y) = |z|−1/2Qn
D,y?

(
|z|1/2

)
+ o(|z|n−1) ,

ψ|ΓN(y) = |z|−1/2Qn
N,y?

(
|z|1/2

)
+ o(|z|n−1) ,

where z ∈ C is the complexification of y− y?, that is, z = (y1 − (y?)1) + i (y2 − (y?)2)
with i being the imaginary unit and z being its conjugate value. Here, Pny? ,Q

n
D,y?

,Qn
N,y?

are polynomial functions of their respective arguments and of a degree such that none
of their terms can be included in their respective error terms.

2.3. Approximation of the Zaremba eigenvalue using the generalized
argument principle. In this section we derive asymptotic expressions for the per-
turbation of the Zaremba eigenvalues when a small portion of the boundary is changed
from Dirichlet to Neumann (see Figure 2.4).

Let Γ∆ ⊂ ∂Ω be a boundary interval of length 2ε. Let (ΓD∪· Γ∆,ΓN) be a partition
of ∂Ω. We associate the operator A0(k), defined via (2.5), to that partition. This
corresponds to Γ∆ having a Dirichlet boundary condition. Then we define Aε(k),
also by obvious changes in the integrals in (2.5), to be the operator associated to the
partition (ΓD,ΓN ∪· Γ∆). This in turn corresponds to Γ∆ being a Neumann part. For

ease of notation, we define k0
j :=

√
λΓD∪· Γ∆
j and kεj :=

√
λΓD
j for all j ∈ N and call

those characteristic values to their respective operators. From [7, Lemma 3.8] we then
have the following lemma.

Lemma 2.3. Let k0
j be a simple characteristic value. Let V ⊂ C be a neighborhood

of k0
j such that kεj ∈ V . Assume further that no other square root of the Zaremba

eigenvalue to the partition (ΓD,ΓN ∪· Γ∆) of ∂Ω is in V . Then kεj is given by the
contour integral

kεj − k0
j =

1

2πi
tr

∫
∂V

(
ω − k0

j

)
Aε(ω)−1∂ωAε(ω) dω .
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Fig. 2.4. An example for a domain with a Neumann boundary and a Dirichlet boundary and
a small straight arc Γ∆ of length 2ε. We associate k0

j with Γ∆ being a Dirichlet boundary and kεj
with Γ∆ being a Neumann boundary.

Here ∂ω denotes the variation of the operator in the wavenumber parameter ω.
This expression is exact. Unfortunately, its use in a practical algorithm is limited,
since it would entail inverting the operator Aε(ω) for each ε used in an optimization.
It is useful, therefore, to locate an expression in which this inverse is approximated
by A0(ω) instead.

From [7, Theorem 3.12] we get the approximation

kεj − k0
j ≈

−1

2πi
tr

∫
∂V

A0(ω)−1(Aε(ω)−A0(ω)) dω ,(2.7)

where we expect the error to be in o( 1
| log(ε)| ). We can, in fact, obtain a faster and

even more accurate approximation, which we describe in the following proposition.

Proposition 2.4. Let k0
j be the jth (sorted) characteristic value of A0(k) corre-

sponding to the decomposition ΓD,ΓN, and assume it is simple. Then one can find an
ε > 0 and a neighborhood V ⊂ C containing k0

j so that
• the jth characteristic value kεj of the operator Aε(k) (obtained by changing

Γ∆ to a Neumann boundary condition) is contained ∈ V ;
• no other square root of the Laplace eigenvalues to the partition (ΓD,ΓN∪· Γ∆)

of ∂Ω are in V ;
• the characteristic value of the perturbed operator kεj is given by

kεj − k0
j =

−1

2πi
tr

∫
∂V

(
I +
(
ω − k0

j

)
Aε
(
k0
j

)−1
∂ωAε

(
k0
j

))−1

dω

×
[
1 +O

(
tr

∫
∂V

(
I +
(
ω − k0

j

)
Aε
(
k0
j

)−1
∂ωAε

(
k0
j

))−1

dω

)]
.

Here I is the identity operator.

Proof. We first observe from Proposition 2.1, together with the fact that Aε(k)
is a Fredholm analytic operator of index 0 in C \ iR−, that we can see that kεj ↗ k0

j

for ε ↘ 0+. We now examine the perturbed operator Aε. Its characteristic value is
kεj . Provided k0

j is sufficiently close to kεj , we have the following Taylor expansion:

Aε(ω) = Aε
(
k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

)
+ Bε(ω) ,(2.8)

where Bε(ω) = O((ω − k0
j )2). This expansion holds only in a neighborhood V 0

ε of k0
j ,

and so ε must be small enough such that k0
j ∈ V 0

ε .
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Then consider that we have in the operator norm∥∥∥(Aε (k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

))−1 Bε(ω)
∥∥∥ < 1

for ω ∈ Vε ⊂ V 0
ε close enough to both kεj and k0

j , because then the Taylor remainder

Bε(ω) = O((ω−k0
j )2). If ε is small enough, then kεj ∈ Vε. Then by the generalization of

Rouché’s theorem [7, Theorem 1.15] we have that since Aε(k0
j )+(ω−k0

j )∂ωAε(k0
j ) and

Aε(ω) are close in operator norm, they both have the same number of characteristic

values in Vε. Thus Aε(k0
j ) + (ω− k0

j )∂ωAε(k0
j ) has a simple characteristic value k]j in

Vε. Now we can use Lemma 2.3 but replace A0(ω) by (Aε(k0
j ) + (ω − k0

j )∂ωAε(k0
j ))

to get

k]j − k
0
j =

1

2πi
tr

∫
∂Vε

(
ω − k0

j

) (
Aε
(
k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

))−1

× ∂ω
(
Aε
(
k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

))
dω

=
1

2πi
tr

∫
∂Vε

(
ω − k0

j

) (
Aε
(
k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

))−1
∂ωAε

(
k0
j

)
dω,

and hence,

k]j − k
0
j =

1

2πi
tr

∫
∂Vε

(
Aε
(
k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

))−1

×
(
Aε
(
k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

)
−Aε

(
k0
j

))
dω

=
1

2πi
tr

(∫
∂Vε

I dω−
∫
∂Vε

(
Aε
(
k0
j

)
+(ω−k0

j )∂ωAε
(
k0
j

))−1Aε
(
k0
j

)
dω

)
= − 1

2πi
tr

∫
∂Vε

(
Aε
(
k0
j

)
+
(
ω − k0

j

)
∂ωAε

(
k0
j

))−1Aε
(
k0
j

)
dω .

Moreover, by a standard perturbation argument [7, section 5.2.4], we have at the
leading-order term

kεj − k
]
j = −

(
Bε(k]j)ψ

]
j , ψ

]
j

)
,

where ψ]j is the root function associated with the characteristic value k]j evaluated at

k]j . Thus,

kεj − k0
j =

(
k]j − k

0
j

)(
1 +O

(
k]j − k

0
j

))
,

and therefore, Proposition 2.4 holds.

We remark on the significance of this result from the point of view of computation,
and which makes it a key ingredient in our algorithm. If one seeks a high-accuracy
approximation of the characteristic value kεj of Aε(k) and one already has a good

approximation of k0
j , the approximation in Proposition 2.4 allows us to proceed by

assembling only one matrix, that corresponding to Aε(k0
j ). The contour integrals can

be effectively computed using the trapezoidal rule, making this an inexpensive but
very accurate approximation of kεj .



WAVE ENHANCEMENT B215

2.4. Approximation of the Zaremba function. Let Ω := {z ∈ C | |z| < 1},
and let Γ∆ ⊂ ∂Ω be a boundary interval of length 2ε with center y? ∈ Γ∆. Let (∂Ω,∅)
be the partition of ∂Ω, and with it we associate the Zaremba function ZkD(xS, ·) for
xS ∈ Ω, defined via (2.1). This corresponds to Γ∆ having a Dirichlet boundary
condition. Then we introduce ZkN(xS, ·) ∈ L2(Ω), xS ∈ Ω, also defined via (2.1),
to be the Zaremba function associated to the partition (∂Ω \ Γ∆,Γ∆). This in turn
corresponds to Γ∆ having a Neumann boundary condition. We then have the following
lemma.

Lemma 2.5. Let Ω, y?,Γ∆,Z
k
D(xS, ·) and ZkN(xS, ·) be defined as described above.

Let ε > 0 be small enough. Let k > 0 be such that k2 6= λ
∂Ω\Γ∆

j and k2 6= λ∂Ω
j for all

j ∈ N. Then for all z ∈ Ω,

ZkN(xS, z) = ZkD(xS, z)− ε2π

2
∂νy? ZkD(z, y?)∂νy? ZkD(xS, y?) +O

(
ε2

| log(ε/2)|2

)
.

Lemma 2.5 follows readily from combining the results in [4, Theorem 5.4] and [4,
equation (6.24)]

Numerical experiments confirm that |ZkN,xS
(y)−ZkD,xS

(y)| is of order of ε2, as long
as y is far enough away from the boundary.

3. Spectral decomposition of the Zaremba function. Let us again consider
the more general setup at the beginning of section 2; that is, let (ΓD,ΓN) be a partition
of ∂Ω, let {λΓD

j }∞j=1 be the Zaremba eigenvalues, and let {uj}∞j=1 be an L2-orthonormal
basis of associated eigenfunctions. Then we have the following statement about the
Zaremba function ZkxS

, xS ∈ Ω, defined by (2.1).

Theorem 3.1. For all y ∈ Ω, y 6= xS and for all k > 0 which are not in the
spectrum, i.e., k2 6= λΓD

j of the Zaremba eigenvalue problem, the Zaremba function

ZkxS
, given by (2.1), exists and is in L2

loc(Ω). Furthermore, we can write it as

ZkxS
(y) =

∞∑
j=1

uj(xS)uj(y)

k2 − λΓD
j

.

Next, we will consider the proof of Theorem 3.1. To this end, we define

H1
0,ΓD

(Ω) := {v ∈ H1(Ω) | v|ΓD
= 0} .

Consider that the solution to the Laplace eigenvalue equation u ∈ H1
0,ΓD

(Ω). Let

dom(−4) := {w ∈ H1
0,ΓD

(Ω) | 4w ∈ L2(Ω), ∂νw|ΓN = 0} .

The operator −4 is self-adjoint in L2(Ω), which we readily see using Green’s identity,
and it has thus a discrete spectrum. Moreover, −4 corresponds to the sesquilinear
form 〈v1, v2〉 7→ (∇v1,∇v2)L2(Ω) with domain H1

0,ΓD
, since

(−4w1, w2)L2(Ω) = (∇w1,∇w2)L2(Ω)

for all w1, w2 ∈ dom(−4); see [8, 14, 20] for more details on semibounded self-
adjoint operators and corresponding quadratic forms. And the form 〈· , ·〉 is closed,
nonnegative, and symmetric. This allows us to use the min-max principle. Thus we
can write for all j ∈ N,

λΓD
j = min

L⊂H1
0,ΓD

(Ω)

dimL= j

max
v∈L\{0}

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

.(3.1)

This leads us to the following lemma.
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Lemma 3.2. For all f ∈ dom(−4), we have that∥∥∥∥∥∥f −
N∑
j=1

cj uj

∥∥∥∥∥∥
2

L2(Ω)

=

∫
Ω

∣∣∣∣∣∣f −
N∑
j=1

cj uj

∣∣∣∣∣∣
2

dx
N→∞−−−−→ 0 ,(3.2)

where cj := (f , uj)L2(Ω), that is, the linear subset spanned by eigenfunctions of
the Laplace eigenvalue equation with mixed boundary conditions (2.3) is dense in
dom(−4).

Proof. Let rN := f −
∑N
j=1 cj uj . Then for all i = 1, . . . , N , we have that

(rN , ui)L2(Ω) =

f − N∑
j=1

cj uj , ui


L2

= (f , ui)L2 − ci (ui , uj)L2 = 0 ,

(∇rN ,∇ui)L2(Ω) = (∇f ,∇ui)L2 −
N∑
j=1

cj (∇uj ,∇ui)L2

= λΓD
i (f , ui)L2 − λΓD

i cj (ui , ui)L2 = 0 ,

where we used Green’s identity and the fact that f, uj ∈ dom(−4). Next, we want
to show that

λΓD

N ≤
‖∇rN‖2L2(Ω)

‖rN‖2L2(Ω)

.(3.3)

To this end, applying the min-max principle (3.1) yields

λΓD
j ≤ max

v∈span{u1,...,uN−1,rN}

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

= max
a1,...,aN∈R

‖∇(aN rN + a1 v1 + · · ·+ an−1 vn−1)‖2

‖aN rN + a1 v1 + · · · an−1 vn−1‖2

= max
a1,...,aN∈R

a2
N ‖∇rN‖2 + a2

1 ‖∇v1‖2 + · · ·+ a2
n−1 ‖∇vn−1‖2

a2
N ‖rN‖

2
+ a2

1 ‖v1‖2 + · · ·+ a2
n−1 ‖vn−1‖2

= max
a1,...,aN∈R

a2
N ‖∇rN‖2 + λΓD

1 a2
1 + · · ·+ λΓD

n−1a
2
n−1

a2
N ‖rN‖

2
+ a2

1 + · · ·+ a2
n−1

≤ max
a1,...,aN∈R

a2
N ‖∇rN‖2 + λΓD

n−1(a2
1 + · · ·+ a2

n−1)

a2
N ‖rN‖

2
+ a2

1 + · · ·+ a2
n−1

.

Thus, we can infer λΓD

N ≤ ‖∇rN‖2

‖rN‖2
from λΓD

n−1 ≤
‖∇rN‖2

‖rN‖2
, which in turn is given by

an induction argument, whose induction basis follows trivially from the min-max
principle (3.1). Using the definition of cj , we have that

‖∇rN‖2L2(Ω) = ‖∇f‖2L2(Ω) − 2
N∑
j=1

cj λ
ΓD
j (f, uj)L2(Ω) +

N∑
j=1

c2j λ
ΓD
j ‖uj‖

2
L2(Ω)

= ‖∇f‖2L2(Ω) −
N∑
j=1

λΓD
j (f, uj)

2
L2(Ω)

≤ ‖∇f‖2L2(Ω) .
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Thus, using (3.3), we have that

‖rN‖2L2 ≤
‖∇f‖2L2

λΓD

N

.(3.4)

Since ‖∇f‖2L2 = (f,−4f)L2 ≤ ‖f‖L2 ‖4f‖L2 < ∞, ‖∇f‖2L2 is bounded. Using the

fact that λΓD

N
N→∞−−−−→ ∞, we have that ‖rN‖2L2

N→∞−−−−→ 0. This completes the proof of
Lemma 3.2.

Proof of Theorem 3.1. To show the existence of the Zaremba function ZkxS
, we

write ZkxS
(y) for all y ∈ Ω , y 6= xS as

ZkxS
(y) = Γk(xS, y) + Rk(xS, y) ,(3.5)

where Γk is the fundamental solution to the Helmholtz equation and Rk satisfies
(4+ k2)Rk(xS , y) = 0 in Ω ,

Rk(xS , y) = −Γk(xS, y) on ΓD ,

∂νyRk(xS , y) = −∂νyΓk(xS, y) on ΓN .

(3.6)

The solution to (3.6) does exist for those values of k specified in the theorem, and
it is in H1(Ω); see [17, Theorem 4.10]. Using that Γk(xS, ·) ∈ L2(Ω), we have that
ZkxS

(y) ∈ L2(Ω). Thus from Lemma 3.2 and the density of dom(−4) in L2(Ω), we
have that for all y ∈ Ω, y 6= xS,

ZkxS
(y) =

∞∑
j=1

ajuj(y)

for some aj ∈ R, depending on xS. Let us give an expression for the aj . Using Green’s
identity, we have that

ui(xS) =

∫
Ω

(4+ k2)ZkxS
(y)ui(y)dy =

∫
Ω

ZkxS
(y) (4+ k2)ui(y)dy

=
(
k2 − λΓD

i

)∫
Ω

ZkxS
(y)ui(y)dy =

(
k2 − λΓD

i

)∫
Ω

∞∑
j=1

ajuj(y)ui(y) dy

=
(
k2 − λΓD

i

) ∞∑
j=1

aj δ0(i− j) =
(
k2 − λΓD

i

)
ai ,

where we used Fubini’s theorem to interchange summation and integration. With
that we infer that for all i ∈ N,

ai =
ui(xS)

k2 − λΓD
i

,

and this concludes the proof.

4. The algorithm. We next present our main algorithm for wave enhancement.
We begin with a domain Ω, the source point xS and the receiver point y, both in Ω, and
a predetermined target value k? corresponding to a desired transmission frequency.
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First, we determine the next higher Dirichlet eigenvalue to k2
?, which is done

using a discretized version of the operator A(k) given in section 2. The discretization
follows the procedure developed in [2].

Second, we determine a location y? on the boundary ∂Ω, which yields a higher
absolute value of |ZkxS

(xS, y)|, when we insert a small enough Neumann boundary at
that location. Finding the location is established using Lemma 2.5, that is, we find
the local maxima or minima of

∂νy?Z
k?
D (xS, y?) · ∂νy?Z

k?
D (y, y?).

The computation of the Zaremba function is done by solving the problem (2.2) using
the procedure described in [1].

Third, we successively increase the Neumann boundary until the characteristic
value hits the target characteristic value. The computation of the new characteristic
value after a small increase of the Neumann boundary is achieved using Proposition
2.4. It might be that we need to increase the boundary initially by a large amount,
and the resulting characteristic value has to be computed with the time-expensive
procedure described in [2].

A more detailed explanation is given in the comments after Algorithm 1. We
note here that changing a boundary part from the Dirichlet boundary condition to
the Neumann one, the associated Laplace eigenvalue λΓD

j decreases, according to

Proposition 2.1, and thus the characteristic value
√
λΓD
j decreases as well. Moreover,

λΓD
j is between the Neumann and the Dirichlet eigenvalue; that is, λ∅j ≤ λ

ΓD
j ≤ λ∂Ω

j .
Increasing boundary length enough, we eventually hit the target characteristic value
k?, because ∪∞j=1(λ∅j , λ

∂Ω
j ) = (0,∞), since λ∅j+1 < λ∂Ω

j , as proved in [10].

Algorithm 1. Finding an intensity maximizing partition of the boundary.

Input: ε > 0, xS ∈ Ω, y ∈ Ω, y 6= xS, k? > 0, Ctol > 0.
Require: ε is small enough, Ctol is big enough.

1: Let ΓD := ∂Ω, ΓN := ∅.
2: Find the next higher square root of the Dirichlet eigenvalue k to k?.
3: Compute the value Zk(ΓD,ΓN)(xS, y) and the normal derivative of the Zaremba

functions ∂ν·Z
k
(ΓD,ΓN)(xS, ·), ∂ν·Zk(ΓD,ΓN)(y, ·) associated to the partition (ΓD,ΓN)

at the boundary.
4: if Zk(ΓD,ΓN)(xS, y) ≥ 0 then
5: Let S be the location of a global minima of the function

∂Ω 3 z 7→
(
∂νzZk(ΓD,ΓN)(xS, z) · ∂νzZk(ΓD,ΓN)(y, z)

)
∈ R.

6: else if Zk(ΓD,ΓN)(xS, y) < 0 then
7: Let S be the location of a global maxima of the function

∂Ω 3 z 7→
(
∂νzZk(ΓD,ΓN)(xS, z) · ∂νzZk(ΓD,ΓN)(y, z)

)
∈ R.

8: end if
9: (ΓD

0,ΓN
0) := (ΓD,ΓN).

10: while True do
11: Define Γ∆ to be a boundary interval of length 2ε with center S.
12: (ΓD,ΓN) := (ΓD \ Γ∆, ΓN ∪· Γ∆).
13: Compute the perturbed characteristic value k associated to the partition

(ΓD,ΓN) as described in section 2.3 or with the procedure given in [2].
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14: if |k − k?| ≤ Ctol then return (ΓD,ΓN)
15: else if k? + Ctol < k then
16: BREAK WHILE
17: else
18: (ΓD,ΓN) := (ΓD

0,ΓN
0)

19: ε := ε√
2

20: end if
21: end while
22: (ΓD

0,ΓN
0) := (ΓD,ΓN)

23: while True do
24: Define Γ∆ to be the extension of the Neumann interval boundary with center

j, extended on both sides by ε/2.
25: (ΓD,ΓN) := (ΓD \ Γ∆, ΓN ∪ Γ∆)
26: Compute the perturbed characteristic value k associated to the partition

(ΓD,ΓN) as described in section 2.3.
27: if |k − k?| ≤ Ctol then return (ΓD,ΓN)
28: else if k? + Ctol < k then
29: (ΓD

0,ΓN
0) := (ΓD,ΓN)

30: else
31: (ΓD,ΓN) := (ΓD

0,ΓN
0)

32: ε := ε · 0.9
33: end if
34: end while

In the following we give an explanation for the choices.
Line 2: The reason we search for the next higher Dirichlet eigenvalue originates

from the fact that, according to Proposition 2.1, when we insert Neumann
boundaries, the corresponding eigenvalue decreases. The search for the
next higher Dirichlet characteristic value and its multiplicity might be
computationally expensive.

Line 3: Using the algorithm proposed in [1], we compute the Zaremba function
using the decomposition Zk(xS, y) = Γk(xS, y) + Rk(xS, y), where Γk is
the fundamental solution to the Helmholtz equation and Rk satisfies (3.6).
More exactly, we obtain a function ϕR on ∂Ω, which is of the form in
Proposition 2.2, with

Rk(y) =

∫
∂Ω

Γk(y, z)ϕR(z)dσz

for y ∈ Ω. Using the jump relations (see [7, section 2.3.2]), we get for
y → ΓD that

∂νyRk(y) =

(
− 1

2
I∂Ω + (Kk∂Ω)∗

)[
ϕR

]
(y) ,

where I∂Ω denotes the identity operator.
Using a discretization to the operator (Kk∂Ω)∗, which we also readily obtain
from [2], we can calculate ∂νyZk(xS, ·) = ∂νyΓk(xS, ·) + ∂νyRk(xS, ·).

Lines 4–8: In view of Lemma 2.5, we obtain that if Zk(ΓD,ΓN)(xS, y) ≥ 0, then we need
a negative value of

∂νzZk(ΓD,ΓN)(xS, z) · ∂νzZk(ΓD,ΓN)(y, z)
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to increase Zk(ΓD,ΓN)(xS, y) and vice versa for Zk(ΓD,ΓN)(xS, y) ≤ 0. Taking
the minima, respectively, the maxima, we increase the absolute value of
Zk(ΓD,ΓN)(xS, y).
We note that Lemma 2.5 only holds for the case where Ω is the unit circle,
but we assume that it holds for all domains with smooth boundaries. We
think that this can be established expanding the operator in [4, Theorem
5.4].
From Theorem 3.1 we know that the Zaremba function is real-valued, but
due to numerical cancellation errors, the Zaremba function might have a
nonzero imaginary part.
In our numerical experiments, it always holds that a global minima are
negative and a global maxima are positive, respectively. But we do not
know if this holds true in general.

Line 10: In this while-loop we change a boundary interval with center S and length
2ε into a Neumann boundary condition. Then we compute an approxi-
mation k to the new characteristic value. If |k − k?| < Ctol, we end the
algorithm; if k +Ctol < k?, we break the while-loop; and in the remaining
case we decrease ε and go through the loop again.

Line 13: To compute an approximation to the new characteristic value, which is
smaller than k, we use the approximation stated in Proposition 2.4. To
this end, we use as the complex domain V encircling k and k? an ellipse with
center (k + k?)/2 and semimajor axis (k − k?) · 0.55 and semiminor axis
(k−k?) ·0.1, which is to avoid complex characteristic values. A discretiza-
tion to the operator A(k) is computed using the algorithm described in
[2]. For the complex derivative of A(k), we used the rough approxima-
tion (A(w + 0.01) − A(w))/0.01. The integral is approximated with a
inbuilt process. The approximation may yield the same result as the for-
mer characteristic value, that is, k. In that case, the new characteristic
value is not within V , which happens when the new boundary interval with
Neumann boundary conditions is too long or cannot be detected by the
approximation.
Here it might very well be that k is not a simple eigenvalue but instead,
for example, a double eigenvalue, which occurs for Ω being the unit circle.
Then we search for both new eigenvalues and pick the one closer to k? but
still larger than k?. This search costs more time than the approximation
algorithm.
In numerical experiments it seems that the two eigenvalues of the dou-
ble Dirichlet eigenvalue split such that one eigenvalue escapes subjectively
faster from the double Dirichlet eigenvalue the longer the new boundary
interval Γ∆ is and the other eigenvalue subjectively slower. This is rem-
iniscent of the behavior of the perturbation of a double eigenvalue in [9],
where the eigenvalue splits in an eigenvalue with difference O(ε2) and an
eigenvalue with difference O(1/| log(ε)|), where ε is a value associated to
the perturbation.

Line 23: Next, we expand the boundary interval, which we established in lines 10–
21. We expand it on both ends by a length ε/2, whose factor 1/2 is again
chosen due to good numerical approval for minimizing runtime. Then we
compute an approximation k to the new characteristic value. If |k− k?| <
Ctol, we end the algorithm; if k + Ctol < k?, we extend the boundary
interval once again; else decrease ε.
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Line 26: To compute an approximation to the new characteristic value, we use the
same setting as in line 13: The complex domain V encircling k and k? is
an ellipse with center (k + k?)/2 and semimajor axis (k − k?) · 0.55 and
semiminor axis (k−k?) ·0.1. A discretization to the operator A(k) is com-
puted using the algorithm described in [2]. For the complex derivative of
said operator we used the rough approximation (A(w+0.01)−A(w))/0.01.
The integral is approximated with a inbuilt process.
The approximation may again yield the same result as the former charac-
teristic value, that is, k; this happens when Γ∆ is too long.
In this while-loop, it never happened that k is not a simple eigenvalue.

Remark 4.1. If the function ∂Ω 3 z 7→ (∂νzZk(ΓD,ΓN)(xS, z) · ∂νzZk(ΓD,ΓN)(y, z)) ∈
R oscillates strongly on the boundary it might yield better results when multiple,
but smaller, boundary intervals are applied. The thought behind this is that using
one long boundary interval might intersect the disadvantageous part of the function
∂νzZk(ΓD,ΓN)(xS, z) ·∂νzZk(ΓD,ΓN)(y, z) and thus decrease the intensity of Zk(ΓD,ΓN)(xS, y).

5. Numerical implementation and tests. Our first numerical test shows the
algorithm in the best case scenario. We have the domain Ω = {x ∈ R2 | ‖x‖R2 < 1},
the signal point xS = (0, 0)T, the target characteristic value k? = 1 and Ctol = 10−3

and ε = 0.1. We remark here that the next higher Dirichlet characteristic value is
a simple one at approximately 2.40482. We let the receiving point y ∈ {(0, r)T ∈
R2 | r > 0} vary. Here we want to mention that our implementation of the Zaremba
function, as described in section 4, comment on line 3, yields a nonzero imaginary
part for the Zaremba function; the same holds true for the approximation to the char-
acteristic value k as described in section 4, comment on line 13. We always choose the
real part whenever in question. The number of discretization points for the operator
A(k) was 3 · 64. The results are displayed in Table 5.1. The Zaremba functions with
Dirichlet boundary conditions and with final mixed boundary conditions, for the case
y = (0, 0.5)T, are displayed in Figure 5.1.

Our second numerical test shows the algorithm for a higher target characteristic
value k?, namely, k? = 15.4. We have as the domain Ω the unit circle {x ∈ R2 |
‖x‖R2 < 1}, as the signal point xS = (0, 0)T and Ctol = 10−3 and ε = 0.05. We
remark here that the next higher Dirichlet characteristic value has multiplicity two
and is at approximately 15.5898. We let the receiving point y ∈ {(0, r)T ∈ R2 | r > 0}
vary. The number of discretization points for the operator A(k) is 4 · 48. The results
are displayed in Table 5.2. The Zaremba functions with Dirichlet boundary conditions

Table 5.1
We see Algorithm 1 performing on the unit circle with k? = 1, xS = (0, 0)T, y ∈ {(0, r)T ∈

R2 | r > 0}, Ctol = 10−3, and ε = 0.1. Zk
Dirichlet(xS, y) represents the Zaremba function on

the partition (∂Ω,∅) of the boundary, and Zk
End(xS, y) represents the Zaremba function on the

final partition, where the final partition is made out of two boundary intervals, one with Dirichlet
boundary conditions and the other with Neumann boundary conditions. θcenter ∈ [0, 2 ·pi) represents
the angle of the center of the Neumann boundary intervals and lN its length. The shown values are
the real, rounded values of the numerical results.

r = 0.1 r = 0.25 r = 0.5 r = 0.75 r = 0.9

Zk?
Dirichlet(xS, y) -0.412 -0.261 -0.138 -0.059 -0.022

Zk?
End(xS, y) -1288 -1438 -1634 -1754 -1788∣∣∣∣ Z

k?
End

(xS,y)

Z
k?
Dirichlet

(xS,y)

∣∣∣∣ 3123 5503 11824 29623 81687

θcenter 0.50π 0.50π 0.50π 0.50π 0.50π

lN 1.32π 1.32π 1.32π 1.32π 1.32π
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Fig. 5.1. The Zaremba function for k? = 1 on the unit disk with Dirichlet boundary condition
on the left and final mixed boundary conditions on the right. Marked are xS, denoted as xPt, and
y, denoted as yPt. The points on the boundary are our discretization points. Blue points denote the
Neumann boundary conditions; red points denote the Dirichlet boundary conditions.

Table 5.2
We see Algorithm 1 performing on the unit circle with k? = 15.4, xS = (0, 0)T, y ∈ {(0, r)T ∈

R2 | r > 0}, Ctol = 10−3, and ε = 0.05. Zk
Dirichlet(xS, y), Zk

End(xS, y), θcenter, and lN are defined as
in Table 5.1. The shown values are the real, rounded values of the numerical results.

r = 0.1 r = 0.25 r = 0.5 r = 0.75 r = 0.9

Zk?
Dirichlet(xS, y) 0.341 -0.188 0.157 -0.085 0.118

Zk?
End(xS, y) 36.341 -14.271 116.08 -15.811 232.28∣∣∣∣ Z

k?
End

(xS,y)

Z
k?
Dirichlet

(xS,y)

∣∣∣∣ 106.6 76.09 739.0 186.8 1962

θcenter 0.50π 1.90π 0.50π 0.46π 0.50π

lN 0.064π 0.064π 0.064π 0.064π 0.064π

Fig. 5.2. The Zaremba function for k? = 15.4 on the unit disk with Dirichlet boundary condition
on the left and final mixed boundary conditions on the right. Further notation is as in Figure 5.1.

and with final mixed boundary conditions, for the case y = (0, 0.5)T, are displayed in
Figure 5.2.

Our third numerical test shows the algorithm for a different domain Ω, namely,
a kite-shaped domain given by the following description for its boundary:[

cos(τ) + 0.65 · cos(2 · τ)− 0.65
1.5 · sin(τ)

]
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Fig. 5.3. The Zaremba function for k? = 2 on the kite shape with Dirichlet boundary condition
on the left and final mixed boundary conditions on the right. Further notation is as in Figure 5.1.

Fig. 5.4. The Zaremba function for k? = 11.5 on the kite shape with Dirichlet boundary
condition on the left and final mixed boundary conditions on the right. Further notation is as in
Figure 5.1.

for τ ∈ [0, 2π). The target characteristic value is k? = 1.5. The signal point xS =
(−1.25, 1.25)T and receiving point y = (−1.25,−1.25)T. Ctol = 10−2 and ε = 0.05.
We remark here that the next higher Dirichlet characteristic value has multiplicity one
and is at approximately 2.2099. The number of discretization points for the operator
A(k) is 4 · 48. The result is displayed in Figure 5.3. The center of the Neumann
boundary condition ΓN is at (−1.191,−1.493)T with length≈ 3.119. ZkDirichlet(xS, y) ≈
−4.05 · 10−5 and ZkEnd(xS, y) ≈ −39.38.

In Figure 5.4, we have the same setup but for k? = 11.5, with the next higher
Dirichlet characteristic value around 11.6507. Here, the center of the Neumann bound-
ary condition ΓN is at (−1.142, 0.641)T with length ≈ 0.632. ZkDirichlet(xS, y) ≈ 0.148
and ZkEnd(xS, y) ≈ 1.68.
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