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fast spectral convergence inside the domain, and with very high order convergence at the boundaries.
Incompressibility is imposed by solving a Poisson equation for the pressure. Being Fourier-based,
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(although refined or nested meshes can also be implemented), which in turn allows for explicit
time integration at sufficiently high Reynolds numbers. Using a new parallel code named SPECTER
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studies using other high-order numerical methods, with mild requirements on the time step for
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1. Introduction

Numerically solving the Navier-Stokes equations is one of the
standard tools employed for researching the behavior of turbulent
flows. As the study of turbulence often requires quantification of
high-order statistical quantities, high-order numerical methods
are in many cases preferred [1,2]. Moreover, it is believed that at
large enough distances from physical boundaries some properties
of turbulent flows are universal, and thus studies sometimes con-
centrate on the dynamics of the bulk of the fluid. This motivates
the study of “isotropic and homogeneous turbulence”, a problem
which can be successfully modeled employing periodic bound-
ary conditions. This comes with great computational advantages,
as the Navier-Stokes equations can be very efficiently solved
in periodic domains utilizing Fourier representations and pseu-
dospectral calculations [3-6]. Moreover, if compressibility effects
can also be neglected, enforcing the continuity condition in this
case reduces to solving a Poisson equation for the fluid pressure
with periodic boundary conditions, which in the wavenumber
domain can be easily and efficiently accomplished.

Notwithstanding the major importance of understanding bulk
dynamics in turbulent flows, the statistics of turbulence near
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boundaries is clearly as important, with implications for indus-
trial, geophysical, environmental, and astrophysical flows [7,8].
Classical problems where actual physical boundaries must be
considered include the flow through a pipe or a channel main-
tained either by an imposed pressure difference [9-13] or a
moving wall [14-16], and the natural convection occurring when
a box is heated at one end and cooled at the other [17-20].
Also, in the case of conducting fluids, Hartmann flows represent a
classical example of wall-bounded magnetohydrodynamic (MHD)
turbulence [21,22].

However, when the presence of walls must be accounted for,
the classical pseudospectral method using fast Fourier transforms
(FFTs) as described in [3] cannot be employed, as the Gibbs
phenomenon severely degrades (or even forbids) convergence.
Consequently, several other high-order representations for the
non-periodic directions have been introduced [23], including fully
spectral methods [24-27], Chebyshev pseudospectral methods [5,
6,28], B-splines [29,30], and spectral element methods [31-33].
All these techniques have been successfully employed in several
scientific solvers for turbulent flows and for other partial differ-
ential equations (PDEs). When dealing with incompressible flows,
however, directly solving the Poisson equation for the pressure
becomes a very computationally demanding task, and can even
be ill-behaved for some methods (see, e.g., discussions in [6,
28]). Common strategies to avoid this problem include recast-
ing the equations to another set of variables that automatically
enforce incompressibility such as the normal velocity-normal
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vorticity formulation [9], using preconditioned methods [34], or
solving the Poisson equation employing methods based on Green
functions and integral equations [35-37].

Another approach for simulating incompressible fluids with
boundaries while retaining a Fourier representation of the fields
is the usage of penalization techniques, as in virtual or immersed
boundary methods [38-41]. In these methods, non-physical extra
terms are added to the equations in order to impose the bound-
ary conditions. This has the drawback that near the boundaries
the order of the approximation is notably lowered, resulting
even in slow algebraic global convergence of the solutions in the
entire domain (see, e.g., the discussion in p. 205 of Ref. [42]).
More recently, a high-order solver entirely based on Fourier rep-
resentations was presented in [43,44] for compressible flows
with non-periodic boundary conditions. In that work, an efficient
and high-order Fourier Continuation with Gram polynomials (FC-
Gram) technique [45,46] was employed to circumvent the Gibbs
phenomenon, and boundary conditions were enforced simply by
strong imposition of the conditions in physical space.

In this paper we present an FC-Gram based method for incom-
pressible flows in cuboid non-periodic domains, that produces
dispersionless derivatives with spectral accuracy inside the do-
main, and with very high order convergence at the boundaries.
The usage of Fourier basis allows for the introduction of an
effective Poisson solver for the pressure that is numerically well
behaved and that satisfies the divergence-free condition of the
velocity field, and its boundary condition, with high accuracy.
Moreover, being Fourier-based, the method has the advantage
of being compatible with uniform grids, which in turn allows
for efficient explicit time integration without requirements of
small time steps for stability when considering flows at high
Reynolds numbers. After presenting the method, we validate
a three-dimensional numerical implementation in two paradig-
matic problems: channel flow, and plane Rayleigh-Bénard con-
vection under the Boussinesq approximation.

The remaining of the text is organized as follows: In Section 2
we introduce the governing equations and the notational con-
ventions. In Section 3 we give a brief summary of the key ideas
and advantages of the FC-Gram technique. In Section 4, the pro-
posed numerical method for the incompressible Navier-Stokes
equations is presented, including the method to solve for the
pressure, as well as low- and high-order time stepping schemes.
A parallelization method that scales well with the numerical
method presented is discussed in Section 5. While the method
is described in detail for the incompressible Navier-Stokes equa-
tions, generalizations to other PDEs with solenoidal vector fields,
such as the incompressible MHD equations, or the incompress-
ible Boussinesq equations, are straightforward, as illustrated with
examples in the following sections. In Section 6, turbulent plane
Poiseuille flow simulations are presented as an example to val-
idate our algorithm, while in Section 7 plane Rayleigh-Bénard
convection simulations are discussed. Finally, Section 8 presents
our conclusions.

2. Governing equations

In the simplest configuration, we want to solve the three-
dimensional (3D) incompressible forced Navier-Stokes equations
av

E—i—(v'V)v:—Vp—i—vVZv—i-f, (1)

V-v=0, (2)

in a (0,0,0) x (L, Ly, L;) domain, over a uniform grid of Ny x
N, x N, points (see Fig. 1). In Eq. (1) v is the velocity field, p
is the pressure, f is a solenoidal forcing field, v is the kinematic
viscosity, and the fluid mass density p is assumed to be equal

to 1 (in dimensionless units) for simplicity. We are particularly
interested in the moderate and low kinematic viscosity cases, in
which turbulent behavior takes place. In these cases the Courant-
Friedrichs-Lewy (CFL) constraint is dominated by the advection
term in Eq. (1), and explicit time stepping is, when allowed by
the spatial discretization, the time integration method of choice.

For the velocity field we assume periodic boundary conditions
in the x and y directions, and no-slip boundary conditions in the
z direction,

v|x:0 = v|x:LX s (3)
oy = vy, (4)
v|z:0 = v|z:Lz =0. (5)

The periodic boundary conditions in x and y also imply that all
derivatives of the velocity field v must be periodic,

Vn € N, (6)
Vn € N. (7)

B V|x=0 = 0y V|x=r,
a;vb,:o = 3;,1'U|y:[_y

Before proceeding, note the choice made here of the PDE to
be solved, as well as of the boundary conditions, is done for the
sake of clarity in the presentation of the method. Other PDEs
involving constrains in the fields being solenoidal (as, e.g., the
MHD equations for which the magnetic field B satisfies the con-
dition V - B = 0), or other boundary conditions for the fields,
can be implemented using the method described in Sections
3 and 4. In the same spirit, a single non-periodic direction is
employed in this work both for clarity and for validation with the
extensively researched physical problems considered in Sections
6 and 7. However, the generalization of our method to two or
more non-periodic directions is possible.

By taking the divergence of Eq. (1) and utilizing Eq. (2), one
gets a Poisson equation for the pressure

Vp=-V-[(v-V)v]. (8)

This implies that the pressure gradient is not an independent
variable for incompressible flows, but instead acts as a Lagrange
multiplier restricting the velocity field to the subspace of solen-
oidal fields. However, replacing Eq. (2) with Eq. (8) makes it ev-
ident that appropriate boundary conditions compatible with the
no-slip condition for v must be supplemented to the pressure. The
most natural approach is to project Eq. (1) at the boundaries in
the direction normal or tangential to the wall, and to solve either
a Neumann or a Dirichlet problem. There is no a priori reason to
assume that both approaches lead to the same solution, a topic
which has been of wide discussion and will not be treated here.
In the same line of thinking, independent boundary conditions
for the pressure could be imposed; we defer the study of this
subject for future work. For references on these topics see for
example [47-49] and references therein, and the discussion in
pp. 83-87 of Ref. [50]. For this work, we project Eq. (1) in the
wall normal direction and solve Eq. (8) for the pressure employing
Neumann boundary conditions, as discussed in [51].

Finally, it is worth mentioning that Eqgs. (1), (2), and (5) can
be written in several equivalent formulations, such as the normal
velocity-normal vorticity formulation employed, for example, in
the landmark publication by Kim, Moin and Moser [9]. However,
both for simplicity and scalability to other sets of equations (as,
for example, Boussinesq or MHD problems), the standard Navier—
Stokes formulation in terms of v and p is chosen in this work.

3. FC-Gram transformation method

For the spatial discretization in the periodic x and y directions
we follow the ideas presented in [3] which are now standard
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Extended domain

Physical domain

Fig. 1. Schematic representation of the domain, with the physical domain in blue, the extended domain used for the FC-Gram method in orange, and the Cartesian
axes indicated for convenience. The two horizontal (darker) lids indicate the no-slip boundaries in z. Boundaries in the x and y directions are periodic. A few grid
points are shown as a reference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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0.8 1.0 1.2

z

Fig. 2. The FC-Gram method applied to the function f(z) = sin(15z) sin(5.5z) exp(0.3z). The original data f (blue line) contains 49 equispaced points in the [0, 1]
interval, and the “continued" data f¢ (orange line) consists of 15 values (i.e. the number of continuation points is C = 15). 5 matching points (i.e. d = 5) were used
on each boundary, highlighted in green and magenta (respectively indicated as f; and f;). Note the data in the extended domain is periodic, and thus representable
by a Fourier series without Gibbs phenomenon. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

practice in pseudospectral methods for PDEs, in which a trigono-
metric basis is used for expanding v, p and f in the (ki k)
domain. Using the same basis for the non-periodic z direction in
a straightforward manner would result in the well known Gibbs
phenomenon, and produce a major loss of accuracy [52].

The Gibbs ringing problem is circumvented in this work by
utilizing a Fourier Continuation technique, in which an extended
domain of length L, is considered in the z direction (see Fig. 1),
and an appropriate periodic continuation is computed for all
functions in the [L,, L)) interval using Gram polynomials [43,
45,46,53] (see an example in Fig. 2 for a non-periodic function
dependent only on z in the [0,1] interval). The union of the
original and continued points can then be Fourier transformed
to the k, space (i.e., expanded into a trigonometric basis). In this
way, the error arising from the Gibbs phenomenon is severely
reduced. This technique has also the advantage of producing high-
order and dispersionless spatial derivatives [54], a property of
major importance when dealing with the large range of scales
present in highly turbulent flows.

To describe the method in more detail, let us consider a 3D
“continued" scalar field ¢¢ (which can be the pressure field p,
each Cartesian component of the velocity field v; with i = x, y,
or z, a temperature field, or the Cartesian components of other
vector fields when dealing with other PDEs). The continued scalar
field ¢° is defined over the (0, 0, 0) x (L, Ly, L,) extended domain,
and matches the physical field ¢ on the (0,0,0) x (L, Ly, L;)
region. As fields in the extended domain are 3D-periodic, ¢¢ can

be represented as
Nx—1,Ny—1,N;+C—1
c 2C LiknmiX
Py = Do G, 9)

n=m=I=0

where <2>C are the Fourier coefficients of ¢°, X4 is the position
vector in the extended domain (qAx, r Ay, sAz) (with Ax, Ay, and
Az the spatial resolution, and q, r, and s integers that label each
point of the spatial grid), k., is the wavenumber vector

2n — Ny) . 2m — N,) . 2l-N,-C).
7( x)x+77( y)y+77( z )z’ (10)
Ly L L

(assuming an even number of gridpoints), and C is the number of
continuation points in the z direction.

As mentioned above, to compute the periodic extension of
¢(x,y, z) in the z direction we employ the FC-Gram method first
presented in [43,45,53] and employed with great success in [44,
54-56]. The main idea behind the FC-Gram method is to project
the values near the boundaries onto an orthogonal polynomial
basis, and to calculate appropriate continuations for each element
of the basis. As this is basically a one-dimensional (1D) problem in
each direction in which quantities must be extended (i.e., in each
direction without periodic boundary conditions), we consider a
non-periodic scalar function f(z) (not to be confused with the
forcing f defined previously) to explain the method. Let us say
f is the vector with the values of f(z) at the grid points in the
non-periodic interval [0, L,]. Then, in order to generate a periodic

knml =
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continuation f¢ from the original f values, one needs to specify
two parameters, which are the number of continuation points
desired C (i.e., the number of grid points in the extension of
the original domain), and the degree of the polynomial basis d
(i.e., the number of values of f near each boundary to use in
the polynomial adjustment, as illustrated in Fig. 2). Given those
parameters, a C x d continuation matrix A and a d x d projection
matrix Q can be computed (see definitions of these matrices
in [55], and the resulting continuation points are obtained with
the expression

f© = AQf; + A*Qf;, (11)

where f; (resp., f;) are the first (resp., last) d points of f. In
this equation, ¥ and 7 denote the row-reversing and column-
reversing operations, respectively. The resulting data f¢ and its
spatial derivatives are periodic in the [0, L) interval, and thus can
be Fourier transformed efficiently. Applying Eq. (11) to each s-line
of ¢nm provides ¢y, .

It should be noted that both A and Q are independent of the
original data f (or ¢), so they can be precomputed only once
before starting the iteration of the Navier-Stokes equations and
utilized henceforth. Precomputing these tables is extremely fast,
demanding only a couple of minutes in a modern CPU core.
The computational cost of calculating the continuations is hence
reduced to 2 x Ny x N, matrix-vector multiplications with very
low dimensionality. Even more, these products can be computed
in parallel, and each one fits in the L1 cache of a CPU core.
For example, in a case with N, = 991 we obtain excellent
results (both in the order of the approximation as well as in the
computational cost) employing C =33 and d = 7.

As previously mentioned, the one-dimensional FC-Gram
method summarized above can be applied to the 3D case by
utilizing Eq. (11) for each line with fixed (x, y) coordinates and
results, for instance, in a velocity field “continued” in the z
direction v, and whose Fourier coefficients ¥;,, can then be
obtained via standard 3D-FFT computations with great accuracy.
It is straightforward to see that the FFT and the FC-Gram op-
erators commute and hence 9° can alternatively be obtained
by first transforming v to the mixed (ky, ky, z) domain (a 2D-
FFT operation) and then performing one dimensional FC-Gram
continuations for each (k, k,) coordinate, followed by an addi-
tional 1D-FFT calculation. When computing the 3D-FFT in parallel,
this latter property is useful to ensure that the continuations
are computed locally, severely boosting performance (see more
details in Section 5). Further information on the technical details
of the FC-Gram transformation method, and on the mathematical
properties of the Gram basis of polynomials, can be found in
Appendix B.

4. Method for solving the incompressible Navier-Stokes equa-
tions

4.1. Time-splitting forward Euler method and boundary conditions

Numerically, one common practice for dealing with the prob-
lem of the boundary conditions for the pressure mentioned in
Section 2 is to employ a time-splitting scheme [5,57]. The idea
behind this technique is to introduce an auxiliary field v* that
verifies the pressureless momentum equation and which, when
subtracted the pressure gradient, results in a solenoidal veloc-
ity field at the next time step. Although for the simulations in
Sections 6 and 7 we employ a higher-order explicit Runge-Kutta
integrator, the algorithm for evolving in time the incompressible
Navier-Stokes equations will be described here first using a for-
ward Euler method for notational clarity. The generalization to

arbitrary order Runge-Kutta will be deferred until the end of this
section.

In the time-splitting forward Euler time stepping method,
given the velocity field v* at the time t, the velocity at the next
time step v'+4! is obtained as

DAL gt 4 A [(vf V) o' oV —I—f[] : (12)

1
V2pitaAt — iy . rtat 13
P At )
PHHAL — pREAL _ ppy pttat (14)

This method is similar to methods often used to evolve the
Navier-Stokes equations in 3D-periodic domains. However, writ-
ten in this way, boundary conditions can be imposed separately
both to v* and p. This guarantees that after the projection step in
Eq. (14), the error of v'*4! at the boundary remains controlled for
both the normal and tangential directions.

In particular, different boundary conditions can be supplied to
both v* after Eq. (12), and to the normal or tangential derivative of
p when solving Eq. (13), depending on the order of approximation
desired. For this section we use a modified global ©(At?) scheme
derived in [58], which satisfies the boundary conditions with an
error of order O(At). We also employ the stability enhancing
modification to the wall-normal velocity presented in [51], where
the following boundary conditions were introduced

v A = AtV pt atz =0, L, (15)
9 t+At 1 .

P = —z.pHAr atz=0,1L,. (16)
0z At

Here the symbol || denotes the components tangential to the wall
and z is the unit vector in the z direction. It should be noted that
when coupled with, for example, a second order time integrator
(as done in Sections 6 and 7), these boundary conditions result in
a 0(At?) slip velocity at the walls, a fact that will be numerically
verified.

4.2. Solution for the pressure in the time-splitting forward Euler
method

Following the method presented in the previous section, for
every timestep we start by solving for the pressureless velocity in
Eq. (12). This can be easily accomplished for the continued fields
v*¢ in the wavenumber domain, where the evolution equation
takes the form

— e
f):rcnl = f)rclml + At |:(“A)C : V) f)ci| - Vkimlf)flml +fnml . (17)
nml

As before, hats denote Fourier transformed quantities, and note
that time superindices were dropped for clarity. The Fourier
coefficients of the non-linear term are obtained by standard pseu-
dospectral calculations in O[N,N,N,log(Ny)log(N,)log(N,)] oper-
ations (i.e., by computing the derivatives in Fourier space, the
product in real space, and returning to Fourier space) [3,59]. Com-
putation of derivatives of the continued fields in Fourier space
is straightforward, and performed as in pseudospectral methods
in periodic domains, by multiplying Fourier coefficients by their
corresponding wavenumber and the imaginary unit.

The next step in the algorithm is to transform the velocity
field to the (ky, ky,z) domain and apply the boundary condi-
tions in Eq. (15) to the unphysical velocity field v* via strong
imposition (also known as “injection”). In other words, values of
the pressureless velocity at the boundaries are replaced to fulfill
Eq. (15), after which a FC-Gram extension is performed, and v*¢
is transformed back to Fourier space.

Afterwards, the pressure gradient can be obtained by solving
Eq. (13) with boundary condition given by Eq. (16). The Poisson
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equation accepts a homogeneous solution p” satisfying V2pt =

0, and an inhomogeneous solution p' such that V?p' satisfies
Eq. (13). Using periodic boundary conditions in the extended
domain, the gradient of the inhomogeneous pressure solution,
Vp!, can be readily computed in the 3D Fourier space as

AXC

k .
ot Dol e . (18)
k2

This solution does not necessarily satisfy the boundary conditions
for the pressure, but p" can now be used to impose Eq. (16).
To compute the homogeneous solution p" we take advantage of
the fact that in Cartesian coordinates there exists an analytical
solution of V2p" = 0 in the mixed (ky, ky,z) domain with
coefficients given by

~lc
Vpnml -

Phin(2) = Aume?™ @71 4 Bye 7 4 Dz (19)

Here, yom = (ki, + k2,)'2, ken = (20 — Ny)/Ly and ky m =
m(2m — N,)/L, as in Eq. (10), and Aym, Bym and D are coefficients
that depend on the boundary conditions. Differentiating Eq. (19)
and using Eq. (16) it is straightforward to get the following
expressions for these coefficients

tam — bnme_ynml'z

Am= —————, 20
v (7 (20)
b —t —¥Ynmlz
B, = ——mm —tam& 7 1)
Vnm (1 - e*ZVnmLz)
1 1
D = —bgg = —tgo, 22
Ap 00 = oo (22)
where
.| (2) R
bim=2- |: nZt - Vpifm(z)i| ’ (23)
z=0
.| (2) .
tam = 2 - |:”Zt - Vp'ncm(z)i| . (24)
z=L,

As before, the notation 9,,,(z) and Vﬁ{fm(z) denotes quantities are
in the mixed (ky, ky, z) domain. Also, note that as the boundary
conditions are imposed on the derivative of p, the total pressure
is defined up to a constant that can be safely ignored. An ana-
lytical expression for the homogeneous pressure gradient Vp' in
the mixed (ky, ky, z) domain can then be trivially obtained from
Eq. (19) as

Vﬁln{m(z) =(iky nX + iky.mj') I:Anmeynm(z_LZ) + Bnme_ynmz] +

D |,
Yam [Anmel/nm(l—Lz) _ Bnme—}/nmz + ] Z. (25)
Ynm

We can FC-Gram continue the above expression and Fourier
transform in the z direction to get the coefficients of the “con-
tinued" total pressure gradient Vp5,, = Vp  + VpHC and use
Eq. (14) to finally obtain the velocity field at the next time step
in the (ky, ky, k,) domain.

4.3. Filtering

As it is widely known, the computation of non-linear terms
by means of pseudospectral calculations generates a pileup of
energy in the highest wavenumbers (known as mode aliasing in
this context), due to the nature of the discrete version of the con-
volution theorem. For quadratic non-linearities, a standard way of
dealing with this instability is by utilizing the so-called 2/3-rule,

in which wavenumbers with k > 2ky.x/3 are filtered out before
and after the pseudospectral calculation [60], and where kpay is
the Nyquist maximum resolved wavenumber. However, in our
context, employing such an abrupt filter would result in a serious
distortion of the fields in physical space, as high wavenumbers are
required to accurately represent the periodically-extended fields.
We circumvent this problem by employing an exponential filter
of the kind proposed in [43], such that for a scalar field ¢, its

filtered spectral coefficients ¢, become

2,
Wb e p 2Lk n \ 7 N 2L ky m ’
= X — _— e
i = Pnmi EXP 7Ny 7N,

2L/kzl 2
+ ——z % . 26
(rr(Nz + C)) (26)

As the largest wavenumber is attenuated by a factor of e~#, it is
natural to choose 8 = b In(10), where b is the number of signifi-
cant decimal digits desired (16 for double precision calculations).
The parameter p should be chosen so that the error introduced
in the filtering step remains smaller than the one associated to
the time-marching scheme. It was shown in [43] that a value of
2p > 55 suffices to attain an O(At>) approximation for the case
of fourth order Adams-Bashforth integration. For this work we
got good results when choosing the value 2p = 100, and this
is therefore the value used for all our simulations in Sections 6
and 7.

4.4. Higher-order time-splitting Runge-Kutta method

With the above discussion in mind it is possible now to intro-
duce a full algorithm for a time-splitting oth order Runge-Kutta
integrator, which approximates the no-slip boundary condition
with an accuracy O(At°). The method we present also has the
advantage of requiring low storage, with only a few arrays stored
in computer memory in each iteration:

FORjin1,...,0:

1. Evolve the pressureless momentum equation in (ky, ky, k)
space

e —
f):zt?:;jm/o — f)nml + j% |:|:(vt+(j—l)At/o . V) vt+U—l)At/oi|
nml

nml“nml

_ vkz i’H—U_l)At/O] i

(27)

where the continuation superindices ¢ were dropped for
clarity. Note that the filter in Eq. (26) must be applied to
the non-linear term to prevent aliasing instabilities.

2. Transform 9*"74%/° to the (ky, k,, z) domain, and impose

. At .
p Ao JTV”p“U—”Af/O atz=0,L,. (28)

3. FC-Gram transform v**/4t/ back to the (ky, ky, k,) domain,
and obtain the inhomogeneous solution for the pressure

Alt+jAt/o knml . f):[,—:l—jm/o
VPumi = 2 k. (29)
4. Transform §*741° _ ypIHAY0 o the (k,, ky, z) domain,

and use Egs. (19) to (21) to solve for the homogeneous
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b)

Extended domain

Physical domain

MPI task 3

MPI task 2

MPI task 1

MPI task 0

S W i
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x

a) 2 H d H P
/
D B —
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N\?“Mm sk Uai\/;& sk

Fig. 3. Slab decomposition used for the parallelization. Notation is the same as in Fig. 1. (a) The physical domain, with the extended domain in real space. Each
MPI task gets one of the slabs (for convenience, only four tasks are shown). Note FFTs in the x and y directions (indicated by the black arrows) can be computed
locally with this decomposition. (b) Arrays in Fourier space (ky, ky, k;) or in mixed space (ky, ky, z). After the transposition, with this slab decomposition FFTs in the
z direction are local, and can be computed without communication. Note the full array in k, has half the size of the physical domain in x, as Fourier transformed

arrays are complex while physical data is real.

solution for the pressure, now with D = obg/(jAt) =
otoo/(jAt), and with the coefficients stemming from the
Neumann boundary conditions now taking the form

: [].Ztﬁ:m( )— Vil (z )]

N>

bym = ’

2=0 (30)

~ 0 ., ~
tom = 2 - [Ev"m(z) - Vp;m(z)]

5. FC-Gram transform the homogeneous pressure gradient to
the (ky, ky, k,) domain, and project the velocity to the space
of solenoidal functions

z=L;

t+jAt/o __

v v*t+jAt/o _ intht-ijt/o. (31)

0
end FOR.

5. Numerical implementation

The ideas presented in the previous section can be easily
implemented in existing parallel pseudospectral codes. For this
study we developed a software named Spectral PEriodic Con-
tinuation Turbulence SolvER (SPECTER), freely available at http:
//github.com/mfontanaar/SPECTER. SPECTER is a hybrid OpenMP-
MPI-CUDA parallel code written in Fortran 95/2003 (with bind-
ings in C and CUDA), built atop the structure of the Geophyisical
High-Order Suite for Turbulence (GHOST) whose parallelization
strategy has been shown to present near optimal scaling for over
200.000 CPU cores and 15.000 GPUs [61] (see also http://github.
com/pmininni/GHOST/).

The algorithm presented in Section 4.4 is easy to implement
using a serial FFT. In practice, we use FFTW [62] or cuFFT [63] to
compute 1D Fourier transforms. FC-Gram continuation operations
are encapsulated in the Fourier transform subroutines that call
FFTW or cuFFT. Once a pressure solver and FC-Gram routines
are implemented, the rest of the code is remarkably similar to
any other pseudospectral code commonly used to study isotropic
and homogeneous turbulence. As a result, two advantages of the
method follow: (1) Obtaining solutions to the evolution of turbu-
lent flows with boundaries in cuboid domains becomes relatively
inexpensive (compared with methods for flows in fully periodic
domains), as the overhead of computing FC-Gram continuations
and of finding a homogeneous solution for the pressure is rela-
tively small. (2) Efficient parallelization of the method is straight-
forward, as parallelization methods developed for pseudospectral
periodic codes can be easily extended to our method.

In particular, SPECTER uses a 1D domain decomposition (also
called a “slab" decomposition) for the parallelization [61]. The
domain in real space is partitioned in the z direction, while the
Fourier space is partitioned in the k, direction (see Fig. 3). Each
MPI task operates locally over one of these slabs, and MPI is
used for operations that require cross-task communication. In
particular, most of the communication in the code is done when
the 3D-FFTs are computed: in the 1D domain decomposition FFTs
of real arrays in the x and y directions are “local” (i.e., each MPI
task has all the information to compute the FFTs in these direc-
tions using a serial FFT library), while FFTs in the z direction are
non-local. To solve this problem, parallel pseudospectral codes
perform a transposition of the data: data is re-arranged in such a
way that arrays in Fourier space, both in the (ky, k, k;) and in
the mixed (ky, ky, z) spaces, are partitioned in the k, direction
and thus the z direction becomes “local” for the FFTs (i.e., each
MPI task has all the information required to compute the FFTs in
this direction in their portion of the domain independently of the
other tasks). The transposition involves an all-to-all communica-
tion, and is handled in SPECTER using the same techniques as in
GHosT (see [61] for more details).

To increase the number of processors that can be used for
the parallelization, operations in each MPI task can be further
parallelized using OpenMP. To this end, FFTs in each MPI task are
performed using multiple threads with FFTW, and all other loops
are parallelized using OpenMP pragmas. Moreover, if instead of
FFTW, cuFFT is used, FFTs can be computed in CUDA-enabled
graphical processing units (GPUs). As this multi-level hybrid par-
allelization scheme has been described elsewhere, and requires
no modification to the Fourier Continuation method presented
here, we refer the reader to [61] for a detailed description as well
as for scaling studies. It suffices to say that tests of SPECTER in
parallel environments show no degradation in the parallelization
efficiency when compared with the results in [61], and that as
a result we expect our method to scale well as the number of
processors is increased.

6. Plane Poiseuille flow simulations

As a validation of the method presented above, we now
study the flow between two parallel planes driven by a homo-
geneous pressure difference along the x (streamwise) direction.
The domain is the same as in Fig. 1. This set up is commonly
known as plane Poiseuille flow, or simply, channel flow. It is a
traditional problem in wall-bounded turbulence, and has been
extensively researched both numerically [9,13,64-67] and ex-
perimentally [16,68-70]. From the numerical point of view, as
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Table 1

Parameters of the channel flow simulations. “Run" labels each simulation, Ny x N, x N, gives the linear resolution in each
direction, and C, and d, are the number of continuation and boundary matching points in the z direction, respectively. 3,p
is the mean pressure gradient in the x direction, v the kinematic viscosity, Re is the Reynolds number, Re, is the centerline
Reynolds number, and Re, is the Reynolds number based on the friction velocity u;.

Run Ny x Ny x N, G, d, %P v Re Re, Re,
L1 32 x 16 x 39 25 5 25 x 1072 25 x 1073 330 260 23
L2 128 x 64 x 231 25 5 1x 1072 1x 1073 790 580 35
L3 256 x 128 x 479 33 7 5 x 1073 5x 1074 1490 1010 52
T1 256 x 128 x 479 33 7 25 x 1073 25 x 107* 2120 1310 77
T2 384 x 192 x 735 33 7 25 x 1073 15 x 1074 3480 2050 118
T3 512 x 256 x 991 33 7 25 x 1073 1.25 x 107 4270 2500 146
T4 768 x 384 x 1503 33 7 25 x 1073 1x 1074 5380 3125 173

the flow develops a boundary layer near the walls, it may be
argued that a method that refines the grid near the walls (as,
e.g., Chebyshev-based pseudospectral methods) can be better
suited to study this problem. However, our main aim in this
section is to validate the numerical method by comparing with
previous results, and thus we consider channel flow as a paradig-
matic example. To properly resolve the boundary layer with
a uniform grid we will use larger spatial resolutions in the z
direction than in x and y; note also that as the method we present
here can deal in principle with any boundary condition, a refined
grid near the walls could be implemented, matching the solutions
using FC-Gram transforms between the grid in the center region
of the channel and the grid in the near-wall regions. Finally, in
spite of the limitations in the resolution, the regular grid allows
us to use explicit time stepping with a mild CFL condition, thus
partially compensating for extra computational costs.

Imposing a pressure difference between two ends of the box
results in a non-periodic pressure inside the domain in the x
direction. However, the pressure gradient remains periodic, and
can be decomposed as Vp = Vp’ + d,pX, where 9,p is the mean
pressure gradient in the x direction, oxp = (Plx=1,—Plx=0)/Lx-
The effect of the pressure difference at the sides of the box is
hence equivalent to a constant forcing in the x direction, and the
resulting equations are
Jav

o H@Vw=—Vp £V apk, (32)

V.v=0. (33)

This system admits an analytical laminar solution in the limit in
which the non-linearities are negligible, given by

v=——2(z — L)X (34)
2v

However, as viscosity decreases and non-linear effects become

more relevant, the flow is no longer laminar and turbulence de-

velops. To quantify the strength of non-linear effects, the Reynolds

number Re is commonly employed. This dimensionless parameter

is defined as the ratio between non-linear and diffusive terms

L,vy

Re = 2%, (35)
v

where vy is the vertically averaged streamwise speed. Alterna-

tively, one can define a centerline Reynolds number as

Re, = 8 Uxlz=s 7 (36)
v
where § = L,/2 is the box half-height. Although the exact value of
the critical Reynolds number Re; for which the system becomes
turbulent depends on the way in which the laminar solution is
perturbed (as well as on the precise definition of the Reynolds),
typical values for Reg;; are in the range ~ 1700 to 2300 [7].
Using the SPECTER code we solved Eqgs. (32) and (33) inside a
box of size Ly x Ly x L, = 4m x 2 x 1, with z the only non-periodic

direction. A total of seven direct numerical simulations were
performed, for Reynolds numbers Re ranging from 300 to 5500,
resulting in both laminar and turbulent solutions. A summary
of the parameters and the resolution used in each simulation
is presented in Table 1. For all the laminar simulations (L1 to
L3) the ratio d,p/v was maintained equal to 10, in order for the
maximum velocity to be of order 1, whereas for the turbulent
runs (T1 to T4) the mean pressure gradient d,p was kept constant
across runs, leaving the centerline velocity as a free parameter. All
simulations were integrated in time using a second order version
of the method presented in Section 4.4.

The first laminar simulation L1 was started from a fluid at rest,
and was evolved in time until a steady state was reached. We
verified the agreement of the velocity profile with the analytical
solution in Eq. (34). The last output of this simulation was then
scaled up to the resolution of run L2 using spectral interpolation,
by zero padding the transformed fields in the wavenumber do-
main. To the resulting velocity field, a random perturbation with
10% amplitude was added at the largest scales, and used as initial
condition for the higher Reynolds simulation L2. Generation of a
random perturbation that is solenoidal and satisfies the boundary
conditions requires some care; in Appendix A we describe a
method that allows generation of noise under these conditions.
This procedure was subsequently repeated to generate the initial
conditions for run L3 from the steady state of run L2, and for run
T1 from the last output of run L3. For all laminar simulations (L1
to L3), a steady parabolic profile was obtained at late times for the
streamwise velocity vy (not shown). For the case of simulation T1,
after evolving the system for more than 100 large-scale turnover
times, it was clear that a convergence towards a parabolic profile
was no longer observed, and a turbulent-like regime was obtained
instead. The transition at Re ~ 2000 is compatible with the
experimental and numerical studies mentioned above. From the
last output of run T1 we started (after rescaling) run T2, without a
perturbation as the flow was not laminar anymore, and the same
procedure was used to start the following runs.

For the first turbulent simulation T1 we also performed time
evolution of the flow employing four different timesteps, namely
At = 125 x 1073, 5 x 1074, 2.5 x 1074, and 1.25 x 1074, in
order to study the dependence of the error in the slip velocity.
As a reference, note the CFL condition requires At < 2 x 1073,
The result of this analysis is presented in Fig. 4 where the mean
squared streamwise velocity at the wall (uzlwall> is shown as a
function of the timestep, along with the predicted scaling of At~*
(corresponding to the expected At~? scaling for the r.m.s. er-
ror). A good level of agreement with the theoretical prediction
is found. Performing the same analysis for the spanwise wall
velocity leads to the same results. On the other hand, the error in
the mean squared normal velocity at the wall (w?|y.u) | was found
to be ©(107%%) and, as expected, independent of At. This behavior
was also observed in the mean squared divergence ((V . v)2>, for
which a timestep-independent value of ©(10~®) was obtained in
all these simulations at fixed spatial resolution.
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Also for simulation T1, we studied the spatial convergence of
the method as the vertical resolution was increased, by compar-
ing results with increasing resolution against a high resolution
numerical solution with the same parameters. To this purpose,
we performed simulations with a varying number of vertical grid
points in the extended domain, namely N, = 512, 768, 1024, and
1536, while fixing the number of horizontal grid points to N, x
N, = 256 x 128, the matching points to d, = 7, and the continua-
tion points to C; = 33 (note these choices result in N, = N, — 33
vertical grid points in the physical domain). The time step was
fixed in all simulations to At = 2 x 1074, All simulations started
from the same initial condition, corresponding to an output of
simulation T1 at t = 82, which was converted to the required
grid size in each case employing spectral interpolation. After
integration for one large-scale turnover time, the final states of
the simulations with N, = 512, 768, and 1024 were interpolated
spectrally to the grid with N, = 1536. The spatial average of the
L, pointwise errors {|vi(X, t) — v{“(x, t)|) (where i is the velocity
field component) was then computed using the simulation with
N, = 1536 as the reference solution v™. The result is shown
in Fig. 5, together with the mean L, error in the divergence of
the velocity field for all values of N,. High order convergence is
observed. Note that we focused here in errors as a function of
the vertical resolution. Convergence as a function of horizontal
resolution is not shown, as a traditional Fourier pseudospectral
method is used in x and y, and convergence of this method is
well characterized in, e.g., [5]. For details of convergence of the
Runge-Kutta method as At is varied, see also [5].

6.1. Analysis of the turbulent simulations

We now discuss the results for the turbulent simulations T1 to
T4. To this purpose it is useful to introduce the turbulent velocity
field components v = v; — V;, with V; = (vi),, the ith velocity
component averaged over X, y and t, as well as the standard
notation u = vy, v = vy, w = v, (and the corresponding averages
when capitalized). Additionally, besides the classical Reynolds
number previously mentioned, turbulent channel flow can be
better characterized by the friction Reynolds number

)
Re, = 2%, (37)
v

where u, is the friction velocity, u, = /v(9,U)|,—o. Also using u.,
the following dimensionless variables can be constructed

=2 ut= 2 (38)
U,

Ug
with which different results from experiments and simulations
can be more directly compared.
Using the turbulent velocity fields, for each simulation we
first compute the diagonal elements of the two-point correlation
tensor

Z+

(v + i)

Qilz, m) = i (39)

(v0n0)
Xyt
where 1, is a spatial displacement, and #; is the unit vector in
the direction of the displacement. In the periodic directions the
correlations Q;i(z, r;) are expected to decay to zero for separations
r; of, at most, half the box length. Indeed this can be observed in
Fig. 6, where all the diagonal elements of the correlation tensor
were plotted as a function of both ry and ry, and both near the
bottom wall (for zt = 10) and in the center of the channel
(ie. forz/6 = 1).

Expressed in dimensionless units, the mean profile for the
streamwise velocity in a fully developed turbulent channel flow

107174 Aft *
. 1016 N
_’Tg
= 107

.
10—]8 4
.
2x107* 1073

At

Fig. 4. Mean squared streamwise velocity at the wall for simulation T1 as
a function of the timestep At (blue marks). The scaling At* is shown as a
reference by the dashed line. The point to the right with the largest timestep
has a CFL condition of 0.625. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

has long been proposed to follow a universal logarithmic law far
from the walls (known as the von Karman law), a fact that both
experiments and simulations support [7]. This means that, for
sufficiently large Re,, for z* > 1 and for z « §, the law

1
Ut = —In(z*) + B, (40)
K

should hold, where « is the von Kiarman constant. To verify
our simulations are compatible with this law, we estimate the
mean profiles for each of our turbulent simulations, shown in
Fig. 7. For the case of T1 and T2 transitional effects are still
dominant, and no intervals compatible with a logarithmic law are
present. For T3 and T4, on the other hand, the mean profile is in
reasonable agreement with the logarithmic law. A best fit of the
data for T4 yields k = 0.3993 + 0.0009 and B = 5.41 + 0.02,
values which are in agreement with previous studies [7,71] (the
curve corresponding to these values is shown as a reference
in Fig. 7). Moreover, for additional validation of the mean pro-
file, we compare our results with publicly available data from
a channel flow simulation at Re, = 182 performed by Lee and
Moser [71] (abbreviated L2015 from now on), done at a resolution
of 1024 x 192 x 512 grid points in a domain of size 87 x 2 x 37
using a Fourier-Galerkin method in the periodic directions and
a 7th order B-spline collocation in the wall-normal direction,
which in their case is along the y axis. This data is available
at http://turbulence.oden.utexas.edu/channel2015/content/Data_
2015_0180.html. Their mean profile is also shown in Fig. 7. Even
though for our simulations the aspect ratio of the box is some-
what different and the corresponding values of Re, differ from
those in L2015, for the case of run T4 (Re, = 173) a considerable
interval of agreement in the mean profile is found.

To further analyze the presence of a logarithmic law in our
mean profiles, we calculate the so-called indicator function 8 [13],
defined as

ty_ 40 Ut
Pzt =z"—.
The indicator function is flat and equal to the von Karman con-
stant « when a log-law is present. In Fig. 7 a plot of B(z*) is
shown for all the simulations. Although, in agreement with our
previous observation, no horizontal interval is found for T1 and
T2, an approximately flat interval is found for run T3 and an even
larger plateau for T4, suggesting that a logarithmic law is indeed
compatible with our results. Fig. 7 also shows a comparison of
with the data from L2015 at a larger value of Re,, indicating a

(41)
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Fig. 5. Left: Mean L, error for each velocity field component as a function of the number of grid points N, (counting continuation points) in the vertical non-periodic
direction, computed after evolving the steady-state turbulent solution T1 for one large-scale turnover time. All simulations have C, = 33 continuation points, so the
actual vertical resolution is N, = N, —33. A simulation with N, = 1536 is considered as the reference velocity field v™'. The same time step and horizontal resolution
is employed for all the simulations. Right: Mean squared divergence of the velocity field for the same set of simulations as a function of the number of vertical grid

points N/.
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Fig. 7. Left: Mean vertical profile in wall coordinates of the streamwise velocity for turbulent runs T1 to T4. A logarithmic profile is shown as a reference by the
dashed line. Right: Indicator function for runs T1 to T4. In both cases data for a simulation from L2015 is shown for comparison, and marked with black crosses.

good agreement for this quantity near the boundary layer (small
values of z1), and the correct trend as Re, is increased in the
log-region.

In Fig. 8, the profiles for the root mean squared turbul-
ent velocity normalized by the friction velocity, ”f,rms/”r =

((v?)x’y’t)l/z/ur, are shown. The first thing to notice is that for
all turbulent velocity components and for all the simulations, a
good degree of symmetry is observed, indicating that an adequate
time span was considered for the computation of the mean

quantities. Additionally, as expected, the maximum amplitude of
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z in wall units) of the normalized r.m.s. turbulent velocities between simulation T4 (connected by solid lines) and L2015 (with unconnected symbols).

the streamwise turbulent fluctuations is located closer to the wall
and presents greater values for larger Reynolds numbers. The cen-
terline turbulent fluctuations, nonetheless, seem to decrease for
higher Re; but it soon reaches an approximately constant value.
For the spanwise and wall normal components a monotonous
increase of the turbulence intensity near the wall is observed
conforming Re, grows. When comparing the turbulent intensities
for simulation T4 with those observed in L2015 (also in Fig. 8),
a good level of agreement is obtained considering the different
values of Re, between simulations, even though the T4 run was
evolved for a shorter period of time and the estimation of the
mean amplitude can be affected by finite statistical sampling.

We also study the scale dependence of the turbulent fluctu-
ations. To this purpose the 1D energy spectra of the turbulent
velocity components (normalized by the friction velocity) are
computed. These spectra are defined as

2

Eu(ke2) = [Bilke, Ky, 2, (42)
ky

Eyu(ky.2) =Y [iilke. ky. 2)[* 43)
ky

To enable a better comparison with the spectra obtained in L2015,
which uses a different domain size, we express the energy spectra
as a function of the dimensionless wavenumbers ki+ = kiv/u,.
The result for simulation T4 is shown in Fig. 9 for two different
heights, one near the height of maximum r.m.s. turbulent velocity
at z+ = 10, and the other at the center of the channel (i.e., at z =
8). A smoothly decaying spectra is obtained in all the cases, with
the exception of the spanwise spectra near the wall, for which
a small accumulation of energy at the largest wavenumbers can
be seen, resulting from aliasing. The fast drop that follows in
all spectra for larger wavenumbers is associated to our filter.
When compared to the spectra from L2015, a significant level
of agreement is observed, with very similar decay rates for all
velocity components, and for all wavenumbers considered. Even
more, some specific features are also reproduced, like the crossing
between E(k{, 0.5) and E,(k}, 0.5) at ki &~ 2 x 1072, and
the accumulation of energy present in Eu/u/(k;r ) and Ew/w/(k;r) near
the wall for intermediate wavenumbers.

Finally, Fig. 10 shows 3D renderings of the streamwise velocity
and of the r.m.s. vorticity using the software VAPOR [72]. Note

the small instantaneous streamwise velocities (indicated by blue)
near the boundaries, and the streaks in the streamwise direction.
The generation of vorticity near the wall, and the formation
of vortex tubes, is more clearly seen in the renderings of the
r.m.s. vorticity, with the largest values of this quantity (indicated
by red) taking place near the walls.

Overall, the results shown so far for channel flow simulations
indicate our method can give solutions to this problem that are
in good agreement with previous studies using pseudospectral
or high order B-spline methods, while using a regular grid and
(as a result) relatively larger time steps. Solution for the pressure
in our method is also relatively straightforward, with a mini-
mum overhead compared with pseudospectral methods in fully
periodic domains. However, as already mentioned, channel flow
simulations require sufficient resolution near the walls, and as a
result we have used a large resolution in the vertical direction to
properly resolve the boundary layer. In the next section we con-
sider a problem for which a regular grid provides more numerical
advantages.

7. Plane Rayleigh-Bénard convection simulations

We now analyze the application of the method presented
above to the case of another set of equations. To this purpose
we study the turbulent plane Rayleigh-Bénard convection prob-
lem [17-20,73], where the space between two plates held at
constant temperature is filled with a fluid. If the bottom plate has
a fixed temperature T, much greater than the temperature at the
top Ty, the fluid destabilizes and convection develops, displaying
the well known Bénard cells. Further increasing the temperature
difference between the plates leads to turbulent convection [74].
For incompressible fluids, it is not unusual to study the case
in which density variations with temperature are so small that
they only affect the dynamics of the fluid via the buoyancy force,
leading the incompressible Boussinesq equations

d ~

87: +(-Vv= —Vp+y92+vV2v, (44)
V-v=0, (45)

00 2

— +(v- V) = ypu, + V6. (46)

at
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Fig. 9. Energy spectra EvI{UI{ for v/, v/, and w’, as a function of the streamwise (left) and spanwise (right) wavenumbers, both near the wall (top, for z+ = 10) and
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Fig. 10. 3D renderings of the streamwise velocity in the entire domain (left), and of the r.m.s. vorticity near the bottom wall (right) in the channel flow simulation T4.
The renderings on the bottom show the same quantities from a side view. Blue corresponds to small values, red to high values of each quantity. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Here, the total temperature is T = Ty + T/, where Ty is a linear
background profile To(z) = T, — zAT/h with h = L, the height
of the domain, AT = T, — T; the temperature difference between
the plates (with T, and T, the temperatures at the bottom and
top plates, respectively), and T’ the “fluctuating” temperature
that corrects the background profile. The total pressure is P =
Po+p, with p the correction to a background hydrostatic pressure
po = agz(Ty — zAT /h) + Py, with « the fluid thermal expansion
coefficient, g the acceleration of gravity, and Py a constant (as
before, the mean mass density of the fluid is p = 1 in dimen-
sionless units). In Eqs. (44) and (46) we write the correction
to the total temperature in units of velocity by defining 6 =
T'/agh/AT.Finally, y = \/ag AT /h, and v and « are respectively
the kinematic viscosity and the thermal diffusivity. With these
choices the boundary conditions for v and 6 are periodic in the x
and y directions, while v =0and # = 0 at bothz =0 and z = h.

The system of Eqs. (44)-(46) has an important dimensionless
number that controls the instability of the system to natural
convection, the Rayleigh number defined as

agh>AT  y2h*

vk vk
Other important dimensionless numbers are the Prandtl number,
Pr = v/k, which is 1 in all our simulations, and the Nusselt

number which quantifies the ratio of convective to conductive
heat transfer, defined in [73] as

_h aT 190
AT 0z, v 0z
Rayleigh-Bénard convection has been studied profusely in the
literature, in different configurations and regimes [17-20,73].

Here we just consider a few simulations and typical quantifica-
tions of the flow, to illustrate how our numerical method can

(47)

Nu -1 (48)

wall
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Table 2

Parameters of the Rayleigh-Bénard convection simulations. “Run" labels each simulation, Ny x N, x N, gives the linear
resolution in each direction, and C, and d, are the number of continuation and boundary matching points in the z direction,
respectively. The kinematic viscosity and thermal diffusivity are v and «, respectively. Finally, y = /(agAT/h) (where «
is the fluid thermal expansion coefficient, g the acceleration of gravity, AT the temperature difference between the plates,
and h the distance between the plates), Ra is the Rayleigh number, and Nu is the Nusselt number.

Run Ny x Ny x N, C, d, v P y Ra Nu NuRa'/?
C1 256 x 256 x 103 25 5 1 x 1073 1 x 1073 1 1 x 108 6.55 0.071
2 512 x 512 x 231 25 5 5 x 107 5x 1074 1 4 x 108 10.89 0.069
3 1024 x 1024 x 479 33 7 25 x 1074 25 x 1074 1 1.6 x 107 17.99 0.066
a) b)
1.00 A 1.00
0.75 1 0.75 1
0.50 1 0.50 1
S 025 S 025
0.00 0.00 1
—0.25 1 —0.25 A
_0.50 T T T T T T T _050 T T T T T T T
0.0 0.5 1.0 175 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
xT xr
Fig. 11. Diagonal elements of the two point correlation tensor Q; for simulation C3 at (a): the thermal boundary layer z = §y = 0.02 and (b) the center of the box
z=0.5.

0.25 1
® 0.001
—0.251
0.00 025 050 075 1.00
z

050  0.75

z

0.25

0.00

Fig. 12. (a): Mean temperature correction (in velocity units) @ as a function of the height z. The three simulations at different resolutions are shown (see inset for
references). (b): Normalized mean total temperature profile ((T) i Ty)/ AT as a function of the height z. Note how temperature becomes uniform in the center of

X,.

the domain.

be used for a set of PDEs different from the simplest case of the
incompressible Navier-Stokes equation. Using the SPECTER code
we solve Egs. (44)-(46) inside a box of size Ly x L, x L, = 27 x 27
x 1. Values of the spatial resolution, of the relevant parameters,
and of the characteristic dimensionless numbers are given in
Table 2. It is worth noting that a turbulent convection regime is
attained in all the cases.

As for the channel flow, we start by computing the diagonal
elements of the two-point correlation tensor. The entries associ-
ated with the velocity components are the same as those given in
Eq. (39), while the temperature dependent elements are defined
as

<9/(x)v;(x + r,ﬂ)>

Quj(z, 1) = Qiplz, 1) = L forje Xy, z),
(9/(x)u]f(x)>
Xyt
(49)
0'(x)0'(x + r,f
Qe = O ) (50)

(CHeTes)

Xyt

As before, primed variables represent fluctuations, i.e., we de-
compose 8 = @ + 0, with capitalized variables denoting mean
vertical profiles, i.e, ® = (0),,,. The result of the two-point
correlations for simulation C3 is shown in Fig. 11 at two different
heights, one near the height of maximum turbulent r.m.s. thermal
fluctuations (z = 0.02), and the other in the center of the
domain. As for the channel flow, horizontal correlations decay
to zero before the half box length, and then fluctuate around
zero. However, for convection the two-point correlations decay
slower than in the channel flow, in good agreement with the
development of large-scale convective cells in the flow as will be
shown in visualizations later.

Statistically, the convection process should remove heat from
the hot plate and transport it to the cold plate. This can be verified
by estimating the mean profile for the temperature correction
©®, which should be negative near the bottom plate (i.e., colder
than the non-convective solution), and positive near the top plate
(i.e., hotter). In Fig. 12 we show @ for all our simulations. The
results are compatible with this observation. Even more, as ex-
pected, increasing Ra (i.e., increasing convective action) results in
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0.00 +

Fig. 13. Root mean square (r.m.s.) fluctuations of (a): the turbulent temperature fluctuation in velocity units 6/,
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’

(b): the turbulent velocity component in the x

direction uj,, (c): the turbulent velocity component in the y direction vj, and (d): the turbulent velocity component in the wall normal direction wy . References

for the three simulations are indicated in the insets.

Nu

10 g

106 107
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Fig. 14. (a) Average Nusselt number Nu as a function of the Rayleigh number Ra for simulations C1, C2, and C3. A Ra

0

ks

b)
SO === Nu!
\\\\\
41072 AN
\\
~
3x 1072 N
\\\
\\
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2% 1072 . X
10!
Nu

173 scaling is shown by the dashed line as

a reference. (b): Thermal boundary layer thickness 8, as a function of the Nusselt number Nu for simulations C1, C2, and C3, along with a Nu~' dashed line for

reference.

larger temperature corrections which tend to concentrate closer
to the plates. In terms of the temperature correction in velocity
units 6, it is straightforward to recover the actual pointwise
temperature (normalized by the temperature difference at the
boundaries) as
Txy.2)-Ty, 06(xy,2)—yz
AT - vh '
Using this expression we can calculate the mean temperature
profile ((T)th — Tp)/ AT, which is also shown in Fig. 12. The
result is compatible with the profile reported in [75], in which
temperature is approximately constant in most of the domain
(i.e., convection mixes fluid elements resulting in homogeneous
temperature) except in a small region near each plate associated
to the thermal boundary layer. As expected, the latter region
becomes narrower with increasing Ra.

We now study the variation of r.m.s. fluctuations as a function
of the height, both for the temperature correction and for the
velocity. The results are shown in Fig. 13. The first thing to
notice is the symmetry of the profiles, indicating an appropriate
timespan for the computed averages, as well as the resemblance
between the profiles for u; . and v; ., which is expected from
the symmetry between x and y directions in the configuration.
Additionally, for increasing values of Ra it is clearly seen that the
maximum r.m.s. fluctuations of 6/ ., v/ and v/_. tend to concen-

. rms’ l‘lTlS. rms A .
trate closer to the plates. The increase in the amplitude of their

(51)

maxima as a function of Ra is, however, mild, in agreement with
results in [19]. Another important thing to notice is that all ', v/,
and v’ attain their maximum r.m.s. values near the wall, whereas
w' is considerably smaller in the same region, which is consistent
with results in [73]. On the contrary, it is in the center of the box
where w’ attains its maximum r.m.s. amplitude, where it becomes
the most relevant quantity. The opposite behavior is found when
analyzing 6’, as its r.m.s. value considerably drops in the center
of the box and its centerline value decreases monotonously with
Ra, as reported in [19].

As a way to compare our results with previous simulations of
convection, we look at the scaling of the Nusselt number with the
Rayleigh number, and at the scaling of the thickness of the ther-
mal boundary layer. Many studies of Rayleigh-Bénard turbulent
convection reported a dependence of Nu (which usually cannot
be directly controlled and is estimated a posteriori) with Ra (the
control parameter). In simulations in [19] it was found a scaling
Nu ~ Ra'?, with the product NuRa'/? being approximately
constant for Ra ranging from 10° to 10'4. To test these results
in our simulations, we estimate the mean Nusselt number using
Eq. (48). The results are shown in Table 2 and in Fig. 14, where Nu
is shown as a function of Ra, with a Ra'/? scaling law indicated
for comparison. The results are compatible with those in [19].
Even more, the product NuRa'/? is in the range 0.066-0.071 for
all our simulations (see Table 2), in agreement with experimental
results in [76] for convection at Pr & 1. The scaling of the thermal
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Fig. 15. Turbulent energy spectra as a function of the k, wavenumber for u/_, v/

ms’

the center of the domain z = 0.5 (see insets for references).

b)
. z=20.5
106 .
10 4
102
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— Eyw
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/ms Wims» and O/ at (a): the thermal boundary layer thickness z = 0.02, and (b):

Fig. 16. 3D rendering of the temperature correction 6 in run C3. Note the total temperature includes the background temperature profile, which is not shown here.
From left to right: view of the top of the domain, view from the bottom, and side view. Note hot fluid (in red) is transported to the top while cold fluid (in blue)
is transported to the bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

boundary layer 8y as a function of Nu is predicted in [73,77]
to be 8, ~ Nu~'. We tested this scaling in our simulations by
estimating ¢ as the height for which 6,5 attained its maximum
(we verified that other possible definitions for the width of the
thermal boundary layer give similar results). In Fig. 14 we show
8y as a function of Nu, with a Nu™! scaling law for reference. Our
results are in agreement with the aforementioned scaling.

As before, we also study the scale dependence of the turbulent
fluctuations utilizing the 1D energy spectra, defined for the veloc-
ity field in the same way as Eqs. (42) and (43) and for 0, similarly
as
2

Eror(kez) = Y [0k Ky, 2) (52)
ky
Ero(ky,2) = |0k & ,z)’z. (53)

kx

The resulting spectra are shown in Fig. 15 as a function of k, (a
similar result is obtained for the spectra as a function of k) for
simulation C3 at two different heights: one at z = 0.02 ~ §,, and
the other at the center of the box. The first thing to notice is that
smooth spectra without notable aliasing are obtained in all cases.
Another interesting feature is the absence of a sharp peak for low
wavenumbers (i.e., no characteristic roll lengthscale), indicating
that the attained regime is indeed of turbulent Rayleigh-Bénard
convection. As noted before in Fig. 13, near the wall and for low
wavenumbers, #’, 1/, and v’ are approximately equal in amplitude,
whereas the vertical velocity w’ is considerably smaller. This
feature is not present for larger wavenumbers, where the three
velocity components have approximately the same power and

0’ has significant more power, indicating the presence of very
small-scale structures in latter field. The behavior at the center
of the box is considerably different. For low wavenumbers it is
the vertical velocity w’ that contains most of the energy, while
0’ has a smaller power than any velocity component, both facts
also in agreement with the features found in Fig. 13. As the
wavenumber increases, nonetheless, the energy becomes more
equally distributed between 6’ and the velocity components.

Finally, Fig. 16 shows a 3D rendering of the temperature cor-
rection 6 using the software VAPOR. Note the total temperature is
given by 6./ AT /(«agh) plus the background temperature profile,
and as a result the renderings only show how convection corrects
the background temperature. As expected, hot fluid is transported
to the top while cold fluid is transported to the bottom. The multi-
scale formation of convective cells, and of turbulent plumes near
the walls [72], can be also clearly seen.

8. Conclusions

We presented a Fourier Continuation-based parallel pseu-
dospectral method for incompressible fluids in cuboid non-
periodic domains. The method produces dispersionless and
dissipationless spatial derivatives with fast spectral convergence
inside the domain, and with high order convergence at the bound-
aries. Thus, the method has no spurious dispersion, or “pollution”,
errors that commonly arise in finite differences of finite ele-
ments methods. Incompressibility is imposed by solving a Poisson
equation for the pressure. As the method is Fourier-based, the
Laplace operator for this problem has a diagonal representation in
spectral space, and is well-behaved and easy to invert. As a result,
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solutions of the Poisson equation for the pressure are fast and
computationally inexpensive, with the only overhead (compared
with pseudospectral methods in periodic domains) of requiring
computation of a homogeneous solution to satisfy the required
boundary conditions. However, this homogeneous solution can
be found analytically and thus generates a minimal overhead.

Being Fourier-based, the method also allows for fast esti-
mation of spectral transforms in O(N;logN;) operations in each
spatial direction i, even when boundary conditions are not pe-
riodic. It is compatible with uniform grids (although refined or
nested meshes can also be implemented by splitting the do-
main in multiple subdomains, and matching boundary conditions
between these subdomains). But in the case of uniform grids
presented here, it allows for explicit time integration with a
mild Courant-Friedrichs-Lewy (CFL) condition dominated by the
advection term for sufficiently high Reynolds numbers, and thus
with a time step for stability that scales linearly with the spatial
resolution.

We also presented two time stepping methods, using a time-
splitting technique to allow for independent imposition of the
boundary conditions for the velocity field (or other fields in the
PDEs considered), and for the pressure. A time-splitting forward
Euler method was presented that has global error of order O(At?)
and that satisfies the boundary conditions with error O(At), and
we also presented a time-splitting low-storage oth order Runge-
Kutta method that has both global and boundary condition errors
of O(At°).

The method with the time-splitting Runge-Kutta time evolv-
ing scheme was implemented in a publicly available code
(SPECTER), and we briefly described efficient methods for its
parallelization. This implementation of the method was validated
against two problems with non-periodic boundary conditions:
channel flow, and plane Rayleigh-Bénard convection under the
Boussinesq approximation. For channel flows, we also compared
our results with previous simulations using other high-order
numerical methods. In both cases the method yields results
compatible with previous studies.
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Appendix A. Generation of random solenoidal 3D vector fields

In order to generate 3D incompressible noise that satisfies the
no-slip condition to perturb the velocity field, we use a basis
of eigenfunctions of the curl operator introduced in [78]. These
eigenfunctions are obtained from the scalar potentials

$(x.¥,2) =) dumexplilk nx + ky ¥)1gn(2), (A1)

nlm

Y(x,y,z) = Z buimexplilky.nx + ky,1y)]sin |:mn (z' + %)] .

nlm

(A2)

by means of the toroidal-poloidal decomposition g = V x (V x
¢z) + V x vz. The functions q are eigenfunctions of the curl,
and thus generate incompressible flows. Here, z’ is the result
of mapping z into the [—1/2, 1/2] domain, ie., zZZ = z/L, —
1/2, and gn(z') are the Chandrasekhar-Reid eigenfunctions (see
pp. 634-637 of Ref. [79]),

cosh(Amz') cos(AmZ’)
- for m odd,
() = cosh(Ap/2)  cos(rpm/2) (A3)
Emi2) = sinh(Anz’)  sin(Apmz’) ’
for m even,

sinh(Am/2)  sin(im/2)

where the sequence Ap, is constructed from the condition
gm(—1/2) =g, (1/2) = 0.

Using Eqs. (A.1) and (A.2) we can construct a random and
incompressible 3D vector by generating a superposition of the q
functions with random phases and amplitudes for both the a,;,
and by, coefficients in the range 4 < ki + kim < 25 and
2 < m < 5. The amplitudes decay as k;,; for ¢ and kn’l; for
¥, With kum = (ki , + k; , + A%)"/?. This generates a random
3D incompressible vector field that decays as k~2, and whose
poloidal and toroidal components are approximately balanced.
Note that other choices for the decay of the spectrum of the
perturbation can be easily obtained with other choices for the
decay of the an, and by, coefficients.

Appendix B. Mathematical aspects of the FC-gram Fourier con-
tinuation method

As mentioned in Section 3, and illustrated in Fig. 2, the Fourier
continuation (FC) method utilizes a certain periodic-extension
approach, the FC-Gram method, to produce rapidly-convergent
Fourier series representations of non-periodic functions defined
on one-dimensional intervals. Thus, for a given function f, which,
without loss of generality, we assume is defined in the interval
[0, 1],

f:10,1] - R,
the FC method produces a b-periodic function
fe:[0,b] > R (b>1),

defined on the interval [0,b] D [0, 1], which closely approx-
imates f(x) throughout the original interval [0, 1]—up to and
including the endpoints 0 and 1.

Following [55, Sec. 3.1], more precisely, given a column vector
f = (fo....,fv—1)" containing point-values of the function f
on the equispaced grid 0 = %y < x; < < xXy—1 = 1,
fi = f(x;), the FC-Gram method [43,45,55] uses a subset of the
given function values on small numbers d, and d, of matching
points {xo, ..., Xq,—1} and {Xy_g,,...,Xy—1} contained in small
subintervals on the left and right ends of the interval [0, 1] (of
lengths 6, = (d, — 1)Ax and &, = (d, — 1)Ax, where Ax is the
distance between matching points) to produce, at first, a discrete
periodic extension. Use of different numbers of matching points
de and d,, d, # d, is desirable, for example, in cases in which one
of the interval endpoints corresponds to a point on the boundary
of a computational domain §2 used for a PDE solution, while
the other corresponds to a point interior to £2—at which the
numerical solution is more accurate and whose error is smoother;
see, e.g., [43]. Throughout this paper we have used the values
dy=d. =dwithd=5and d =7.
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In order to obtain the desired discrete periodic expansion, the
FC-Gram algorithm appends a number C of continuation function
values in the interval [1, b] to the existing function data, so
that the extension transitions smoothly from fy_; back to f, as
depicted in Fig. 2. The resulting vector f© can be viewed as a
discrete set of values of a smooth and periodic function which
is suitable for high-order approximation by means of the FFT
algorithm in an interval of length (N + C)Ax. The C continuation
values are produced on the basis of the discrete function defined
by the vector f together with a translation of it by a distance
b. In detail, defining the sets D, = {b + xo,b + X1,...,b +
X4, .} and D = {XN_g,, XN—(d;—1), - - - » XN—1}, the additional C
needed values in the interval [1, b] are obtained as point values
of an auxiliary trigonometric polynomial of periodicity interval
[1—6:,2b — (1 — 4;)] (with appropriately selected bandwidth)
which closely approximates the function values on D, U D,.
This approximating trigonometric polynomial is obtained as the
result of a two-step process, namely: (1) Projection onto bases
of orthogonal polynomials (Gram bases), and (2) continuation
through use of a precomputed set of continuations-to-zero of
each Gram polynomial, as explained in what follows.

The polynomial projection mentioned in step (1) above for the
function values on D, and Dy (cf. [45]) relies on use of a basis B,
(resp. By), called the Gram basis, of the space of polynomials of
degree < d, (resp. d;) on the interval [1—&,, 1] (resp. [b, b+ §,])
which is orthonormal with respect to the discrete scalar product
(-, -)r (resp. (-, -)¢) defined by the discretization points D, (resp.
Dy):

(g h) = ) gxh(x),

X;i€Dr

(B.1)

with a similar definition for (g, h),. The values of the resulting
orthogonal polynomials at the discretization points in D, (resp.
Dy) can be easily obtained by evaluating the QR factorization of
the corresponding Vandermonde matrix. In view of the orthogo-
nality property of the Gram polynomials, any given function can
easily be projected onto the polynomial space directly via scalar
product with each one of the orthogonal polynomials—for which,
conveniently, only the function values at the Cartesian discretiza-
tion points are required. Thus, the use of the Gram polynomial
basis makes it easy to produce highly accurate approximations
of various orders r of accuracy, by polynomials p, whose values
can be explicitly computed by means of certain well-conditioned
linear algebra operations.

The algorithm also utilizes precomputed extensions, one for
each polynomial in the Gram basis, into a smooth function de-
fined for x > 1 — §, which approximates p, closely in the
matching interval [1 — §;, 1], and which blends smoothly to zero
for x > b. The rightward extensions, for example, are constructed
as appropriately oversampled least squares approximations by
Fourier series of periodicity interval [1 — §;,2b — (1 — §;)].
Utilizing such smooth blending functions the algorithm proceeds
to step (2): The evaluation of an extension from the function
values at the set of points D, U D,. This is achieved, simply, by
projection of the given set of function values onto the polynomial
basis, followed by extension via the aforementioned rightward
and leftward extension of Gram polynomials. With the exten-
sion in hand, an application of the discrete Fourier transform on
the interval [0, b] to the vector of function values f augmented
by the C “continuation” values yields the desired trigonometric
polynomial

M
FR =) ae® ™ st fix)=fx), i=0,...,N-1. (B2)
k=—M

For efficiency, the discrete Fourier transform is implemented by
means of the Fast Fourier Transform (FFT).

The resulting continuation operation can be expressed in a
block matrix form as

r~[i-[i]

where f* is a vector of the N+C continued function values, I is the
N x N identity matrix and A is the matrix containing the blend-
to-zero continuation information. Defining the vector of matching
points for the left and right as

T T
fo=(fo.fi.. Sa—1) o £ =(afvdr1s .- fuo1) . (BA)
the matrix A can be expressed in the form
Af = AQ/f + AQ (B.5)

where the columns of Q, and Q, contain the d,, d: point values
of each element of the corresponding Gram polynomial basis,
and where the columns of A, and A, contain the corresponding
C values that blend the polynomials in the left and the right
Gram bases to zero. This step, which is responsible for all the
ill conditioning in the continuation problem, can advantageously
be performed as a precomputed operation, in high-precision ac-
curacy, to produce a small re-usable set of parameters (a set of
numbers proportional to both the number of Gram polynomials
and extension points used—e.g., 231 numbers in our case), which
can be utilized for continuation of arbitrary functions with negli-
gible ill conditioning; full details in these regards may be found,
e.g., in [55, Sec. 3.1].

(B.3)
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