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Abstract—We consider the problem of interlink optimization in multilayer interdependent networks under cost constraints, with the
objective of maximizing the robustness of the network against component (node) failures. Diverting from the popular approaches of
branching process based analysis of the failure cascades or using a supra-adjacency matrix representation of the multilayer network
and employing classical metrics, in this work, we present a surrogate metric based framework for constructing interlinks to maximize the
network robustness. In particular, we focus on three representative mechanisms of failure propagation, namely, connected component
based cascading failure [1], load distribution in interdependent networks [2], and connectivity in demand-supply networks [3], and
propose metrics to track the network robustness for each of these mechanisms. Owing to their mathematical tractability, these metrics
allow us to optimize the interlink structure to enhance robustness. Furthermore, we are able to introduce the cost of construction into the
interlink design problem, a practical feature largely ignored in relevant literature. We simulate the failure cascades on real world networks
to compare the performance of our interlinking strategies with the state of the art heuristics and demonstrate their effectiveness.

Index Terms—Multilayer failure propagation, cost constrained optimization, network robustness, interdependent networks.

1 INTRODUCTION

Interdependent networks comprise multiple network layers,
where the components of different layers are dependent on
each other for their functioning [4, 5]. Over the past few
years, interdependent networks have emerged as a topic
of broad and current interest due to their applications in
diverse areas, for instance, smart grids for power distribu-
tion [1], with interdependent network layers of power sta-
tions and communication routers; infrastructure design to
control traffic congestion [6] in multi-modal transportation
systems, where the different modes of traffic constitute the
network layers; and recommendation systems [7], where
various social networks in which the users are active, like
Facebook and Twitter, are considered as the interdependent
layers. The fundamental phenomenon distinguishing multi-
layer networks is the back-and-forth propagation of failures
across the interlinks between the network layers, popularly
named cascading failure. This recursive cascade of failures
can increase the susceptibility of interdependent networks
to node failures compared to their isolated constituents.
Our objective in this work is to optimize the design of
the interlinking structure between isolated network layers,
maximizing the robustness of the resulting interdependent
network against failure cascades.

1.1 Motivation

Research interest in interdependent networks is largely at-
tributed to the seminal paper by Buldyrev et al. [1], where
the authors study a connected component based mechanism
of failure propagation in a two-layer interdependent net-
work. Subsequently, the failure cascades corresponding to
this mechanism have been studied on more general network
structures [8, 9]. These works extend classical results from
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branching processes [10] and percolation theory [11] to mul-
tilayer interdependent networks, revealing the relationship
between the network robustness and the degree distribution
of the constituent nodes. To the best of our knowledge,
this is the only rigorous model that can track the failure
cascades in multilayer networks. This branching process
(BP) based framework relies on several assumptions. In
particular, the system equations tracking the robustness are
exact for infinite trees and only node degree information
is considered, i.e. nodes of the same degree are considered
to be statistically equivalent. Although simple graph gener-
ators, like the Erdos-Renyi model, lead to locally tree-like
networks, i.e. the local neighborhood of a node has a loop
with vanishing probability, many topologies encountered
in the real world can be dramatically different. Complex
topological features, like clustering, community structure,
etc., have been shown to cause non-trivial effects on the net-
work dynamics. Modification of the classical BP framework
to account for non tree-like structures is an area of active
research [12, 13, 14]. However, extending these works to
devise multilayer network design strategies is challenging
due to the complexity of the mathematical equations track-
ing the robustness. It is important to note that even after
the topological simplifications and degree-based character-
ization of nodes, the BP approach leads to self-consistent
equations of robustness, which typically do not admit closed
form solutions and are usually solved numerically. This lack
of amenability to mathematical analysis severely restricts
the applicability of the BP approach to practical network
design problems involving large networks and complex
topologies. In addition to the connected component based
mechanism of failure propagation, other mechanisms of
failure propagation have also been proposed in literature.
However, studying these complex mechanisms by the BP
approach is a laborious task. Some recent works [2] have
made considerable progress in this area but the practicality
of such results from the perspective of devising network



design strategies is debatable, owing to the computationally
expensive iterative computation of the robustness. We argue
that while a rigorous modeling of the failure cascades in
multilayer networks is of significant theoretical importance,
it is unclear whether pursuing this avenue of research will
lead to practical network design guidelines.

We can conclude from the above discussion that the
computation of robustness via an exact characterization
of the failure cascades is not possible for most practical
applications. To circumvent this problem, researchers have
used various network properties as indirect measures of
robustness, for example, algebraic connectivity [15], number
of spanning trees [16], and total effective resistance [17].
For the robustness of networks against component failures,
most works [15, 18, 19] adopt the algebraic connectivity
metric, defined as the second smallest eigenvalue of the
supra-adjacency (SA) matrix representation of the multi-
layer network, where all links (inter- and intra-layer) in
the multilayer network are stacked together: diagonal (off-
diagonal) blocks indicating interactions inside (across) lay-
ers. The algebraic connectivity (A\2) of a network is closely
related to its partitioning and synchronization properties
[20]. However, in the context of diverse mechanisms of
failure propagation in multilayer networks, it is not clear
whether Ay can effectively characterize the robustness. In
fact, we present simulation results indicating that such
metrics cannot capture the robustness for the mechanisms of
failure propagation considered here. Additionally, the met-
rics based on the SA matrix are agnostic to the attack models
or the propagation mechanisms. One of the most important
ideas which we aim to elucidate through this paper is
that the mechanism of failure propagation can significantly
affect the robustness and network design guidelines do not
generalize across these diverse mechanisms. This warrants
the development of new metrics of robustness fine-tuned to
particular mechanisms. Furthermore, these metrics should
be amenable to mathematical analysis to allow us to develop
network design guidelines.

To summarize, the BP approach captures the true nature
of the failure cascades but is limited in its applicability due
to the complexity of the self-consistent system equations,
whereas the SA matrix approach leads to tractable metrics
of robustness but is agnostic to the propagation mecha-
nism. This motivates us to develop novel metrics that can
characterize the robustness of multilayer networks against
different mechanisms of failure propagation.

1.2 Our Contribution

The main contribution of our work is to introduce math-
ematically tractable metrics of robustness, which can be
utilized to optimize the interlink structure of multilayer
networks. As these metrics are not based on a rigorous
modeling of the failure cascades, we refer to them as sur-
rogate metrics of robustness. They were designed by study-
ing the dynamics of the failure cascades for the different
propagation mechanisms. These metrics are shown to vary
monotonically with the empirical measure of robustness for
both theoretical and real-world network structures. This
monotonic relationship ensures that the maximization of
the robustness can be achieved by the maximization of
these metrics. Furthermore, the surrogate metrics enable
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us to consider practical design constraints with the cost of
interlink construction, which has been largely overlooked
in multilayer network design. The goal of this work is to
optimally distribute a total budget for interlink construc-
tion, so that the robustness of the resulting interdependent
network against different mechanisms of failure propaga-
tion is maximized. For three representative mechanisms,
namely, i) connected component based cascading failure,
ii) load distribution in interdependent networks, and iii)
connectivity in demand-supply networks, we define our
surrogate metrics and pose the design of interlinks as a
convex optimization problem. Due to the tractable metrics,
this optimization problem can be readily solved to obtain
the budget allocation maximizing the proxy measures of
robustness. Through extensive simulation experiments on
real-world networks, we show that the surrogate metric
based interlink design outperforms the state of the art
heuristics.

The remainder of this paper is organized as follows.
Section 2 introduces the preliminaries for this study. Section
3 contains the main contribution, including the deficiency of
existing approaches, the surrogate metric based framework
for optimizing interlinks, and an algorithm for learning the
optimal allocation of resource distributively. We compare
our interlinking strategies with the existing heuristics in
Section 4. Finally, we conclude our work in Section 5 and
indicate future avenues of research.

2 PRELIMINARIES

In this section, we introduce our system model and discuss
existing approaches for characterizing the robustness of
multilayer networks. Finally, we describe the three repre-
sentative mechanisms of failure propagation considered in
this work.

2.1

Let us represent a network layer by G = (V, E'), where V and
E CV xV are the set of nodes and intra-layer (undirected)
edges, respectively. We consider a two-layer interdepen-
dent network G=(G4,Gp, E) where G4 = (V4, E4) and
Gp=(Vp, Ep) are the constituent layers with [V4| =m and
|Vi| = n. Our control variable E C V4 x Vp represents the
weighted interdependence structure between G4 and Gp.
We assume that the cost structure, explained next, and the
isolated network topologies (G 4,Gp) are known and our
objective is to design the inter-layer links () to maximize
the robustness of G.

Most practical network design problems are constrained
by the availability of resource, where heterogeneous costs
are associated with the construction of different links. De-
signers strive for the optimal allocation of resources for
interlink construction under such cost constraints. Resource
constraints have received limited attention in network de-
sign literature, although simplified cost structures [18], lim-
iting the total number of interlinks, have been studied. We
consider a general cost structure given by:

wy = r(xz), 1)

where [ € {1,2,--- ;mn} indexes the interlinks, and r :
Rt — RT is the mapping from the allocated resource (z;)
to the interlink weight (w;). We assume r to be increasing,
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concave and differentiable with respect to (w.r.t.) 2; with
the additional constraint that 7(0) = 0. It is not difficult to
see that these assumptions occur frequently in practice and
are also supported by economic theories, like diminishing
returns and marginal utility. Our interlink optimization
framework is applicable for any r satisfying these criteria.
We provide results for two specific choices of r to serve as
examples. Note that the interlink weights have been defined
as unbounded positive real numbers. The physical inter-
pretation of the weight can differ for various mechanisms
of failure propagation and for particular cases, bounded
weights might be necessary. The cost structure r is defined
accordingly for such cases.

Given a total budget b, our goal is to optimally distribute
it among all possible interlinks, maximizing the robust-
ness of the constructed interdependent network. The vector
X = [21 Tmn)? € R™M™*! denotes the resource allocation
strategy, specifying the resource allocated to all mn inter-
links. The cost structure (1) maps the allocated resource x to
the interlink structure E(x). Let G(x) denote the resulting
interdependent network, where G(x) 2 (Ga,Gp, E(x)).
Robustness can be intuitively understood as the resilience
of the network against node failures, although exact def-
initions might vary across applications. Let ¥ (G(x),n)
denote the robustness of G(x) against cascading failures,
where M specifies the failure propagation mechanism and
71 denotes the infection strength, defined as the fractional
size of the nodes comprising the initial infection. The choice
of the failure seeds is dependent on the attack model:
the randomized attack arbitrarily chooses nodes, whereas
the targeted attack preferentially chooses nodes based on
some topological measure of centrality. Recent works [21]
have identified the targeted attack based on betweenness
as an extremely disruptive strategy. Due to this reason, we
consider the betweenness-based targeted attack model for
the results presented here, where an attack strength of 7 im-
plies that 7 fraction of nodes with the highest betweenness
centrality measure comprise the infection seeds. In addition
to this, we also study the degree-based targeted attack and
the randomized attack models. The results corresponding
to these two attack models are presented in the supplemen-
tary material. Adhering to classical models [1], the initial
infection is assumed to occur in layer A and the robustness
is defined by the surviving fraction of nodes in layer B.
Similar to works like [1, 22], we define the robustness of the
multilayer network as follows.

Definition 2.1. The robustness of an interdependent network
G(x)=(G4,Gp, E(x)) against an attack strength n) for a failure
propagation mechanism M, is defined as the fraction of nodes
in layer B which survive the failure cascades triggered by the
removal of 1 fraction of nodes from layer A. We represent this
robustness by v (G(x),n).

2.2 Existing Approaches
2.2.1 Branching Process (BP)

Extending classical works in branching processes [10] and
percolation theory [11], researchers have been able to track
the cascade of failures among the interdependent layers in
multilayer networks. These works present equations map-
ping the degree distribution of the nodes of G(x) to the
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network robustness 1M1 (G(x),7) for the connected com-
ponent based cascading failure mechanism, represented by
M. Under simplistic assumptions, such as, locally tree-like
topology, infinite-sized networks, arbitrary interlinking and
the randomized attack [1, 23, 24], the robustness is related
to the degree distribution by inter-coupled self-consistent
equations of the form:

ea(@n) =n- fi(¥a(@n),vp(Gn).dads) @
65(G,m) = f>(a(G0), p(G.n). dards), @)

where ¢4 and ¥p are the fractional size of surviving
nodes in the two interdependent layers, d4 and dp are
the degree distribution of the two layers, and 1 denotes
the attack strength. f; and f, are inter-coupled functions,
whose details can be obtained from the references. The
multiplicative factor 7 appears only in (2) due to the attack
strategy, which only affects layer A. Although (2)-(3) can
be solved for simple topologies, an iterative solution is
required for most real-world applications. Thus, even under
the simplified settings, the BP approach involves numerical
computation of the robustness, requiring global information
about the network topology and the failure spreading dy-
namics. When realistic conditions, like weighted interlinks
and heterogeneous costs associated with interlink construc-
tion, and more advanced problems, like the optimization
of the interlink structure, are considered, pursuing the BP
approach does not seem promising.

2.2.2 Supra-Adjacency Matrix (SA)

The mathematical complexity of the BP approach resulted
in the development of various metrics, which can ap-
proximately characterize the robustness of networks. These
metrics of robustness utilize the supra-adjacency matrix
[19] representation. The SA matrix for an interdependent
network G(x) = (G4, Gp, E(x)) is defined as:

_ (A1) mxm E(X)
A BT (An)wen)” @

where A; and Ay are the adjacency matrices of the con-
stituent layers G4 and G, respectively, and E(x) € R™*"
is the interlink structure. In the context of robustness of
networks against component failures, the most popular
metric is the algebraic connectivity, defined as the second
smallest (smallest non-zero) eigenvalue of the Laplacian L.
The Laplacian matrix (L) of A is given by: L = D — A,
where D £ diag(A1), here 1 is the all-one column vec-
tor, and diag(v) is a diagonal matrix with entries from
v = [v1,v2,"*+ ,Umin|T. The surrogate measure of robust-
ness of the network is expressed as Az(L(x)). The relevance
of Ay to the network robustness stems from its relationship
to vertex and edge connectivity, uncovered in the classical
work [20] and its later extensions. The impact of Ay on
network dynamics is a mature area with decades of research
studying it. However in the context of multilayer networks,
we argue that the role of Ay as a metric of robustness is
much less understood. This is because there is a fundamen-
tal difference between robustness problems on single and
multilayer networks: cascading failure. In the former, ro-
bustness is a single step process, whereas the latter involves
recursive propagation of failures among the interdependent



network layers. Until any relationship between the algebraic
connectivity of a multilayer network and its robustness is
established, the use of )y as a universal metric of robustness
is debatable.

2.3 Failure Propagation in Interdependent Networks

We study three representative mechanisms in this work.
Although this is not an exhaustive list, to the best of our
knowledge, most failure spreading mechanisms considered
in literature can be thought of as variations of these.

2.3.1 Connected Component based cascades (M)

This is the most popular model for cascading failure in
interdependent networks. Under this mechanism [1], node
failures can occur in two ways: i) by not belonging to the
largest connected component in its own layer, or ii) by
failure propagated from the other layer(s) through the inter-
links. At each stage of the cascades, the nodes isolated from
the largest connected component become non-functional
and these failures propagate to the other layer through
the interlinks. We consider a generalized version of this
model involving weighted interlinks, where link weight (w;)
represents the probability of propagation of failure across
an interlink. Classical models consider w; = 1, implying
perfect propagation of failure among inter-layer neighbors.
It is easy to see that M, involves both local and long-
range propagation of failure. The long-range propagation
is due to the first condition, where only the constituents of
the largest connected component are assumed to survive.
If a node failure partitions the network into disconnected
components, all but the largest component are assumed to
fail according to M. The local propagation arises from the
second condition, where failure of a node can lead to failure
of its inter-layer neighbors conditioned on the interlink
weight.

2.3.2 Load Distribution in Interdependent Networks (M)

Interdependent load distribution has recently attracted re-
search interest due to its diverse applicability. In power
distribution networks [25], the load of a station is offloaded
to its neighbors upon failure. In multilayer transportation
networks [26], a load distribution model is used to emulate
multi-modal (e.g. airways and railways) traffic to study
congestion, where upon failure of an airport, its traffic
is redirected to neighboring airports and railway stations.
Although the system models for these different applications
have slight differences, the underlying principle is similar.
Upon failure, the load of a node is fractionally offloaded
to its neighbors, proportional to the link weight. A node
fails when its current load, comprising the initial and the
offloaded load, exceeds its capacity. Following the model
in [2], we restrict My to local propagation, where the
load of a node is offloaded only to its intra- and inter-
layer neighbors upon failure. Note that this restriction only
applies to this mechanism. M; and M3 involve both local
and long-range propagation of failures. Depending on the
particular application, the load of a node in a network can
be defined in many ways. It is popularly defined in terms
of some topological information, such as degree [2, 27, 28]
or betweenness [29, 30]. We proceed with the degree-based
definition in this work. Due to the lack of works studying
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load distribution in multilayer networks with weighted in-
terlinks, we extend the single layer model in [2] to multiple
layers using ideas from [31], which considers a simplified
model involving uniform distribution of the inter-layer of-
floaded load. We present the mathematical details of My in
the supplementary material.

2.3.3 Connectivity in Demand-Supply Networks (M)

Interdependent demand-supply networks have recently
come to the attention of researchers [3]. These networks
comprise a supply and a demand layer, where supply nodes
feed the demand nodes to maintain their functionality. Let
the supply rate of node a € V4 be denoted by s,. Let the
survival threshold of the demand node b € Vg, defined
as the minimum supply required for its functioning, be
denoted by t;. A demand node b survives if the following
conditions hold: i) total supply available at b exceeds the
threshold, i.e. >, wapsq > tp, where wy;, is the weight of
the interlink between a and b; and ii) b belongs to the largest
connected component in the demand layer G'. [3] studies
a simplified version of this model, where w;, is binary and
sq=1p=1,Va, b. We model the supply rate of each node (s,)
to be equal to its intra-layer degree. Note that M3 involves
unidirectional dependence, since the supply nodes are not
affected by the failed demand nodes. This is in contrast
to the previous cases with back-and-forth propagation of
failures. This difference in the interlink functionality leads
to distinct properties, discussed in Section 4, that are not
observed for M; and M.

It is easy to see from the above discussion that mech-
anisms of failure propagation can be dramatically differ-
ent from each other. Even for multilayer networks with
identical intra-later topology, interlink structure and initial
infection seeds, distinct mechanisms can lead to significant
differences in the fraction of nodes surviving in the steady
state. We have illustrated this for a toy example in the
supplementary material. Since the illustration requires a
detailed description of the propagation mechanisms, we
do not include it in the main document for brevity (see
Appendix A). The main idea we want to highlight is that
mechanisms of failure propagation strongly affect the ro-
bustness of multilayer networks and thus, effective met-
rics of robustness should be dependent on the particular
mechanisms. In other words, a universal metric, capable of
characterizing the robustness of networks against different
mechanisms of failure propagation while easy to work with,
does not exist.

3 MECHANISM BASED INTERLINK OPTIMIZATION

We start this section by formally defining the cost con-
strained robustness maximization problem. Next, we dis-
cuss the deficiency of the existing approaches for charac-
terizing the robustness. Finally, we introduce our surrogate
metrics and utilize them to solve the maximization problem
to obtain the optimal allocation of resources for the construc-
tion of interlinks. We also present an algorithm for learning
this resource allocation strategy distributively.



3.1 Problem Statement

The interlink optimization problem can be written as:

maximize (G(x),m) )

subject to 1"x =b, and x = 0,

where x € R™"*! denotes a resource allocation strategy
and b is the total available budget. ¥ (G(x), 7) represents
the robustness of G(x) = (G4, Gp, E(x)) against an initial
failure of strength 7 for a failure propagation mechanism
M. The mapping between x and E(x) is given by the
cost structure r following (1). In (5), the first constraint
specifies the budget and the second constraint restricts the
allocated resource to be non-negative. Note that the budget
constraint has been specified as an equality. Let us con-
sider a particular example to explain the intuition behind
this. Interlink weights in M represent the probability of
propagation of failure across the interconnected layers. Since
inter-layer failure cascades cannot occur without interlinks,
PpM1(G(x),n) is maximized at x = 0. It is easy to see
that x = 0 corresponds to a non-functional interdependent
network. For instance, in smart grid for power distribution,
although the absence of interlinks between the power and
communication network layers eliminates the possibility of
failure cascades, it compromises the fundamental property
of interdependent networks: the interdependence. In such
cases, if the budget for the interlink construction is con-
strained by an inequality (17x < b), the network design
problem can produce trivial solutions. Due to this reason,
we specify the budget constraint as an equality to ensure
the inter-connectivity among the network layers. For spe-
cific mechanisms of failure propagation, like M3, where
M (G(x),n) is increasing in the elements of x, the solution
to (5) also solves the case where the budget is specified as
an inequality.

3.2 Deficiency of Existing Approaches

The two approaches for estimating the robustness are: i) the
branching process (BP) approach, involving the mathemati-
cal modeling of the true nature of the failure cascades; and
ii) the supra-adjacency (SA) matrix approach, involving the
SA matrix representation and employing classical metrics,
like algebraic connectivity, as the heuristic measures of
robustness. In the following, we discuss the shortcomings
of these approaches in characterizing (G (x), 7).

3.2.1 Branching Process (BP)

The development of rigorous mathematical models describ-
ing ¥ (G(x),n) as a function of x for a general mecha-
nism of failure propagation and a general cost structure
is a daunting task. Although (2)-(3) allow us to compute
the robustness through numerical iterations under certain
conditions, it is unlikely that such equations can be utilized
to solve cost constrained robustness optimization problems.
Additionally, the BP approach is fundamentally limited by
its reliance on the locally tree-like topology and only degree-
based topological information.

Due to the difficulties in tracking the failure cascades for
the distinct mechanisms, an alternative approach might be
to devise various degree-based interlinking strategies and
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Figure 1: Deficiency of traditional approaches: a) Variation
of 1 over different degree based interlink structures b)
Variation of Ay with ).

verifying their performance through simulations. Mono-
tonic and anti-monotonic interlinking have been identified
as favorable strategies under certain conditions, by both the-
oretical [23] and simulation based studies [32]. The mono-
tonic (anti-monotonic) strategy interlinks the ¢th highest de-
gree node in layer A to the ith highest (lowest) degree node
in layer B, ties broken randomly. The simulation results are
presented in Fig. 1a, where the two constituent layers and
the infection seeds are fixed and the network robustness
M (G(x),n) is plotted for various interlinking strategies
at n = 0.1. Qualitatively similar results were observed for
other values of 7. We re-scale i) for each mechanism, so
that the values vary between 0 (minimum robustness) and 1
(maximum robustness) for all cases. We simplify our system
model to focus on the impact of different interlinking struc-
tures. We assume that G(x) = (G4, Gp, E(x)) comprises
layers of same size (|V4| = |Vg| = n), generated by the
Erdos-Renyi model. The interlinking structure is complete
one-to-one, where each node a € Vj is interlinked to a
unique node b € Vp. We consider the simplest cost structure
(linear and binary), where w; =x; and z; is a binary variable
indicating the presence or absence of the [th interlink. These
assumptions reduce the domain of x from the continuous
space R™"*! to the discrete space comprising all permu-
tations of n indices. Note that these assumptions on the
network structure are not enforced when we evaluate the
performance of our interlinking strategies on real world net-
works in Section 4. To explore different degree-based inter-
linking strategies, we consider partially ordered monotonic
and anti-monotonic interlinking. In Fig. 1a, an z-coordinate
of +0.6 indicates that 60% of the interlinks in the network are
constructed monotonically, where the positive z-coordinate
denotes monotonicity, while the remaining 40% interlinks
are constructed arbitrarily. The = coordinates denote the
interlinking strategies while the y coordinates denote the
average robustness over 500 independent instances of the
interlink structure. It can be observed that no interlinking
strategy is optimal for all cases, and in fact our simula-
tion tests reveal that the maxima varies with 1 as well.
Thus, degree-based interlinking structures cannot be used
to characterize the robustness of networks against the three
representative mechanisms.

3.2.2 Supra-Adjacency Matrix (SA)

Under this approach, the robustness of the network is
measured by applying classical metrics to the SA matrix
representation of the multilayer network. An important
drawback of this approach is that the measure of robustness
is only affected by the network topology. As a result, this ap-



proach is agnostic to the mechanisms of failure propagation
as well as the attack models.

Let us evaluate the performance of algebraic connectivity
(A2) as a metric of robustness. In Fig. 1b, we compare
A2 to the empirical robustness ¢ (G(x),n) for different
interlinking strategies under the three mechanisms. Note
that the y coordinates represent the re-scaled values of Ag,
where the absolute values of Ay corresponding to the three
mechanisms are re-scaled to the range [0,1]. This operation
was employed to improve the readability of Fig. 1 as the
ranges of 1 and A, for the different cases vary significantly.
The interlinking structures and infections seeds are the same
as that in Fig. 1a. For a metric to characterize the robustness,
it should be monotone with 1 for all interlinking structures
x. Note that the simplifications of the cost structure lead
to the equivalence between the resource allocation strategy
and the interlink structures, i.e. w; = x;. A monotonic rela-
tionship ensures that the maximization of ¢ can be achieved
by maximizing A,. This requirement is not satisfied in Fig.
1b, implying that Ay is not an effective metric for mea-
suring the robustness of networks against the mechanisms
of failure propagation considered in this work. It can be
observed from Fig. 1b that for all three mechanisms, the
joint maximization of 1) and Ag is never achieved. In fact, the
robustness for each mechanism is maximized at a different
value of Ay, which again is dependent on 7. This highlights
a key aspect of our work, that the robustness of networks
against various mechanisms of failure propagation is maxi-
mized under different interlinking strategies and a universal
metric of robustness, like Ay, is not viable.

3.3 Surrogate Metrics of Robustness

Complexity of the BP approach limited its applicability to
study the robustness of networks against general mecha-
nisms of failure propagation. Employing universal metrics
of robustness, like Ag, is also not a promising direction due
to the non-monotone relationship to 1. Furthermore, Fig.
1 demonstrated that the maximization of the robustness
occurs at different interlinking strategies for different mech-
anisms, discouraging the search for other universal metrics.
This motivates us to develop new metrics of robustness
specific to each mechanism. These metrics, represented by
f(x), were designed by studying the failure cascades
for the representative mechanisms. Simulation experiments
reveal that the proposed metrics vary monotonically with
the empirical measure of robustness for different values of
attack strength () under all three mechanisms. This allows
us to remove the dependence on 7 from the surrogate
metrics. Using these metrics, our interlink design problem
(5) becomes:
maximize f3!(x)
* (6)

subjectto  17x = b, and x = 0.

Our objective in this work is to devise surrogate metrics
f(x) that are monotone with the empirical value of ro-
bustness 1/ (G (x)) for each mechanism M. Additionally, if
the surrogate metrics are concave in the resource allocation
strategy x, then (6) becomes a convex optimization problem
due to the affine constraints, allowing us to utilize the rich
literature [33] studying it.
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To summarize, we intend to design f§*!(x) for each rep-
resentative mechanism that are: i) monotone with the empir-
ical values of robustness, to serve as a surrogate measure of
robustness; ii) concave in x, in order to pose the robustness
maximization as a convex optimization problem; and iii)
amenable to mathematical analysis, so that we can solve
(6) to obtain interlink design strategies. In the following, we
propose a family of surrogate metrics that can be utilized to
study the robustness against various mechanisms of failure
propagation. Later on, we choose specific metrics from this
family, corresponding to the particular mechanisms studied
in this work. The family of surrogate metrics can be written

as: mn
f({w(x) = Z}—M(r(ml)le/Vl)? @)
=1

where r(x;) is the weight (w;) of the [th interlink, Dl/"l
represents the contribution of interlink / towards enhancing
network robustness, and FM is some function of these
arguments. Note that a particular metric from this family (7)
is specified by two factors: i) D/, capturing the importance
of the [th interlink; and ii) the function F M 1In this work, we
show that even straightforward definitions of D/ and F™
can produce metrics which can track the robustness for the
representative mechanisms and lead to better interlinking
strategies than existing heuristics. In this work, we choose
different models for 7™ and DM to illustrate that there
is no universal format for the surrogate metrics. Although
different metrics of robustness might lead to different per-
formance gains, we intend to elucidate through this work
that even simple choices of these metrics can lead to a
significant gain in performance. A comparative study on the
performance of different metrics for the same mechanism of
failure propagation is an important avenue of research and
beyond the scope of this work.

Next, we define the surrogate metrics corresponding to
the three representative mechanisms and solve (6) to obtain
the resource allocation strategy maximizing them. Interest-
ingly, the surrogate metric based framework is amenable
to distributed optimization and we present an algorithm
that can learn the resource allocation strategy through local
exchange of information among the nodes.

3.3.1 Connected Component based cascades (M)

The basic idea behind the metric for this case is the observa-
tion that anti-monotonic ordering, where the ith highest de-
gree node in layer A is coupled to the ith lowest degree node
in layer B, outperforms the monotonic and the random
ordering for the case of the degree-based targeted attacks
[23, 34]. Although this observation was made under the
degree-based attack model, our simulation studies reveal
that similar results hold for the betweenness-based attacks
as well. Intuitively, since the attacker chooses nodes of
high betweenness (more important nodes), coupling them
to nodes of low betweenness (less important nodes) checks
the spread of failures. Using a multiplicative combination
(FMi(z,y) £ 2y), our metrigmc)an be written as:

3 (x) =D r(x) DM (8)
=1

Since we want to preferentially construct interlinks between
nodes of high and low betweenness, DlM1 is modeled to
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Figure 2: Plot of the surrogate metric values with the empir-
ical network robustness for different mechanisms.

have a high value, when the betweenness difference be-
tween the endpoints of [ is large. As féwl(x) in (8) is a
weighted sum of the DlMl values, maximizing it is equiv-
alent to allocating more resource on interlinks with higher
DlMl. Note that DlMl can be defined in many ways as long
as its value increases with the betweenness difference, for
example:

o DM = |bja — 5| (absolute),

e DM =exp(—|ba — bys|~t) (exponential),
where b; is the intra-layer betweenness of 7, and ZA,lB
are the two end-points of the [th interlink. Note that the
proposed network design strategies hold for any arbitrary
definition of D, as long as it is decoupled from the inter-
link structure, i.e. D! is not a function of x. We consider
the absolute modeling of DlM1 here.

The next logical step is to ascertain how well our
proposed metric, given by (8), captures the robustness.
The plots in Fig. 2a compare the true network robustness
YM1(G(x),n) with the metric values f{!' (x) for different
interlinking structures, taking 7 = 0.1. We consider theoreti-
cal graph generation models along with real world networks
as the intra-layer topologies. The real networks are chosen as
practical candidates for interdependent networks following
the representative failure propagation mechanisms. This
is discussed further in Section 4. Each point reflects the
average empirical robustness (z co-ordinate) and average
metric value (y coordinate) over 500 independent instances
of interlink structures. It can be observed that the surrogate
and the empirical measures of robustness, fi''(x) and
Yp™M1(G(x),n), respectively, are correlated monotonically.
This behavior allows us to substitute the maximization
of the intractable 11 (G(x)) with the maximization of

21 (x), which is a much simpler problem. The concavity
and mathematical tractability of fé\/tl (x) allows us to further
incorporate the cost of construction of interlinks into the
interlink design problem. In order to solve the robustness
maximization problem (6), we need to specify our cost
structure r. We remind the reader that we assume r in
(1) to be increasing, concave and differentiable. For M;,
let us choose a shifted sigmoid modeling for r, given by

r(z) = ﬁ — 1, where the weight of an interlink
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constructed by an investment of x; resource is determined
by the quality parameter o; € [0, 1], governing the ease
of construction of the /th interlink, i.e. interlinks with low
values of «; are expensive to construct. Note that the shifted
sigmoid representation upper bounds the interlink weight
to 1. This satisfies the physical interpretation of the interlink
weight as a probability, for the case of M. Under this cost
structure, we can utilize the KKT conditions to solve the
convex optimization problem (6) to obtain the following
closed form solution for the resource allocation strategy:

a D, Dy %
(% Al ")
)

Dy JauDp ok
\/ 2 \/ 2 v

where z7 is the optimal resource allocated to the /th inter-
link, o is the interlink quality parameter, v* is the optimal
value of the equality constraint multiplier v, and Dy, i.e.
DlMl, denotes the absolute modeling of the importance of
the [th interlink. The mathematical details are presented in
the supplementary material. It can be observed from (9) that
a small v* (close to 0) implies that a non-zero resource is
allocated to most interlinks in the optimal condition, thereby
indicating a strong interaction between the interdependent
layers. v* can be computed through binary search by substi-
tuting (9) into the budget constraint ), 2} =b. A distributed
algorithm for obtaining this solution is presented in Algo-
rithm 1.

3.3.2 Load Distribution in Interdependent Networks (Ms)

We adopt a logarithmic modeling of F for this case, where
FMz(z, y) £ log(x + y). The surrogate metric of robustness
for this mechanism of failure propagation can be written as:

, 1
x) = a—llog

)

02 (x) = Y _log(D}"* + r(x1)).
=1

(10)

This kind of modeling is widely adopted in information
theoretic studies [35], where it is desirable to allocate power
optimally to different communication channels to maximize
the throughput. The DlM2 term in (10) corresponds to the in-
terference in each channel, while the 7(x;) term corresponds
to the allocated power. For interlink [ that enhances the
network robustness, the value of Dle should be low indi-
cating a low-noise (high-quality) wireless channel to which
more power (resource) should be allocated. On the contrary,
high interference channels should receive less power. The
logarithmic modeling of F prefers links of low DlM2 as
opposed to the multiplicative case.

In order to define DZMQ, let us develop a better under-
standing of the failure cascades. We define the free space
of a node i as S; £ C; — L;, where C; and L; denote
the capacity and load of the ith node, respectively. Since
a node fails when its current load exceeds the capacity,
the difference between the capacity and load denotes the
additional space available to handle the load offloaded from
neighbors. Following [36, 37], it can be conjectured that
interlinking nodes of low free space to nodes of high free
space is a good strategy. This is intuitive as nodes of high
free space can handle the load offloaded from nodes of low
free space upon failure. By coupling the nodes which are
most likely to fail to the nodes which are best at handling



failure, we check the spread of failures thereby enhancing
robustness. We can define DiM ? as:

e DM2 =S4 — S5|! (absolute)
. DZMZ’ =1—exp(—|S;a — S;5|71) (exponential)

These definitions ensure that links connecting nodes with
high difference in free space are given preference. We use
the exponential modeling for this case. Simulation tests
presented in Fig. 2b reveal a monotonic relationship be-
tween f212(x) and ¢¥M2(G(x),n), validating the choice of
the metric. The optimal resource allocation under a shifted
sigmoid r is given by:

L1 | —Div* 4 o —|—\/0412 + 12 — 2Dy .
7= s (D~ 1) )- a

The details of the analysis is similar to the previous case
and is omitted for brevity.

3.3.3 Connectivity in Demand-Supply Networks (Ms)

Similar to the preceding case, a logarithmic modeling is used
for FMs, under which the metric can be written as:

m

000 = Stos [+ 3wt

where 7(x;;) is the weight of the interlink between nodes
1 € Vyand j € Vp, b; is the betweenness centrality
of the ith demand node, and s; is the supply rate of j.
Here, betweenness is used to measure the importance of
the demand nodes in maintaining the connectivity of the
demand network. As demand nodes of high significance
should receive more supply, the interference term (D:'%)
is modeled as 1/b;. Note that there exists a fundamental
difference between (12) and the load distribution metric (10).
Although both are based on a logarithmic modeling, the
interlinks for these processes perform different functions.
In My, interlinks offload load to their neighbors indepen-
dently. In M3, the demand node cares about the total supply
it receives and the interlinks cooperate in maintaining the
supply and are not independent. Due to this reason, the
proposed metric is not separable w.r.t. the interlinks indexed
by [ but is separable w.r.t. the demand nodes indexed by <.
Simulation studies (Fig. 2c) justify the choice of the metric.
We use a logarithmic modeling of the cost structure, given
by r(z;) = log(aqyz; + 1), where the parameter «; is the
quality parameter. We remind the reader that the various
settings of 7™, DM and r, are chosen so as to illustrate
the generality of the surrogate metric based framework. The
solution for this case can be written as:

12)

N 1 1
Tj; = max (0, (U b+ wl) o ), (13)
where wf £ Y% s;r(2};) is the total supply received
by the ith demand node. Note that unlike (9) and (11),
(13) is self-consistent, since the right hand side of (13) is
a function of z7;. This is due to the non-separability of
the objective function w.r.t. the interlinks. Unlike the closed
form expressions obtained in the previous cases, (13) is
solved by numerical iterations.

3.4 Algorithm

We present the basic framework for obtaining the resource
allocation strategy maximizing the surrogate metrics in Al-
gorithm 1. This algorithm can be theoretically applied for
any separable metric by varying the EB (evaluate budget)
block corresponding to the definitions of r, D' and F™M.
An important aspect of our work is that the interlinking
strategy can be obtained distributively, i.e. the constituent
nodes can locally exchange information to learn the resource
allocations maximizing the surrogate metrics. Distributed
implementation of network design algorithms has become
more of a necessity than a feature in recent years, as many
practical applications involve networks of large sizes for
which centralized algorithms are not feasible. We distribute
the decision of finding the resource allocation strategy for
each interlink to their end-points in layer A or B. Let us
define the algorithm w.r.t. layer A. Algorithm 1 runs on all
nodes a € V4 in order to compute the resource allocation
strategy, i.e. each node a learns the resource to be allocated
to all interlinks connected to it. The two main blocks of the

Algorithm 1 Optimal Resource Computation
procedure OPT_ALLOC(ct,G4,Gg,b, Awr)
p1 < 0, p2 < max(size(G4), size(Gp)), A  inf
while A > Ay, do

1:

2

3

s v m)?
5: b< >, EB(a;,v)
6.

7

8

9

if b > b then
P2 <V
else
: p1L <V
10: A [b—b|
11: x; < EB(y,v)
12: return x;, VI

distributed implementation are: i) broadcast, employed to
inform every node about the budget b and Ay, and ii) dis-
tributed consensus, employed in Step 5 to compute the sum
of the allocated resource. There exists extensive literature
[38, 39] studying the distributed implementation of these
operations. In Algorithm 1, the dual variable v is computed
at every node in Step 4 and the resource allocation strategy
corresponding to v is computed by the EB block, based on
the solutions (9), (11), and (13), respectively. The sum (b) of
the allocated resources is obtained by distributed consensus
algorithms. This sum is compared with b to update v in
Steps 6-9. This descent process is repeated, till a threshold
budget usage performance (|b — b| < Ay,) is achieved, to
estimate v*. Essentially, the algorithm learns v* via binary
search between pre-defined upper and lower limits. The
upper limit (p2) is dependent on the objective function. We
found that the maximum of the two network sizes works
for all three cases. The choice has a marginal effect on the
convergence time of v. Finally in Step 11, the EB block
computes the optimal resource z} for each interlink using
the optimal value of v.

4 SIMULATION RESULTS

We compare the performance of our interlinking strategies
with the state of the art heuristics for the three mechanisms



of failure propagation. We use Python and its associated
libraries for our simulations. We present simulation results
in two domains. Firstly, we simulate the failure cascades
for different strengths of attack (1) to compare the network
robustness 1™ (G(x),n) of various interlinking strategies,
under two different regimes of available budget b. Secondly,
we study the variation of performance gain of these inter-
linking strategies with the available budget b. Instead of
relying on theoretical graph generation models, we use real-
world networks for the layers G 4 and G'g. These real-world
networks have been chosen to serve as examples of practical
scenarios, where the representative mechanisms of failure
propagation might occur.

4.1 Performance of different interlinking strategies

The main roadblock in the way of comparing our strategies
to the existing heuristics is that since we consider a general
system model with weighted interlinks and include the
effects of interlink construction cost, similar models have
not been studied in relevant literature, to the best of our
knowledge. Most works that study the impact of interlink
structure, consider unweighted links and are agnostic to
the interlink construction cost. In order to provide a fair
comparison, we modify the state of the art heuristics to
incorporate cost. This is achieved by considering a linear
combination of the heuristics with the interlink quality
parameter «;. Let us assume that for each node a € A,
the heuristics rank the nodes b € B in some order. The
modified heuristics incorporate ¢; into this ranking scheme
in order to avoid spending resource on expensive interlinks
with small values of a;. Our experiments indicate that an
additive modification, where the modified rank for interlink
l is the sum of the original rank and «;, works best for the
cases considered here.

In the following set of results, we study the network
robustness under four interlink design strategies, or more
specifically, constrained resource allocation strategies: i) the
random resource allocation; ii) the state of the art heuristics,
based on existing works; iii) the modified state of the art
heuristics, considering interlink construction cost; and iv)
the surrogate metric based optimization, proposed in this
work. Distinct heuristics are used for the three distinct
mechanisms of failure propagation based on the relevant lit-
erature. We present the results under two different regimes
distinguished by the availability of budget: stringent, where
the resource availability is low and few nodes can be in-
terlinked; and sufficient, where the resource availability is
abundant and most nodes are strongly interlinked. Note
that the numerical values of the budgets is not the same
for all three mechanisms. These values were chosen to give
the reader a visually representative idea of the comparative
performance of the different resource allocation strategies at
both ends of the spectrum of available budget. The simula-
tion results for the variation of performance with available
budget is presented in Section 4.2. As defined in Section 2,
M (G(x),n) is measured by the fraction of nodes in Vp
that survive in the steady state after the cascade of failures,
initiated by an infection seed of size 1|Va4|. Qualitatively
similar results is obtained when the layer roles are reversed,
i.e. layer B is attacked and robustness is measured w.r.t.
layer A. Under the heuristic, the modified heuristic and the
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Figure 3: Connected component based cascading failure un-
der stringent (left) and sufficient (right) budget constraints.

random allocation strategies, the total budget is divided uni-
formly among all nodes, and then allocated to the highest
ranked inter-layer node.

4.1.1 Connected Component based cascades

Smart power distribution grids, involving interdependent
network layers of power stations and communication
routers, is a classical practical example [1] of M;. Under the
degree-based targeted attack, current art [23, 34] suggests
that anti-monotonic interlinking outperforms other degree-
based (random and monotonic) strategies. Supported by
simulation experiments as discussed earlier, we choose
the betweenness-based anti-monotonic interlinking as our
heuristic design strategy, where the node with the ith high-
est betweenness in Vy4 is coupled to the node with the
ith lowest betweenness in Vp. Starting from the node of
the highest betweenness, for each node a € A, the un-
interlinked neighbors in Vg are ranked in increasing order
on the basis of their betweenness and modified betweenness
(additive cost correction), for the heuristic and the modi-
fied heuristic strategies, respectively. Arbitrary ranking is
adopted for the random allocation.

In our simulations, we consider an Autonomous Sys-
tem AS-733 topology [40], representative of the network
of routers comprising the Internet, as G4 and the West-
ern States Power Grid of the United States [41] as Gp;
with |V4| = 6474,|Vp| = 4941. This corresponds to the
problem of optimally interlinking the power stations to
the communication routers to maximize the robustness of
the smart grid against failure cascades. The simulation
results are presented in Fig. 3. Under both stringent and
sufficient budget conditions, it can be observed that the
interdependent network is extremely vulnerable to node
failures. For all interlinking strategies, even 71 as low as
0.05 leads to the failure of more than 95% of the net-
work in the steady state. This establishes the importance of
studying the robustness of multilayer networks, which can
catastrophically react to node failures due to the recursive
cascade of failures between the interdependent layers. Fig.
3 clearly establishes the inferiority of the random resource
allocation strategy, as it almost coincides with the x axis.
This indicates that random allocation can have catastrophic
effects on the robustness for M; and even state of the art
heuristics perform much better. It is interesting to note that
this phenomenon does not generalize to other mechanisms,
as will be evident from Fig. 4, where performance of the
random and the heuristic strategies are comparable. Since
the heuristic strategies do not consider cost, we compare
our interlink design algorithm w.r.t. the modified heuristics,
which outperform the other two strategies in all cases. It
can be observed from Fig. 3 that the performance gain of



—e— Random —e— Random
0.2 —4— Heuristics 0.2 4 Heuristics

—&— Modified Heuristics —m— Modified Heuristics
—¥— Optimized

0.0 02 04 06 08 10 0.0 02 0.4 06 08 10

Figure 4: Load distribution in interdependent networks un-
der stringent (left) and sufficient (right) budget constraints.

our framework over the modified heuristics is negligible for
stringent budgets but significant under sufficient budgets.
The reason behind the absence of gain at stringent budgets
is discussed in Section 4.2.

4.1.2 Load Distribution in Interdependent Networks

We consider a multi-modal transportation network: Amtrak
railway routes [42] as G 4 and the US Airport network [43]
as G, with V4 = 11526 and Vg = 1574. The problem we
are looking at is optimizing the interlinks, which may be
shuttle bus services, between the airports and the railway
stations to maximize the robustness of the airports against
the failure of the railway stations. Adhering to the conven-
tion in related works, the load, representative of the traffic
carried by the nodes, is denoted by the intra-layer degree.
The capacity of a node is given by: C; = (14 3)L;, where L;
and C; denote the load and capacity of node i, respectively,
and S = 0.5. Simulation based works [36] from literature
suggest that load based anti-monotonic interlinking is a
good strategy. As a result, the heuristic strategy for Mo is
the degree-based anti-monotonic interlinking, since the load
is measured by the intra-layer degrees.

The simulation results for the two regimes are presented
in Fig. 4. An interesting point to note here is that under
stringent budgets, the random resource allocation can out-
perform the heuristics. This is counter-intuitive due to the
fact that a random distribution of resources is agnostic the
network topology as well as the interlink construction cost.
The reason behind this observation is that the heuristic
interlinking strategies do not consider cost and the recom-
mended interlinks might end up being very expensive ow-
ing to low ¢ values. This is in contrast to the previous case,
where even heuristic strategies agnostic to cost performed
much better than the random allocation of budget. This
establishes the importance of cost constraints in real world
interlink optimization problems, where for certain mecha-
nisms (M) the heuristic strategies can perform reasonably
well, whereas for others (My) their performance might be
worse than random.

4.1.3 Connectivity in Demand-Supply networks

Demand-supply interdependencies are common in many
practical instances of multilayer networks. We consider the
US Power Grid network [41] as the supply layer (G 4) and
the US Airport network [43] as the demand layer (G g), with
[Va| = 4941 and |Vg| = 1574. We study the problem of
interlinking the airports to the power distribution stations.
Path-based interlink assignment has been identified as a
good heuristic algorithm in [3] and we use it as the state
of the art heuristic. In this strategy, a source and target node
from the demand layer are picked randomly and all node
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Figure 5: Connectivity in demand-supply networks under
stringent (left) and sufficient (right) budget constraints.

disjoint paths between them are identified. Distinct supply
nodes are connected to the individual disjoint paths. This
strategy is intuitive because the failure of a supply node
only affects a unique disjoint path in the demand network
and the source and target demand nodes remain connected
through alternative paths.

For designing a resource allocation scheme correspond-
ing to this strategy, the supply of each node a € Vj4 is
distributed uniformly among all constituents of each node
disjoint path. Under the modified strategy, this distribution
is modified so that the resource allocated to each interlink
is proportional to its quality parameter ;. The simulation
results are presented in Fig. 5. Here we can observe that in
contrast to the previous cases, the surrogate metric based
framework has a significant performance gain even at strin-
gent budgets. This counter-intuitive result is explained in
the following.

4.2 Performance gain variation with available budget

We are also interested in studying the performance of the
proposed interlinking strategies under different budget con-
straints b. The performance gain for a strategy is computed
w.r.t. the random allocation of resource. We define the gain
of an allocation strategy as the total difference between the
robustness corresponding to the strategy in question and the
random allocation, for the different values of 7. Fig. 6 reveals
that the performance gain is marginal under stringent bud-
get conditions for M and M. This is because the majority
of network components are not interlinked owing to the
low availability of budget. Due to this weak interlinking of
the network layers, the cascade of failures between them
is not pronounced, leading to similar performance for all
interlinking strategies. This phenomenon is not observed for
M3, since it does not involve any recursive propagation of
failure due to the unidirectional interdependence. For this
case, interlinking strategies have a pronounced effect on
network performance in lower budgets. It is interesting to
note that although the surrogate metric based framework
outperforms the other strategies in all cases, the perfor-
mance gain of the surrogate metrics varies considerably
with the mechanism of failure propagation. A significant
variation is also observed when other attack models, like
the degree-based targeted attack and the randomized attack,
are considered; the corresponding results are presented in
the supplementary material. These simulation results clearly
show that the surrogate metrics of robustness cognizant of
the mechanism of failure propagation and the attack model
outperforms the state of the art heuristics. The variation of
the gain obtained by the surrogate metric based framework
under different conditions reveals other interesting proper-
ties about the robustness of complex networks.
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5 CONCLUSION AND FUTURE WORK

In this work, we model the construction of interlinks be-
tween two isolated network layers as a convex optimization
problem with the objective of maximizing the robustness of
the resulting interdependent network. Departing from tradi-
tional approaches of exact modeling of the failure cascades
or applying classical metrics to flattened representations
of multilayer networks, we propose surrogate metrics that
are shown to be monotonically correlated to the empirical
value of robustness for the representative mechanisms. This
monotonicity justifies the substitution of the robustness
M (G(x),n), which lacks mathematical models tracking
its dynamics for complex failure spreading mechanisms,
with the surrogate metrics f3*!(x). Due to the tractability
of these metrics, we are able to solve the interlink design
problem and also consider the interlink construction cost.
Furthermore, a framework for distributed learning of the
interlinking strategy is presented, which can learn the re-
source allocation maximizing the surrogate metrics via local
exchange of information.

In essence, this work establishes a framework for dealing
with interlink optimization problems under cost constraints,
which can be applied to different mechanisms of failure
propagation. It is important to remember that these inter-
linking strategies are not guaranteed to be optimal owing
to the surrogate characterization of the robustness. More so-
phisticated metrics, designed to faithfully capture the failure
cascade properties, may outperform our surrogate metrics.
This line of research is important as the performance gain
from sophisticated metrics will reveal if accurate charac-
terization of the propagation mechanisms is necessary or
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whether approximate characterizations, like those presented
in this work, can achieve reasonably good performance.
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