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This article presents full-spectrum, well-conditioned, Green-function methodologies for 
evaluation of scattering by general periodic structures, which remains applicable on a 
set of challenging singular configurations, usually called Rayleigh-Wood (RW) anomalies 
(at which the quasi-periodic Green function ceases to exist), where most existing quasi-
periodic solvers break down. After reviewing a variety of existing fast-converging numerical 
procedures commonly used to compute the classical quasi-periodic Green-function, the 
present work explores the difficulties they present around RW-anomalies and introduces 
the concept of hybrid “spatial/spectral” representations. Such expressions allow both the 
modification of existing methods to obtain convergence at RW-anomalies as well as 
the application of a slight generalization of the Woodbury-Sherman-Morrison formulae 
together with a limiting procedure to bypass the singularities. (Although, for definiteness, 
the overall approach is applied to the scalar (acoustic) wave-scattering problem in the 
frequency domain, the approach can be extended in a straightforward manner to the 
harmonic Maxwell’s and elasticity equations.) Ultimately, this thorough study of RW-
anomalies yields fast and highly-accurate solvers, which are demonstrated with a variety 
of simulations of wave-scattering phenomena by arrays of particles, crossed impenetrable 
and penetrable diffraction gratings and other related structures. In particular, the methods 
developed in this article can be used to “upgrade” classical approaches, resulting in 
algorithms that are applicable throughout the spectrum, and it provides new methods 
for cases where previous approaches are either costly or fail altogether. In particular, it is 
suggested that the proposed shifted Green function approach may provide the only viable 
alternative for treatment of three-dimensional high-frequency configurations with either 
one or two directions of periodicity. A variety of computational examples are presented 
which demonstrate the flexibility of the overall approach.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Wave-scattering by periodic media, including RW anomalous configurations, at which the quasi-periodic Green function 
ceases to exist, has continued to attract significant attention in the fields of optics [17,22,33–36,39,45,50] and computational 
electromagnetism [3,8,4,9,10,31,14,26,42,39,18]. Classical boundary integral equations methods [43,49,52] have relied on the 
quasi-periodic Green function (denoted throughout this work as Gq

κ ), which is defined in terms of a slowly converging in-
finite series (equation (27)). In order to obtain efficient scattering solvers, several alternative representations, with better 
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convergence properties, have been introduced for the evaluation of Gq
κ . These employ either Kummer or Shanks transfor-

mations, lattice sums, Laplace-type integrals and, most notably, the Ewald summation method (a thorough review of these 
methodologies can be found in [27,28] and references therein). In the last decade, the novel windowed-Green function 
(WGF) method was introduced and applied to the periodic problem [3,9] (cf. [38]) obtaining super-algebraic convergent 
solvers away from RW-anomalies. With the exception of the Ewald method, the convergence properties of these method-
ologies deteriorate significantly around RW-anomalies which are pervasive in the most challenging three dimensional case.

A subsequent development to the WGF methodology introduced a novel quasi-periodic “shifted” Green function [3,10]
which, like the “classical” (unshifted) quasi-periodic Green function, is also defined in terms of an infinite series but whose 
general term has a faster –algebraic– decay rate obtained via the introduction of additional spatial poles. This improvement 
yields a Green-function which, unlike Gq

κ , is well-defined at RW-anomalies. Since it introduces new spatial singularities, this 
technique was first applied to problems where the domain boundary coincides with the graph of a periodic function. The 
contribution [4] introduced a slightly different use of the shifted Green function from its original inception which allows for 
application to more general domains.

In a nutshell, numerical methods which discretize boundary integral equations basically operate by forming a finite 
linear system of equations and solving it by either direct or iterative methods. As RW-anomalies are approached in the 
periodic problem, two sources of error in the numerical solution emerge: the most drastic of them corresponds to (1) Poor 
approximations of Gq

κ , while a more subtle one is related to (2) Ill-conditioning in the system of equations. Whereas both 
the WGF and Laplace-type integral methods suffer from the first problem, the shifted Green function and Ewald methods 
do not. In this context, the main contributions of this article include (a) A theoretical understanding of these difficulties, 
and (b) Computational algorithms which, exploiting the new theory, enable solution of previously essentially intractable 
problems. Although, for definiteness, the overall approach is applied to the scalar (acoustic) wave-scattering problem in the 
frequency domain, the approach can be extended in a straightforward manner to the harmonic Maxwell’s and elasticity 
equations.

Through the introduction of the concept of hybrid “spatial/spectral” representations, this work shows that if a represen-
tation of Gq

κ is used which displays explicitly all terms that cause the divergence of Gq
κ as RW anomalies are approached, 

then high-accuracies can be obtained in the evaluation of Gq
κ in very close proximity (to machine precision) of the sin-

gular configuration—thus addressing the evaluation difficulty mentioned in point (1) above. Use of such representations, 
in turn, provide an insight into the ill-conditioning of the resulting linear systems around RW-anomalies mentioned in 
point (2) above, and they allow us to introduce a regularization technique, which we refer to as the “Woodbury-Sherman-
Morrison (WSM) methodology”, that resolves the difficulty and can be used to produce solutions at RW-anomalies using 
quasi-periodic Green function methods. These two elements are the building blocks of the proposed strategy which, ulti-
mately, strives to obtain fast, robust and highly-accurate solvers to simulate wave-scattering phenomena by periodic media 
in general geometries irrespectively of the occurrence of RW-anomalies.

This paper is organized as follows: after needed background is presented in Section 2, Section 3 introduces certain refor-
mulated expressions for the classical quasi-periodic Green function. The WSM framework we propose is then put forth in 
Section 4. Section 5, finally, presents a variety of numerical results demonstrating the character of the overall methodology.

2. Preliminaries and notations

2.1. Periodic structures

This article considers frequency-domain problems of wave scattering by periodic penetrable and impenetrable diffraction 
gratings in two- and three-dimensional space, including arrays of particles, layers of corrugated surfaces and combinations 
thereof. In all cases the propagation domain � ⊆ Rd (d = 2, 3) is infinite and translationally invariant with respect to a 
certain periodicity lattice �. In detail, calling

� =
⎧⎨
⎩

d�∑
i=1

mi vi : mi ∈Z

⎫⎬
⎭ , (1)

a given d�-dimensional periodicity lattice (1 ≤ d� < d), � satisfies the translation-invariance property

� + R = � for all R ∈ �. (2)

The directions vi , i = 1, . . . , d� in (1) are commonly called the primitive (or periodicity) vectors of the lattice. Without 
loss of generality, throughout this work it is assumed that v1 is parallel to the x1-axis, and that the lattice is contained in 
the subspace generated by the vectors x1, . . . , xd�

(so that the periodicity lattice is contained in the line {(x1, 0)} in two 
dimensions, and either in the line {(x1, 0, 0)} or the plane {(x1, x2, 0)} in three dimensions).

Remark 1. In what follows, for x ∈Rd we let x⊥ denote the projection of x into the subspace orthogonal to the set �, and 
we call x‖ = x − x⊥ . Thus, for x = (x1, x2, x3) we have e.g. x⊥ = (0, x2, x3) for d = 3 and d� = 1, while x⊥ = (0, 0, x3) for 
d = 3 and d� = 2.
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Fig. 1. Incoming plane waves impinging on two periodic structures of the types considered in this contribution. In both cases the refractive index assumes 
three different values and the dark-gray regions indicate the domain �imp which waves cannot penetrate. The left figure includes only one transversally 
unbounded propagation region (�0), while the right figure contains two transversally unbounded regions (�0 and �2). Thus, these examples demonstrate 
cases where �r+1 is empty and non-empty, respectively.

Clearly, the projection x‖ = x − x⊥ can be expressed in the form

x‖ =
d�∑
i=1

ai vi, ai ∈R, (3)

and so, letting x� =∑d�

i=1 bi vi + x⊥ where the coefficients bi = ai − �ai� belong to the interval [0, 1), any point x ∈Rd is a 
translation of x� by the lattice �. In what follows, for any set S ⊆Rd we will let S� denote the set

S� = {
x� : x ∈ S

}
. (4)

We say that a set S ⊆Rd is transversely bounded (resp. transversely unbounded) if the corresponding set S� is bounded (resp. 
unbounded).

2.2. Scattering problems

For a given incident field uinc, we seek to evaluate the associated acoustic fields under sound-soft and sound-hard 
conditions. In the sound-soft case, for example, the acoustic field u is solution (in the weak sense) of the scalar Helmholtz 
equation

�u + k2n2(x)u = 0 in �, (5)

with wavenumber k > 0, while in the sound-hard case, u satisfies

∇ ·
(

1

n2(x)
∇u

)
+ k2u = 0 in �. (6)

Here the refractive-index function n(x) > 0 is a �-periodic function of x throughout �, that is n(x + R) = n(x) for all x ∈ �

and all R ∈ �, and locally constant, with a finite set of values. The propagation domain � is decomposed as a finite union

� =
r+1⋃
j=0

� j, (7)

of the sets �0, �1, . . . , �r, �r+1, on each one of which the refractive index is constant (see Fig. 1). In detail, throughout this 
article it is assumed that

1. All except at most two of the sets � j are transversely bounded. The set �0 is required to be transversely unbounded, 
and �r+1 is either transversely unbounded or empty.
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2. For dλ = d − 1, �0 contains a set of the form {xd > M} for some M > 0. For d = 3 and dλ = 1, �0 contains a set of the 
form {|x⊥| > M}. If �r+1 
= ∅ (which is not possible for d = 3 and dλ = 1), then �r+1 contains the set {xd < −M} for 
some M > 0.

3. There are at most two and at least one transversely-unbounded constant-refractivity sets. One of these sets, denoted 
by �0, is assumed to contain the incident field. The set denoted by �r+1 (r ≥ 0), on the other hand, equals either the 
second transversely-unbounded constant-refractivity set or, if �0 is the only such set, then �r+1 = ∅.

Using these notations, equations (5) and (6) become

�u + k2n2
j u = 0 in � j for 0 ≤ j ≤ r + 1. (8)

Note that � may or may not equal the totality of Rd . In the case � = Rd each portion of space is occupied by a 
penetrable material. In the case � 
=Rd , in turn, the complement �imp of the closure of �,

�imp = Rd \ � = Rd \
⎛
⎝r+1⋃

j=0

� j

⎞
⎠

is assumed to be occupied by either sound-soft or sound-hard impenetrable media, or a combination of the two. Thus �imp

is given by the union

�imp = �
imp
D ∪ �

imp
N

of the disjoint sets �imp
D (with boundary �imp

D ) and �imp
N (with boundary �imp

N ) occupied by sound-soft and sound-hard 
materials, respectively:

�imp = �
imp
D ∪ �

imp
N

For simplicity, throughout this contribution it is assumed that �imp
D and �imp

N are disjoint, but the general non-disjoint case 
can also be considered within this context (cf. [1]).

We assume that the structure is illuminated by a plane wave uinc defined in the transversely-unbounded domain �0, 
where

uinc(x) = eiα·x−iβ·x, x ∈ �0. (9)

Here α and β are parallel and perpendicular to the lattice �, respectively, and verify |α|2 + |β|2 = n2
0k2; the scattered field 

us is thus defined by the relations

us(x) =
{

u(x) − uinc(x), x ∈ �0

u(x), x ∈ � j, j ≥ 1
(10)

and we clearly have

�us + k2n2
j us = 0 in � j for 0 ≤ j ≤ r + 1. (11)

For each pair j, 	 of indices, j < 	, we denote by � j	 the boundary between � j and �	 , and we let � j	 = ∅ for j ≥ 	. For 
x ∈ � j	 ( j < 	), ν = ν(x) denotes the unit normal vector to � j	 which points into the “plus side” � j of � j	 . (Note that, even 
for j < 	, � j	 is empty whenever � j and �	 do not share a common boundary.) For x ∈ �imp, in turn, ν = ν(x) denotes 
the normal to �imp which points into the interior of � (or into the exterior of �imp). Additionally we define the set of all 
points at transmission boundaries (resp. all points at impenetrable boundaries) by �trans =⋃

j<	 � j	 (resp. �imp = ∂�), and 
we call � = �trans ∪ �imp the set of all points at interface boundaries. The impenetrable boundary �imp may additionally be 
decomposed into its sound-hard and sound-soft portions: �imp = �

imp
s ∪ �

imp
h . For x ∈ � we define the boundary values of a 

function u and its normal derivative at x from the + and − sides of an interface by

u±(x) = lim
δ→0+

[
u(x ± δν(x))

]
and

∂u±
∂ν

(x) = lim
δ→0+

[∇u(x ± δν(x)) · ν(x)
]
. (12)

The PDE problem under consideration is fully determined by equation (8) together with the boundary conditions

u = 0 for x ∈ �
imp
s and

∂u

∂ν
= 0 for x ∈ �

imp
h , (13)

together with the transmission conditions
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u+ − u− = 0 and
∂u+
∂ν

− 1

C2
j	

∂u−
∂ν

= 0, x ∈ � j	 (14)

and the conditions of radiation at infinity. (The latter concept, together with the related reciprocal lattice �∗ and the 
associated Rayleigh expansion, are described in what follows.) In these equations we have set

C j	 =
{

1 in the sound-soft case, and
n	

n j
in the sound-hard case.

The reciprocal lattice

�∗ =
⎧⎨
⎩

d�∑
j=1

m j w j : m j ∈Z

⎫⎬
⎭ (15)

plays an important role in the context of periodic lattice sums we consider—which can be represented either as series 
with support over the lattice � or, on account of the Poisson summation formula [47], over the reciprocal lattice �∗ . 
The reciprocal basis vectors w j , j = 1, . . . , d� , are defined as the vectors which span the same vector subspace as the set 
{vi : i = 1, . . . , d�}, and which verify the relations

vi · w j = 2πδ
j
i . (16)

Following [27], using the multi-index m = (m1, . . . , md�
) ∈Zd� , elements of � and �∗ will be denoted by

Rm =
d�∑
i=1

mi vi and K m =
d�∑
i=1

mi wi, (17)

respectively.
We say that a function u defined on � is α-quasi-periodic with respect to � provided

u(x + Rm) = eiα·Rm u(x) for all m ∈ Zd�. (18)

Clearly, the incident field (9) is an α-quasi-periodic function and, as is well known [43], so is the scattered field us . On any 
set of the form

V m2
m1 = {x ∈ Rd : m1 < |x⊥| < m2} (19)

that satisfies

V m2
m1 ⊆ � j for some j, (20)

the solution us in (11) (like any quasi-periodic solution of the Helmholtz equation) may be expressed as an α-quasi-periodic 
Rayleigh-series expansion of the form

us(x) =
∑

m∈Zd�

A+
meiαm·x+iβm(n jk)xd + A−

meiαm·x−iβm(n jk)xd , d� = d − 1 (21)

and

us(x) =
∑

m∈Zd�

eiαm·xUm(x2, x3) d� = 1,d = 3, (22)

where Um(x2, x3) satisfies the Helmholtz equation with wavenumber βm(n jk) in two-dimensional space

�Um(x2, x3) + βm(n jk)2Um(x2, x3) = 0. (23)

In (21) and (22) we have set

αm = α + K m, βm = βm(κ) =
√

κ2 − |αm|2 and Im(βm) ≥ 0. (24)

Remark 2. Throughout this work we consider problems for which the propagation domain � extends to infinity both along 
the periodic lattice direction as well as along orthogonal directions to the lattice (see points 1–3 above in the present 
section. Note that in the case d� = d −1, the modes eiαm ·x+iβmxd and eiαm·x−iβmxd represent outgoing waves in the half-spaces 
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xd > M and xd < −M respectively. Similarly, the cylindrical waves eiαm ·x H (1)
0

(
βm

√
x2

2 + x2
3

)
represent outgoing waves in 

the case d� = 1, d = 3. A quasi-periodic solution of the Helmholtz equation (8) is called radiating if the relevant associated 
Rayleigh expansion, either (21) or (22), only contains outgoing modes in any set V m2

m1 satisfying (20). Thus the scattered 
field us, which has been assumed to be radiating, i.e., it only contains outgoing modes and remains bounded as |x⊥| → ∞, 
is given by a Rayleigh expansion of the form

us(x) =
∑

m∈Zd�

A+
meiαm·x+iβm(n jk)x⊥

, xd > M and
∑

m∈Zd�

A−
meiαm·x−iβm(n jk)x⊥

, xd < −M (25)

if d� = d − 1 and

us(x) =
∑

m∈Zd�

eiαm·xUm(x2, x3) (26)

if d� = 1, d = 3 where Um(x2, x3) satisfies (23) and the two-dimensional Sommerfeld radiation condition [16, Eqn. 3.85].

We will obtain α-quasi-periodic solutions of equation (8) by relying on integral equations and α-quasi-periodic Green 
functions. The classical α-quasi-periodic Green function is introduced in the following section, which additionally describes 
the difficulties that arise at Rayleigh-Wood anomalies. (Section 4.2 presents a new strategy leading to Green-function solu-
tions even at and around Wood anomalies.)

2.3. Quasi-periodic Green function

Given α ∈Rd and κ > 0 the quasi-periodic Green function Gq
κ is given by the conditionally-convergent sum

Gq
κ (x) =

∑
m∈Zd�

eiα·Rm Gκ (x − Rm) (27)

where

Gκ (x) =
{

i
4 H (1)

0 (κ |x|) for d = 2,

1
4π

eiκ |x|
|x| for d = 3

(28)

denotes the free-space Green function for the Helmholtz equation with wavenumber κ in d-dimensional space.
The quasi-periodic Green function can be interpreted as the field generated by an infinite number of radiating point 

sources distributed periodically and acting coherently through a suitable phase factor. A direct application of the Poisson 
summation formula to (27) yields the corresponding spectral representations for the quasi-periodic Green function:

Gq
κ (x) = 1

A
i

2

∑
m∈Zd�

eiαm·xeiβm|xd|

βm
, d = 2,3 and dλ = d − 1 (29)

Gq
κ (x) = 1

A
i

4

∑
m∈Zd�

eiαm·x H (1)
0

(
βm

√
x2

2 + x2
3

)
, d = 3,dλ = 1. (30)

Here A denotes the area of the unit cell,

A =
{ |v1| if dλ = 1

|v1 × v2| if dλ = 2
(31)

and the parameters αm and βm are defined in (24). The spectral representations (29) through (30) manifest the singular 
character of the quasi-periodic Green function at configurations for which the scalar βm vanishes for some value or (finite 
number of) values of the index m: as such singular configurations are approached, singularities of type β−1

m and log(βm)

arise for d = d� + 1 and d = d� + 2, respectively. A triple (κ, α, �) for which βm vanishes for some value of m is said to be 
a Rayleigh-Wood (RW) anomaly triple; clearly, at RW anomalies the (finite) set

W (κ,α,�) =
{

m ∈Zd� : κ2 − |α + K m|2 = 0
}

=
{

m ∈Zd� : βm = 0
}

(32)

is non-empty.
The spectral representations (29) and (30) provide an exceptional computational tool whenever the following conditions 

are satisfied: 1) The triple (κ, α, �) is not a RW anomaly; and 2) The magnitude |x⊥| of the projection x⊥ is relatively large 
compared to the wavelength—since, in such cases, the series (29) and (30) converge exponentially fast to the correspond-
ing quasi-periodic Green functions. For small values of |x⊥|, however, the convergence rates deteriorates. To compute the 
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quasi-periodic Green functions in the latter regime alternative representations must be used which, like the one displayed 
in equation (27), make explicit the spatial Green-function singularities. The representation (27) is only conditionally conver-
gent, however, and therefore finite truncations of it yield poor approximations. For example, a straightforward truncation in 
the d� = 1 case converges with an error that decays like the inverse of the square root of the numbers of terms used.

A number of methodologies have been developed which, for configurations away from RW anomalies, can be used to 
evaluate the quasi-periodic Green function efficiently and accurately—including lattice sums [18,27,28], Laplace-type integral 
representation [6,7,23,24,52], the Ewald summation method [2,12,20,27,40] and, recently, the Windowed Green function 
(WGF) method [3,9]. (In fact the WGF method yields algebraic high-order convergence even at RW anomalies when used 
in conjunction with the shifted Green function [3,8,9].) Except for the shift-based Green function approach, however, all 
of these methodologies fail at RW anomalies since the classical quasi-periodic Green function is not even defined in that 
case. (For an exact solution for a periodic array of circular scatterers in two-dimensional space, reference [30] shows that 
the solution tends to a limit as an RW anomaly is approached.) Section 3 describes the integral, Ewald and shifted Green 
function approaches, each one of which can be used as a basis for a RW-anomaly strategy—as indicated in Section 4.

3. Jointly spatial-spectral quasi-periodic Green function representations

3.1. Laplace-type integral method (d� = 1)

In the case d� = 1, Laplace transform methods can be used to express the quasi-periodic Green functions as a sum 
of a single free-space Green function and certain Laplace-type integrals. Laplace-type Integral methods have been success-
fully extended to bi-periodic arrays, d� = 2, for Cartesian lattices [27]—for which the generating vectors v1 and v2 are 
orthogonal—but we do not consider such extensions in this work. A full description of the d� = 1 methods can be found 
in [23,24,27,28,52]. Assuming v1 = Lx̂1 (L is the period of the lattice) the Laplace-type integral representation of the classical 
quasi-periodic Green function (27) in the case d� = 1 is given by

Gq
κ (x) = Gκ (x) + e−iκx·ê

2π
I+(x) + eiκx·ê

2π
I−(x) (33)

where

I±(x) =
∞∫

0

e−κ(L±x1)u

e−i(κ∓α·x̂1)L − e−κ Lu

fd

(
κ |x⊥|√u2 − 2iu

)
(
u2 − 2iu

)(3−d)/2
du (34)

and

fd(t) = cos(t) for d = 2 and fd(t) = κ

2
J0(t) for d = 3. (35)

The generalized Gauss-Laguerre quadrature rule [44] is well suited for evaluation of the integrals I± . In contrast to the 
spectral representations, formula (33) makes explicit the spatial singularity around the origin of the quasi-periodic Green 
function but it does not present in a similarly explicit form the singularity at RW anomalies—which is explicit in (29)
and (30). The Laplace-type integral representation (33), which was used in [6,7] to produce efficient periodic scattering 
solvers for challenging configurations, is also a key component in the analysis performed in [23,24] for the periodic problem 
at high frequencies. The strategies presented in all of these references are not applicable at RW anomalies, however.

As detailed in what follows, each of the integrals I± can be re-expressed as a sum of two terms: a first one which 
explicitly captures the RW-anomaly singularities in (29) and (30), and a second one which is given by a rapidly convergent 
integral, and which remains bounded near RW anomalies. To see this we first note that, except at RW-anomalies the de-
nominator e−i(κ∓α·x̂1)L − e−κ Lu in (34) does not vanish in the integration domain. Indeed, the zeroes of the denominator are 
the purely imaginary numbers iu±

m , where

κu±
m = κ ∓ αm · x̂1. (36)

Clearly these zeroes can only be real if κu±
m vanishes, or, equivalently, if the RW-anomaly condition |αm| = κ is satisfied. In 

particular, at RW-anomalies, at least one of the integrals I± diverges.
In order to explicitly extract the singular term we multiply and divide the integrand in (34) by u − iu±

m and we obtain

I±(x) =
∞∫

0

e−κ(L±x1)u

u − iu±
m

1

u(3−d)/2
gd(u)du (37)

where we have set
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gd(u) = u − iu±
m

e−i(α·x̂1∓κ)L − e−κ Lu

fd

(
κ |x⊥|√u2 − 2iu

)
(u − 2i)(3−d)/2

.

As a function of the real variable u, gd is an infinitely differentiable function around the origin (since in either case, d = 2
and d = 3, the Taylor series of the analytic function fd around zero only contains even powers). Adding and subtracting 
gd(iu±

m) from gd(u) in (37) we obtain

I±(x) =
∞∫

0

e−κ(L±x1)u

u(3−d)/2

gd(u) − gd(iu±
m)

u − iu±
m

du + gd(iu±
m)

∞∫
0

e−κ(L±x1)u

u − iu±
m

du

u(3−d)/2
. (38)

Clearly, the integrand in the first term of the right hand side of equation (38) is regular and can be evaluated by means of 
the Gauss-Laguerre quadrature rule. The last integral on the right-hand side, in turn, can be expressed in terms of special 
functions. Indeed, in the case d = 2 using the relation [19, Eq. 7.7.2]

e−z2
erfc (−iz) = z

π i

∞∫
−∞

e−t2

t2 − z2
dt, Im(z) > 0 (39)

and the change of variables u = t2 we obtain

∞∫
0

e−κ(L±x1)u

u − iu±
m

du√
u

= πeiπ/4e−iκu±
m(L±x1)

erfc
(

e−iπ/4
√

κu±
m(L ± x1)

)
√

u±
m

(40)

where erfc denotes the analytic extension of the complementary error function

erfc(z) = 2√
π

∞∫
z

e−t2
dt (41)

to the complex plane. For the case d = 3, in turn, we have

∞∫
0

e−κ(L±x1)u

u − iu±
m

du = e−iκu±
m(L±x1)E1

(−iκu±
m(L ± x1)

)
(42)

where E1 denotes the analytic extension of the exponential integral

E1(z) =
∞∫

z

e−t

t
dt

to the maximal analyticity domain C \ (−∞, 0] (that is also commonly used as the principal branch of the logarithm 
function). The factor gd(ium) that multiplies the last integral on the right-hand side of equation (38) (in either case, d = 2
or d = 3) in turn, is given by

gd(ium) = eiκ Lu±
m

κ L

fd

(
κ |x⊥|

√
2um − u2

m

)
(i(um − 2))(3−d)/2

, (43)

as it can be checked easily. In view of equations (40), (42) and (43) together with the relation βm(κ) = κ
√

2um − u2
m (that 

results from (24) and (36)) it follows that the second term on the right hand side of (38) equals

π
i

L
e∓iκu±

m x1 erfc

(
e−iπ/4

√
κu±

m(L ± x1)

)
cos

(
βm(κ)|x⊥|)
βm(κ)

(44)

for d = 2 and

1

2L
e∓iκu±

m x1 J0

(
βm(κ)|x⊥|

)
E1

(
−i

βm(κ)2

κ +√
κ2 − βm(κ)2

(L ± x1)

)
(45)

for d = 3. In either the case d = 2 or d = 3, substituting the last integral in equation (38) by the corresponding expres-
sion (44) or (45), and then replacing the ensuing formulae for I± into (33), yields an expression for the quasi-periodic 
Green function Gq

κ in terms of special functions and integrals that do not suffer from singularity at RW-anomalies. The 
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1/βm Green-function singularity in the case d = 2 is explicitly displayed in (44), while the corresponding logarithmic singu-
larity in the case d = 3 can be made explicit by using the relation [19, Eq. 6.6.2]

E1(z) = −C − log(z) −
∞∑

k=1

(−z)k

k · k! . (46)

The special-function values required to evaluate the expressions (44) and (45) can generally be obtained without dif-
ficulty by means of well known algorithms. As discussed in [23,24], however, the necessary integrals (namely, the first 
integral expression on the right-hand side in (38) for d = 2 and d = 3), while regular at RW-anomalies, still present signifi-
cant challenges in the high-frequency regimes.

3.2. Ewald summation method (d� = 1, 2)

The Ewald summation method was originally introduced [20] as a technique for evaluation of the electrostatic potential 
energy in crystals; its derivation in the context of the Helmholtz equation and, generally, wave-propagation phenomena is 
quite intricate, but a detailed description can be found in [27]. The representations that result after the application of this 
procedure expresses Gq

κ as a sum of two infinite series Gq
� and Gq

�∗ ,

Gq
κ = Gq

� + Gq
�∗ , (47)

indexed by elements in the lattices � and �∗ , whose general terms decay as exp(−η2 |Rn|2) and exp(− |K n|2 /4η2) respec-
tively. As indicated in [27], the “splitting parameter” η > 0 should be carefully chosen in order to maximize the convergence 
rate of the two series as well as to ensure the stability of the method (see [25,32,48]).

In what follows we present explicit expressions (whose derivation of can be found in [27]) for Gq
� and Gq

�∗ for various 
values of d and d� . To present these expressions we let ρn denote the Euclidean distance between an observation point x
and a lattice point Rn , and we call E j = E j(z) the exponential integral with complex argument z:

E j(z) =
∞∫

z

e−t

t j
dt. (48)

Then, for d = 2 and d� ≤ d, Gq
� is given by

Gq
�(x) = 1

4π

∑
m∈Zd�

eiα·Rm

∞∑
j=0

1

j!
(

κ

2η

)2 j

E j+1

(
η2ρ2

m

)
, (49)

while for d = 3 and d� ≤ d,

Gq
�(x) = 1

8π

∑
m∈Zd�

eiα·Rm

ρm

[
eikρm erfc

(
ηρm + i

κ

2η

)
+ e−ikρm erfc

(
ηρm − i

κ

2η

)]
. (50)

The corresponding expressions for Gq
�∗ are as follows. For d = 2, 3 and d� = d − 1 Gq

�∗ is given by

Gq
�∗(x) = i

4A
∑

m∈Zd�

eiαm·x

βm

[
eiβmxd erfc

(
−ηxd − i

βm

2η

)
+ e−iβmxd erfc

(
ηxd − i

βm

2η

)]
, (51)

while for d = 3 and d� = d − 2 = 1

Gq
�∗(x) = 1

4πA
∑

m∈Zd�

eiαm·x
∞∑
j=0

1

j!
(

iη
√

x2
2 + x2

3

)2 j

E j+1

(
− β2

m

4η2

)
. (52)

3.3. Shifted Green function (d� = 1, 2)

The conditionally convergent sum (27) owes its poor convergence rate to the slow decay of the free-space Green function 
at infinity. As detailed in [3] and [10], a certain half-space shifted Green function can be used to produce quasi-periodic 
Green functions with a user-prescribed algebraic decay—convergent at any configuration, including RW-anomalies. In brief, 
given a shift-parameter h > 0 and a unit-vector v̂ , the half-space shifted Green function of order j ≥ 0 is given by

Gκ, j(x) =
j∑

(−1)	
(

j

	

)
Gκ (x + 	h v̂), (53)
	=0
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where v̂ is a unit-vector orthogonal to the d�-dimensional subspace that contains the lattice � and, for d� = 1, is oriented 
outward radially from the lattice �. It can be shown that [3,10] given M > 0, there exists a constant C(h, M) such that for 
|x · v̂| ≤ M we have

|Gκ, j(x)| ≤ C(h, M)|xorth|−( j+1)/2 (54)

if j is an even positive integer and

|Gκ, j(x)| ≤ C(h, M)|xorth|−( j/2+1) (55)

if j is an odd positive integer. In these expressions xorth is the projection of the point x into the plane orthogonal to v̂ . The 
shifted quasi-periodic Green function, in turn, is given by

Gq
κ, j(x) =

∑
m∈Zd�

eiα·Rm Gκ, j(x − Rm). (56)

It is clear from (53) that the classical quasi-periodic Green function can be expressed in terms of Gq
κ, j :

Gq
κ (x) = Gq

κ, j(x) −
j∑

	=1

(−1)	
(

j

	

)
Gq(x + 	h v̂). (57)

Replacing the quasi-periodic Green functions in the finite sum in equation (57) by their corresponding spectral representa-
tions (which can be done for all points x such that x⊥ 
= −	h v̂ , 	 = 1, . . . , j), and provided (κ, α, �) is not a RW-anomaly 
triple, it follows that, as proposed in [4, Eqs. 4.5, 4.6], we may write

Gq
κ (x) = Gq

κ, j(x) − i

4A
∑
m∈Z

j∑
	=1

(−1)	
(

j

	

)
eiαmx1 H (1)

0

(
βm(κ)|x⊥ + 	h v̂|

)
(58)

if dλ = 1, d = 3 and

Gq
κ (x) = Gq

κ, j(x) − i

2A
∑

m∈Zdλ

j∑
	=1

(−1)	
(

j

	

)
eiαm·x+iβm|xd+	h|

βm
(59)

if dλ = d − 1. Equations (58) and (59), which are only valid for non-anomalous configurations, express the quasi-periodic 
Green function Gq

κ as a sum of two quantities, the first one contains the spatial singularities (x ∈ �), while the second 
one contains the singular terms which arise as an RW-anomaly is approached. Equations (58) and (59) thus yield rapidly-
convergent jointly spatial-spectral representations of Gq

κ that exhibit explicitly all spatial and spectral singular terms. On the 
basis of (59), reference [4] introduced the use of the Woodbury-Sherman-Morrison formulae as a means to overcome the 
difficulties around RW-anomalies for problems of scattering by arrays of particles in two dimensional space. The present 
contribution extends that work to enable applicability of the overall methodology to arbitrary periodic domains—by utilizing 
either the shifted Green function in the form (57) or, alternatively, either a modified version of the Laplace-type integral rep-
resentation (33) (for d� = 1, d = 2, 3) or, finally, a modified version of the Ewald-summation expression (47). The proposed 
extensions for all three cases are described in the following section.

4. Woodbury-Sherman-Morrison (WSM) regularization formalism

4.1. BIE formulations

For simplicity, in this contribution attention is restricted to integral solvers for scalar Helmholtz problems in periodic 
structures with smooth boundaries, but any integral equation methodology (with application to e.g. open and/or non-smooth 
surfaces, Maxwell or Elasticity equations, etc.) can be used in conjunction with any of the quasi-periodic Green function 
methods presented in this paper. All of the examples considered in the present contribution originate from representations 
of the scattered field us in terms of the single- and double-layer potentials

Sq
κ [ψ](x) =

∫
γ �

Gq
κ (x − y)ψ(y)dS(y) and Dq

κ [φ](x) =
∫
γ �

∂Gq
κ

∂ν(y)
(x − y)φ(y)dS(y), (60)

for a �-periodic surface γ (see Remark 1) which equals either � j	 for some j < 	, or relevant portions of �imp
D , or �imp

N , 
respectively. (For example, the integral that represents the field in the domain �0 in Fig. 1 (left) includes single- and double-
layer operators defined on the upper (circular) portions of �imp, but it does not include integrals over the component of 
�imp closer to the bottom of the figure.)
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As is known, both potentials in (60) are solutions of the Helmholtz equation with wavenumber κ for x /∈ γ . We thus 
assume that the unknown scattered field has been expressed in terms of a boundary integral representation of the form

us(x) = T [�](x) (61)

where

T [�](x) = T j[�](x) for x ∈ � j, (62)

with T j[�](x) given, for x ∈ � j , by linear combinations of integral expressions of the form (60) involving Green functions 
corresponding to the domain � j , as suggested above, and as illustrated further below in this section, and where � is either 
a scalar density, or a vector containing such densities. This procedure reduces the scattering problem under consideration 
to a system of integral equations of the form

( J + T )[�] = F (63)

over appropriately chosen Banach spaces X of functions (that are typically selected as Sobolev spaces [37] or Hölder 
spaces [15]), where T : X → X is a compact operator, and where J either vanishes (in first-kind Fredholm equations) or 
is an invertible bounded operator (in second-kind Fredholm equations).

Thus, for example, in the case of an impenetrable scattering structure for which � = �0 is a volume having as boundary a 
periodic surface �imp, the fields us = Sq

n0k[ϕ] and us =Dq
n0k[ϕ] with γ = �imp are solutions of the sound-hard or sound-soft 

scattering problems respectively, with boundary conditions given in (13), provided the density ϕ satisfies the corresponding 
boundary integral equations

−1

2
ϕ(x) +

∫
(�imp)�

∂Gq
κ

∂ν(x)
(x − y)ϕ(y)dS(y) = − ∂uinc

∂ν(x)
, x ∈ (�imp)�, or (64)

1

2
ϕ(x) +

∫
(�imp)�

∂Gq
κ

∂ν(y)
(x − y)ϕ(y)dS(y) = −uinc(x), x ∈ (�imp)�. (65)

In cases in which periodic arrays of impenetrable scattering particles are included, combined-field formulations are neces-
sary to eliminate internal resonances [15]. In these two cases, the boundary potential T in equation (61) is either Sq

n0k or 
Dq

n0k whereas J in equation (63) are minus or plus a half of the identity operator of the underlying space X and T is either 
the normal derivative of the single layer potential or the values of the double layer potential at the surface (�imp)� .

In addition to the impenetrable cases mentioned above, a specially well studied case concerns situations in which the 
refractive index n(x) assumes only two values, n0 and n1 and the impenetrable region is empty (i.e., � =Rd). In such cases 
the scattered field admits the representation

us(x) =
⎧⎨
⎩Dq

n0k

[
ϕ − uinc

]
(x) − Sq

n0k

[
1

C2
01

ψ − ∂uinc

∂ν

]
(x), x ∈ �0

−Dq
n1k [ϕ] (x) + Sq

n1k [ψ] (x), x ∈ �1

(66)

in terms of single- and double-layer potentials, where the densities ϕ and ψ satisfy the system of integral equations([
Id 0

0
1+C−2

01
2 Id

]
−
[

Dq
0 − Dq

1 −(C−2
01 Sq

0 − Sq
1)

Nq
0 − Nq

1 −(C−2
01 K q

0 − K q
1)

])[
ϕ
ψ

]
=
[

uinc

∂uinc

∂ν

]
, x ∈ �

�
01. (67)

Here the operators Sq
j , Dq

j are defined as the restriction to the boundary curve γ � of the single- and double-layer poten-

tials (60) with γ = �01 and κ = n jk ( j = 0, 1). The operator Nq
j and K q

j , in turn, denote the normal derivative on γ � of 
the double-layer potential and the adjoint of Dq

j (in the sense of [15], i.e., without complex conjugation), respectively, once 
again, using κ = n jk. A comprehensive discussion of the properties and character of these operators can be found in [15]. 
Clearly, in the present case T in equation (61) can be identified with the right-hand side of (66), and the quantities and J
and T in equation (63) equal the first and second square-bracketed terms in (67).

Remark 3. For configurations containing a periodic array of penetrable particles (e.g. �2 in Fig. 1 left), the representation 
formula (66) can be advantageously modified by utilizing the corresponding free-space Green function, instead of the quasi-
periodic Green function, to represent fields in the interior of the particles. The integral equations (67) need to be modified 
accordingly. Use of this strategy, which clearly eliminates the cost of the evaluation of the quasi-periodic Green function for 
all integral operators corresponding to the interior of the particles, was utilized in this paper in all relevant cases.
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As in the three prototypical cases embodied by equations (64) through (67), for general periodic structures of the type 

described in Section 2, the operator T in equation (63) equals a combination of integral operators over the unit cell 
(
�

imp
s

)�

, (
�

imp
h

)�

and 
(
� j	

)�
(1 ≤ j < 	 ≤ r + 1) of the various scattering surfaces. Each one of these operators utilizes either a quasi-

periodic or a free-space Green function with an appropriate value of the wavenumber κ , or a combination of quasi-periodic 
Green functions for two different wavenumbers. Clearly, these integral equation systems are only meaningful provided no 
Wood anomalies arise in the overall scattering setup. The regularization methodology we propose, which yields integral 
equation formulations that are valid throughout the spectrum, including RW anomalies, is described in the following section.

4.2. A well-conditioned system throughout the spectrum: WSM regularization

This section shows that the system of integral equations (63) is ill-conditioned around RW-anomalies, and it proposes 
a regularization technique, the WSM method, which yields a reformulation of this system of equations which does not 
break down as anomalous configurations are either approached or reached. To do this, in what follows, given a fixed triple 
(k, α, �), which we call a primitive triple, we associate to each domain � j a corresponding derived triple (n jk, α, �). Letting 
(kw , αw , �w) denote a primitive triple for which, for at least one value of j, the corresponding j-th domain derived triple 
(n jkw , αw , �w) is a RW-anomaly, for a given primitive triple (k, α, �) in the vicinity of (kw , αw , �w), the Green function 
expressions (29) and (30) for the wavenumber n jk can be re-expressed in the regular/singular form

Gq
n jk

(x) = Greg
n jk

(x) + C(d,d�)
∑

m∈W j

eiαm·x f (βm(n jk)) (68)

where the regular part Greg
n jk

is well defined for (k, α, �) equal to and in a vicinity of (kw , αw , �w), and where the second 
term on the right-hand side contains the singularity that arises as the RW anomaly is approached. In (68) the function f (t)
is given by f (t) = 1/t for d� = d − 1, d = 2, 3, and f (t) = 2i/π log(t/2) for d� = 1, d = 3; the constant C(d, d�) equals the 
pre-factor that multiplies the infinite sums in equations (29)–(30); and W j = W(n jkw , αw , �w) (see equation (32)). The 
derivation of (68) results easily from simple manipulations including use of the relations

eit

t
− 1

t
→ i and H(1)

0 (t) − 2i

π
log

(
t

2

)
→ 2i

π
C as t → 0, (69)

where C denotes the Euler-Mascheroni constant, C = 0.5772156649....
Letting Treg and TW denote the (possibly matrix-valued) integral operators that are obtained by replacing the quasi-

periodic Green function(s) Gq
n jk

(x− y) (for which the derived triple (n jk, α, �) is close to an RW-anomaly) and their normal 
derivatives in the definition of the operator T by the expressions arising from the first and last terms on the right-hand 
side of equation (68), respectively, equation (63) may be re-expressed in the form

(A + T W )� = F , where A = J + Treg. (70)

The operator TW, in turn, may be expressed in the form

TW = EW D−1 RW, (71)

where RW denotes the finite rank integral operator resulting from replacement of Gq
n jk

in the definition of T by the kernel∑
m∈W j

eiαm·(x−y); (72)

where, letting XW denote the (finite-dimensional) image (spanned by a certain finite basis {�m : m ∈ ⋃ j W j}) of RW, 
D : XW → XW is defined over the basis elements �m as

D �m = 1

f (βm(n jk))
�m, m ∈ W j (73)

(and subsequently extended by linearity), and where EW is the inclusion operator of XW into X .
The definitions of the finite-dimensional space XW, its basis {�m : m ∈⋃ j W j}, and the operator D become apparent as 

the replacement of the corresponding Gq
n jk

by the separable kernel (72) is effected. For instance, in the examples considered 
in Section 4.1 we have

�m(x) = ∂ν(x)

(
eiαm·x) , x ∈ ∂��, m ∈ W0 (74)

for equation (64),
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�m(x) = eiαm·x, x ∈ ∂��, m ∈ W0 (75)

for equation (65) and

�m(x) =
[

eiαm·x
∂ν(x)

(
eiαm·x)

]
, x ∈ �01, m ∈ W j (76)

for equation (67). In the first two cases, the finite-rank operator RW assumes the same form, namely

RW [ϕ](x) = C(d,d�)
∑

m∈W0

Im[ϕ]�m, (77)

but the corresponding functionals Im for equations (64) and (65) are given by

Im[ϕ] =
∫

(�imp)�

e−iαm·yϕ(y)dS(y) and Im[ϕ] =
∫

(�imp)�

∂ν(x)

(
e−iαm·y

)
ϕ(y)dS(y), (78)

respectively. In the case of the transmission problem (equation (67)), in turn, we have

RW [�](x) = C(d,d�)

⎛
⎝ ∑

m∈W0

Im[�]�m −
∑

m∈W1

Jm[�]�m

⎞
⎠ (79)

with � =
[
ϕ
ψ

]
, where we have set

Im[�] =
∫

(�01)�

[
∂ν(y)

(
e−iαm·y

)
ϕ(y) − e−iαm·yψ(y)

]
dS(y) and (80)

Jm[�] =
∫

(�01)�

[
∂ν(y)

(
e−iαm·y

)
ϕ(y) − 1

C2
01

e−iαm·yψ(y)

]
dS(y). (81)

Substitution of (71) in (70) shows that the original integral equation (63) can be expressed in the form

(A + EW D−1 RW)� = F . (82)

The inverse of the operator on the left-hand side can be obtained on the basis of the Woodbury formula

(A + EW D−1 RW)−1 = A−1 − A−1 EW(D + RW A−1 EW)−1 RW A−1 (83)

(see (Remark 4)) provided the operators A and (D + RW A−1 EW) are invertible.
Equation (83) is a crucial element of our treatment of the RW-anomaly problem. Assuming that the operator A is 

invertible and well-conditioned:

1. It expresses the inverse operator on the left-hand side in terms of the inverse of the operator A—that only involves the 
quantities Greg

n jk
(as defined in (68)), which are well-defined at and around RW-anomalies;

2. It encapsulates the ill-conditioning of (82) at RW-anomalies through the explicit diagonal operator D−1 (which blows 
up as the anomaly is reached) but which only manifests itself on the right hand side of (83), through its inverse D
(which tends to zero as the anomalous configuration is approached); and,

3. Its right-hand expression shows that the inverse operator on the left-hand side of that equation actually has a removable 
singularity at the RW anomaly under consideration, and it provides a useful formula for solution of equation (63) at 
and around (kw , αw , �w).

The Woodbury formula (83) additionally requires the inversion of the operator D + TW A−1 EW. But this inversion problem 
can easily be translated into a finite-dimensional matrix inversion problem—since this operator is defined over the finite-
dimensional space XW . A numerical study of the conditioning of the WSM-regularized operators, which is is presented in 
Section 5, demonstrate the value of the WSM framework.

Remark 4. The Woodbury formula is usually introduced in the context of fast-inversion of matrices; it commonly reads [44]

(A + U C V )−1 = A−1 − A−1U (C−1 + V A−1U )−1 V A−1 (84)
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where A ∈Cn×n , U ∈Cn×k , C ∈Ck×k and V ∈Ck×n with k usually much smaller than n (the case k = 1 is also known as 
the Sherman-Morrison formula.) But, as equation (84) can be established by mere substitution and algebraic manipulation, 
the formula is valid for infinite-dimensional operators as well. Briefly, equation (84) holds for arbitrary operators provided 
1) the operator A is invertible, 2) the domains and ranges of the operators U , C and V are such that the composition U C V
is well-defined, 3) the operator C is invertible in the space in which it is defined, and, 4) the operator C−1 + V A−1U is 
invertible.

4.3. Evaluation of scattering solutions at and around RW-anomalies

Once the underlying operator equation is solved, the values of the solution of the PDE problem under consideration are 
obtained via evaluation of the boundary potential (61) using as surface density the solution � of the integral equation. 
As mentioned at the beginning of Section 4.1, all solutions of the Helmholtz equation considered in this paper utilize the 
quasi-periodic Green function (27) with various wavenumbers, and their normal derivatives, as kernels of the single and 
double layer potentials. However, this particular Green function ceases to exist at RW-anomalies and therefore, as shown 
in what follows, an additional step is needed to produce the desired quasi-periodic solutions of the Helmholtz equation for 
anomalous configurations.

To do this we first use equation (68) to produce a decomposition of the potentials in (61) into a regular and a singular 
part,

Treg [�] = Treg [�] + TW [�] , (85)

analogous to the decomposition introduced previously for the operator T . For example, in the impenetrable case with either 
sound-hard or sound-soft boundary conditions, the scattered field is given by a single layer potential or a double layer 
potential, respectively (see equations (64) and (65)). After replacement of the quasi-periodic Green function by (68) we 
obtain the representation

us(x) =
∫

(�imp)�

Greg
n0k(x − y)ϕ(y)dS(y) + C(d,d�)

∑
m∈W0

eiαm·x f (βm(n0k)) Im[ϕ], x ∈ �0 (86)

for the single layer case and

us(x) =
∫

(�imp)�

∂Greg
n0k

∂ν(y)
(x − y)ϕ(y)dS(y) + C(d,d�)

∑
m∈W0

eiαm·x f (βm(n0k)) Im[ϕ]. x ∈ �0 (87)

for the double layer case, where the functionals Im are given by equation (78). For the transmission case, in turn, the 
scattered field is a linear combination of single and double layer potentials (see equation (66)) and after replacement of the 
quasi-periodic Green functions by (68) we obtain

us(x) =
∫

�
�
01

∂Greg
n0k

∂ν(y)
(x − y)ϕ(y)dS(y) − 1

C2
01

∫
�

�
01

Greg
n0k(x − y)ψ(y)dS(y)+

C(d,d�)
∑

m∈W0

eiαm·x f (βm(n0k)) Jm[ϕ], x ∈ �0,

(88)

us(x) = −
∫

�
�
01

∂Greg
n1k

∂ν(y)
(x − y)ϕ(y)dS(y) +

∫
�

�
01

Greg
n1k(x − y)ψ(y)dS(y)−

C(d,d�)
∑

m∈W1

eiαm·x f (βm(n1k)) Im[ϕ], x ∈ �1,

(89)

where Im and Jm are given by Equations (80) and (81). In these examples, either f (βm(n0k)) or f (βm(n1k)) (or both) 
diverges as the anomalous configuration is approached but, as shown in what follows, all the corresponding products of the 
diverging f (βm(n jk)) by each of the possible functionals tend to a limit as the anomalous configuration is approached.

Indeed, in the general case (61) (and in particular in the examples considered in Section 4.1), these products are no 
other than the coordinates of the operator D−1 RW expressed in the corresponding basis {�m : m ∈ W j}. Thus, in order to 
evaluate the needed products at or around an RW anomaly, it suffices to compute the quantity D−1 RW�, where � is the 
solution of (82) obtained by means of the Woodbury formula (83)—either at a near anomalous configuration, or in the limit 
as the anomaly is reached. To do this we consider the following sequence of relations:
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D−1 RW� = D−1 RW
(

A−1 − A−1 EW(D + RW A−1 EW)−1 RW A−1) F

= D−1 RW A−1 F − D−1 RW A−1 EW(D + RW A−1 EW)−1 RW A−1 F

= [
D−1 (D + RW A−1 EW

)− D−1 RW A−1 EW
] (

D + RW A−1 EW
)−1

RW A−1 F

= (
D + RW A−1 EW

)−1
RW A−1 F .

(90)

The only slightly non-trivial step in this derivation, namely, the third equality, is established by factoring out the term 
(D + RW A−1 EW)−1 RW A−1 F from the right. Note that, as in (83), the inverse of the sum on the last line in (90) can be 
obtained by solving a finite-dimensional linear system of equations. Since the last line in this equation tends to a finite 
limit as the RW configuration is approached, the coordinates of D−1 RW� can be continuously extended in the RW-anomaly 
limit. Thus, the spatial values of the solution of the PDE under consideration can be continuously extended to the anomalous 
configuration (kw , αw , �w) by means of the expression in the last line of (90).

5. Numerical results

This section presents results of a variety of numerical experiments that demonstrate the applicability and performance 
of the Laplace-type, Ewald and shifted Green function RW-capable methodologies proposed in this article for evaluation 
of scattering solutions both at and away from RW-anomalies. The two-dimensional scattering structures (Section 5.3) are 
arrays of penetrable and impenetrable particles, whereas in the more challenging bi-periodic three-dimensional case (Sec-
tion 5.4) we also consider arrays of impenetrable particles as well as bi-periodic reflective and transmissive gratings (see 
also Remark 3 in regard to penetrable particles). Finally, in the case d� = 1, d = 3, the solvers are demonstrated with the 
simulation of acoustical wave-scattering by impenetrable double-helical periodic structures (Section 5.5).

The accurate evaluation of weakly-singular integrals arising in boundary integral equation methods is obtained by means 
of the well known Martensen-Kussmaul rule described in [16] in the case d = 2 whereas for d = 3 we use the novel 
“rectangular-integration” methodology introduced in [5]. All simulations were obtained by means of a Fortran-90 imple-
mentation of the numerical solvers and the various figures were rendered using the visualization software VisIt [13]. The 
two-dimensional simulations were executed in a single core of an Intel i5-8250U processor in a personal computer with 16 
Gb of RAM memory. The solvers for the various three-dimensional examples were run in 24 cores of an Intel(R) Xeon(R) 
CPU E5-2670 v3 processor with 120 Gb of RAM memory; the code was parallelized using the OpenMP API. The linear 
systems in the two-dimensional case were solved by Gaussian elimination using the LAPACK implementation provided in 
the Intel Math Kernel Library; in the three dimensional examples, in turn, the solutions were obtained using the CERFACS 
implementation of the GMRES algorithm [21] (in these cases we have reported the number of iterations required to achieve 
a residual tolerance of 10−12). Throughout this section the overall solver errors are estimated by means of resolution studies 
as well as the energy balance criterion (EBC), that is, the defect in energy balance (a topic that is discussed in Appendix A).

Remark 5. The necessary parameters required for the various quasi-periodic Green function evaluation methods were se-
lected as follows. The shift parameter and numbers of shifts used for the shifted Green function (which is employed in 
Sections 5.2 and 5.5) are h = λ/2 and j = 8. The splitting parameter in the Ewald method (which is employed in Sec-
tions 5.2, 5.3 and 5.4) was selected as η = k. The Laplace-type integral method (which is utilized in Section 5.2) only 
requires a selection of the number of quadrature points; a number of 128 quadrature points was used in all cases.

5.1. Accurate evaluation of the quasi-periodic Green function Gq
κ

Use of the Ewald method results in highly-efficient solvers [48], at least for configurations of sufficiently (acoustically) 
small period, as a result of the exponential decay of the general m-term in both series in equation (47). For example, for 
acoustically-small bi-periodic configurations in three dimensions, evaluation of one value of the Green function by means 
of the Ewald method can be produced in a fraction of a millisecond with machine-precision accuracy. However, as demon-
strated in [2,12], the Ewald method becomes highly unstable as the frequency or the size of the period grows, rendering 
the methodology completely inaccurate at high frequencies; in our experiments we have found that for problems where the 
period equals 64 wavelengths the Ewald approach does not provide any accuracy for any possible choice of the splitting 
parameter η. As explained in Section 3, in turn, the Laplace-type integral technique can only be applied for cases in which 
d� = 1 (with the exception of bi-periodic arrays for which the periodicity directions are orthogonal) and, in the most chal-
lenging three-dimensional, d� = 1, case the evaluation of Bessel functions with complex argument that it requires makes 
the method much slower than the Ewald approach—requiring tens of milliseconds per evaluation to produce single-precision 
accuracy. (Moreover, since the argument of the Bessel function needed by the Laplace-type method is proportional to κ |x⊥|, 
instabilities arise in higher-frequency/period regimes, but this problem was resolved in [23,24].)

The proposed shifted Green-function based approach, finally, is the simplest of the three methods described in this 
article as it does not require the evaluation of special functions: only finite truncations of the sums over the direct and the 
reciprocal lattices inherent in the two terms in (59) are required. The reciprocal lattice sum is truncated as indicated in the 
caption of Table 1. The sum over the direct lattice (and therefore, the complete procedure), in turn, inherits the algebraic 
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Table 1
Errors and computing times (in seconds) required for single-point evaluation of the shifted Green-function expression (59)
truncated with N = 8, 16, 32 (upper table) and N = 2, 4, 8 (lower table) in three-dimensional with periodicity d� = 1 (top) and 
d� = 2 (bottom). (For conciseness, only order-of-magnitude computing times, which are constant for each row, are reported.) 
The errors displayed were evaluated as the maxima of errors at several points within the period for which |x⊥| equals half 
of the period (a selection that was made to ensure the spectral series converges rapidly and can thus be used to evaluate 
reference values). In both cases the algorithm parameters are j = 8 and h = 0.25λ−1. The number of terms kept in the 
truncation of the reciprocal-lattice sum in (59) was taken to coincide with the number of terms used in the spectral-sum 
evaluation of reference values (fewer terms could be used, but the larger numbers of terms induce only a marginal additional 
computing cost in these cases). The large errors observed for the smaller periods can be reduced by increasing the value of N
(and, thus, the computing cost) as needed.

Period (d� = 1) 8 16 32 Computing time (s)

2.5λ 4.2 · 10−3 7.2 · 10−5 1.2 · 10−6 O
(
10−4

)
8.5λ 2.9 · 10−5 3.6 · 10−7 5.3 · 10−9 O

(
10−4

)
64.5λ 2.2 · 10−7 1.3 · 10−9 1.5 · 10−11 O

(
10−4

)
Period (d� = 2) 2 4 8 Computing time (s)

2.5λ 2.3 · 10+2 2.3 · 10+2 2.3 · 10+2 O
(
10−4

)
8.5λ 1.6 · 10−1 5.2 · 10−3 1.3 · 10−7 O

(
10−3

)
64.5λ 1.5 · 10−11 1.9 · 10−11 2.9 · 10−11 O

(
10−2

)

decay (54)–(55) of the shifted Green function. Thus, truncating the required spatial sum (56) by including only the terms 
m ∈ Zd� with coordinates between −N and N in each one of the d� dimensions, the value of N required to achieve a 
given accuracy may be either small or large depending on whether the period is large or small, respectively, compared to 
the wavelength, as demonstrated in Table 1. The slow convergence in the small-period case is specially problematic for bi-
periodic arrays in three-dimensional space as the computation of the finite truncations have a quadratic cost, since the sum 
must be performed over two directions. But, as shown in [8], this problem may be eliminated by means of suitable integral-
equation acceleration methods. Additionally, even for small periods, for arrays with a single direction of periodicity (d� = 1) 
only a one-dimensional spatial sum needs to be evaluated in the shifted Green function approach, making it extremely fast, 
as illustrated in Table 5—which is specially important in the three dimensional case where the Ewald method is highly-
unstable, and where the Laplace-type integral technique can be orders of magnitude slower than the shifted Green function 
method. Furthermore, as demonstrated in Table 1 and [3,10], for a fixed number of terms, the shifted Green function 
achieves higher and higher accuracies as the period is increased. Or, equivalently, since the accuracy, which scales like 
L−(

j
2 −1) for j even (with a slightly different exponent expression for j odd), the number of terms needed for the shifted 

Green function to meet a given desired error tolerance decreases as the period is increased. Since the computation of the 
quantities involved are not exponentially large or small, no instabilities as the ones in the Ewald or Laplace-type integral 
methods occur, making the shifted Green-function based method highly suitable for large-period configurations even in the 
case d = 3, d� = 2.

In sum, our experiments show that in the cases d� = d − 1 (d = 2, 3) the Ewald representation provides the best conver-
gence properties for small periods but it becomes unstable at higher-frequencies. Additionally, the Ewald method is unstable 
at any frequency in the case dλ = 1, d = 3. Fortunately, the shifted Green-function approach becomes computationally ad-
vantageous precisely in the high-frequency d� = d − 1 (d = 2, 3) and dλ = 1, d = 3 cases for which the Ewald method 
breaks down. Additionally, in view of the contribution [8], accelerated versions of the shifted Green function approach may 
prove competitive in low-frequency regimes as well. The Laplace-type method, in turn, is generally slower than the Ewald 
or shifted Green function methods in their respective preferred operation regimes. Therefore, except for a Laplace-method 
demonstration presented in Section 5.2, all of the numerical examples presented in this section utilize either the Ewald or 
shifted Green function methods, whichever is most efficient for each case studied.

5.2. Condition number analysis around RW-anomalies

Fig. 2 (left) depicts the first scattering setup considered in this section, namely, a plane wave illuminating a two-
dimensional periodic array, of period L = 5λ, of impenetrable sound-soft cylindrical obstacles. The individual sound-soft 
scatterers have circular cross-section with diameter equal to half a period, and the simulations carried out for this geometry 
contemplate angles close to normal incidence which, for the chosen period, is an RW anomalous configuration.

As stated in Section 1, the application of integral equation methods to periodic media normally present two main types of 
difficulties around RW-anomalies. The most dramatic challenge concerns inaccuracies in the evaluation of the quasi-periodic 
Green function—which result in an inaccurate construction of the linear system to be inverted. The second challenge relates 
to the ill-conditioning of the system around RW-anomalies, which might also produce a loss of accuracy even if very accu-
rate evaluations of Gq

κ are used, such as those arising from the Ewald or shifted Green function methods. The first of these 
difficulties is illustrated in Fig. 3 (left), which displays the error in the energy balance criterion in a case in which the quasi-
periodic Green function is computed by means of the Laplace-type integral method using equations (33) and (34)—in which 
the singular 1/βm term has not explicitly been extracted—and by means of equations (33), (38) and (44)—which include 
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Fig. 2. Real part of the total field observed under normal incidence by a periodic array of impenetrable sound-soft (left and right) and penetrable sound-hard 
(center) cylindrical obstacles with various cross-sections.

Fig. 3. Left: errors, estimated by the energy balance criterion, as a function of δ = θ
1
5 , for scattering solvers based on the Laplace integral method. The 

Laplace-type method demonstrated in the left graph, computes accurately or inaccurately, depending on whether singularity extraction is performed or not, 
the quasi-periodic Green function around a RW-anomaly, and leads to accurate or inaccurate scattering solutions in the two respective cases. The angles 
θ = δ5 sample incidence directions which differ from normal incidence, at which the RW anomaly occurs, in angles of the order of 10−5 to 10−14.

singularity extraction. Fig. 3 (right) displays results of two similar experiments, in both cases using singularity extraction, 
except that, in this case, the Ewald and shifted Green function representations are used to compute Gq

κ . These figures illus-
trate the benefits, irrespectively of the WSM formalism, that result from use of hybrid spatial/spectral representations which 
display explicitly both spatial poles and the finitely many terms which cause the divergence of Gq

κ at the RW-anomaly.
Difficulties related to system ill-conditioning around RW-anomalies, in turn, only emerge as high-accuracies are sought. 

As explained in Section 4, ill conditioning arises in these cases from the diagonal operator D−1 in equation (82), which 
blows up as the RW singularity is approached. In the two-dimensional example considered in the present section, D−1

diverges like 1/
√

�θ as �θ → 0 resulting in matrices whose condition numbers only increase up to figures of the order of 
108 in double precision arithmetic (Fig. 4 right). Given that these values are not exceedingly large, a severe loss of accuracy 
is not evidenced (only a few digits are lost). However, the WSM regularization technique produces linear systems which are 
well-conditioned (at least for all the runs of the solvers and all the experiments presented in this article, see Fig. 4 (right)) 
yielding a methodology which preserves the accuracy of the underlying method to evaluate Gq

κ and which can extend the 
solution to the RW-anomaly itself (Fig. 4).

In what follows we demonstrate the validity and applicability of the proposed framework for a number of relevant 
examples.
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Fig. 4. Energy balance errors (left and center) in the solution of the scattering problem depicted on the right image in Fig. 2 on the basis of the Laplace-
type integral method with singularity extraction, as proposed in this article (left), and Ewald methods (center), with and without WSM regularization. The 
angles θ = δ5 sample incidence directions which differ from normal incidence in angles of the order of 10−5 to 10−14. The right figure, which displays 
the condition numbers of the linear systems obtained on the basis of the Ewald method with and without WSM regularization, illustrates the effect of the 
WSM methodology on conditioning at and around RW-anomalies.

Fig. 5. Energy balance error obtained from use of the Ewald method with WSM regularization, as a function of the incidence angle, for the scattering 
configurations depicted in the right image on Fig. 2. The left and right graphs correspond to arrays of periods equal to 5λ and 10λ respectively.

5.3. Two dimensional simulations

The two-dimensional numerical experiments considered in this section illustrate the robustness of the overall method-
ology. Two arrays with periods 5λ and 10λ of impenetrable sound-soft elliptical cylinders are illuminated by a range of 
incidence angles sampling anomalous and non-anomalous configurations. In both cases 64 points are used to discretize 
each ellipse (Fig. 2, right) and each series in the Ewald representation is truncated at |m| < 40. As can be clearly appreciated 
from the errors displayed in Fig. 5, the overall accuracy of the methodology does not suffer at and around RW-anomalies. 
Scattering patterns for a particular incidence angle are displayed in Fig. 2 (right).

5.4. Three dimensional simulations–Bi-periodic structures

In this section we first consider the problem of scattering of an incoming plane wave by a periodic array of impenetrable 
sound-soft tori (Fig. 6, left). The results displayed in Tables 2 and 3 correspond to a lattice whose periodicity vectors are 
v1 = L(1, 0, 0) and v2 = L(cos(π/3), sin(π/3), 0) (a honeycomb structure) where the size of the period equals L = λ and 
L = 4λ respectively. The wave impinges on the array with a propagation direction equal to

(cos(φ) sin(θ), sin(φ) sin(θ),− cos(θ)) (91)

with φ = π/3 and θ = π/6 giving rise to an anomalous configuration in the example with largest period (L = 4λ). We use 
a global parametrization of the torus

x(s, t) = (cos(π s)(r cos(πt) + R), sin(π s)(r cos(πt) + R), r sin(πt)) , (s, t) ∈ [−1,1]2
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Fig. 6. Real part of the total field scattered by an array of impenetrable tori arranged in a honeycomb structure (left) and by a bi-sinusoidal transmission 
crossed grating (center). The image on the right displays the energy balance error for a periodic crossed grating with period equal to 5λ as a function of 
the projection (cos(φ) sin(θ), sin(φ) sin(θ)) of the incidence direction in equation (91), some of which give rise to RW anomalies. For the latter case, the 
unit-cell of the grating is divided in four non-overlapping patches (obtained from a single dyadic splitting of the parameter square [−1, 1]2 and a re-scaling 
of the parameters) and each is discretized with 16 × 16 Chebyshev grid points. The evaluation of the quasi-periodic Green function was performed by 
means of Ewald method, truncating each of the required series to ‖m‖∞ < 20; see also Remark 5. The WSM regularization formulation was used for these 
test cases for all near-RW configuration (which are defined here by the condition “|βm| < 0.1 for some m”).

Table 2
Convergence analysis for a periodic array of impenetrable tori arranged in a honeycomb structure with 
period equal to λ and for an incidence field for which the configuration is away from RW-anomalies. 
The quasi-periodic Green function was evaluated by means of the Ewald method where each infinite 
sum in the Ewald representation is truncated to ‖m‖∞ ≤ Ntr . See also Remark 5.

Patches Nu × Nv Ndis Ntr EBC A+
0 Iterations Time (s)

1 8 × 8 64 5 6.3 · 10−3 4.7 · 10−2 18 <1
64 10 6.3 · 10−3 4.7 · 10−2 16 <1
64 20 6.3 · 10−3 4.7 · 10−2 16 <1

16 × 16 128 5 8.0 · 10−6 4.4 · 10−5 20 2
128 10 7.0 · 10−6 4.8 · 10−5 18 3
128 20 7.0 · 10−6 4.8 · 10−5 18 3

4 16 × 16 1024 5 1.8 · 10−6 9.2 · 10−6 15 7
1024 10 7.3 · 10−8 4.7 · 10−7 14 13
1024 20 7.3 · 10−8 4.7 · 10−7 14 36

32 × 32 4096 5 1.9 · 10−6 9.5 · 10−6 15 103
4096 10 9.9 · 10−9 0 14 198
4096 20 9.9 · 10−9 Ref 14 568

setting in both cases R = L/4 and r = L/16. Non-overlapping patches can be obtained by means of dyadic subdivisions of 
the square [−1, 1]2 and a proper re-scaling. High-order convergence can be appreciated from the displayed errors (Tables 2
and 3) as the discretization of the surface is refined (where the refinement is controlled with the number of patches and 
with the number of Chebyshev nodes in the u and v direction) as well as increasing the number of terms in the truncation 
of the series in the Ewald representation.

The second experiment conducted to test the robustness of the method around RW-anomalies resembles the one per-
formed to produce Figs. 5. We consider an impenetrable sound-soft crossed grating (that is, a grating for which the lattice 
directions lie at 90◦ from each other), whose boundary is parametrized by

x(s, t) =
(

L

2
s,

L

2
t,

H

2
sin(π s) sin(πt)

)
, (s, t) ∈ [−1,1]2, (92)

with period and height given by L = 5λ and H = λ, and we compute the energy balance error for a range of 10,000 incidence 
directions (91) where the sample angles are given by θi = arccos(iπ/100), φ j = 2π j/100, i, j = 0 . . . 99. The unit-cell of the 
grating is divided in four non-overlapping patches (obtained from a single dyadic splitting of the parameter square [−1, 1]2

and a re-scaling of the parameters) and each is discretized with 16 × 16 Chebyshev grid points. The evaluation of the quasi-
periodic Green function is performed by means of Ewald method truncating each of the required series with ‖m‖∞ < 20. 
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Table 3
Convergence analysis for a periodic array of impenetrable tori arranged in a honeycomb structure with 
period equal to 4λ under normal incidence, which gives rise to a RW anomaly. The anomaly was treated 
here by means of the WSM method. Truncations to ‖m‖∞ ≤ Ntr were used for the WSM-modified 
Ewald summation method to obtain the highly accurate results displayed; see also Remark 5.

Patches Nu × Nv Ndis Ntr EBC A+
0 Iterations Time (s)

1 16 × 16 128 10 2.4 · 10−2 2.6 · 10−2 36 2
128 20 2.4 · 10−2 2.5 · 10−2 35 3
128 40 2.4 · 10−2 2.5 · 10−2 33 9

32 × 32 1024 10 4.4 · 10−4 7.8 · 10−4 39 17
1024 20 2.1 · 10−5 1.9 · 10−5 37 40
1024 40 2.2 · 10−5 1.9 · 10−5 35 133

4 16 × 16 1024 10 5.6 · 10−4 1.1 · 10−3 32 18
1024 20 5.8 · 10−5 8.4 · 10−5 29 42
1024 40 5.6 · 10−5 8.5 · 10−5 28 133

32 × 32 4096 10 3.6 · 10−4 3.7 · 10−4 29 268
4096 20 1.4 · 10−6 7.9 · 10−7 26 638
4096 40 1.8 · 10−8 Ref 24 2105

Table 4
Convergence analysis for a transmission crossed-grating with period equal to 2λ under normal 
incidence (an RW anomalous configuration). Truncations of the form ‖m‖∞ ≤ Ntr of the modi-
fied Ewald summation method are used to obtain highly accurate results; see also Remark 5.

Patches Nu × Nv Ndis Ntr EBC A+
0 Iterations Time (s)

4 8 × 8 256 10 3.8 · 10−3 9.8 · 10−3 32 2
256 20 2.4 · 10−3 9.8 · 10−3 35 5
256 40 2.4 · 10−3 9.8 · 10−3 33 9

16 × 16 1024 5 3.2 · 10−5 9.8 · 10−5 32 32
1024 10 4.0 · 10−6 1.4 · 10−6 32 80
1024 20 3.9 · 10−6 1.4 · 10−6 32 255

32 × 32 4096 5 2.0 · 10−4 2.0 · 10−4 30 212
4096 10 2.7 · 10−10 1.2 · 10−10 19 720
4096 20 2.7 · 10−10 Ref 19 1164

It can be clearly appreciated from Fig. 6 (right) that high-accuracies are obtained irrespectively of the occurrence of RW-
anomalies.

Finally we consider the convergence properties of the methodology for a transmission grating. In this case, the propa-
gation domain � = R3 having two subregions with constant refractive indexes n0 = 1 and n1 = 1.25 (Fig. 6, center); the 
boundary between the two is parametrized by the mapping (92) where the period L = 2λ0 (two wavelengths of the domain 
with refractive index n0 = 1). Under normal incidence, this configuration gives rise to RW-anomalies in both domains (there 
are, in each set, 4 indexes m such that βm(n jk) = 0, j = 0, 1). As can be clearly appreciated in Table 4, very high accuracies 
are obtained for the finest discretization and results with a small number of correct digits can be obtained in a few seconds.

5.5. Linear periodic arrays in three dimensional space

This section illustrates the applicability of the ideas developed in this article to the simulation of three-dimensional 
periodic structures with a single direction of periodicity. In order to obtain highly-accurate evaluations of Gq

κ we utilize the 
shifted Green function representation (58) which yields highly accurate results in fast computing times, in contrast to the 
Ewald method which has an erratic behavior in this context [12], and which, even when accurate, as it is for small values 
of |x⊥|, does not present a major advantage in terms of speed as in the bi-periodic case considered in the previous section. 
The Laplace-type integral method was not used either since it becomes costly due to the evaluation of Bessel functions with 
complex argument. Perhaps, in part, for these reasons, these types of configurations have received much less attention in 
the computational physics literature than their well-known bi-periodic relatives. The only d� = 1, d = 3 problems of which 
we are aware are computations of eigenmodes for twisted waveguides on the basis of either approximate models [41]
or finite-difference methods in time-domain (FDTD) [53]. The contributions [11,29,46,51] consider linear arrays of spheres 
but they also focus on the study of guided modes in the periodic structure rather than the simulation of a wave-scattering 
process. To the best of our knowledge, the numerical simulations presented in what follows are the first high-order accurate 
numerical simulations ever produced for linear arrays in three-dimensional space.

We consider first the scattering of an impenetrable, sound-soft, double-helical structure comprised of two “twisted” 
cylinders (Fig. 7) and compute the energy balance error for several discretization levels and a number of finite truncations 
of the shifted Green function representation (58). Each infinite helix is obtained from an appropriate rotation around the 
x1-axis of the globally-parametrized surface
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Fig. 7. Left: Twisted double-helical surface structure of period 5λ illuminated by a plane wave with incidence direction given by (91) with φ = 0 and 
θ = π/6. The total-field intensity pattern, which was obtained by means of the shifted Green function method, is displayed on a plane parallel to the 
periodicity direction located 50 wavelengths behind the double helix structure. Right: Diffraction pattern (far field behind the double helix) obtained for 
an array of spheres located along two helical curves, which emulates the arrangement of phosphorus atoms in DNA molecules. The simulated pattern 
resembles closely the X-ray crystallography experimental results that allowed the discovery of the double-helical structure of DNA in the famous “Photo 
51”—that can be easily found on the internet, but for which we were not able to find a published reference. When comparing the right image to the actual 
Photo 51 a mismatch can be seen at the center of the diffraction pattern: the experimental data does not contain the bright central line that is clearly 
visible on the right-hand image above. This is a feature of the experimental setup, which used a filter to occlude the intense line to avoid overexposure of 
the X-Ray photographic film.

Table 5
Convergence analysis for a double-helix structure (Fig. 7) of period 5λ using a 
fixed number Ndis of discretization points. The incidence direction is given by (91)
with φ = 0 and θ = π/6 (not an RW-anomaly). The quasi-periodic Green function 
is evaluated by means of truncations of the shifted Green function representa-
tion (58) with j = 8 and h = λ/2. In this table, the sum over the spatial lattice 
in (58) (Gq

j in Equation (56)) is truncated to |m| ≤ N terms; see also Remark 5.

Patches Nu × Nv Ndis N EBC Iterations Time (s)

4 16 × 16 1024 2 1.4 · 10−2 44 26.52
1024 4 1.3 · 10−4 42 27.31
1024 8 5.2 · 10−5 40 28.88

Table 6
Convergence analysis for a double-helix structure (Fig. 7) of period 5λ. The in-
cidence direction is given by (91) where φ = 0 and θ = 10−8, very close to 
an RW-anomaly (which occurs at θ = 0). The quasi-periodic Green function is 
evaluated by means of truncations of the shifted Green function representa-
tion (58) with j = 8 and h = λ/2. In this table, the sum over the spatial lattice 
in (58) (Gq

j , Equation (56)) is truncated to |m| ≤ N terms; see also Remark 5.

Patches Nu × Nv Ndis N EBC Iterations Time (s)

16 16 × 16 4096 2 4.4 · 10−3 39 424.73
4096 4 1.1 · 10−5 39 441.23
4096 8 6.9 · 10−7 39 461.32

x(s, t) = C(s) + r cos(t)ê2(s) + r sin(t)ê3(s), s ∈R, t ∈ [0,2π ] (93)

where C(s) = (Rσ s, R cos(s), R sin(s)) is a parametrization of a helical curve with radius R and slope σ , where r is the 
inner-radius of the twisted cylinder and ê2 and ê3 are the normal and bi-normal unit vectors of the Frenet reference 
frame of the curve C . The subdivision into patches required by the rectangular integration methodology can be obtained by 
means of dyadic subdivisions of [−1, 1]2 and proper rescalings. For the examples considered in Tables 5 and 6 we have set 
r = λ/2 and R = λ in equation (93). The slope, in turn, is σ = 5λ/(2π R) yielding a period equal to 5λ. In both cases the 
incident wave has a propagation direction given by equation (91) with φ = 0 and θ = π/6 for Table 5 (a non-anomalous 
configuration) and θ = 10−8 (very close to an RW-anomaly) for Table 6. (The case θ = 0 can be treated by means of the 
WSM method without difficulty.) The results displayed in those tables demonstrate the excellent convergence properties of 
the shifted Green function in conjunction with the rectangular integration method away from and around RW-anomalies.
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6. Conclusions

This paper studied the major challenges encountered by classical methods based on quasi-periodic Green functions 
for the simulation of wave-scattering by periodic media around RW-anomalies, which are observed in both two- and 
three-dimensional problems, and which are pervasive in the most challenging three-dimensional case. Through the con-
cept of hybrid spatial/spectral representations, this contribution introduced a framework, the Woodbury-Sherman-Morrison 
methodology, to explain and bypass the problems presented by these singularities irrespectively of the underlying geometry 
of the scattering structure. As a result, fast and robust numerical solvers were obtained and applied to the simulation of 
acoustic wave-scattering by various two and three dimensional periodic structures with a variety of boundary conditions. 
The errors and times presented in this contribution render the software developed for this article among the fastest and 
most accurate and available to date for the configurations considered.
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Appendix A. Energy balance criterion

The principle of conservation of energy provides, under certain circumstances, a valuable indicator of the accuracy of 
numerical methods for periodic structures. Even though the exact (or highly-accurate) verification of a conservation principle 
does not guarantee in general the convergence of the method, it provides a good estimator of the overall accuracy of the 
algorithm, specially when accompanied by other criteria, such as resolution analysis. In the wave-scattering by periodic 
(non-absorbing) media the relevant conservation principle follows from Green’s second identity [43]. The following section 
presents a derivation of the energy-balance criterion for scattering by linear arrays in three-dimensional space which we 
have not found elsewhere. Other energy balance relations can be found e.g. in [43].

A.1. Scattering by linear arrays in three dimensional space, d� = 1, d = 3

This section presents a derivation of the energy balance criterion for “linear” periodic structures which, like the ones 
considered in Section 5.5, consist of surfaces or arrays of impenetrable particles having periodicity along the x1 axis. We 
assume that the scattering structure is contained within the cylinder �M = {x ∈ R3 : x2

2 + x2
3 < M2} for some M > 0. Then, 

selecting ρ > M and applying Green’s second identity in �M we have

0 =
∫

∂ B(0,ρ)

(
u

∂u

∂ν
− u

∂u

∂ν

)
dS. (94)

Now, writing u = us + uinc and replacing us by its corresponding Rayleigh expansion (26) it follows that

0 =
∑
m∈Z

∫
|x⊥|=ρ

(
Um

∂Um

∂ν
− Um

∂Um

∂ν

)
+ 2i Im

⎛
⎜⎝ ∫

|x⊥|=ρ

eiβ·x⊥ ∂U0

∂ν
− U0

∂eiβ·x⊥

∂ν

⎞
⎟⎠ . (95)

For indexes m for which β2
m = κ2 −α2

m > 0, the functions Um are solutions of the Helmholtz equation in two dimensional 
space satisfying Sommerfeld’s radiation condition and therefore they can be expanded in the form

Um(x2, x3) =
∑
	∈Z

u(m)
	 H (1)

	 (βm|x⊥|)ei	θ , (96)

where H (1)
	 is the Hankel’s function of the first kind of order 	 and θ is such that x2 = |x⊥| cos θ and x3 = |x⊥| sin θ . A 

similar expression for the factor eiβ·x⊥
of the incoming wave can be obtained by means of the Jacobi-Anger’s expansion [16]

eiβ·x⊥ =
∑

i	e−i	θ̃ J	(|β||x⊥|)ei	θ , (97)

	∈Z



O.P. Bruno, A.G. Fernandez-Lado / Journal of Computational Physics 410 (2020) 109352 23
where θ̃ is such that β = |β|(cos θ̃ , sin θ̃ ) and J	 is the Bessel’s function of the first kind of order 	. Using the orthogonality 
of the exponentials ei	θ in L2(∂ B(0, ρ)) and the relations for the Wronskians [19, Eq. 10.5.1-5]

W (H (1)
	 , H (1)

	 )(z) = − 4i

π z
, W (H (1)

	 , J	)(z) = − 2i

π z
,

we have∫
|x⊥|=ρ

(
Um

∂Um

∂ν
− Um

∂Um

∂ν

)
= 8i

∑
	∈Z

|u(m)
n |2 (98)

and ⎛
⎜⎝ ∫

|x⊥|=ρ

eiβ·x⊥ ∂U0

∂ν
− U0

∂eiβ·x⊥

∂ν

⎞
⎟⎠= 4i

∑
	∈Z

u(0)
	 i	ei	θ̃ . (99)

Note that these expressions are independent ρ . In contrast, for the indexes m such that β2
m = κ2 − α2

m < 0, Um decays 
exponentially fast as ρ → ∞ and therefore, the corresponding integrals involving Um in that equation do not produce a 
contribution in the limit. The energy balance criterion for impenetrable periodic structures with d� = 1 in three dimensional 
space,

∑
m∈U

(∑
	∈Z

|u(m)
	 |2

)
= −Im

(∑
	∈Z

ei	(θ̃−π/2)u(0)
	

)
, (100)

is thus obtained.
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