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ABSTRACT: Coarse-grained (CG) models have allowed molecular
simulations to access large enough time and length scales to
elucidate relationships between macroscale properties and micro-
scale molecular interactions. However, an unaddressed inverse-
design problem concerns the identification of an optimal chemistry-
specific (CS) molecule that the generic CG model represents. This
has been addressed here by introducing new tools for automatically
generating and refining the mapping of CS-molecule candidates to
the constraints of a CG model, based on representative optimization
criteria. With these tools, for each CS-molecule from a candidate
group, the best mapping of that molecule onto the CG model is
found and their fit is assessed by an objective function designed to
emphasize matching key properties of the CG model. We employ
this methodology to a range of CG models from small solvent
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molecules up to block copolymer systems to show its ability to find optimal candidates and to uncover the underlying length
scale of some of the CG models. For instances where the identity of the CG model is known a priori, the methodology identifies
the correct AA chemistry. For instances where the identity is unknown and a pool of candidates is provided, the method selects
a chemistry that aligns well with physical intuition. The best candidate chemistry is also found to be sensitive to changes to the

CG model.

B INTRODUCTION

The ever-expanding availability of computational resources has
fueled a fast growth in the size and scope of the molecular
simulations currently used for property prediction. Indeed,
with resources such as XSEDE, an NSF-funded collection of
computational resources,’ simulations involving hundreds of
processors and millions of atoms are potentially viable.””
Despite these advances, there still exist many physical and
chemical processes whose length scales are beyond the reach of
computationally accessible time scales, such as those involving
large biomolecules and other macromolecules. Indeed, such
simulations often encounter rugged free-energy landscapes and
kinetic trapping in deep metastable basins. To address these
kinetic barriers, techniques such as parallel tempering/replica
exchange,ﬁ_9 metadynamics,'’~"? transition-path sampling,'>**
and kinetic Monte Carlo'”'® have been developed and used.

One of the most successful approaches to speed up
molecular simulations has been the use of coarse-grained
(CG) models, i.e., models that bundle groups of beads from a
more detailed model into single beads to thus eliminate
microscopic degrees of freedom that are not essential to
resolve structural details above a certain length scale. CG
models have smoother potential energy surfaces that are easier
to sample ergodically compared to their all-atom (AA)
counterparts, whose rougher potential energy landscape can
create kinetic traps.'” Indeed, studies using CG models have
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been able to access such collective properties as the self-
assembly behavior for systems where traditional AA models
would be intractable with typically available computational
resources.'* !

The CG models for macromolecules can be broadly
classified into two categories: (i) “chemical” models if mapped
directly from a chemistry-specific (CS) polymer and (ii)
“physical” models if intended to describe a broad class of
polymers. In the former directly mapped CG or “DCG”
models, their parameters are calibrated to match selected
results of properties obtained from experiments or AA
simulations of the material of interest. In the latter case, one
begins with a relatively small simulation of the AA molecule
and a CG molecule with a specific CG mapping (i.e., a recipe
for the way how atoms in the AA molecule are mapped into
the different CG beads); such a mapping is often guided by
physical intuition. Once suitable functional forms have been
selected for the bonded and nonbonded interaction potentials,
the model can be parametrized by such methods as iterative
Boltzmann inversion,”>** force matching,“’25 or relative
entropy.”””” The goal of the parametrization is to construct
CG molecules such that their behavior mimics that of the
known molecule at a prescribed level of detail. The degree of
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Figure 1. Schematic of the DCG (blue arrow) and ICG (green arrows) processes. DCG begins with parametrizing a CG model based on
simulations of the original AA CS-molecule. The CG trajectory can then undergo reverse coarse-graining (RCG) to return an AA structure. In ICG,
only the CG model is known and candidate molecules are proposed. Each CS-molecule has an optimal mapping that most closely replicates the
original CG model. The trajectory of each CS-molecule is coarse-grained using this mapping into a trajectory of the CG model. These trajectories

are compared to yield a best candidate.

coarsening (DOC); i.e,, how much detail is averaged out, can
range from simply integrating out the hydrogens like in typical
united atom (UA) models,” to lumping entire monomers/
amino-acids or even long sections of polymer coils into single
beads as in models originally used with dissipative particle
dynamics (DPD).***°

Due to the simplicity and computational efficiency of CG
models with greater DOC, many studies have adopted generic,
physical CG models intended to capture the typical behavior of
a class of polymers rather than that of any specific polymer
chemistry, such as the widely used bead—spring chain models
introduced by Kremer and Grest.’' The use of chemistry-
agnostic models is common not only to molecular simulations
but also to theoretical polymer physics® where the goal is to
broadly describe polymer behavior rather than the behavior of
specific chemistries. While many of these CG simulation
studies are able to reproduce experimentally known physical
trends of some macromolecules, others can also reveal new or
unusual results. In the latter case, it would be of interest to
identify specific molecular chemistries (i.e, AA models) that
could be good candidates to capture the predicted behavior of
the generic CG molecules investigated. The process of
determining the identity of these AA molecules is henceforth
referred to as inverse coarse-graining (ICG).

Figure 1 schematically compares DCG and ICG. If it is
known that a given AA molecular model has a specific property
of interest, then DCG would be a suitable approach to explore
perturbations in behavior in a close proximity of compositional
space. If the goal is to widely explore a potentially novel type of
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behavior, ICG would be a suitable methodology because
generic CG molecular modes are typically “coarser” and more
computationally efficient. Once a CG model has generated
results of interest,>>>° candidate AA CS-molecules need to be
determined to guide experimental efforts toward realizing such
predictions. ICG can thus become a powerful strategy in
materials design, complementary to the existing DCG method
and well aligned with the objectives of the Materials Genome
Initiative.’* We note that DCG and ICG are somewhat related
but not the same as bottom-up and top-down CG approaches,
respectively. DCG can be implemented via either a top-down
or bottom-up approaches. In a top-down CG approach,
experimental data are typically used as the target data to
reproduce, and in ICG one can view the observables from the
CG model simulations as the input data playing a role akin to
“experimental data”. But importantly, ICG is not about coarse-
graining but rather “fine-graining”. On the one hand, a main
advantage of ICG over DCG is that the former avoids the
difficulty of finding the optimal number of particles and the
topology of the low-resolution model, which can present
significant challenges. On the other hand, ICG is restricted by
the availability of suitable high-resolution models.

ICG has not been as well studied as DCG, partly due to the
ill-posed nature of the ICG problem compared to DCG.
Indeed, for a given AA CS-molecule and CG model, there
exists in principle one optimal set of model parameters, but for
a given CG model, many different AA CS-molecules can be
mapped onto the same CG molecule. In this context, ICG is
much more dependent on the specific criterion adopted to
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determine the goodness of fit. This important difference
between reproducing the behavior of a well-defined chemistry
(DCG) and reproducing the behavior of a virtual, “fuzzy” CG
model by assigning chemical identity (ICG) is the impetus for
this work. While some work exists that tried to §eneralize a set
of chemistries to a single CG model,>’ ™™ a directed
evolutionary approach would be highly desirable, so that the
candidates for the optimal AA CS-molecule can be evaluated
and evolved toward the best fit of the CG model, ideally, in an
automated way (e.g, aided by machine-learning techni-
).*'7% Previous work that employed methodologies
similar to the ICG process have candidate pools upward of §
x 10° molecules,””*® further stressing the need for an
automated process.

As a materials discovery strategy, ICG could be used to
optimize a CG model by tweaking its parameters and
extensively mapping associated phase diagrams, until an
interesting or unique behavior is seen or enhanced. This
leverages the high computational efficiency of CG models.
After a CG model with the sought-after behavior is established,
ICG would carry out the task of finding a CS molecule that can
reproduce that behavior, even if only qualitatively. Two recent
examples serve to illustrate how chemistry-agnostic CG models
have been used to predict new mesophase behavior that is yet
to be mapped to any CS models. Both a binary blend of CG
particles exhibiting “positive mixing”** and bolaamphiphiles
having three chemical blocks® have been shown to form
complex mesophases, often with 3D networks of different
domain types. If such periodic structures were mapped into
suitable chemistries, they could have highly appealing optical,
electronic, or catalytic properties. For example, a CG model of
bolaamphihiles has predicted the formation of a single
diamond phase and a single plumber’s nightmare phase,”
both of which had not been realized by CS models or
experiments.””>' While tackling such phase mappings is
beyond the scope of this work, it provides motivation for
taking an initial step toward ICG strategies.

ICG STRATEGY. In this work we propose a flexible ICG
framework for determining which AA CS-molecule from a
given pool of candidate molecules is the best fit for a target CG
model based on minimizing an objective function. Our
approach is similar to that used in the relative entropy (RE)
methodology.”” Shell et al.”® used the concept of RE to
iteratively parametrize a CG model in DCG, where at each
iteration a system of the CG molecules is equilibrated under a
given set of potential parameters (defining the CG
Hamiltonian H) to get the “true” CG trajectory, T, Then
a separate equilibrated trajectory of the AA CS-molecular
system is mapped to return a new CG trajectory, Ty,. 7‘(CG
and a function f which depends on H-; are evaluated for each
frame of T, and T,,, effectively “simulating” both trajectories
under the CG force field. The objective function, ¢, measures
the degree to which T, and Ty, differ by evaluating ¢ = f, —
fan where f; is the average value of the function f obtained
when “simulating” T;. This difference determines the changes
to be made to H (i.e, the CG model parameters). This
process is repeated until H; converges as ¢ is minimized.

In ICG, Hcg is fixed (i.e, the CG model does not change),
and what changes is the candidate CS-molecule being
considered, which can be thought of as changing H,,. For
this purpose, for each candidate CS-molecule a system is
simulated and coarse-grained according to a mapping which
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best satisfies the constraints of a desired CG molecule to give
TH. The procedure to generate these mappings is described
below. At this point we can calculate f** and fcq for all T4
and T, respectively, where the candidate CS-molecules which
minimize

¢ =abs(f.. —f,) (1)

will be kept for further application of a machine learning
algorithm to propose new candidate CS-molecules. A
schematic comparison of our method to the original RE
method is given in Figure 2.
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Figure 2. Schematic comparison between the relative entropy (RE)
framework and the proposed methodology, where items belonging to
just RE, just ICG, or both are colored in red, blue, and black,
respectively. With a given Hg, a CG simulation is run to give a
“true” trajectory of the CG model, T,. In RE the AA CS-molecule is
known, while in ICG multiple CS candidates are proposed and the
trajectory of each is mapped onto the CG model to give Th,. In RE
this mapping is known a priori, while in ICG the optimal mappings
must be found. Once mapped, T, and T,, are used to calculate the
objective function ¢. In RE the ¢ values are used to modify H,
while in ICG they are used to identify the best candidate CS-
molecules, which can in turn be used to propose new candidates.

Before different AA CS-molecules can be compared, the way
in which the AA atoms are partitioned (mapped) to the CG
molecule must be determined. There exist multiple mappings
that can satisfy the constraints and several studies have
explored how different mappings affect the ability of the CG
molecule to reproduce properties of the AA CS-molecule.””>”
As stated previously, mappings must satisfy key constraints of
the CG model such as number of beads and bond topology as
otherwise a comparison to the CG model across different
chemistries would not be possible. In this study, the mapping
needs to best reproduce selected properties of the CG
molecule, not vice versa. Every mapping, “s”, of a given CS-
molecule onto the target CG model will return a different value
of the objective function, ¢, so only the “optimal” mapping
which minimizes this value should be used when comparing
across candidate AA CS-molecules. To facilitate finding this
optimal mapping, a methodology to automate the generation
of initial mappings is proposed. For each candidate CS-
molecule, a process similar to ICG is followed except that, we
now know the CS-molecule and CG model so what is modified
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Figure 3. Depiction of algorithm to automatically generate CG mappings for a candidate molecule. It begins with (a) stripping the molecule of
hydrogens to give the UA representation and placing the first initial groups starting at the terminal atoms. (b) Groups are grown until 1; < (17);
however, if there is an atom that has been assigned to two or more groups, then new algorithm calls are initiated for each permutation where the
conflicting atom is assigned to one of the groups. (c) Once all “active” groups are grown, atoms which are bonded to an atom already assigned to a

group are labeled as terminal atoms and the algorithm is iterated.

through the algorithm is the mapping itself, until ¢ is no longer
minimized.

For the automatic generation of a CG molecule from a given
AA CS-molecule, an existing approach is the CGTools plugin
for VMD®* wherein a neural network learns to map the AA
molecule based on its “shape”, i.e., the position and
connectivity of the constituent atoms. Coarse-graining by the
“shape” is also the basis of a dimensionality reduction
method®>*® which uses data graphs and diffusion maps,
where in the context of coarse-graining our AA CS-molecule,
the graph is the AA CS-molecule and the dimensionality
reduction is the coarse-graining process. While these two
approaches show promise, neither one operates under the key
constraint that ICG imposes: that the final CG molecule is
known while the CG mapping is not.

Even for the more well-posed problem of DCG, the process
of parametrizing a CG model is laborious and software like
VOTCA" has been developed to automate the process. We
propose an equivalent toolkit that is focused on making the
ICG process more automatic. The main capabilities of this
toolkit are (i) finding an appropriate mapping for the AA CS-
molecule (useful for both DCG and ICG), (ii) determining a
one-to-one correspondence between the beads of a proposed
mapping and the beads of the target CG molecule, and (iii)
finding repeating motifs in a given molecule through a
compression algorithm. These capabilities are used throughout
the process of finding the best AA CS-molecule for a CG
model but can also be used in other contexts, such as in the
reverse coarse-graining (RCG)*~*! process that maps atom-
istic detail onto the CG model. Codes to perform the RCG
process often require the mapping of how the AA molecule fits
onto the CG model, which can be tedious to produce. By
automatically finding the mapping in the ICG process, this step
is taken care of, circumventing the need to generate the
mapping manually.
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The rest of the manuscript is organized as follows. We
describe our simulation model and the methods for proposing
new mappings, for selecting optimal mappings for each
candidate CS-molecule, and for comparing among different
candidates. The following section describes the implementa-
tion of our methodology for finding the optimal CS-molecules
to different CG models with varying DOC. We conclude by
assessing the performance of our methodology and look at
future avenues for improvement.

B SIMULATION MODELS

A broad range of force fields were used which include the
OPLS-AA/UA,*> MARTINL**** DPD,**** KG bead—spring
model,>" and new force fields derived for specific molecules
using DCG.*®’ For simulations using unscaled units, thermo/
barostating was done using the Nosé—Hoover thermostat/
barostat to maintain a temperature of 300 K and a pressure of
1 atm, with timesteps of 1 fs. The choices of 300 K and 1 atm
are used as a baseline and can be readily changed to
correspond the specific application of interest. For simulations
using scaled (Lennard-Jones) units, simulations were run in
the NVT ensemble using the Nosé—Hoover thermostat at T*
=1, p* = 0.85, and timesteps of 0.0057. In all cases, a melt
state is simulated by using a varying number of molecules
depending on how large/small the molecules are. Detailed
information about our simulation systems, parameters, and
methodologies are given in the Supporting Information (SI;
section 1.1).

B FINDING MAPPINGS

While numerous mappings of the AA CS-molecule onto the
CG model may exist, many of them can lead to stretched
bonds, or to many more beads being mapped to one CG bead
than another even when those CG beads are the same type in
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the CG. As such, an automated process to generate mappings
for evaluation is required. Additionally, since the process of
finding a CG model for an AA molecule is often guided by
intuition, it is important to implement a method that removes
potential biases.

The proposed code requires two inputs, an AA information
file containing one AA molecule and a similar file for the CG
molecule. These files need to contain information regarding
atom positions and types, as well as the bond structure of the
molecules. An overview of the algorithm is presented in Figure
3. Importantly, although our main focus is on going from an
atomistic level of detail (AA/UA models) to a CG model, this
approach can be used to find mappings between any two
models that differ in the level of atomic description.

The algorithm begins by finding #cg, the ratio of total
number of heavy atoms (non-hydrogen) to the number of
desired CG beads. When rounded down, #¢ gives an average
“size” of each CG bead, (n). By disregarding hydrogens, any
atomic level description is reduced to the UA representation so
the input model of the CS-molecule can be either AA or UA.
In the next step, terminal atoms are assigned to their own
groups (black circled atoms in Figure 3). A terminal atom is
defined as one which is only bound to 1 other heavy atom
which has not been assigned to a group yet (herein referred to
as an “unmapped” atom). Because (1) is usually greater than 1,
groups need to be “grown” to (1).

To grow the group with initial atom i, g, the “batch” of
atoms which can be added to g; is found. A batch is defined as
all unmapped atoms, j, with a given bond separation number
(the minimum number of bonds separating i and j, BS;). For
example, the first (second) batch is all unmapped atoms with
BS; = 1(2). Batches are indicated by the atoms inside the
dashed oval of the same color in Figure 3. A batch is only
calculated for “active” groups having #; < (7). Active groups are
marked by nonblack solid circles/ovals in Figure 3. Groups
with no atoms in the current batch or with #; = (57) are labeled
as “finished” and are no longer grown. Finished groups are
marked by the nonblack rectangles in Figure 3. All atoms in a
batch are added to g; of any active group if (77; + fyaen) < (1)
and no atom in the batch is part of another batch.

When adding a batch to an active group, interbatch and
intrabatch conflicts can arise. In the former case, an atom in
the batch for g is also in the batch of at least one other active
group, g. The strategy to circumvent this is to evaluate each
way these conflicts can be resolved (i.e., the atom shared
between two or more batches is assigned to only one of the
groups). If N batches share the same atom, then there are N
ways to resolve the conflict. For the first such resolution, the
atom is assigned to the appropriate group. However, to
evaluate all N ways to resolve the conflict the algorithm must
be recursively called N — 1 times, each time carrying over
information about the mapping, finished groups and how the
conflict was resolved. This is illustrated in Figure 3 where the
red and green groups have an interbatch conflict, which is
resolved by assigning the shared atom to either group resulting
in the original instance of the algorithm and one recursive call.

In the case of intrabatch conflicts, the size of the group, 7,
plus the size of the batch exceeds (5). Similar to interbatch
conflicts, this is addressed by only adding a subset of the batch
atoms such that, 17; + fgpeee = (17), where permutations of the
subset initiate a new loop of the algorithm (similar to
interbatch conflicts). Once inter- and intrabatch conflicts have
been resolved, the presence of any remaining active groups is
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checked. All active groups are grown simultaneously until no
active groups remain, at which point any remaining unmapped
heavy atoms are processed by creating and batch-wise growing
new terminal groups. This cycle continues until all atoms are
mapped, upon which the algorithm ends and the mapping is
reported. A simple molecule is used in Figure 3 to illustrate the
process, with an example of how the algorithm generates initial
schemes for more complex chemistries in the SI (section 2),
based on our previous work.”®

By design this algorithm will always give a number of groups
equal to or greater than ncg. Thus, some groups may need to
be merged so that the number of groups is equal to ncg.
Potential mergers are identified by pairing the smallest
group(s) in the mapping with each of their smallest
neighboring group(s). Each such a possible merger is tested
by again recursively calling an algorithm similar to that used for
finding the initial mappings. This process continues until the
number of groups is equal to ncg. This overall strategy of
proposing many new mappings increases the likelihood of
finding the optimal mapping because even a single misassigned
atom may cause a mismatch with the bond topology of the
desired CG molecule. While this algorithm for generating
initial mappings is intended for automating ICG, it can also be
helpful with DCG for objectively searching multiple feasible
mappings, some of which may not have otherwise been
considered by the researcher.

B FINDING REPEATING MOTIFS

The method described above is suitable for molecules where it
is computationally manageable to find all nonconflicting
mappings. However, this is not the case for large macro-
molecules that would engender an intractably large number of
initial mappings. Since these macromolecular systems often
contain many repeat units, identifying them would greatly
reduce the combinatorial redundancies as changes to the
mapping within one repeat unit could then be propagated to all
repeat units. Indeed, finding repeat units reduces the problem
of finding the mapping of a macromolecule to the tractable
problem of finding a mapping for a small molecular repeat unit.
Identifying repeat units in a small molecule can also be helpful
to speed up the process of enumerating possible mappings.

To identify these repeat units, we employ the simplified
molecular-input line-entry system known as SMILES,””" a
methodology for representing the topology of a molecule as a
linear string, called the “smile”, where repeat units show up
through a recurring pattern in the string. Our procedure for
creating a smile for a given molecule follows the standard
procedure, by tracing the molecular “backbone” determined as
the path connecting the atoms with the maximum value of BS;;.
Due to the way the smile is constructed, each molecule has two
smiles associated with it, created by starting at either end of the
“backbone”. One difference between the typical way a smile is
created and our methodology is that we do not break up any
ring but instead replace it by a “superatom”. This modification
avoids complications with how to open rings, and aligns with
established CG techniques where rings are generally treated as
single beads. With each smile, a string compression method is
applied, similar to that used in the zip file format’"’>
detailed in the SI (section 3).

as
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B AUTOMATED/MACHINE LEARNING MAPPING

Once a set of initial mappings with the correct number of
groups has been created, an algorithm is used to ensure that
the bond topology of a mapping matches that of the desired
CG molecule. The algorithm begins with the calculation of BS;;
and the termination map TM; for both the mapping under
evaluation (SBS; and STM;) and the desired CG molecule
(DBS;; and DTM;), respectively. The termination map is a
metric of the network connectivity where for a given atom i in
the molecule, TM; is the number of atoms, k, such that BS;, = j
are also bonded to at least two heavy atoms.

We also create the permutation matrix, P, which is a binary
matrix describing if atom i in the mapping and atom j in the
desired CG molecule can (P; = 1) or cannot (P; = 0) be
assigned to each other. A complementary correspondence
matrix, C, is also created whose initial default entries are 0. A
“correspondence” occurs when only an atom in the mapping, i,
can be represented by a unique atom in the CG molecule, j:

ifZ%:landPij:l:Cij:l
j (2)

A complete correspondence of beads has been found if there is
one and only one entry of 1 in each row and column in P (all
other entries being zero).

At this point several consistency checks are performed. The
first check involves examining whether for each pair of i and j
with P; = 1 that the termination map of both i and j are the
same:

1 if STM; = DTM,, ¥ k
i {0 otherwise 3)
Then if C; = 1 a bond separation distance check is done:
if Cij = 1and SBS; # DBSﬂ > P =0 (4)

This check is repeated until no more entries change in the
permutation matrix. After these two checks, the only remaining
atoms that can have more than one correspondence are
symmetric atoms, i.e., atoms of the same type with the same
neighboring bond topology. Examples of symmetric atoms in
an AA model would be the hydrogens of a methyl group and
ortho-position carbons, and in CG models would be the two
end beads on a linear homopolymer chain. A decision must be
made to break the symmetry and make the correspondence
unique. After identifying a symmetric atom i, for each atom j
such that P; = 1, the algorithm is called recursively, where the
input is the permutation matrix where atom i only corresponds
to atom j, and then the bond separation is rechecked. This
process of selecting the correspondences of the symmetric
atoms is repeated until no more symmetric atoms remain.
Finally, if an atom i has no possible correspondences (i.e.,
2 Ci. = 0), the mapping in question is discarded as it cannot
map onto the desired CG molecule. Through this method-
ology, the algorithm learns which CG-AA mappings are
possible from a prespecified (but potentially broad) chemical
space.

B PROPOSING NEW MAPPINGS FOR MINIMIZING ¢

Once a set of initial mappings to the desired CG model have
been found, we then proceed to optimize them by introducing
sequential modifications. This is done by “shifting” the
boundaries between two groups: If an atom in group i is
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bonded to an atom in group j, then that atom (and any
terminal atoms bonded to it that are also in group i) becomes
part of group j. Once the change has been made, it is checked
that the topology of the CG molecule still matches the desired
one and that all groups are contiguous.

B OBJECTIVE FUNCTION

Regardless of the force field used for the AA and CG systems,
the goal is to match the behavior of the AA CS-molecule to
that of the CG molecule with respect to key geometrical and
energetic details of the CG model. This may include matching
such observables as the components of the nonbonded and
bonded interaction energies. However, it is pointed out again
that selection of a suitable objective function is an open-ended
problem that requires further investigation; below we provide
some simple illustrative choices.

When searching for the optimized mapping of a given AA
CS-molecule onto the CG molecule we adopt as a starting
point for the objective function f the average potential energy
of the system, E,,, mainly because most energy components of
H increase when the system deviates from equilibrium (e.g.,
arising from stretched bonds/angles), so that the optimal
system tends to minimize E,,.. Thus, matching of E,, is largely
intended to penalize mappings lead to CG high-energy
microstates. Additionally, since beads of the same type in a
CG molecule are meant to have nearly identical constituent
atoms, they should have similar masses. Hence, an additional
factor in the functional form of f is included to penalize large
variances in the masses of same-type CG beads (as determined
from the coarse-graining of the AA CS molecule):

f=En+K),

i

(M;)

©)

where K is a penalty factor in energy units, M; and o; are the
average mass and standard deviation of the mass of CG beads
of type i, respectively. This mass matching strategy steers the
algorithm to search for mappings where the types of atoms
mapped to a bead of type i are more similar to the types of
atoms mapped to another bead of type i. In a broader sense,
this constraint favors a uniform chemical identity for all the
CG beads of the same type i. The value of K will vary based on
the CG model, with larger values indicated for models with
softer potentials. Again, this objective function is only applied
when searching for the optimized mapping of a given
candidate, to compare across candidates we implement a
different objective function.

The use of scaled units, like Lennard-Jones units, in some
CG models creates an ambiguity in their length scale. Because
the bond types are known for the bonds in the CG molecule,
the average bond length of each of these bonds can be found
from the trajectories T, and T,,. Assuming all bond potentials
are roughly harmonic and have approximately similar force
constants, the bond scaling, y, can be found as

_ Zi a;¢;
X, (©)

Where g; and ¢; are the average bond lengths for the bond of
type i, calculated from T,, and T, respectively. Once y is
calculated, it is used to scale the coordinates for all frames in
Taa. Once Ty, has been thus processed, H is evaluated for
each “simulated” frame to calculate f,, and the same is done

X
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Table 1. Table of ¢ Values for Candidate CS-Molecules (AA Models in First Column) Fitting onto a Set of UA Models”

UA Models

Candidates Dimethyl sulfide Acetonitrile Acetone Isobutylene DMSO

Dimethyl sulfide 0.09
Acetonitrile 0.28

Acetone 0.17 0.06
Isobutane 0.98 0.36
Isobutylene 0.16 0.10
DMSO 0.22 0.06
Hexane 0.74 1.00
Ethylamine 0.19 0.08
Dichloromethylene 1.00 0.34

“The best candidate for each UA model is highlighted in green. Candidate molecules which cannot be suitably mapped onto a given UA model are

not given a value.

for calculating f-g from T\ For force fields that would only
lose a small amount of detail upon coarse-graining (like the UA
model), or when searching for the optimal mapping of a given
molecule, the previously defined form for ¢ in eq 1 is suitable.
However, for CG models losing larger amounts of AA detail, it
will be more difficult to discriminate between values of ¢ for
each candidate. In such cases, a more discriminating form of ¢
is formulated which assesses the differences between the radial
distribution functions, g(r), from T, and Ts,. A similar
approach is used in iterative Boltzmann inversion where the
difference between the two g(r) functions is used to improve
Hc. Here the difference between the two g(r) functions is
quantified using

" " r=rcut e . *
=23 [ Tl - g}iA(r)l[’—] dr
iz 00 r (7)
where glc(r) and g/, A(r) are the g(r) between beads of type i
and j for the T, and T, trajectories, respectively. The g(r)
function used here includes all nonbonded interactions which
are calculated in the model. To better match g(r) at low values
of r, the difference between g/(r) and g’,4(r) is weighed by
the ratio of r* to r, where r* is the first peak of g/c(r). The
integral is evaluated over all nonbonded interaction pairs i, j
from r = 0 to r = o, (roy is the potential cutoff). Again, as with
the formulation of ¢ for unscaled systems, the chemistry which
minimizes ¢ is the best fit. In the proposed framework, we
begin with a single trajectory for the candidate AA molecule,
but an alternative method would involve starting with the
trajectory of the CG molecule and use the mappings generated
by our algorithms and established backmapping techni-
ques”””*™" to generate an AA configuration. A drawback of
such an approach is that the initial configuration thus
generated may not be representative of the AA model and
lead to false positives.

While we are primarily focused on a structure-related metric
in our studies, which emphasizes the static properties and local
structure, one may desire to perform ICG with the objective of
finding a good candidate for matching metrics which better
capture structure on larger length scales or transport or
dynamical properties of a CG model. Studies have used CG
models to capture the trends in dynamic properties,”® but due
to the smoothing of the potential energy surface’’ the
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dynamics of CG models are much faster,”® thus precluding
direct quantitative comparisons. Of course, a ¢ function could
be designed to capture the matching of scaled trends produced
by the CG model based on the results of multiple simulations
of the candidate molecules. For the examples presented in this
work, however, we only focus on matching static properties.
Our ICG framework, while basic, is also left open-ended to
allow targeting different properties (for which the CG model
has generated the predictions of interest). It is expected that
this layout can be used as a base to later build on different
strategies and improvements.

B RESULTS

Small Molecule UA. To provide the most basic validation
of the proposed method’s consistency, we tested that the best
candidate CS-molecule for a given UA model is the
corresponding AA model. As seen in Table 1, two different
topologies of UA molecules (linear and star) were simulated
and the best fit for each UA molecule from a pool of candidate
CS-molecules was found. We include the AA CS-molecule of
each of the UA molecules so that the correct fit is known a
priori. Note that some molecules cannot map onto the star UA
molecules (e.g., dimethyl sulfide cannot map onto DMSO) so
they are unsuitable candidates and are assigned a blank
objective function value. Expectedly and consistently, our
methodology returns the correct candidate molecule fit for
each UA molecule tested. Due to the small degree of coarse-
graining entailed by the UA model, the K factor in eq 5 was set
to zero since any disparity in bead masses would lead to large
increases in Ej 4. All the values in the table are normalized to
the maximum value calculated for a given UA model.

It is apparent from Table 1 that similar CS-molecules show
similar values for ¢b. Taking the case of Acetone as an example,
its UA model maps best to the (AA) candidate molecule
Acetone. Note also that UA acetone maps similarly well onto
the AA models for isobutylene and DMSO, as these molecules
are similar to each other. Similarly, UA dimethyl sulfide maps
significantly better to the AA model of dimethyl sulfide due to
the long bond length between the sulfur and carbon in the
molecule (1.81 A), which precludes mapping onto the other
linear molecules. The only other molecules that comes close to
mapping well the UA model of dimethyl sulfide are acetone
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and isobutylene which are larger molecules, so the bond
lengths in the CG trajectory are similarly long.

Polymer CG Models. To further validate our method-
ology, we perform a similar comparison as in the previous
section but using now CG models of polymers as test beds.
While the difference between the AA and UA force-field
representation of molecules was minimal, typical CG polymer
models average out more atomistic details as one or multiple
monomers are mapped onto single beads; hence making the
process of finding the optimal AA molecule that fits onto the
CG molecule more challenging. Due to the larger DOC, we
use the second form of ¢ (eq 7) which assesses differences in
g(r). As before, we propose a group of candidate molecules
(simulated using the UA model) to fit onto the CG models
and calculate ¢ for each of them. We use three CG models: the
popular MARTINI CG model for PEO and CG models for PS
and PTFE.”

As shown in Table 2, the best candidates for the CG model
of PS and PTFE are expectedly found to be the AA model of

Table 2. Table of ¢ Values for Candidate Polymer CS-
Molecules (S-mers) Fitting onto Two Different Previously
Developed CG Models”

CG Polymer Models

MARTINI PEO CG PTFE

Candidates

1.00

0.84

PTFE 0.85

PMMA 0.96

0.59

PI 0.68 0.45

PP 0.67

.

PVA 0.61

0.45

091 079

0.86 0.66

PDMS 1.00 0.67 0.52

PAN 0.54 0.73 0.54

“The best candidates for each CG model are highlighted in green. All
values are scaled by the maximum value calculated for the respective
CG model.

PS and PTEFE, respectively. For the MARTINI CG model of
PEO, however, both PE and PEO are found to be the best
candidates, with a slightly worse fit for PEO (higher ¢). This
inconsistency can be attributed to the fact that the MARTINI
PEO CG model was constructed and parametrized for the
simulation of biological systems in an aqueous environment
and was not intended to reproduce g(r) of a dry environment,
while our simulations describe the melt behavior of PEO. This
issue notwithstanding, PEO and PE are comparatively the best
candidates for this model, a reflection of the fact that the GC-
to-AA mapping problem need not have a unique solution.

In case of a very large candidate pool, it is unlikely that a
singular CS candidate could be identified as distinctively
optimal; instead, a group of similar molecules would be
expected to fit similarly well the CG model. In our tests with
smaller pools, singling out one optimal candidate was
achievable because of the chemical disparity among the chosen
candidates was sufficiently large. In this context, ICG would
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generally be expected to only be able to narrow down the
candidate chemical space.

Generic CG Models. Having confirmed the validity of our
methodology when looking at CG models having unscaled
length units, we now examine the case of generic CG models
originally developed using generically scaled length units. For
this purpose, we test our methodology for the Kremer—Grest
(KG) bead—spring model of a linear 10-mer AB diblock
copolymer (DBC) (S A beads, S B beads). This model has
been shown to correctly represent the expected trends in
equilibrium and transport properties of polymeric systems®”*"
and several KG-based variants have been used in many
simulation studies.”***”***7%* Three cases of the model are
examined: (i) the base case of a homonuclear, flexible DBC
(“flexible” model), (i) a similar DBC but with an added
bending potential to increase the persistence length (“stiff”
model), and (iii) the base DBC except the B beads are larger in
diameter (6 — 1.56) (“size-asymmetric” model). The force
fields for these systems are detailed in the SI (section 1.2). All
three cases reflect common modifications to the KG model and
represent distinct challenges to our methodology. We used K =
1 in eq S when finding the optimal mapping for each candidate
to have penalties on the same thermal energy scale as the L]
interactions.

The candidate CS-molecules (chemistries) are chosen from
typical monomers used in DBCs and are constructed so that
one chemical monomer maps onto a single bead in the KG
model. Figure 4 is a graph bar showing the fitting scores for
each candidate against the three different models in question.

I Flex
I stiff
B Size—Asymmetric

1.0

PS—b—PMMA
PS—b—PI
PE3—b—PEO
—b—PMMA,
PEs—b—PI
—b—PVDF
PEO—b—PES

PMMA-b—PMMA,

Figure 4. ¢ values for candidate DBC CS-molecules (10-mers, S
monomers of each block) fitting onto 3 different forms of the KG
model. PMMA, is the same as normal PMMA, except that the
oxygens are replaced with carbons. PE; is the same as normal PE,
except that a monomer is considered to have 3 CH, groups instead of
2. All values are scaled by the maximum value calculated for the
respective CG model.

For the flexible model, PE;-b-PEO is found to be the best
candidate, which is appropriate given that both of the
constituent polymers have the lowest persistence lengths
among those tested. For the stiff model, PE;-b-PEO ranks as
the best candidate, likely because the increased backbone
stiffness of the CG model is too small to penalize the flexibility
of PE;-b-PEO enough to make another candidate the best fit.
Other good candidates for this model are PE;-b-PI and PS-b-PI

DOI: 10.1021/acs.jcim.9b00232
J. Chem. Inf. Model. 2019, 59, 5045—-5056


http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00232/suppl_file/ci9b00232_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00232

Journal of Chemical Information and Modeling

which reflects that the backbone stiffness of the PI block helps
better match the CG model as compared to PS-b-PMMA. For
the size-asymmetric model, many of the proposed candidates
show similar values of ¢ with PE;-b-PEO again having the
lowest (best) score. This aligns with idea that most DBCs have
blocks where the monomers are of differing volumes, and so
they should all fit a model with moderate size-asymmetry
equally well. In this case, PE-b-PEO ranks as the best candidate
likely due to the flexibility of the blocks, which also made it the
best candidate for the flexible model.

As alluded to in previous sections where the PE monomer
was treated as either two or three CH, groups, a particular
issue with the mapping of polymeric systems onto unscaled
models is not knowing how many monomers to map to a
single bead in the CG model. Models with nonpenetrable
beads like the KG model tend to be better represented with
fewer monomers per bead, while models with soft nonbonded
interactions such as the one typically used with the dissipative
particle dynamics (DPD) model tend to be associated with
more monomers per bead.*>*® To verify this trend, we
simulated CG homonuclear 5-mers using these two different
models and tried to map polymers of varying DOC onto them,
where DOC is now quantified as the number of monomers in
the CS candidate molecule being mapped onto one CG bead
(see SI section 1.3 for the DPD model). For the KG model, it
is found that the minimum in ¢ for PEO and PI occurs for
DOC = 1 and monotonically increases with DOC (see Figure
5, dashed lines), while for PE the ¢ minimum occurs for DOC

1.0 , _
— PEO .-
— PI St
0.8} __ PE ,’, -7 ’,—"”
0.6F~~-____ ’,/:cﬁﬁ°’
o
04} -7

%95

2.5 3.0

DOC

35 4.0 45 5.0

Figure 5. Plot of ¢ as a function of DOC for different polymers. Solid
and dotted lines correspond to the DPD and KG models, respectively.
All values are scaled by the maximum value calculated for any model.

= 2. This suggests that for PE the most suitable scale of KG
coarse graining would correspond to ~4 backbone atoms.
Indeed, the minimum of ¢ for each molecule indicates that the
best degree of coarse-graining corresponds to 3, 4, and 4
backbone atoms for PEO, PI, and PE, respectivel_}r. The
persistence length of the flexible KG model is ~1.56,%” which
suggests that the contour length of 4 backbone atoms in PE
should be similar to the persistence length of PE.*® The
contour length of 4 C—C bonds is approximately 6 A, which is
close to the experimental value of 6.5 A. Similar agreement is
found when considering the optimal DOC length scale we find
and the persistence lengths for PEO®’ and PL’® This
consistency will translate into a suitable mapping of several
structural properties of the CS polymers known to correlate
with the persistence length, such as the scaling with molecular
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weight of the average end-to-end distance and radius of
gyration. Our results agree with previous studies suggesting the
KG model is a suitable CG representation of many polymers.

In contrast, for the DPD model (Figure S, solid lines) the ¢
curves show a minimum at around DOC = 3—4. These larger
DOC values are consistent with the softer bead—bead
potentials used in the DPD model. Our results are also
consistent with findings from other studies’””” that place a
DPD bead length-scale near the lower bound of the range of
mesoscopic bead models.

The above examples explored the performance of ICG when
either searching for AA candidates for CG models with
relatively low DOC or determining the DOC with which a
given chemistry is best represented by the target CG model.
Here we explore how ICG performs when seeking to find the
best candidate for a CG model when the anticipated DOC is
large. To this end, we simulated a system of dimer A—B
molecules, using the same model as the “flex” model in the
previous examples. Plotted in Figure 6 is the values of ¢ for

1.00

0.75

© 0.50

0.00

—b—PEO

PS—b—PMMA
-b—PVDF
dendrimer

Figure 6. Plot of ¢ for different candidates for the dimer A—B model.
The ¢ values are scaled to the maximum calculated value.

four different candidate molecules with different architectures
ranging from linear polymers (PE;-b-PEO, PE-b-PVDEF), to
linear polymers with side chain groups (PS-b-PMMA), up to
dendrimer-like molecules (see the SI for details of the PE-b-
PEO dendrimer chemistry). Except for the dendrimer, each
block for all molecules contains five monomers of the given
chemistry. It is clear that the linear polymers are poorer
matches for this dimer model than molecules with sterically
hindering groups. PS-b-PMMA has large bulky phenyl and
methacrylate groups appended to the flexible chain backbones
which means that when mapped to the CG model the beads
show less overlap than they do in the linear polymers. When
comparing just chain architecture, the PE-b-PEO dendrimer
shows better performance than the linear counterpart in fitting
the large DOC CG model considered here, which aligns with
physical expectation.

B CONCLUSIONS AND OUTLOOK

We have proposed algorithms to tackle an outstanding
problem of molecular modeling concerning the inverse
coarse-graining (ICG) process to find the best (chemically
specific) molecules to map onto a known CG model of
interest. To achieve this, several tools have been developed to
facilitate the necessary steps in automating the ICG process,
including the determination of the optimal CG mapping of a
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candidate molecule onto the known CG model and a
correspondence algorithm to uniquely determine if a given
CG mapping results in a CG molecule whose topology is
consistent with that of the desired CG molecule. While most
available CG tools attempt to determine an “optimal” CG
mapping in the absence of constraints on the topology of the
CG molecule, both of the tools proposed here address the
previously unresolved problem of identifying specific chem-
istries that best satisfy a pre-established CG molecule.

Our new mapping tools are used in conjunction with
objective functions to screen for the best CG model fit from a
pool of candidate molecules. Our objective functions are
constructed based on metrics embodying energetic and
structural metrics (including one previously used in the
Iterative Boltzmann Inversion process). The methodology
shows significant sensitivity of the optimal candidate identified
to changes made to a CG model (Figure 4). Additionally, the
method is sensitive to the degree of coarse-graining adopted, a
property that was leveraged to quantify the optimal length
scale of coarse-graining for two common generic CG model
classes (KG bead—spring and DPD models).

Looking forward, we envision a few ways by which the
performance of the proposed ICG methodology can be
improved. First, the correspondence algorithm can be
leveraged to fit predefined bead structures onto candidate
molecules. These predefined structures would come from a
database of literature-extracted data, or from a library of
structural motifs (fragment library) collected from other users
employing this method on their own molecules. This would
allow the generation of initial structures that are closer to the
optimal one by taking advantage of atom groupings and
mappings already known to work well. Second, implementing a
fully automated process will expedite the ICG process to allow
it to continually advance without requiring user input. In this,
an automated way of generating new AA candidates would be
beneficial. Large molecular databases’>”* could be used as an
immediate pool of available candidate molecules, which can be
supplemented with molecules outside these databases. The
parametrization of force fields for these systems can be handled
by automated software,”>”® further reducing the need for user
intervention. Third, more advanced objective functions can be
developed to help better discriminate between candidates,
target specific microstructures, and reduce the number of
candidates that are kept for the next generation. Indeed, in the
context of inverse design, effective but complex pair potentials
describing coarse-grained mesoscale interaction sites have been
identified that can assemble into desirable ordered crystals and
mesophases.”””® In principle, objective functions incorporating
information about the microstructure of such phases may help
identify atomistically detailed or less coarse-grained building
blocks*””” capable of realizing such assemblies. For long
polymers, the packing length'” and related metrics are key
length scales that are known to correlate with many static and
dynamic properties and should hence be taken into account
when analyzing the results of ICG or in designing the objective
function. Studies are already underway on some of these fronts.
The proposed methodology is relatively simple and robust, and
while further refinements are likely needed, it offers a suitable
platform to tackle the challenging problem of inverse coarse-
graining.
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