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Single-Anchor Localizability in 5G Millimeter Wave Networks
Christopher E. O’Lone, Harpreet S. Dhillon, and R. Michael Buehrer

Abstract—Fifth generation networks utilizing millimeter wave
frequencies enable single-anchor localization to be performed via
a line-of-sight (LOS) path or, as recently suggested, via non-line-
of-sight (NLOS) paths exclusively. Thus, for a single base station-
mobile pair, under a Boolean model (random positions, sizes, and
orientations) of reflectors, and considering first-order reflections
(in addition to the LOS path), this paper analytically derives the
probability that the mobile is able to obtain an unambiguous
location estimate (i.e., the mobile’s localizability). This analysis
also reveals that localization, via NLOS signals exclusively, is a
relatively small contributor to the mobile’s overall localizability.

Index Terms—Localization, non-line-of-sight (NLOS), stochas-
tic geometry, Boolean model, Poisson point process (PPP), mil-
limeter wave (mm-wave), first-order reflection, 5G.

I. INTRODUCTION

Emerging fifth generation (5G), millimeter wave (mm-wave)
wireless networks with massive multiple-input multiple-output
(MIMO) have fueled a resurgence in localization research.
Specifically, the ability to obtain Angle-of-Departure (AOD)
and Angle-of-Arrival (AOA) information through the use of
beamforming and antenna arrays opens the possibility of per-
forming single-anchor localization. Recent work in [1] reveals
that even in the absence of an LOS path, an unambiguous
location estimate can still be obtained from a single anchor
if two or more NLOS paths are present (three or more if the
relative orientations of the Tx and Rx need to be estimated, i.e.,
situations where the devices do not know ‘true north’). Since
diffraction effects are negligible at mm-wave frequencies [2],
reflections are the key enabler allowing for these NLOS paths
to be harnessed for localization.

In order to incorporate reflections into an analysis of the
mobile’s localizability, we utilize an important tool from
stochastic geometry; the Boolean model, which characterizes
the random placements, sizes, and orientations of buildings in
a network. This model has recently gained popularity in the
study of propagation, channel characteristics, and performance
metrics in mm-wave networks. Its use in this regard was
pioneered in [3], and shortly thereafter, various versions of
this model have been used to study the effects of first-order
reflections on the power delay profile [4], [5], the total received
interference power [6], and coverage probability [7].

While the Boolean model with first-order reflections has
been used to investigate communications metrics, its use in
studying localization metrics is limited to [8], where the model
was used to study NLOS bias error in range measurements.
Thus, this paper aims to leverage this model in the study of
another localization performance metric: a device’s localiz-
ability [9], i.e., the probability that, for a given localization
strategy, the device receives at least the minimum number of
localization signals needed to obtain an unambiguous location
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estimate.1,2 While localizability has been studied in 4G net-
works [9], this fundamental metric has yet to be examined in
the context of 5G, mm-wave networks.

Contributions: For a single anchor-mobile pair, the mobile’s
localization probability is analytically derived; assuming mm-
waves subject to blockages and reflections under the Boolean
model and taking into account the possibility for localization
via a single LOS signal or via several NLOS signals [1]. In
obtaining this probability, we intermediately arrive at a similar
metric from [6]: the average number of reflectors producing
hearable, visible (i.e., unblocked) reflections between the base
station and mobile. However, given our interest in localiza-
tion, an alternate derivation is presented, which is direct and
potentially more illustrative for analyzing localization metrics
that often require knowledge of multiple arriving paths at the
receiver. Lastly, a numerical analysis demonstrates the efficacy
and accuracy of this localizability result, and also reveals the
minor contribution that NLOS localization plays in the overall
localization probability, a result hinted at in [7] while studying
coverage under an alternate setup.

Notation: All constructions and derivations are in R2 unless
stated otherwise. Notation is as follows: lowercase, bold let-
ters, e.g., x, represent vectors; [x]i denotes the ith component;
xT the transpose; 0 the zero vector; ‖·‖ the Euclidean norm;
R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
the rotation matrix which rotates the

coordinate axes counterclockwise by angle θ; L[p,q] indicates
the set of points forming a line segment between p and q
(inclusive); similarly, the same notation with a letter other than
L, e.g., C[p,q], indicates the set of points along the curve, C,
between the points p and q; if A ⊂ Rn, then ∂A represents
A’s boundary (closure minus interior) and µn

(
A

)
the n-

dimensional Lebesgue measure; if Φ is a Poisson point process
(PPP), then Φ(A) denotes the number of points of Φ in A;
‘g(x)’ denotes a vector function of a scalar, ‘g(x)’ a scalar
function of a vector, etc.

II. SYSTEM MODEL

This section constructs the stochastic model for reflectors
(buildings), describes the setup, and lists the assumptions used
throughout the remainder of the paper.
Definition 1. (Minkowski Sum [3]) For compact sets A,B ⊂
R2, the Minkowski sum is defined as

A ⊕ B ,
{

x + y ∈ R2 ��� x ∈ A, y ∈ B
}
.

Definition 2. (Reflector Rw,θ,c) A square reflector with finite
width, w > 0, orientation, θ ∈ (0, π/2), and center point, c, is
given by

Rw,θ,c ,
IV⋂
i=I

{
x ∈ R2 ��� kT

i

(
x − [c − ki]

)
≥ 0

}
,

where the ki are given in Fig. 1(a).
Definition 3. (Boolean Model, Generated by RW,Θ,0) Let Φ =
{ci }∞i=1 be a homogeneous PPP over R2 with intensity λ and

1The minimum number is, of course, determined via the noiseless case.
2We use ‘localizability’ and ‘localization probability’ interchangeably.
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Fig. 1. SYSTEM MODEL. (a): The corners cI, cII, cIII, & cIV help define
the edge sets: eI = L[cI,cII], eII = L[cII,cIII], etc. The vectors ki (implicitly
functions of w & θ) represent the displacement between the center of the
reflector and the center of the corresponding edge. For reference, kI always
has angle θ and emanates from the center of eI. The remaining ki and ei are
labeled in increasing order counterclockwise. The edges dictate the Roman
numeral labels – they are labeled according to the quadrant they produce
reflections in, e.g., in (b), eI facilitates reflections in the 1st quadrant, QI. (b):
Without loss of generality, the base station is placed at b = [−d/2, 0]T and the
mobile at m = [d/2, 0]T . We have: QI = {[x, y]T ∈ R2 | x ≥ 0, y ≥ 0}, and
the remaining quadrants are defined analogously, i.e. points on the axes are in
more than one quadrant. Depicted are two NLOS paths, one blocked NLOS
path, and a blocked LOS path. For reflections, the incident angle, α, equals
the reflection angle, β. The reflection point in QI is denoted rI ∈ ∂Rw, θ,c′ .

let the bivariate, discrete distribution fW,Θ(w, θ), with support
supp

(
fW,Θ

)
=

{
[w, θ]T ∈ R2 ��� w ∈

{
wi

}nw
i=1, θ ∈

{
θ j

}nθ
j=1

}
, be

the distribution from which a reflector’s width and orientation
are sampled.3 Then, the Boolean model, generated by RW,Θ,0,
is defined by

B ,
∞⋃
i=1

({
ci

}
⊕RWi,Θi,0

)
, where ci ∈ Φ,

[
Wi
Θi

] i.i.d.
∼ fW,Θ,

and the reflectors are independent of Φ. (See Fig. 1(b).)
Next, we make the following assumptions:

1) Only first-order reflections whose total traversed path
length is ≤ dmax meters are assumed to be detectable at
the mobile. Effects of higher-order (i.e. multiple-bounce)
reflections are ignored, a consequence of added reflection
losses and increased pathloss [4].4 Note, d < dmax .

2) Localization is performed during the initial access phase
[1]. Thus, the base station is assumed to have 360◦

coverage, i.e., a scan of the environment illuminates all
possible reflection paths and allows for AOD estimation.
The mobile is assumed to be equipped with an antenna
array which can resolve the incoming signals’ AOA [1].

3) Blocking is treated independently on all paths.5 For re-
flected paths, blockages on the incident path are assumed
to be independent of those on the reflected path.6

4) When LOS is blocked, it is assumed that at least two
NLOS reflections are needed for localization [1].

III. GEOMETRIC IMPLICATIONS OF THE SYSTEM MODEL

The Boolean model and assumptions in the previous section
lead to important geometric consequences regarding where

3The integers nw and nθ are positive and finite.
4In practice, it is possible that a detectable higher-order reflection reaches

the mobile, however, this scenario is rare and is not considered in this analysis.
5Independent blocking is a common assumption in the literature [4], [5],

[6], as dependent blocking, where a single reflector may be responsible for
blocking two or more paths, is difficult to model analytically.

6This is in contrast to [4], [5], and [6], where blocking is independent, but
the entire reflected path is treated contiguously.

reflectors may be placed such that a first-order reflection is
established. For a reflector Rw,θ,c, with w and θ fixed and c
arbitrary, and ignoring blockages, this section characterizes
the region where c can fall such that Rw,θ,c can facilitate a re-
flection between b and m. This ‘reflection region,’ constructed
in [8], is briefly summarized in Definition 5.

To find this region, we first ask: Where are all of the points
in R2 such that ∂Rw,θ,c can intersect to facilitate a reflection,
such as that in QI of Fig. 1(b)? Well, it turns out that all of
these possible reflection points for Rw,θ,c lie on a hyperbola:
Lemma 1. (The Reflection Hyperbola [8]) Let θ ∈ (0, π/2),
b and m be given as in Fig. 1(b), and let Hθ be the set of all
possible reflection points for Rw,θ,c. Then,

Hθ =
{
[x, y]T∈ R2 ��� y

2 − x2 + 2 cot(2θ)xy + d2/4 = 0
}
.

Proof. Please refer to [8]. �

Remark. Consequently, for Rw,θ,c to facilitate a first-order
reflection, it is both necessary and sufficient that ∃ i ∈
{I, II, III, IV} such that for ei ⊂ ∂Rw,θ,c,

(
ei ∩ Qi ∩ Hθ

)
,∅.

See Fig. 2 for an example of Hθ .
Next, by Assumption 1, we only consider reflection points

which correspond to reflections of distance ≤ dmax . This
implies that all reflection points of interest must lie within
an ellipse with foci b and m, called the ‘hearable region.’
Definition 4. (Hearable Region) The hearable region is de-
fined as Edmax ,

{
[x, y]T ∈ R2 ��� x2/u2 + y2/v2 ≤ 1

}
, where

u2 = d2
max/4 and v2 = (d2

max − d2)/4.
It is now straightforward to find the region where c must lie

in order for Rw,θ,c to establish a reflection (of distance ≤ dmax)
between b and m. This is called the reflection region:
Definition 5. (Reflection Region for Rw,θ,c [8]) Consider
the four quadrant portions of the reflection hyperbola within
Edmax : Hθ[m,hI] for QI, Hθ[b,hII] for QII, Hθ[b,hIII] for QIII, and
Hθ[m,hIV] for QIV, where hi ∈ Hθ∩∂Edmax , ∀i ∈ {I, II, III, IV}.
These hi are given by

hI =

[
√

zI, III ,
v

u

√
u2 −zI,III

]T
, hII =

[
−
√

zII, IV ,
v

u

√
u2 −zII,IV

]T
,

hIII = −hI, and hIV = −hII, where

zI, III =
d4
max cot2θ

4
[
d2
max csc2θ − d2] , zII, IV =

d4
max tan2θ

4
[
d2
max sec2θ − d2] ,

and u and v are from Definition 4. Next, consider dismantling
the four edges comprising ∂Rw,θ,c and placing their centers at
the origin, preserving their respective orientations. We denote
these translated edge-sets as: ei,0=ei+ (ki−c). Since any point
along an edge of Rw,θ,c can induce a reflection by intersecting
Hθ in the proper quadrant, we define the reflection region as

Ω(w, θ, dmax ) ,
IV⋃
i=I

(
Ωi + ki

)
, where

ΩI , Hθ[m,hI] ⊕ eI,0, ΩII , Hθ[b,hII] ⊕ eII,0

ΩIII , Hθ[b,hIII] ⊕ eIII,0, ΩIV , Hθ[m,hIV] ⊕ eIV,0.

Remark. The notation Ω(w, θ, dmax ) emphasizes that this
region is dependent on these parameters. We may similarly
write Ωi (w, θ, dmax ) for the four quadrant portions. Note
µ2

((
Ωi (w, θ, dmax ) + ki

)
∩

(
Ωj (w, θ, dmax ) + kj

))
= 0, for

i, j ∈ {I, II, III, IV} and i , j. See Fig. 2 for a partial depiction.
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Fig. 2. REFLECTION REGION IN 1ST & 2ND QUADRANTS (SHIFTED). For
Rw, θ j ,c, the grayed region, ΩI (w, θ j, dmax ), depicts all of the points that
the center of its edge, eI, must lie in order to facilitate a reflection (of length
≤ dmax ) between b & m. Likewise for ΩII (w, θ j, dmax ) and Rw, θ j ,c’s
edge eII. The subscript θ j denotes coordinates in the rotated system. Here,
θ j = π/3.

IV. THE LOCALIZATION PROBABILITY

We begin by covering some implications of Assumption 3.
First, under this assumption, the Boolean model, B, is used
to check for blockages on the LOS path between b and m
and is also used to find reflections, regardless of whether
a path is blocked under B. Then, to determine whether a
reflection path is visible, the incident and reflected portions
are separately checked for blockages under new, separate, i.i.d.
Boolean models. This is formally outlined below.
Definition 6. (Independent Blocking, Direct Path) Let B be
a Boolean model. We say that a direct path between points p
and q is visible (or not blocked) if B ∩ L[p,q] = ∅.7

Definition 7. (Independent Blocking, Reflection Path) Let B1
and B2 be i.i.d. Boolean models. We say that a reflection path
between b and m with reflection point at r, i.e., L[b,r]∪L[r,m],
is visible if

(
B1∩L[b,r]

)
∪

(
B2∩L[r,m]

)
= ∅.

Lemma 2. (Visible Direct Path) Consider Definition 6, then
P
[
B ∩ L[p,q] = ∅

]
= e−λEW ,Θ

[
µ2

(
L[p,q]⊕RW ,Θ,0

)]
,

where µ2
(
L[p,q] ⊕ Rw,θ,0

)
={√

2w‖p − q‖ sin
(
π/4 + θ − η

)
+ w2 0 ≤ θ − η ≤ π/2

√
2w‖p − q‖ �� sin

(
− π/4 + θ − η

) �� + w2 otherwise,
and η = tan−1 [

([q]2 − [p]2)/([q]1 − [p]1)
]
.

Proof. First, µ2
(
L[p,q] ⊕ Rw,θ,0

)
can be derived via simple

geometric arguments [3], and by considering cases arising
from the angle, η, of the slope of L[p,q] relative to the
orientation of Rw,θ,0. Next, perform an independent thinning
of Φ by retaining only the center points corresponding to
reflectors of width, w, and orientation, θ, i.e., Φw,θ ⊂ Φ with
thinned density λ fW,Θ(w, θ). Then, P

[
B ∩ L[p,q] = ∅

]
(a)
=

nw∏
i=1

nθ∏
j=1

P
[
Φwi,θ j

(
L[p,q] ⊕ Rwi,θ j,0

)
= 0

]
(b)
= e−λ

∑nw
i=1

∑nθ
j=1 fW ,Θ (wi,θ j ) µ2

(
L[p,q]⊕Rw, θ,0

)
,

where (a) follows from independent thinning and (b) by the
void probability of a PPP. The lemma follows. �
Corollary 1. (Visible LOS Path)

P
[
B ∩ L[b,m] = ∅

]
= e
−λ

(
√

2d EW ,Θ

[
W sin(π/4+Θ)

]
+EW

[
W 2

] )
.

7One can interpret B as random or as a realization. We use the same
notation for both cases. Its usage will be clear from context. This is analogous
to using ‘X’ to refer to both the random variable, X, and its realization X=x.

Corollary 2. (Visible Reflection Path) Consider Definition 7.
Given Assumption 3, P[L[b,r]∪L[r,m] is visible] =

e−λEW ,Θ

[
µ2

(
L[b,r]⊕RW ,Θ,0

)
+µ2

(
L[r,m]⊕RW ,Θ,0

)]
.

Proof. By Assumption 3 we have: P[L[b,r] ∪

L[r,m] is visible] = P[L[b,r] is visible]P[L[r,m] is visible].
Applying Lemma 2 yields the corollary. �

Theorem 1. (Number of Hearable, Visible Reflectors) Con-
sider b and m under Boolean model, B. Let Vdmax denote the
number of reflectors producing hearable, visible reflections be-
tween b and m. Given independent blocking under Assumption
3, Vdmax∼ Poisson

(
E
[
Vdmax

] )
, where E

[
Vdmax

]
=

2λ
nθ∑
j=1

[[hIθ j
]1∫

[mθ j
]1

pI
(
rI(xθ j)

)
dxθ j+

[hIIθ j
]2∫

[bθ j ]2

pII
(
rII(yθ j)

)
dyθ j

]nw∑
i=1

wi fW,Θ(wi, θ j),

[mθ j ]1 = [R(θ j )m]1, [hIθ j ]1 = [R(θ j )hI]1, [bθ j ]2 = [R(θ j )b]2,
[hIIθ j ]2 = [R(θ j )hII]2,

pI
(
rI(xθ j )

)
= P[L[b,rI (xθ j )]∪L[rI (xθ j ),m] is visible], (1)

pII
(
rII(yθ j )

)
= P[L[b,rII (yθ j )]∪L[rII (yθ j ),m] is visible],

rI(xθ j ) =
1

4xθ j



(4x2
θ j
+d2sin2θ j ) cos θ j

(4x2
θ j
−d2cos2θ j ) sin θ j


, and (2)

rII(yθ j ) =
1

4yθ j



−(4y2
θ j
+d2cos2θ j ) sin θ j

(4y2
θ j
−d2sin2θ j ) cos θ j


.

Proof. For B, consider the thinned PPP of reflector centers,
Φw,θ ⊂ Φ, described in the proof of Lemma 2. We further thin
this PPP by retaining only the center points corresponding to
reflectors that produce visible reflections. By the independent
blocking assumption, this is independent thinning; however, it
is location dependent, i.e., whether a point is retained depends
on whether its corresponding reflector’s edge ei intersects
the reflection hyperbola in Qi and on whether the reflection
is visible. We denote this thinned, inhomogeneous PPP by
Φv,w,θ (intensity measure Λv,w,θ ), where Φv,w,θ ⊂ Φw,θ . This
yields Vdmax =

∑nw
i=1

∑nθ
j=1Φv,wi,θ j

(
Ω(wi, θ j, dmax )

)
. Since,

the Φv,wi,θ j

(
Ω(wi, θ j, dmax )

)
are independent, Poisson ran-

dom variables, then so is Vdmax . Taking the expectation:

E
[
Vdmax

]
=

nw∑
i=1

nθ∑
j=1
Λv,wi,θ j

(
Ω(wi, θ j, dmax )

)
=

nw∑
i=1

nθ∑
j=1

IV∑
q=I

Λv,wi,θ j

(
Ωq (wi, θ j, dmax ) + kq

)
,

where the second equality follows from the Def. 5 remark.
We begin with Λv,wi,θ j

(
ΩI(wi, θ j, dmax )+kI

)
. Since Φv,wi,θ j

is obtained from Φwi,θ j via location dependent thinning, then
if p(y) is our retention probability (a continuous function over
ΩI + kI), we have Λv,wi,θ j

(
ΩI(wi, θ j, dmax ) + kI

)
(a)
=

∫
ΩI (wi,θ j,dmax )+kI

p(y) dΛwi,θ j
(b)
=

∫
ΩI (wi,θ j,dmax )

p(x + kI) dΛwi,θ j

(c)
=

∫
ΩI (wi,θ j,dmax )

pI(x) dΛwi,θ j
(d)
= λ fW,Θ(wi, θ j )

∫
ΩI (wi,θ j,dmax )

pI(x) dx, (3)

where (a) follows by definition, (b) by setting x = y − kI,
(c) by setting pI(x) = p(x + kI), and (d) from Λwi,θ j (B) =
λ fW,Θ(wi, θ j )µ2(B), for all Borel sets, B, and from the
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continuity of p. Note, the steps (b) and (c) imply: if x ∈
ΩI(wi, θ j, dmax ), then y ∈ ΩI(wi, θ j, dmax ) + kI and p(y) =
pI(x); i.e., both points have the same retention probability.
If we consider Φwi,θ j − kI, the PPP of center points of the
reflectors’ edges eI, then pI is the retention probability of these
edge centers. Thus, p(y) = pI(x) implies the PPP of edge-eI
centers over ΩI is thinned equivalently to the PPP of reflector
centers over ΩI + kI.

To find pI, from Φwi,θ j −kI over the region ΩI(wi, θ j, dmax ),
we turn to Fig. 2. Considering a coordinate system rotated by
θ j , then all of the points in the slice xθ j have the same retention
probability, since the center of edge eI can lie anywhere in this
slice to produce a reflection at rI(xθ j ). Thus, in this rotated
system, (3) reduces to

= λwi fW,Θ(wi, θ j )
∫ [hIθ j

]1

[mθ j
]1

pI
(
rI(xθ j )

)
dxθ j ,

where [mθ j ]1 = [R(θ j )m]1, [hIθ j ]1 = [R(θ j )hI]1, and
pI

(
rI(xθ j )

)
is the probability that the center point of edge eI,

xθ j with [xθ j ]1 = xθ j , is retained, i.e., it is the probability that
the corresponding reflector of this ‘edge-eI center point’ facil-
itates a visible reflection at point rI(xθ j ). Hence, by Corollary
2, we have (1). The reflection point rI as a function of xθ j
is derived by finding Hθ j in the rotated coordinate system:
yθ j = −d2 sin(2θ j )/(8xθ j ), finding the reflection point in this
coordinate system: rIθ j (xθ j ) = [xθ j ,−d2 sin(2θ j )/(8xθ j )]T ,
and then rotating it back to the original system: rI(xθ j ) =(
R(θ j )

)−1rIθ j (xθ j ), yielding (2).
Note, Λv,wi,θ j

(
ΩII(wi, θ j, dmax ) + kII

)
is obtained analo-

gously and symmetry implies Λv,wi,θ j

(
ΩI+kI

)
= Λv,wi,θ j

(
ΩIII+

kIII
)

and Λv,wi,θ j

(
ΩII+kII

)
= Λv,wi,θ j

(
ΩIV+kIV

)
. �

Corollary 3. (The Localization Probability) Given single-
anchor localization with the anchor and mobile separated by
d meters, a Boolean model of reflectors, and a hearability dis-
tance of dmax meters, then P[The mobile can be localized] =
P
[
B ∩ L[b,m] = ∅

]︸                  ︷︷                  ︸
P[LOS is Visible]

+
(
1 − P

[
B ∩ L[b,m] = ∅

] )
P[Vdmax ≥ 2]︸                                              ︷︷                                              ︸

P[LOS Blocked, but Sufficient NLOS Paths]

.

Proof. This follows by Assumptions 3 and 4. �

V. NUMERICAL RESULTS

The three simulations in Fig. 3 were conducted in the same
manner as discussed in the first paragraph of Sec. IV. The
only difference was in how reflected paths were checked for
blockages. For blocking under Assumption 3, the incident and
reflected paths for each reflection were checked for blockages
under new, i.i.d. Boolean model realizations; for independent
blocking from [4], [5], [6], each reflected path uses a new,
i.i.d. Boolean model realization to check for blockages along
the entirety of the path; and lastly, for correlated blocking (true
blocking), the original Boolean model, B, is used to check for
blockages on all reflected paths.

First, note that the simulation with Assumption 3 blocking
matches Corollary 3, supporting the analytical derivation.
Next, we see that Assumption 3 blocking better approximates
the true, correlated blocking scenario than does the blocking
assumption in the references. This is due to the ‘overesti-
mation’ of the region where a reflector may fall to produce
a blockage (see Corollary 2), leading to a higher blocking
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Fig. 3. ANALYTICAL VS. SIMULATION. Parameters: d = 200m, dmax =
1km, and the reflectors (buildings) were chosen from the joint uniform
distribution, fW ,Θ (w, θ)=1/(5 · 8), where supp

(
fW ,Θ

)
=

{
[w, θ]T ∈R2 ��w ∈

{20m, 40m, . . . , 100m}, θ ∈ {10◦, 20◦, . . . , 80◦ }
}
. This implies E[W ] = 60m

and that roughly, for example, an avg. of 32% of the land is covered by
buildings at the density of 90 buildings/sq. km. Simulated probabilities were
generated over 105 Boolean model realizations on a 1.3km × 1.3km grid.

probability more in line with true, correlated blocking. Further,
NLOS localization appears to be a small contributer to the
overall single-anchor localization probability. However, [1]
does note that even when a location estimate is obtained,
each additional NLOS path still contributes to a reduction in
position error. Thus, Theorem 1 can also be used to roughly
quantify how much position error reduction is available.

VI. CONCLUSION

For a single anchor-mobile pair, this paper utilizes the
Boolean model to analytically derive the probability that the
mobile can obtain an unambiguous location estimate. This
localization probability not only accounts for LOS localization,
but also accounts for the possibility of localization via NLOS
signals exclusively. Finally, this result reveals that in the
absence of LOS, the probability of having sufficient NLOS
signals to localize is relatively small.
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