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Abstract—Fifth generation networks utilizing millimeter wave
frequencies enable single-anchor localization to be performed via
a line-of-sight (LOS) path or, as recently suggested, via non-line-
of-sight (NLOS) paths exclusively. Thus, for a single base station-
mobile pair, under a Boolean model (random positions, sizes, and
orientations) of reflectors, and considering first-order reflections
(in addition to the LOS path), this paper analytically derives the
probability that the mobile is able to obtain an unambiguous
location estimate (i.e., the mobile’s localizability). This analysis
also reveals that localization, via NLOS signals exclusively, is a
relatively small contributor to the mobile’s overall localizability.

Index Terms—Localization, non-line-of-sight (NLOS), stochas-
tic geometry, Boolean model, Poisson point process (PPP), mil-
limeter wave (mm-wave), first-order reflection, 5G.

I. INTRODUCTION

Emerging fifth generation (5G), millimeter wave (mm-wave)
wireless networks with massive multiple-input multiple-output
(MIMO) have fueled a resurgence in localization research.
Specifically, the ability to obtain Angle-of-Departure (AOD)
and Angle-of-Arrival (AOA) information through the use of
beamforming and antenna arrays opens the possibility of per-
forming single-anchor localization. Recent work in [1] reveals
that even in the absence of an LOS path, an unambiguous
location estimate can still be obtained from a single anchor
if two or more NLOS paths are present (three or more if the
relative orientations of the Tx and Rx need to be estimated, i.e.,
situations where the devices do not know ‘true north’). Since
diffraction effects are negligible at mm-wave frequencies [2],
reflections are the key enabler allowing for these NLOS paths
to be harnessed for localization.

In order to incorporate reflections into an analysis of the
mobile’s localizability, we utilize an important tool from
stochastic geometry; the Boolean model, which characterizes
the random placements, sizes, and orientations of buildings in
a network. This model has recently gained popularity in the
study of propagation, channel characteristics, and performance
metrics in mm-wave networks. Its use in this regard was
pioneered in [3], and shortly thereafter, various versions of
this model have been used to study the effects of first-order
reflections on the power delay profile [4], [5], the total received
interference power [6], and coverage probability [7].

While the Boolean model with first-order reflections has
been used to investigate communications metrics, its use in
studying localization metrics is limited to [8], where the model
was used to study NLOS bias error in range measurements.
Thus, this paper aims to leverage this model in the study of
another localization performance metric: a device’s localiz-
ability [9], i.e., the probability that, for a given localization
strategy, the device receives at least the minimum number of
localization signals needed to obtain an unambiguous location
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estimate.’:> While localizability has been studied in 4G net-
works [9], this fundamental metric has yet to be examined in
the context of 5G, mm-wave networks.

Contributions: For a single anchor-mobile pair, the mobile’s
localization probability is analytically derived; assuming mm-
waves subject to blockages and reflections under the Boolean
model and taking into account the possibility for localization
via a single LOS signal or via several NLOS signals [1]. In
obtaining this probability, we intermediately arrive at a similar
metric from [6]: the average number of reflectors producing
hearable, visible (i.e., unblocked) reflections between the base
station and mobile. However, given our interest in localiza-
tion, an alternate derivation is presented, which is direct and
potentially more illustrative for analyzing localization metrics
that often require knowledge of multiple arriving paths at the
receiver. Lastly, a numerical analysis demonstrates the efficacy
and accuracy of this localizability result, and also reveals the
minor contribution that NLOS localization plays in the overall
localization probability, a result hinted at in [7] while studying
coverage under an alternate setup.

Notation: All constructions and derivations are in R? unless
stated otherwise. Notation is as follows: lowercase, bold let-
ters, e.g., X, represent vectors; [x]; denotes the it component;
x! the transpose; 0 the zero vector; ||-|| the Euclidean norm;
R(O) = | 8 ;glz] the rotation matrix which rotates the
coordinate axes counterclockwise by angle 6; Ly q indicates
the set of points forming a line segment between p and q
(inclusive); similarly, the same notation with a letter other than
L, e.g., Cpp q> indicates the set of points along the curve, C,
between the points p and q; if A C R", then A represents
A’s boundary (closure minus interior) and u,(A) the n-
dimensional Lebesgue measure; if @ is a Poisson point process
(PPP), then ®(A) denotes the number of points of @ in A;
‘g(x)’ denotes a vector function of a scalar, ‘g(x)’ a scalar
function of a vector, etc.

II. SYSTEM MODEL

This section constructs the stochastic model for reflectors
(buildings), describes the setup, and lists the assumptions used
throughout the remainder of the paper.

Definition 1. (Minkowski Sum [3]) For compact sets ‘A, B C
R2, the Minkowski sum is defined as
AeB =~ {x+yeR2|xeﬂ, yeB}.

Definition 2. (Reflector Ry, g,c) A square reflector with finite
width, w > 0, orientation, 6 € (0,7/2), and center point, ¢, is
given by v

Ruoc = ﬂ {xeR?|K (x-[c-k) 20},
where the k; are lg_iilen in Fig. 1(a).
Definition 3. (Boolean Model, Generated by Rw e,0) Let © =

{ci}lf’zl be a homogeneous PPP over R? with intensity A and

IThe minimum number is, of course, determined via the noiseless case.
2We use ‘localizability’ and ‘localization probability’ interchangeably.
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Fig. 1. SYSTEM MODEL. (a): The corners ¢y, ¢f, ¢, & cpv help define
the edge sets: e; = Lieg,els €1 = Liey.eqyl> €tc. The vectors k; (implicitly
functions of w & 6) represent the displacement between the center of the
reflector and the center of the corresponding edge. For reference, ky always
has angle 6 and emanates from the center of ej. The remaining k; and e; are
labeled in increasing order counterclockwise. The edges dictate the Roman
numeral labels — they are labeled according to the quadrant they produce
reflections in, e.g., in (b), | facilitates reflections in the 1 quadrant, Qy. (b):
Without loss of generality, the base station is placed at b = [-d/2, 0]7 and the
mobile at m = [d/2,0]7. We have: Oy = {[x,y]" €R? |x >0,y >0}, and
the remaining quadrants are defined analogously, i.e. points on the axes are in
more than one quadrant. Depicted are two NLOS paths, one blocked NLOS
path, and a blocked LOS path. For reflections, the incident angle, @, equals
the reflection angle, 8. The reflection point in Qy is denoted r; € OR,, g,¢-

let the bivariate, discrete distribution fw,e(w, 6), with support
supp(fw.e) = {[W, 01T € R? | w € {wi}?gl, 0 e {Qj};i] }, be
the distribution from which a reflector’s width and orientation
are sampled.® Then, the Boolean model, generated by Ry e.0,
is defined by
s ;1 iid.
B U ({C[}@Rwi,@i’o), where ¢; € O, [‘évf ]wa’@,
i=1

and the reflectors are independent of ®. (See Fig. 1(b).)

Next, we make the following assumptions:

1) Only first-order reflections whose total traversed path
length is < d,,, meters are assumed to be detectable at
the mobile. Effects of higher-order (i.e. multiple-bounce)
reflections are ignored, a consequence of added reflection
losses and increased pathloss [4].% Note, d < dymax-

2) Localization is performed during the initial access phase
[1]. Thus, the base station is assumed to have 360°
coverage, i.e., a scan of the environment illuminates all
possible reflection paths and allows for AOD estimation.
The mobile is assumed to be equipped with an antenna
array which can resolve the incoming signals’ AOA [1].

3) Blocking is treated independently on all paths.’ For re-
flected paths, blockages on the incident path are assumed
to be independent of those on the reflected path.

4) When LOS is blocked, it is assumed that at least two
NLOS reflections are needed for localization [1].

III. GEOMETRIC IMPLICATIONS OF THE SYSTEM MODEL

The Boolean model and assumptions in the previous section
lead to important geometric consequences regarding where

3The integers n,, and ng are positive and finite.

#In practice, it is possible that a detectable higher-order reflection reaches
the mobile, however, this scenario is rare and is not considered in this analysis.

5Independent blocking is a common assumption in the literature [4], [5],
[6], as dependent blocking, where a single reflector may be responsible for
blocking two or more paths, is difficult to model analytically.

This is in contrast to [4], [5], and [6], where blocking is independent, but
the entire reflected path is treated contiguously.

reflectors may be placed such that a first-order reflection is
established. For a reflector R, g,c, with w and 0 fixed and c
arbitrary, and ignoring blockages, this section characterizes
the region where ¢ can fall such that Ry, gc can facilitate a re-
flection between b and m. This ‘reflection region,” constructed
in [8], is briefly summarized in Definition 5.

To find this region, we first ask: Where are all of the points
in R? such that R, g can intersect to facilitate a reflection,
such as that in Qp of Fig. 1(b)? Well, it turns out that all of
these possible reflection points for R, g lie on a hyperbola:
Lemma 1. (The Reflection Hyperbola [8]) Let 6 € (0,7/2),
b and m be given as in Fig. 1(b), and let Hy be the set of all
possible reflection points for Ry g.c. Then,

Ho = {[x.y1Te B2 | y2 - 2% + 2cot(20)xy + d*/4 = 0}.
Proof. Please refer to [8]. [ |

Remark. Consequently, for Ry g to facilitate a first-order
reflection, it is both necessary and sufficient that i €
{I, IL, III, IV} such that for e; C ORy g.c, (e N Qi N Hy) #0.
See Fig. 2 for an example of Hy.

Next, by Assumption 1, we only consider reflection points
which correspond to reflections of distance < d,,4x. This

implies that all reflection points of interest must lie within
an ellipse with foci b and m, called the ‘hearable region.’

Definition 4. (Hearable Region) The hearable region is de-
fined as &4, = {[x, y]T e R? ‘ X+ y? v <1 }, where
u? =d2, /4 and v? = (d2,,, — d*)/4.

It is now straightforward to find the region where ¢ must lie
in order for Ry, g, to establish a reflection (of distance < dy;4x)
between b and m. This is called the reflection region:
Definition 5. (Reflection Region for R, . [8]) Consider
the four quadrant portions of the reflection hyperbola within
Sdypar: Homy for Or, Hopm ) for O, Hopp,ny for O, and
Hotm,ny for Qry, where h; € HoNoEy Vi e {LILIILIV}.
These h; are given by

T T
v v
h; = [VZI, I » ;\luz _Zl,lll] , hy = [—\/Zu, v, ;\/uz —Zu,lv],

hIII = —hI, and hIV = —hH, where

dt .. cot’d S d*  tan’0

4 [day csc20 — d?]’ 4 [d2qy sec?0 — d?]’

max?

AL =

and u and v are from Definition 4. Next, consider dismantling
the four edges comprising R, ¢, and placing their centers at
the origin, preserving their respective orientations. We denote
these translated edge-sets as: e; o =e; +(k; —c¢). Since any point
along an edge of R, g, can induce a reflection by intersecting

Hpy in the proper quadrant, we define the reflection region as
v

QW, 6, dypax) 2 U (i +k;). where
=T
Hommp ® ero.  Qu = How,hy @ emo

1>

Q

Qm £ Homng © eno. Qv = Hommhy © €rv,o-

Remark. The notation Q(w,#6,d,,,,) emphasizes that this
region is dependent on these parameters. We may similarly
write Q;(w, 0, djuax) for the four quadrant portions. Note
#2((Q 09,0, diax) + K1) 0 (.0, dax) +k;)) = 0, for
i,j € {LILIILIV} and i # j. See Fig. 2 for a partial depiction.
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Fig. 2. REFLECTION REGION IN 15T & 2N QUADRANTS (SHIFTED). For
Ry, 6.¢: the grayed region, Qp(w, 0}, dynax), depicts all of the points that
the center of its edge, er, must lie in order to facilitate a reflection (of length
< dmax) between b & m. Likewise for Q(w, ;, dmax) and Ry, g: c’s
edge eq. The subscript 6; denotes coordinates in the rotated system. I—fere,
0; =n/3.
1V. THE LOCALIZATION PROBABILITY

We begin by covering some implications of Assumption 3.
First, under this assumption, the Boolean model, B, is used
to check for blockages on the LOS path between b and m
and is also used to find reflections, regardless of whether
a path is blocked under B. Then, to determine whether a
reflection path is visible, the incident and reflected portions
are separately checked for blockages under new, separate, i.i.d.
Boolean models. This is formally outlined below.
Definition 6. (Independent Blocking, Direct Path) Let 8 be
a Boolean model. We say that a direct path between points p
and q is visible (or not blocked) if BN Lipq = 0.
Definition 7. (Independent Blocking, Reflection Path) Let B
and B, be i.i.d. Boolean models. We say that a reflection path
between b and m with reflection point at r, i.e., L, rjULr,m],
is visible if (B]ﬂL[b,r])U(Bgﬂl[r’m]) = 0.
Lemma 2. (Visible Direct Path) Consider Definition 6, then

P[BN Lipq =0] = e*EWe [#2(£[p,q1®Rw,e,0)]7

where > (Lpq1 ® Ru,0,0) =
{«/Ewup—qn sin (/4 + 6 — ) + w? 0<0-n<n/2

V2w|p —qll|sin (- 7/4 + 6 —n)| + w> otherwise,

and 1 = tan™" [([ql2 - [p]2)/(Iq]s — [p]D)].

Proof. First, u>(Lpq ® Ruw,e,0) can be derived via simple
geometric arguments [3], and by considering cases arising
from the angle, n, of the slope of Lppq relative to the
orientation of R,, g,0. Next, perform an independent thinning
of @ by retaining only the center points corresponding to
reflectors of width, w, and orientation, 0, i.e., ®,, ¢ C ® with
thinned density A fw,e(w,6). Then, P[B N L q) = 0]

. ng
(a)
= nnp[q)wiﬂj (L[p,q] ® RWi,Qj,U) =0]
i=1 j=1
B T 270 fw,0wis0) o ( Lip,q1 ®Rw,0,0)
where (a) follows from independent thinning and (b) by the
void probability of a PPP. The lemma follows. [ |
Corollary 1. (Visible LOS Path)

7/1(«@115“,,@ W sin(r/4+0) | +Ew [ W2 )
P[BN Lpm =0] =e [ | (Wl .
7One can interpret B as random or as a realization. We use the same

notation for both cases. Its usage will be clear from context. This is analogous
to using ‘X"’ to refer to both the random variable, X, and its realization X =x.

Corollary 2. (Visible Reflection Path) Consider Definition 7.
Given Assumption 3, P[ L r]ULrm) is visible] =
e AEw.e [12 (Lbn®Rw.0.0) +122 ( Lir.m ®Rw.0.0) | )
Proof. By  Assumption 3 we have: P[Lpy U
Lirm is visible] = P[ Ly is visible] P[Lirm] is visible].
Applying Lemma 2 yields the corollary. [
Theorem 1. (Number of Hearable, Visible Reflectors) Con-
sider b and m under Boolean model, B. Let Vg, , . denote the
number of reflectors producing hearable, visible reflections be-
tween b and m. Given independent blocking under Assumption
3, Vi, ~ Poisson(E[Vg,,.. 1), where E[V,4
[hl(;j I [hn,,,. I

2/12 [/PI(I‘I(Xa_,-))dxe_ﬁﬁn(I'H(ye,))d)’aj]zwifw,(a(wi, 6y,
= g, 1y [bo, 1> =l
[mg, ]1 = [R(6;)m]y, [hy, 11 = [R(6))his, [be,; ]2 = [R(F;)b]2,
[hugj]z = [R(@)hnly,
pi(ri(xe;)) = PLLib.ri(xo, 1Y Lirs(xg, .my is Visible], (1)

max]

pu(ru(ye;)) = PLLbru(ye; 1Y Liru(ye;).my is Visible],

1 (4x§j+ d?sin’;) cos 6, J )
I‘I(.X'Qj) - 4x9j (4x%}f_d200520j) sin Gj > an ( )
1 —(4y§j+ d*cos¥;) sin 6,
ru(ye;) = M (4y§f—d251n29j) cosf; |

Proof. For B, consider the thinned PPP of reflector centers,
®D,, 9 C @, described in the proof of Lemma 2. We further thin
this PPP by retaining only the center points corresponding to
reflectors that produce visible reflections. By the independent
blocking assumption, this is independent thinning; however, it
is location dependent, i.e., whether a point is retained depends
on whether its corresponding reflector’s edge e; intersects
the reflection hyperbola in Q; and on whether the reflection
is visible. We denote this thinned, inhomogeneous PPP by
D, ¢ (intensity measure A, ,, ¢), where @, ,, 9 C D,, ¢. This
yields Vg,,.. = 2 721 D@y 60, (QWi, 0}, dax)). Since,
the @y, 0, (Wi, 0}, dmax)) are independent, Poisson ran-

dom variables, then so is V4 Taking the expectation:
ny, ng

E[Va,..] = Z Z Av,wi,Gj (Qw;, 0;, dimax))
i=1 j=1
iy, jn(,» v

= Z Z Z Av,wi,af (Qq (wi, 0;, dmax) + kq)a
i=1 j=1 g=I
where the second equality follows from the Def. 5 remark.
We begin with A, v, 0, (Qu(Wi, 6}, dmax)+K1). Since @y, o,
is obtained from @, ¢, via location dependent thinning, then
if p(y) is our retention probability (a continuous function over
Qr + kp), we have Av,w,—,6’j (Q](Wi, 9]', dyax) + kl)

a b
w /p(y) A0, 2 /p(x + K1) dAy, 0,

QI(Wivgjvdmax)"'kl

9 /m(x) Ao, L Afwown0) [pdx,  (3)
Qi(wi,0j,dmax) Q(wi,0j,dmax)
where (a) follows by definition, (b) by setting x = y — ky,
(c) by setting p;(x) = p(x + k), and (d) from Awiﬁj (B) =
Afw.o(wi, 0;)u2(B), for all Borel sets, B, and from the

max *

QI(Wivgjadmax)



continuity of p. Note, the steps (b) and (c) imply: if x €
Qr(w;, 0}, dinax), then'y € Qp(wy, 0, dmax) + K1 and p(y) =
pi(x); i.e., both points have the same retention probability.
If we consider ®,, ¢, — Ki, the PPP of center points of the
reflectors’ edges ey, then py is the retention probability of these
edge centers. Thus, p(y) = pi(x) implies the PPP of edge-e;
centers over €y is thinned equivalently to the PPP of reflector
centers over Qp + k.

To find py, from (le.,gj —Kp over the region Qi(w;, 8}, dnax),
we turn to Fig. 2. Considering a coordinate system rotated by
6, then all of the points in the slice xg i have the same retention
probability, since the center of edge ey can lie anywhere in this
slice to produce a reflection at I'I(ng). Thus, in this rotated

system, (3) reduces to
[hiy T

" pr(ri(xq,)) dx,,

[mg; 11

where [mg;];1 = [R(6;)m];, [hy, 11 = [R(f;)h];, and
pI(I'[()ng)) is the probability that the center point of edge ey,
xg, with [Xg;]1 = xg;, is retained, i.e., it is the probability that
the corresponding reflector of this ‘edge-e; center point’ facil-
itates a visible reflection at point ri(xg,). Hence, by Corollary
2, we have (1). The reflection point r; as a function of X,
is derived by finding Hp, in the rotated coordinate system:
Yo; = —-d? sin(26;)/(8xg;), finding the reflection point in this
coordinate system: Ty, (xg;) = [xg;, —d? sin(26;)/(8xp)]",
and then rotating it back to the original system: ri(xg;) =
(R(07))"ry,, (x,), yielding (2).

Note, Ay w0, (Qu(Wi, 0, dmax) + ki) is obtained analo-
gously and symmetry implies A, v, 0, (ki) = Ay w6, (Qurt
ki) and Ay, ,.0, (Qu+kn) = Ay 0, (Qrv+Kkiy). =
Corollary 3. (The Localization Probability) Given single-
anchor localization with the anchor and mobile separated by
d meters, a Boolean model of reflectors, and a hearability dis-
tance of dyqx meters, then P[The mobile can be localized] =

P[B N Lipm = 0]+ (1= P[BN Lipm =0])PIVa,,, >2].

P[LOS is Visible]

= Aw; fw,o(wi, 6;)

max

P[LOS Blocked, but Sufficient NLOS Paths]
Proof. This follows by Assumptions 3 and 4. [ |

V. NUMERICAL RESULTS

The three simulations in Fig. 3 were conducted in the same
manner as discussed in the first paragraph of Sec. IV. The
only difference was in how reflected paths were checked for
blockages. For blocking under Assumption 3, the incident and
reflected paths for each reflection were checked for blockages
under new, i.i.d. Boolean model realizations; for independent
blocking from [4], [5], [6], each reflected path uses a new,
i.i.d. Boolean model realization to check for blockages along
the entirety of the path; and lastly, for correlated blocking (true
blocking), the original Boolean model, B, is used to check for
blockages on all reflected paths.

First, note that the simulation with Assumption 3 blocking
matches Corollary 3, supporting the analytical derivation.
Next, we see that Assumption 3 blocking better approximates
the true, correlated blocking scenario than does the blocking
assumption in the references. This is due to the ‘overesti-
mation’ of the region where a reflector may fall to produce
a blockage (see Corollary 2), leading to a higher blocking

—©— Assump. 3 Blocking (Analytical)
Corrolated Blocking (Sim)
— = =[], 5], [6] Blocking (Sim)
—#— Assump. 3 Blocking (Sim)

P[The Mobile can be Localized],

o
©

o
)

Corollary 3
07 o
. Note: For P[LOS is Visible],
z 06 O all erves cotndi 4
£ all curves coincide, as
B blocking on the LOS path is
E 057 plLOS is Visi > treated identically in all cases. |
8 is Visible], eated identically in all cases
< P
= Corollary 3
A o0ar ‘
03
P[LOS Blocked, but Sufficient NLOS Paths],
02 ; 1
Corollary 3 ~a
o1r
|
0 T : : . .
0 10 20 30 40 5 60 70 8 90

Avg. Number of Buildings per Sq. Km. (Reflector Density)

Fig. 3. ANALYTICAL VS. SIMULATION. Parameters: d = 200m, dpyax =
lkm, and the reflectors (buildings) were chosen from the joint uniform
distribution, fiv e(w, 8)=1/(5 - 8), where supp(fiv,e) ={[w, 01T eR?|w e
{20m, 40m, . .., 100m}, 8 € {10°, 20°, ..., 80°} }. This implies E[W] = 60m
and that roughly, for example, an avg. of 32% of the land is covered by
buildings at the density of 90 buildings/sq. km. Simulated probabilities were
generated over 10° Boolean model realizations on a 1.3km x 1.3km grid.

probability more in line with true, correlated blocking. Further,
NLOS localization appears to be a small contributer to the
overall single-anchor localization probability. However, [1]
does note that even when a location estimate is obtained,
each additional NLOS path still contributes to a reduction in
position error. Thus, Theorem 1 can also be used to roughly
quantify how much position error reduction is available.

VI. CONCLUSION

For a single anchor-mobile pair, this paper utilizes the
Boolean model to analytically derive the probability that the
mobile can obtain an unambiguous location estimate. This
localization probability not only accounts for LOS localization,
but also accounts for the possibility of localization via NLOS
signals exclusively. Finally, this result reveals that in the
absence of LOS, the probability of having sufficient NLOS
signals to localize is relatively small.
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